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Abstract-This paper presents modifications made to the 
Adaptive Capacitive Sensor for Obstacle Ranging (ACSOR) [1] 
that have enabled the sensor to provide material type data for an 
object in the sensing field. The ACSOR, previously capable of 
obstacle ranging (up to 500mm) in various densities of particle 
laden air, has been modified and fitted with a noise and stimuli­
response analyzing algorithm allowing the sensor to determine 
the material type of a sensed object. Experimental results have 
demonstrated the modified sensor's ability to successfully classify 
the material type of several different objects whilst fitted to an in­
motion 6-DOF anthropomorphic robotic arm in typical indoors 
conditions; 3.56% incorrect classifications (from a set of known 
material types) with an unintelligent 'hard logic' classifier. 

Keywords-component; Capacitive, range sensor, material type, 
classification 

1. INTRODUCTION 

Bridges are a vital component of transport system 
infrastructure worldwide and with their exceedingly high 
construction costs there is significant motivation to extend their 
life spans. Research into premature bridge failure has identified 
rust as a primary cause and stripping the structure back to 
clean, untainted metal and then applying a paint coating as an 
effective means of protection [1 ]-[3). The most effective 
method of large-scale metal stripping, such as that necessary 
for a bridge, is sandblasting and herein lies the problem. 
Sandblasting is a labor intensive and hazardous [4] operation. 
Not only are workers required to spend long periods of time 
handling forces in excess of lOON [5]-[6], but a large portion of 
the bridges in Australia are painted with lead and/or asbestos 
based paints. These types of paint pose a serious health risk to 
the workers tasked with their removal. With the long-term 
health damage of lead and asbestos now common knowledge 
[7], the appeal of replacing manual labor with robotic labor is 
high. This, along with changing workplace laws, which are 
slowly evolving to prohibit humans from working in such 
environments, leaves little alternative other than robotics in 
order to complete this necessary task. 

In order to facilitate the use of autonomous robotics in 
construction/maintenance operations such as sandblasting, 
there is a need for the robots to be capable of self deriving an 

understanding of the environment that they are to interact with; 
the environments are too complex and unstructured for the 
environmental knowledge to be derived manually [8]-[9]. 
Furthermore, the knowledge of occupied space alone is not 
adequate for true robot-environment interaction [10). The robot 
must also be able to determine the material type of the objects 
occupying the space in order to adjust the method of interaction 
accordingly. Consider a robot designed to autonomously 
sandblast, the robot would cause considerable damage if it were 
to blast a section of plasterboard rather than metal. Clearly 
there is a need for the robot to be capable of determining the 
material type of the surface with which it intends to interact. 

There are several mature sensors available for material type 
classification: with the sensors falling into the broad categories 
of contact/near-contact or non-contact. Due to the specific 
application targeted in this paper, contact or near-contact 
sensors, such as tactile sensors [11] and laser spectroscopy 
[12], are not desirable. This is largely due to the small sensing 
areas «25mm2

) typical with this category of sensor. Physical 
contact with the surface is also an issue in some cases, for 
instance, it is not acceptable for the robot to make contact with 
a human. 

Non-contact sensors, such as Impact Acoustic Sensors [13], 
Spectrometers (light based) and light diffusion measuring 
techniques [14], typically have larger sensing areas 
«1000mm2

) and do not require physical contact with the 
surface. However, these sensors are again not suitable for tbe 
intended application due to the underlying technology on 
which they are based. The ambient noise typical in construction 
environments will saturate the receiver of the acoustic based 
method rendering it unusable. The light based methods are not 
appropriate for this application as they do not penetrate the 
surface of the object, thus it is possible for two materials of 
different types with the same coating (e.g. paint) to be 
indistinguishable from each other. 

A capacitive-based approach offers many advantages. The 
broad distribution of the electric field allows large areas of 
coverage with a relatively small sensor size. Additionally, 
capacitive sensors are insensitive to lighting, noise, or the 
color, shape, surface or texture of the obstacle [15). Although a 
significant amount of work has been done by manufactures and 
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researchers [16]-[20] developing capacitive sensors designed 
for ranging obstacles there is currently no capacitive based 
technology for determining material type available. Even 
though, the fundamental principles of operation of such sensors 
suggest that they will respond differently to sensed objects of 
different material types; which implies that material type 
classification may be practically possible. 

