
Web extensions to UML: Using the MVC Triad

B. Henderson-Sellers, D. Lowe and A. Gu

University of Technology, Sydney

1 INTRODUCTION

Current modelling languages for web system development were examined by Gu et

al. (2002) against a set of developed criteria or requirements for a Web Modelling

Language (WML). Of the six current WMLs examined, some with hypermedia roots,

others extensions to OO modelling languages such as the UML (OMG, 2001), all

were found deficient in part. This is because those WMLs with a hypermedia basis

are more closely focussed on the information architecture whereas modelling-derived

WMLs are more closely focussed on the functional architecture. The spread of

WMLs along these two important axes is shown in Figure 1, where it is seen that

there are no candidates which address both the informational and functional

architectures concurrently. This paper attempts to move WMLs towards this “target

zone” (Figure 1).

Firstly, the scope and objectives of the extension are discussed (Section 2), followed

by the proposed model extensions (Section 3) and UML diagram extensions (Section

4). These extensions are then discussed in terms of how they might be used in

different design components of the overall software development process (Section 5).

Then in Section 6, we illustrate the feasibility of this approach in terms of a small case

study.

 1

Figure 1: Existing Modelling Approach Gap Analysis (after Gu et al., 2002)

2 SCOPE , OBJECTIVES AND APPROACH

As discussed in Gu et al. (2002), limitations and flaws can be identified in the existing

modelling approaches that are currently used to develop Web systems. Some of the

gaps, such as the inability to support system life cycle management and the potential

misuses of UML extension mechanisms, need to be addressed in separate research

projects and are beyond the scope of this present paper. Here we address the issues

relating to the need to model increasingly sophisticated functionality and, most

 2

importantly, to integrate the functional architecture with the informational

architecture.

Since the extensions proposed in this report make use of UML extension mechanisms,

this approach needs to be defined explicitly in order to avoid confusion. The normal

way to extend the UML is the use of stereotypes. “A stereotype is not the same as a

parent class in a parent/child generalization relationship. Rather, you can think of a

stereotype as a metatype, because each one creates the equivalent of a new class in the

UML’s metamodel.” (Booch et al., 1999, p80). In other words, stereotypes extend the

UML (M2) metamodel indirectly at the M1 (or model) level, wherein the relationship

between a class and its stereotype is an “instance_of” rather than an “is_a_kind_of”

relationship (Atkinson et al., 2000). Whilst this extension mechanism makes it easy

for users to extend the UML notation as and when they want to, it may introduce

confusion and semantic problems because the (mis)use of the inheritance relationship

in a stereotype does not truly reflect the intended instantiation relationship that is used

in direct metamodelling (Atkinson, 1998; Atkinson et al., 2000; Atkinson & Kühne,

2000, 2001).

However, despite the inherent problems of the current UML stereotype concept, for

the purpose of this project and this paper, we will still use stereotypes as the extension

mechanism, mostly due to the support given to them by CASE tools. To further

improve the proposed extensions, direct modification to the UML metamodel may

need to be considered as an alternative (see e.g. Henderson-Sellers et al., 1999).

The objectives of the extensions are:

 3

• To address the deficiencies identified in the the gap analysis reported in Gu et al.

(2002). These issues include the inability to model sophisticated functionality, the

disconnection between the information architecture and the functional

architecture, the disconnection between the business model and the technical

architecture and the inability to support modelling at various abstraction levels.

• To ensure the integrity of the resultant Web system architecture, whilst merging

the business model with the functional and information aspects of the technical

architecture and representing system structure at different abstraction levels.

Based on the analysis of the existing modelling approaches, we propose a UML

extension with information modelling concepts taken from other modelling

approaches, WebML in particular (Ceri et al., 2000). This option is chosen because:

• The UML notation is commonly used and accepted. It appears to provide

reasonable support for system functional architecture modelling. To provide

sufficient support for Web system development, some Web specific features need

to be defined; and

• Approaches from a hypermedia background demonstrate reasonably rich and

balanced support for the information architecture and concepts from them can be

used as the foundation for the extension. Amongst them, WebML is a more recent

attempt that provides modelling capabilities for most critical aspects of Web

system information architecture.

3 EXTENSION MODEL STRUCTURE

To ensure the architectural integrity of Web systems, we would like to propose an

extension model structure that can be used to support the modelling of the information

 4

architecture and the functional architecture in a coordinated and cohesive manner.

This structure is based on the MVC concept.

3.1 THE MVC CONCEPT

“The Model-View-Controller architecture, often known just by the letters MVC, has

been a feature of Smalltalk since Smalltalk-80. It is based on the concept of separating

out an application from its user interface” (Hunt, 1997, pp266). The responsibilities of

Model, View and Controller are described as follows:

• Model – the information model that handles data storage and information

processing. It manages the behaviour of the data in the application domain.

• View – handles how the information is displayed visually, which is the interface

part of the system.

• Controller – provides user interaction to, or control of, the information models.

Some well-known reasons for its popularity are (Hunt, 1997):

• Reusability of application and / or user interface components;

• Ability to develop the application and user interface separately; and

• Ability to inherit from different parts of the class hierarchy.

Initially used in object-oriented programming languages, such as Smalltalk, as a code

level structure, the MVC concept has gained more recognition in recent years and has

been applied at the design level, such as in the design patterns in J2EE (Sun, 2001).

It should be noted that MVC is typically used as a specific architecture rather than a

broader modelling framework and, as such, there may be concerns over the extent to

 5

which this limits its applicability to modelling a broader range of applications and

systems. This issue is recognized but not addressed further in this paper.

A thorough study of the existing modelling approaches, especially the ones that

support the information architecture reasonably well, such as OOHDM (e.g. Schwabe

and Rossi, 1998) and WebML (Ceri et al., 2000), demonstrates that the separation of

modelling entities in the conceptual model and the interface entities in the

presentational and navigational models has been used to provide advantages to these

well-established approaches, which include:

• The better understanding of system architectural issues brought by the separation

of concerns; and

• The possibility of both flexibility and personalization provided by the match of the

conceptual model with different presentational or navigational models.

Whilst we believe that these approaches can provide reasonable support for

information architecture modelling, the functional architecture aspect is normally

weak or even absent in these approaches. We therefore propose the extension model

structure – a modified MVC architecture as shown in Figure 2 – which is explained in

detail in the following three subsections.

 6

Figure 2: Extension Model Structure

3.2 EXTENDED CONCEPTUAL MODEL

The extended conceptual model contains three types of elements:

• Model – the normal model element that represents business entities;

• View – defines the composition of Models at the interface level; and

• Controller – defines object behaviours. These behaviours can occur either at the

interface level, which are navigational behaviours, or at the back-end, which are

system functions.

For example, business or application domain entities, such as “student” and

“product”, are Models in this extended conceptual model. At the interface layer,

though, these entities can be displayed in various forms. When “student” and

 7

“product” are displayed in the form of list, they can be View “List”; they can also be

displayed as View “DataUnit” if detailed information is required. An example of

Controller is the index used to sort the “student” or “product” List Views. If the

“product” List needs to be displayed by category, then an “Index” Controller “index

by category” can be connected to the View to fulfil this requirement.

There are multiple Models, Views and Controllers in the extended conceptual model.

Whilst each Model represents a business entity, the Views and Controllers, which are

connected to the Models, represent and specify the interfaces and behaviours of the

Models. This extended conceptual model structure has several consequences:

• In order to represent the entities of the business domain and to link these entities

to the logical concepts in the technical architecture that defines and implements

the interfaces and behaviours of the business entities, Models, Views and

Controllers need to be used together and their interconnections need to be

carefully defined and managed.

• By connecting multiple Views and Controllers to the same Models, various

versions of the interfaces and behaviours of the business entities can be defined.

This structure can be used to support personalization on the one hand, and the

flexibility and dynamicity of the system architecture on the other.

• The Model-View-Controller concept provides the capability to separate

architectural concerns into various aspects and abstraction levels and, in turn,

helps to manage the complexity of Web systems.

The design of Web system information architecture and functional architecture is

performed on the foundation of the extended conceptual model.

 8

3.3 INFORMATION ARCHITECTURE

Various aspects of the information architecture are modelled using different

modelling artefacts. These aspects include:

• Composition: Defines the model structure in terms of Model, View and

Controller.

• Presentation: Defines the interface level concepts. Presentation is based on the

Views in the composition model.

• Navigation: Defines the navigational structure and behaviour. Navigation is

performed by Controllers. When activated, Controllers pass control to one another

and the application therefore flows from one part of the system to another. The

result of navigation is the change of Views.

3.4 FUNCTIONAL ARCHITECTURE

Operations need to be modelled in the functional architecture by:

• Using existing UML concepts and diagrams, such as the statechart diagram and

the sequence diagram.