This paper presents the Modified Adaptive Capacitive 
Sensor for Object Ranging (MACSOR). The MACSOR is 
capable of material type classification and object ranging in air 
heavily laden with particles. The MACSOR is a non-contact 
surface penetrating sensor whose base technology has proven 
to be immune to the conditions present in typical sandblasting 
environments [6]. The MACSOR is an extension of the sensor 
developed by Kirchner, et al. in 2006 [I], which is based on the 
work of Novak, et al. in 1992 [15]. The MACSOR 
distinguishes itself from these two sensors with its ability to 
classify the material type of the sensed object. Neither Novak's 
sensor, nor the ACSOR are capable of determining material 
type of the sensed object. they provide range information only. 
This paper details the adaptations made to the sensor that allow 
for the material type of the sensed object to be determined. 
Experimental results have demonstrated the MACSOR's ability 
to successfully classify the material type, from a set of known 
material types, of several different sensed objects whilst fitted 
to an in-motion 6-DOF anthropomorphic robotic arm in 
conditions typical to common indoors environments. 

The breakdown of this paper is as follows; firstly the 
fundamentals of the capacitive technology that allows for 
material type classification will be discussed followed by a 
discussion of the modifications to the ACSOR that allow it to 
classify. Section 4 will detail the results from MACSOR 
testing, these results will then be discussed with conclusions 
drawn and future work proposed. 

II. FUNDAMENTALS 

Fig. 1 shows a schematic of the active sensing component 
of the MACSOR. The MACSOR is built on the same 
fundamental technology as Novak's sensor and the reader is 
referred to [15] for an in-depth explanation of the technology. 
In the following example a conductive obstacles will be 
considered as the intended application is for sensing bridge 
structures. The obstacle is assumed to be a flat plate orientated 
parallel to the sensor. This assumption is reasonable 
considering the sensor size (7cm x 7cm) compared to the size 
of the intended object being sensed; a part of a bridge structure. 

Obstacle 

d 

3"'" 

C'J -:.... 

,~. 
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Referring to Fig. 1, electrode 1 is connected to a drive 
oscillator and electrode 2 is connected to a charge amplifier ­
this is, a charge to voltage converter. As the magnitude of the 
electric field generated by the drive oscillator on electrode I is 
fixed and as electric fields will follow the path of least 
resistance, then in the case where no obstacles are present the 
electric field tends to electrode 2 and gives rise to a maximum 
charge, Q, between electrodes I and 2, shown in (I). 

Q = fsEEdS (I) 

where E is the electric field vector and S is a surface 
completely enclosing the conductors. In the model shown in 
Fig.1 the surface, S reduces to a continuous path around the 
conductor; the obstacle. 

The magnitude of the charge, Q, is determined by the drive 
oscillator voltage and frequency and remains fixed whilst the 
drive oscillator voltage and frequency is fixed. In the case 
shown in Fig. I where an obstacle with high impedance to 
ground is present Q becomes the sum of capacitances C1Z, CZ3 

and C13 and as Q is fixed and CZ3 and C13 are greater than zero, 
C12 must be of reduced magnitude (conservation of energy). 
Further to this, as capacitance is proportional to the distance 
between electrodes, the distance d is directly related to CZ3 and 
C 13 and thus C1Z • Due to the electrical configuration of the 
charge amplifier circuit the charge amplifier measures the 
sensor capacitance, C1Z , only. It is this property of the sensor 
that is exploited to facilitate range measurements. 

Fig. 2 shows the electrostatic field created by the sensor. 
The electric field lines are spaced by a repulsive force between 
adjacent field lines. The field lines actively follow the path of 
least resistance, in this case, the length of the obstacle. In the 
case of the field following through the path of least resistance a 
larger number of field lines will occupy the same physical 
space as a smaller number of field lines through a path of 
higher resistance. This is, the repulsive force will be partially 
negated by the attractive force of traveling through the path of 
lesser resistance and adjacent field lines will become closer. 

Electrostatic 

Obstacle field lines 

~j 
Sensor 

Figure 2. Electrostatic Field 

III. MACSOR 

To understand how the MACSOR is responsive to the 
material being sensed we again refer to the interaction of the 
electric field created by the sensor and the obstacle. Fig. 3 
shows the electric fields interaction with a conductive and with 
a non-conductive obstacle present. As can be seen in the figure, 
the attraction to travel along a conductive path (low resistance 
to field flow) is sufficiently high to cause the majority of field 
lines to travel along the length of the obstacle. Conversely, the 

Figure 1. Schematic of Active Sensing Component 
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attraction to travel along a non conductive path is not sufficient 
to cause the field lines to travel the length of the obstacle. 