• Using View and Controller defined in the extended conceptual model. For

example, if when activated, instead of passing control to another Controller in the

same or another View, the Controller passes control to a Controller that performs

back-end functionality, then an operation is invoked. The end result of an

operation can be a state change in the system, either at the user interface level or

at the back-end level.

 9

4 UML DIAGRAM EXTENSIONS

Several additional diagrams need to be defined in the UML notation to support the

proposed model structure. These diagrams are shown in Figure 3 and described in

Table 1 in which three new stereotypes of Classifier are introduced: «view»,

«controller» and «presentation». It is worth noting that the UML diagrams and their

interconnections presented in Figure 3 only demonstrate one possibility of using the

proposed UML extensions to support Web system development. Therefore, this

diagram is to illustrate one option, rather than a complete prescription for defining a

process or framework. This is due to:

• The existing UML notation provides possibilities for users to use only a subset of

its diagrams according to their particular modelling requirements; and

• The extension proposed in this paper aims to suggest research directions and

practical application, while maintaining the flexibility of the UML notation.

 10

Figure 3: UML Diagram Extensions

 11

Table 1: UML Diagram Extensions

Diagram Extension Needs Extensions

Use Case

Diagram

N/A N/A

Conceptual

Model

This model uses those

concepts from the problem

domain that are

independent of the

technologies used to build

the system. The proposed

concept of extended

conceptual model links

these basic conceptual

entities (Models) to Views

and Controllers.

Although the concept of extended

conceptual model is introduced, it does not

necessarily mean that new modelling

artefacts need to be defined in the

conceptual model; instead, it only implies

that the conceptual model contains Models

and their corresponding Views and

Controllers, from a semantical perspective.

The relationship between Model, View and

Controller can be represented in the

composition diagrams, which will be

discussed later in the table.

Activity

Diagram

N/A N/A

Collaboration

Diagram

N/A N/A

Statechart

Diagram

N/A N/A

Sequence

Diagram

N/A N/A

Composition

Diagram

This diagram does not

exist in the UML. Coming

from WebML, it covers

one aspect of information

architecture of Web

Stereotypes «view» and «controller» are

defined on the UML class diagram.

«view» is defined in order to show

different components of the interface at a

 12

applications. relatively high level. «view»s can contain

other «view»s, in which case it makes up a

view – sub-view hierarchy. «view» or sub-

«view» can be a Web page, part of a Web

page, or a combination of several Web

pages. «view»s can contain not only other

«view»s, but also «controller»s.

«controller»s perform functions –

navigations or operations, either on the

interface, or behind the screen.

The «controller»s can be further defined as

different classes e.g. Index, Filter,

DataUnit, and Operation.

Controller can navigate from one «view»

to another, either in a contextual or non-

contextual manner.

When a «controller» initiates a function

from the interface, it can then activate

other «controller»s, either on the client

side or on the server side. At the end of a

function, control can be passed back to a

«controller» on the interface, i.e., a

DataUnit «controller», so that the user can

interact with the system again.

Presentation

Diagram

This diagram does not

exist in UML and needs to

be defined to support the

representation of

interface-level modelling,

such as the components

«presentation» elements, such as Page,

Filter, DataUnit and Button, are defined to

show screen mock-ups.

These elements specify the presentational

aspects of «view»s. «view»s are at a

higher abstraction level than

 13

that make up a Web page. «presentation» elements, and represent a

selection of data from the extended

conceptual model.

Instead of using the existing UML

diagrams, the presentation diagram is

defined as a new type of diagram. This is

largely due to the lack of support for

presentation level modelling in the existing

UML notation.

Modification and personalization can be

done by matching different «presentation»

elements to the same «view»s.

Ideally, presentation diagrams should be

generated automatically by a CASE tool,

according to the semantics in the

composition diagrams. Users can modify

them manually if required.

Style is defined as a class with the

stereotype «presentation» to show the style

or format on the interface level. It can be

generic and linked to, and indeed reused

by, many «presentation» elements; or it

can also be specific and used to define

particular presentational characteristics of

some individual «presentation» elements.

By defining a number of different

«presentation»s for each «view» and

defining and linking a number of S«tyles

to each «presentation», flexibility and

personalization can be achieved in Web

 14

system design.

Navigation

Diagram

This diagram does not

exist in the UML and

needs to be defined.

At a high level, navigations are performed

by moving from one «view» to another.

For each user or user group, navigation

diagram(s) can be defined to show to

which «view»s the user has access and

how they are interconnected.

At a lower level, navigations are

performed through «controller»s. When a

user invokes a «controller», the display

changes, either by going to another «view»

(i.e., another page) or to another part of the

«view» (i.e., goes to the Top). The

«controller»s can carry contextual

information.

When a «controller» is invoked to perform

an operation, the user “loses” control of

the system. The «controller» either

performs a function itself or consequently

activates another «controller» to complete

the function. Once the function is finished,

control can be passed back to an interface

level «controller» and the user regains the

control over the system.

Operation

Diagram

Operations are currently

modelled in the UML

using diagrams such as the

collaboration diagram and

the statechart diagram.

However, in the proposed

model structure,

Simple operations can be represented in

detailed level navigation diagrams, whilst

complex operations may need to be

defined in further detail using operation

diagrams.

In an operation diagram, the flow of

 15

operations also need to be

represented using View

and Controller. This is to

ensure that the functional

architecture is modelled

using the same concepts as

in the information

architecture, so that the

two aspects can be

connected in a reliable and

consistent fashion.

operations is represented by the passing of

control amongst «controller»s. These

«controller»s can reside either on the client

side or on the server side.

Component

Diagram

N/A N/A

Deployment

Diagram

N/A N/A

5 USING THE EXTENDED UML DIAGRAMS

In this section, the extended model structure (shown in Figure 3) and UML diagram

extensions (described in Table 1) will be studied using a partial development process.

This does not, in any way, imply that the proposed extensions need to be used in

conjunction with any particular process; rather, the process described here is used as

an example to demonstrate the usage of the extensions and diagrams during the course

of Web system development.

5.1 REQUIREMENTS ENGINEERING & CONCEPTUAL DESIGN

During the requirements engineering and conceptual design stages, business

requirements are captured. As a result, both the business model and the business

 16

processes together with the desired system functionality are modelled and

documented in the conceptual model.

5.1.1 REQUIREMENTS ENGINEERING

Business requirements are normally captured using UML use cases and activity

diagrams. Since these diagrams represent concepts, their relationships and business

processes, which are mainly related to the business domain, no extension needs to be

defined.

During the requirements engineering stage of Web system development, many use

case diagrams and activity diagrams can be created, depending on the size and

complexity of the system to be developed. Both use case diagrams and activity

diagrams are used as input in the creation of the extended conceptual model.

5.1.2 CONCEPTUAL DESIGN

The extended conceptual model is built from understanding the problem domain. The

entities in the extended conceptual model are problem domain concepts, not computer

system components. The extended conceptual model is the centre of the entire model

structure. All other diagrams and modelling elements are based on it and will evolve

from it. There can be only one conceptual model of the Web system, although a

number of diagrams can be generated to represent the conceptual model at various

abstraction levels and from different viewpoints.

To extend the conceptual model, Views and Controllers are then defined based on the

original conceptual model. Views define interface composition, at a relatively high

abstraction level. Controllers define object behaviours, either at the interface level or

in the back-end. Whilst the concept of the Model-View-Controller structure is viewed

 17

as part of the extended conceptual model, the definition is represented in the

composition diagrams. To support modelling at various abstraction levels, the

composition diagrams consist of two types: composition in-the-large and composition

in-the-small. One conceptual model can connect to multiple composition diagrams

and can therefore support various definitions on the interface and behaviour levels.

5.2 ARCHITECTURAL DESIGN

Once the extended conceptual model is defined, it can be used as the foundation of

Web system architectural design. Other model elements and diagrams can be defined

from the extended conceptual model and used to document the system structure at

more detailed levels. These design activities may, and often do, occur more or less in

parallel. During this stage, some existing UML diagrams, such as the collaboration

diagram, the statechart diagram and the sequence diagram can be used to facilitate the

modelling process (OMG, 2000).

To better support the modelling of the Web system information architecture and

functional architecture, we propose some extension to the UML diagrams and/or

modelling elements, which are described in the following subsections.

5.2.1 PRESENTATIONAL DESIGN

To represent presentational design, which is an important integral of Web system

information architecture, presentation diagrams are defined from the composition

diagrams. They show how views are displayed on the interface level. One view can be

matched to more than one presentational definition. Personalization at the interface

level is then supported.