The sensor's maximum response is limited by the 
magnitude of the electrostatic field flowing along the obstacle 
and between the obstacle and sensor. At the range where the 
electric field is of sufficient intensity so that the repulsive force 
between adjacent field lines will cause the field lines to 
penetrate the lesser conductive obstacle rather than travel alo.ng 
it, the sensor's reading will be lower than with a conductIve 
obstacle in the same position [2 I]. Thus, the MACSOR WIll 
respond to a physical property (resistivity) of a sensed object. 
Assuming that the materials of interest have suffiCIently 
different resistivity to field line flow then this property can be 
used for material type classification. 

Conductive Obstacle Non Conductive Obstacle 

=r "Electrostatic,;"~ •
Sensor field lines Sensor 

Figure 3. Electrostatic Field Interaction with Conductive and Non
 
Conductive Obstacles
 

Further to this, as the electric field is not truly static and has 
some variation in intensity (due to fluctuations/noise in the 
circuit and the environment) the instantaneous magnitude of the 
electric field flowing through the obstacle and between the 
obstacle and sensor will vary depending on the resistivity of the 
material. For instance, in the case of an obstacle with high 
resitivity, a small increase in the field intensity may cause the 
outer most field line to penetrate through the obstacle thus 
reducing the magnitude of the field acting on the sensor. 
Conversely, in the case of an obstacle with low resitivity a 
large change in the field intensity would be required to cause a 
similar effect. This theory suggests that the variance in a set of 
readings of the same material wi II be larger if the material has a 
higher resitivity. Assuming that the materials of interest have 
sufficiently different resistivity, then the variance in 
consecutive readings of the same material is potentially suitable 
for use as the basis on which to classify the material type. 

The deviation of a new reading, at a known sensor-object 
distance, from a reference reading and the variance of one­
thousand consecutive readings (20ms to acquire) are compared 
to the corresponding values for known materials. The result of 
this comparison enables the MACSOR to classify a sensed 
object's material type; from a set of known materials. 

IV. RESULTS 

A. Evaluating the Sensors Response 

The first test was designed to evaluate the sensor's response 
with objects of various material types in the sensor field. The 
MACSOR was fitted to the end-effector of an anthropomorphic 
robotic arm (6-DOF); Fig. 4 shows the MACSOR and Fig. 5 
shows the MACSOR fitted to the robot. The robot was 
programmed to place the sensor parallel to the object's surface 
at IOmm from the object. The robot then moved directly away 
from the object (with no lateral or vertical displacement - as 
indicated by the darker arrow in the Fig. 5) whilst taking ten 

sets of one thousand readings at each ten millimeter interval, up 
to 300mm. The test was repeated with the objects of the 
material types; Metal, Wood, Concrete and Human and with no 
object present (a control). A total of one million, five hundred 
thousand readings were taken, approximately 20ps per readmg. 

Figure 4. MASOR Sensor 

Figure 5. MASOR Sensor on Robot 

Fig. 6 shows one set, randomly selected from the ten, of 
readings at IOOmm from the object for each material tested. As 
can be seen from the figure there is considerable variation 
between consecutive readings for all of the materials tests, 
however, it is observable that the magnitude of the variation is 
different for the various materials. For instance, when 
comparing the variance of the readings for Wood and Metal, as 
the theory in Section 3 suggested, the less resitive material has 
a smaller variance. The darker, seemingly straight lines on the 
figure are in fact three hundred reading moving averages: three 
hundred readings takes 6ms to complete. As can be seen the 
moving average produces a stable output; which is used for 
object ranging as described in [1]. 
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Figure 6. 1000 Readings for Materials at IOOmm 

Fig. 7 shows the standard deviation of the ten thousand 
readings taken for each of the materials at each 10mm 
increment over the range of lOmm-300mm from the object. As 
can be seen from the figure at an object-sensor distance of less 
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than 150mm the difference between the standard deviation of 
the readings enables the partial classification (Metal, 
Human/Concrete or Wood) of the sensed material. 
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Figure 7. Readings' Standard Dev. for Various Materials (1 Omm-300mm) 