 18

5.2.2 NAVIGATIONAL DESIGN

Views and Controllers interconnect with each other, and thus support the navigation

in the Web systems. From a navigational perspective, the user navigates between

Views through the usage of Controllers. For example, when one button on a web page

is pressed, another web page is loaded. Navigation contains two aspects:

• The Static Aspect – Navigational Structure

The definition of interconnections between Views represents the navigational

structure of Web systems at a logical level. This navigational structure can be more

complicated than a basic linear or tree hierarchy.

• The Dynamic Aspect – Navigational Behaviour

Navigational behaviours in Web systems can typically be contextual or non-

contextual. The navigational activities are performed by activating Controllers to pass

control, either from one View to another or from one part of a View to another part.

Because of the potential complexity of Web system navigation, the representation of

navigational structure and navigational behaviour needs to be supported at different

abstraction levels, so that thorough understanding of the navigational aspect can be

achieved. This is implemented by using two types of navigation diagrams: navigation

in-the-large and navigation in-the-small.

5.2.3 OPERATIONAL DESIGN

Operations are performed by Controllers. This can happen either when a user invokes

a Controller by interacting with its related View, or when the system initiates a

function by passing control to a Controller.

 19

Some functions need only one Controller to complete, whilst others require the

collaboration between several Controllers. In the latter case, control flows from

Controller to Controller during the process of the function. When the control is not

with the Controller that relates to Views at the interface layer, the user cannot interact

with the system.

To perform an operation, other resources such as legacy applications, database files or

external links may be required. This is true with navigation as well. A user can

navigate from a website to its related links and then return, as part of his/her normal

navigational route.

6 CASE STUDY INTRODUCTION

To complete this paper, we will now illustrate the proposed extension model structure

and UML notation extensions using a case study. Limited by the sophistication of the

case study, some aspects of the proposal may not be demonstrated thoroughly.

The Web page of the case study is shown in Figure 4. This Web system facilitates the

online enquiry of the policies, procedures and issues that apply to students who attend

courses in the Faculty of Engineering at the University of Technology, Sydney (UTS).

For the purpose of this paper, we will call this system UTSE-Guide.

 20

Figure 4: Case Study Web Page

This case study is based on an existing system, which is small in size and for which

there was no documentation produced during the development stage. As with normal

Web system development, for a system of this size, the extent of modelling as

conducted in this case study is not necessary; the modelling process used and the

resulting diagrams generated here are purely to illustrate the concepts of the proposed

extensions.

6.1 REQUIREMENTS ENGINEERING

The basic requirement of UTSE-Guide is documented in the use case model shown in

Figure 5. Users can perform the following functions:

• Search issues by category

A category list will be displayed on screen. To search issues by category, a user needs

to select the category name that interests him/her from the list.

 21

• Search issues by keyword

User can input keyword(s) and activate the search based on the keyword(s).

• Display issue list

The result of a search function, be it search by category or search by keyword, is a list

of issues that satisfy the search criteria.

• Display issue details

Details of the issues can be displayed when a particular issue is selected from the

issue list.

 22

Figure 5: Use-case model for the UTSE-Guide

6.2 CONCEPTUAL MODEL

The conceptual model of UTSE-Guide is shown in Figure 6. The core business

entities in UTSE-Guide include:

• Category: The grouping of issues.

• Issue: The definition of problems, their solutions and related procedures and

references. An issue belongs to one category.

• Question: Policy or procedure related queries. A question belongs to one issue.

• Keyword: Keywords are related to issues and are used to perform search

functions.

• Student: The target audience of UTSE-Guide. Issues can apply to one of many

student types, i.e., undergraduate and postgraduate.

 23

Keyword

Category

Issue Student

Question

-KeywordList:String -StudentType:String

-Description:String

-Name:String
-Description:String

-Title:String
-Description:String
-Solution:String
-Procedure:String
-Source:String
-Reference:String
-ValidTill:Date

1

0..*

1..*

1

apply torelate to

ε

Legend:
ε
Membership
i.e. non-configurational,
Whole-Part relationship

Figure 6: Conceptual Model

The relationships amongst the business entities are:

• Category-Issue: Issues are grouped into various categories. One category can

contain zero to many issues. That means, even when a category contains no issue,

its definition is still valid in the UTSE-Guide system. When a search is issued by

category, all issues in the specified category are then returned as the search result.

• Issue-Question: Questions are grouped to relate to various issues. One issue can

contain zero to many questions. The definition of an issue is valid, even when it

contains no question.