Fig. 8 shows the difference between the sensors output­
reading (from hereto to be considered the stable value produced 
from the aforementioned moving average) and the value for the 
control reading (this will be referred to hereafter as the LlFAR) 
for each of the materials at each 10mm increment over the 
range of IOmm-300mm from each of the objects. As can be 
seen from the figure; at an object-sensor distance of less than 
IOOmm, the MARs for each of the materials are sufficiently 
differentiable to enable the partial classification (Metal, 
Human, Concrete or Wood/Control) of the sensed material. 
Further to this, Wood and Control is distinguishable if the 
sensor is moved to 60mm or if an object is known to be 
present. Based on this and the previous result the readings 
taken at object-sensor distance of approximately 100mm will 
yield the most information in a single output-reading. 
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Figure 8. Readings for Various Materials (IOmm-300mm) 

At this stage an unintelligent hard-logic classifier was 
designed. The classifier takes a reading from the MACSOR (at 
a known object-sensor distance) and determines the LlFAR and 
the intra output-reading standard deviation. The ~F AR is 
compared to the LlFARs obtained from Fig. 8 (at the same 
object-sensor distance) and an intermediate classification is 
made by finding the ~F AR from the graph closest to the ~F AR 
of the reading at the known range. A similar process is then 
repeated for the intra output-reading standard deviation and if 
both intermediate classifications agree upon the same material 
the classifier outputs a material type. If the intermediate 

classifications disagree, the classifier output indicates an 
unknown material is present. At this point it must be 
emphasized that the primary research goal of this work was to 
develop a sensor that provides information useful for 
classification and not to develop a classifier. The simple 
classifier mentioned above was implemented as a means to 
evaluate the sensor's potential. 

B. The Sensor's Ability 10 ClassifY 

The next test was designed to determine the MACSOR's 
ability to classify. The MACSOR was again fitted to the end­
effector of the 6-DOF anthropomorphic robotic arm as 
described in the previous test. The MACSOR was then placed 
at a distance of 100mm from various objects (as can be seen in 
Fig. 9) and three hundred output-readings for each material 
were taken; the readings were taken at spaced intervals over a 
total of one hundred and twenty minutes. 

Figure 9. 

As this test was preformed on a different day than the 
previous test and using a different objects for the Wood, Metal 
and Human tests, a new set of LlFARs and intra output-reading 
standard deviations were required to classify with. This new set 
of classifier reference values was obtained by randomly 
selecting nine output-readings from the three hundred taken, 
for each of the materials. Table I shows the LlFARs and intra 
output-reading standard deviations derived from these readings. 

TABLE L CLASSIFIER REFERENCE VALUES 

Material t.FARs a 
Metal 19.397 7.153 

Human 18.934 8.717 
Concrete 10.690 11.023 

Wood 3.641 12.729 
Control 0.843 16.107 

With the classifier reference values now determined the 
remaining output-readings where inputted into the previously 
described classifier. Table II presents the results from the 
classifier. As can be seen from the table using a single output­
reading from the MACSOR the classifier was able to correctly 
classify the material of the sensed object with a 0.8231 
probability. The remaining probability of 0.1769 is spread over 
the classifier being unable to classify the sensed objects 
material (0.1324) and incorrect classifications (0.0445). On 
further analysis of the results it can be seen that all errors 
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consisted of classifying either Metal or Concrete as Human. 
This is significant as, for the intended application 
(sandblasting) this type of incorrect classification will result in 
non-blasting of the area - this is, the classifier has failed in a 
safe manner. These results clearly demonstrate the MACSOR's 
can be used to successfully classify material type. 

TABLE II. CLASSIFIER RESULTS 

Object Correct Incorrect Unknow Most Common 
Material (%) (%) n(%) Error (%) 

Metal 84.04 16.60 0 Human (16.60) 
Human 77.25 0 22.25 

Concrete 73.34 1.11 25.55 Human (1.11) 
Wood 94.60 0 5.40 

Overall 82.31 4.45 13.24 Human (4.45) 

The next test was designed to evaluate the MACSORs 
ability to classify whilst in motions. This test saw the 
MACSOR fitted to the end-effector of the 6-DOF 
anthropomorphic robotic arm as described in the previous tests, 
however, in this test the robot was programmed to continuously 
move between the different materials collecting data and 
attempting to classify the material when located 100mm from 
the surface of the objects. A total of fifteen hundred output­
readings (spread evenly between the materials) were taken. An 
image sequence of this test is shown in Fig. 10. 

Figure 10. In-Motion Classification 

As with the previous tests, a new set of ~FARs and intra 
output-reading standard deviations were required to in order to 
classify. This new set of classifier reference values was 
obtained by randomly selecting nine output-readings of each of 
the materials from the fifteen hundred readings taken. Table III 
shows the MARs and intra-reading standard deviations derived 
from these readings. As can be seen, although the magnitudes 
vary the trends are again similar. 

TABLE III. CLASSIFIER REFERE CE VALUES 

Material ~FARs a 
Metal 12.646 12.426 

Human 18.060 9.9045 
Concrete 7.835 14.067 

Wood 2.695 14.673 
Control 1.469 17.528 

With the classifier reference values now determined the 
remaining output-readings where inputted into the classifier. 
Table 4 presents the results from the classifier. As can be seen 
from the table, using a single output-reading from the 
MACSOR the classifier was able to correctly classify the 
material of the sensed object with a 0.8867 probability. An 
incorrect classification accounts for the remaining probability 
(0.1163). On further analysis of the results it can be seen that 
the major source of errors consist of classifying Metal as 
Human. Again the classifier has failed in a safe manner. The 
next largest source of errors arises from classifying Concrete as 
Metal. This is not a critical error, however, it is not desirable as 
it would result in concrete being sandblasted. These results 
clearly demonstrate the MACSORs ability to successfully 
classify material type whilst fitted to an in-motion robotic arm. 
The results also suggest a more sophisticated classifier IS 

required for in application use; in order to ensure safety. 

TABLE IV. CLASSIFIER RESULTS 

Object Correct Incorrect Unknown Most Common 
Material (%) (%) (";0) Error (%) 

Metal 72.95 27.05 0 Human (27.05) 
Human 100 0 0 

Concrete 89.95 10.05 0 Metal (7.61) 
Wood 100 0 0 

Overall 88.67 11.33 0 Human (8.57) 

The final result presented here details the effect of a 
statistical-correlation based modification to the classifier 
criteria. This modification is based on the assumption that; as 
three consecutive readings are taken in 60ms the readings are 
statistically likely to be from the same obstacle. This change 
has been included in order to illustrate the error reduction 
possible by introducing a more intelligent classifier (set down 
as future work). To implement the change the final output stage 
was modified so that in order for a classification to be 
outputted two of three consecutive classifications must report 
the same material and the third must be either the same 
material again or an unknown material but, cannot be a 
different material. As an output-reading are obtained from the 
sensor in 20ms, requiring three for a single classification does 
not create a significant time lag for obtaining a classification. 

Table 5 presents the result of the aforementioned criteria 
modification made to the classifier. As can be seen from the 
table the introduction of this criteria modification before a final 
classification may be outputted has resulted in a significant 
decrease in the probably of the classifier outputting an incorrect 
classification or reporting the material as unknown. The 
probability of the classifier outputting an error while static has 
gone from 4.45%-70.58%, the probability of a classifier error 
whilst in-motion has gone from 11.33%-73.56%. As a final 
note, this result suggests that the accuracy of the system is 
higher when the sensor is in-motion, this is not the case 
however. as can be seen from comparing Table I to Table III, 
the ~F ARs and the intra-reading standard deviations for the 
most commonly misclassified materials are considerably more 
differentiable for the in-motion test and it is this that has 
enabled the classifier to operate with a higher accuracy. 
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TABLE V. MODIFIED CRITERJACLASSIFIER 

Test Correct (%) Incorrect (%) Unknown (%) 

Pre Mod. 
Static 82.31 4.45 13.24 

In-motion 88.67 11.33 0 
Post Mod. 

Static 91.72 0.58 7.70 
In-motion 96.44 3.56 0 

V. CONCLUSIONS AND FUTURE WORK. 

This paper has presented the MACSOR which has been 
designed to provide infonnation on the material type of an 
object in the sensing field. 

Experiments have demonstrated the MACSORs ability to 
classify material type from a set of known materials common 
to sandblasting environments with a 0.58% error when the 
sensor is static and with a 3.56% error when fitted to an in­
motion 6-DOF anthropomorphic robotic ann. The results have 
clearly demonstrated that the output from the MACSOR can be 
analyzed to yield material type infonnation during use in our 
stated application and thus the technology will be pursued. 

Future work will primarily focus on developing a more 
intelligent classifier in order to reduce classification errors and 
to allow for the classification between a larger set of material 
types and evaluating the MACSOR under different 
environmental conditions. 
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