• Issue-Keyword: Issues are related to keywords. These keywords are used during

search functions. When a search is performed by keyword, all issues related to the

specified keyword(s) are returned.

 24

• Issue-Student: Certain issues only apply to certain student types. For example,

issues related to postgraduate courses only apply to postgraduate students. One

issue can apply to one or many student types.

6.3 INFORMATION ARCHITECTURE

The information architecture is represented using composition diagrams, navigation

diagrams and presentation diagrams. Both composition and navigation diagrams can

be constructed at different abstraction levels.

6.3.1 COMPOSITION IN-THE-LARGE

The high level structure of the UTSE-Guide composition is shown in Figure 7. This

high level diagram is called composition in-the-large.

From an information structure perspective, the UTSE-Guide system can be

stereotyped as a «view» class, with the two major components also represented as

«view»s: Issue Search and Issue Display. There is a strong connection and coincident

lifetime of the parts (the sub-«view»s) with the whole (the «view») for which we use

(for present purposes) the UML black diamond notation. This high level composition

demonstrates the information structure of the system at an abstract level, thus

providing the developers with the big picture.

 25

UTSE-Guide

Legend:

Whole-Part relationship
with coincident lifetimes
of whole and parts

«view»

IssueSearch
«view»

IssueDisplay
«view»

Figure 7: Composition In-The-Large for UTSE-Guide

6.3.2 COMPOSITION IN-THE-SMALL

To further specify system composition at a more detailed level, diagrams can be

constructed to document the composition in-the-small (as shown in Figure 8). This

diagram documents the composition of the component “Issue Search” at a more

detailed level, i.e., Web page level. View “Issue Search” is further broken down into

Views with associated Controllers. Some typical types and interconnections of Views

and Controllers are explained below:

• Unactionable Views

Some Views are not actionable. In other words, they are purely display fields at the

user interface layer. View “Issue Search”, which happens to be a Web page in this

 26

case study, contains Title and Text Views that are defined only to serve display

purposes. They cannot be activated to trigger any navigation or operation.

Unactionable Views do not link to Controllers.

 27

Figure 8: Composition Diagram – in-the-small

 28

• Actionable View and Controller Pair

To make Views “actionable”, they need to be paired up directly with Controllers.

When implemented together, a View-Controller pair can provide navigational and/or

operational capability.

For example, in UTSE-Guide, «view» “issue name” and «controller» “issue by

category” are connected. Whilst «view» “issue name” displays a list of issue names,

«controller» “issue by category” provides the indexing function to sort issues by

category. Used together, they implement the display of issue names that are sorted by

category. «controller» “issue by category” is activated with “mode = default”. This

implies that this «controller» is activated whenever the main «view» “issue search” or

the sub-«view» “issue name” is displayed or refreshed.

• View and Sub-View

Views can contain sub-Views. For example, «view» “issue name: List” contains

multiple «view» “issue: DataUnit”. This means that «view» “issue name” consists of

a list of issue names, whilst «view» “issue” consists of a DataUnit “issue”. Data units

“show information about a single object, e.g., an instance of an entity or of a

component” (Ceri et al., 2000). As demonstrated in the composition diagram, «view»

“issue name” connects to multiple «view» “issue”, which implies that the issues listed

in the “issue name” «view» relate to more than one “issue” objects, or so-called

“DataUnits”.

6.3.3 NAVIGATION IN-THE-LARGE

The high level navigation of the UTSE-Guide system is shown in Figure 9. As

discussed earlier, the demonstration of the UML extensions and their proper

 29

applications in Web system development may be restricted by the lack of

sophistication in the case study system.

Figure 9: Navigation Diagram – In-The-Large

At a high abstraction level, the navigational structure of the UTSE-Guide system can

be represented as the connections of the “Issue Search” «view» and “Issue Display”

«view». The navigability between them is shown as an arrow from “Issue Search”

«view» to “Issue Display” «view». This is not to say that users cannot return to the

“Issue Search” «view» once a particular issue has been displayed in detail; instead, we

view the “Return” function as part of the built-in features of the Web browser and it is

therefore unnecessary to be specified explicitly in the navigation diagram.

User can navigate from «view» “Issue Search” to «view» “Issue Display” by invoking

«controller» “filter by issue” from «view» “Issue Search”. The navigational behaviour

is performed when the «controller» “filter by issue” is activated. As shown in Figure

8, the execute model of this «controller» is “invoke”. This means that the «controller»

 30

will not be activated by the system automatically at times such as initiation; rather, it

needs to be invoked by a user during interaction with the system.

6.3.4 NAVIGATION IN-THE-SMALL

A more detailed specification of UTSE-Guide navigation is shown in Figure 10.

Three types of elements can be seen in this example:

• «view»: A navigational behaviour results in the change of «view»s. In the

scenario studied here, “issue display” «view» is displayed to replace “issue

search” «view».

• «controller»: As described earlier, the navigational activity is completed by one or

many «controller»s, and the interconnections and execution sequence of these

«controller»s are specified in the navigation diagram.

• Other resources: Other resources, such as legacy applications, databases, file

servers and external Web sites, may be needed to perform the navigation. In this

example, the «controller»s interact with “issues” database to obtain the

information needed.

 31

 32

Figure 10: Navigation Diagram – In-The-Small

6.4 PRESENTATION

A presentation diagram of the UTSE-Guide system is shown in Figure 11. It specifies

the interface layer definition of the system. The presentational elements map to

«view»s, and thus define the composition and format of «view»s when they are

implemented in the user interface.

The flexibility of mapping each «view» to a number of «presentation»s provides the

capability to implementation personalization, and also makes future change to the

systems’ presentational aspect relatively independent to the core architecture of the

systems.

 33

Figure 11: Presentation Diagram

6.5 FUNCTIONAL ARCHITECTURE

Due to the lack of sophistication in the UTSE-Guide system, no complex operation

needs to be modelled separately using operation diagrams in this example. In fact,

some simple operations are actually specified in the navigation diagrams.

6.6 POTENTIAL IMPROVEMENTS

As demonstrated by the case study, the proposed extensions to the UML notation can,

if utilized properly, increase the modelling capability of the notation. These proposed

extensions can be helpful in addressing the limitations in the existing modelling

approaches that were identified in Gu et al. (2002). . An analysis of this potential is

shown in Table 2.

Table 2: Extension Proposal – Addressing the Gaps

Gap in Existing

Approaches

Potential Improvements

Inability to Model

Sophisticated

Functionality

The introduction of the Model-View-Controller concept

provides the capability to model navigational and functional

behaviours using the definitions of Controllers. Whilst

some simple functions can be performed by individual

Controllers, more sophisticated functions may need the

collaboration of several Controllers. Some of these

Controllers also support the integration to both internal and

external applications and information resources.

Whilst the functional modelling aspect cannot be fully

demonstrated in this paper due to the lack of sophistication

 34

of the case study.

Disconnection between

Functional Architecture

and Information

Architecture

The introduction of the Model-View-Controller concept and

the extended model structure provides the potential

capability to connect the functional architecture and the

information architecture. Since the two aspects of Web

system architecture are both connected to, and indeed

developed from, the extended conceptual model,

consistency and integrity are more likely to be achieved in

the proposed approach.

Disconnection between

Business Model and

Technical Architecture

In the proposed extension model structure, the extended

conceptual model is built upon the business requirements

captured during requirements engineering. This extended

conceptual model is then used as the foundation for the

design of both the information architecture and the

functional architecture of the Web system. This close

connection introduced by the MVC structure can help to

translate business requirements into the two aspects of Web

system technical architecture.

Inability to Support

Modelling at Various

Abstraction Levels

With the modelling of composition, navigation and

operation, diagrams can be constructed at two abstraction

levels. For example, the composition of a Web system can

be represented as logical elements at a high abstraction

level, whilst it can also be modelled in term of pages and

elements on the pages at a more detailed level. This is

implemented by using the composition in-the-large and

composition in-the-small diagrams.

Although far from complete and thorough, this approach

demonstrates the potential to address the issues related to

modelling abstractions and interconnections between the

abstraction levels.

 35

Potential Misuse of UML

Extension Mechanisms

Although this issue was not directly addressed in our

proposal here, attention was given to the proposed UML

extensions with the aim of avoiding the potential misuse of

this mechanism.

Inability to Support

System Life Cycle

Management

This issue was not directly addressed. However, the

proposed support for a more complete and balanced Web

system technical architecture can potentially expand the

usage of the model during the system life cycle.

7 SUMMARY

In this paper, we have proposed some extension directions to UML notation, with the

aim of improving some aspects of the modelling language support for Web system

development. The extensions to the conceptual model are based on the Model-View-

Controller concept and the addition of several diagrams, such as composition

diagrams, presentation diagrams, navigation diagrams and operation diagrams, can

potentially increase the modelling capability offered by the existing UML notation.

Inspired by concepts taken from other modelling approaches, such as WebML, which

support Web system information architecture reasonably well, and used in

conjunction with the existing UML functional modelling capabilities, the proposed

model structure aims to support both the functional and information architectures. The

support for sophisticated functionality and the connection between the business model

and the technical architecture is also addressed by the proposal. Furthermore, the

proposed modelling approach can represent the system architecture at different

abstraction levels and the linkage between these levels can be managed through the

extended conceptual model.

 36

A small case study was used to illustrate the proposed extensions and their

applications although, due to the small size and complexity of the case study system,

not all aspects and features of the extension proposal were fully demonstrated.

Another, much larger case study has in fact been conducted using a real-world,

commercially confidential, Web system, with excellent results.

References
Atkinson, C., 1998, “Supporting and Applying the UML Conceptual Framework”,

«UML»’98: Beyond the Notation, 1st International Workshop, Mulhouse,

France, June 3-4, 1998, Selected papers, pp21-36

Atkinson, C. & Kühne, T., 2000, “Strict Profiles: Why and How”, «UML»’2000:

Advancing the Standard, 3rd International Conference, York, UK, October 2-6,

2000, Proceedings, pp309-322

Atkinson, C. & Kühne, T., 2001, “The Essence of Multilevel Metamodelling”, in

Proceddings of «UML»’2001 (the 4th International Conference on the Unified

Modelling Language), 1-5 October 2001, Toronto, Canada

Atkinson, C., Kühne, T. and Henderson-Sellers, B., 2000, To meta or not to meta –

that is the question, JOOP, 13(8), 32-35

Booch, G., Rumbaugh, J. and Jacobson, I., 1999, “The Unified Modelling Language

User Guide”, Addison-Wesley, pp482

Ceri, S., Fraternai, P. and Bongio, A., 2000, “Web Modelling Language (WebML): A

Modelling Language for Designing Web Sites”, Procs. WWW9/Computer

Networks 33, 2000, 137-157

Gu, A., Henderson-Sellers, B. and Lowe, D., 2002, Web Modelling Languages: the

gap between requirements and current exemplars, submitted for publication

Henderson-Sellers, B., Atkinson, C. and Firesmith, D.G., 1999, Viewing the OML as

a variant of the UML, «UML»’99 –The Unified Modeling Language. Beyond

the Standard (eds. R. France and B. Rumpe), LNCS 1723, Springer-Verlag,

Berlin, Germany, 49-66

Hunt, J., 1997, “Smalltalk and Object Orientation: An Introduction”, Springer, pp378

 37

OMG, 2000, “OMG Unified Modeling Language Specification”, Version 1.3, June

1999, OMG document ad/99-06-09 [released to the general public as OMG

document formal/00-03-01 in March 2000]. Available at http://www.omg.org

OMG, (2001). OMG Unified Modeling Language Specification, Version 1.4,

September 2001, OMG document formal/01-09-68 through 80 (13 documents)

[Online]. Available http://www.omg.org

Schwabe, D. and Rossi, G., 1998, “Developing Hypermedia Applications using

OOHDM”, Workshop on Hypermedia Development Processes, Methods and

Models (Hypertext’98), Pittsburgh, USA

 38

http://www.omg.org/

	1 Introduction
	2 Scope , Objectives and Approach
	3 Extension Model Structure
	3.1 The MVC Concept
	3.2 Extended Conceptual Model
	3.3 Information Architecture
	3.4 Functional Architecture

	4 UML Diagram Extensions
	5 Using the Extended UML Diagrams
	5.1 Requirements Engineering & Conceptual Design
	5.1.1 Requirements Engineering
	5.1.2 Conceptual Design

	5.2 Architectural Design
	5.2.1 Presentational Design
	5.2.2 Navigational Design
	5.2.3 Operational Design

	6 Case Study Introduction
	6.1 Requirements Engineering
	6.2 Conceptual Model
	6.3 Information Architecture
	6.3.1 Composition In-The-Large
	6.3.2 Composition In-The-Small
	6.3.3 Navigation In-The-Large
	6.3.4 Navigation In-The-Small

	6.4 Presentation
	6.5 Functional Architecture
	6.6 Potential Improvements

	7 Summary

