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Abstract

In this paper, we present a modified hidden Markov

model with emission probabilities modelled by kérne
density estimation and its use for activity recaoigni in
videos. In the proposed approach, kernel
estimation of the emission probabilities is opedate
simultaneously with that of all the other modelgraeters
by an adapted Baum-Welch algorithm. This allowdaus
retain maximum-likelihood estimation while overcogqi
the known limitations of mixture of Gaussians in
modelling certain probability distributions. Experénts
on activity recognition have been performed on guobu
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been used extensively for activity recognition siribhey
provide a smoothed estimate of the state valu&s3g,It
may be argued that smoothed state estimators uteod
delay between an observation and the corresporsaiatg
estimate: however, such a delay is often negligibl¢he
purpose of the application. In particular, this tise
common case for video analysis where observationar

at video rate and even a delay of a few hundred
observations translates into a relatively shoretdelay.

A hidden Markov model (HMM) is fully described by
three sets of quantities: the state transition gidlies, A,
the emission (or observation) probabilitie®, and the
probabilities of the initial statesg The states are only
allowed to assume discrete values; let us Nayherefore,

truthed data from the CAVIAR video surveillance A can be represented by Binx N matrix and7zby anN-

database and reported in the paper. The error oe th
training and validation sets with kernel densityiraation

dimensional vector. Instead, observations are aftemvn
from continuous variables and, as such, emission

remains around 14-16% while for the conventional Probabilities need to be modelled by probabiliynsiey
Gaussian mixture approach varies between 15 and,249% functions. The most common approach for modelling

strongly depending on the initial values chosen tfoe
parameters. Overall, kernel density estimation psov

emission probabilities is by use of mixtures of &aans
[6]. In such a caseB is fully described by the weights,

capable of providing more flexible modelling of the Meéans and covariances of all the Gaussian companent
emission probabilites and, unlike Gaussian mixsyre ©OnCce given one or more sequences of observatibes, t

does not suffer from being highly parametric and of Baum-Welch algorithm can be used for learning a
difficult initialisation. corresponding HMM with maximum likelihood. This

algorithm is an expectation-maximization algorithihat
1. Introduction learns A, B and 7 in a simultaneous manner and is

guaranteed to converge to a local optimum in the

Automatic recognition of activities in videos is parameter space.

paramount to many applications such as multimedia Afternatives to the use of mixtures of GaussianM$
annotation and visual surveillance. As a conseclefiC  for modelling the emission probabilites have been
has been widely investigated to date (see [1-5]sewvebral  proposed in the literature. Bourlard and Morgan[8h
others). Activities are often modelled as the stabé  proposed to replace the Gaussian mixtures by @iifi
entities, either at given times or along time inéds. For Neural Networks in a hybrid ANN/HMM model. A
instance, the state of a person at a given framgma  nymper of variations on hybrid ANN/HMM models is
recognised as either “inactive” or “active”. By cadxﬂeri.ng presented by Trentin in [9]. In a recent work [1Ri{iger
sequences of state values, we may want to recogrose et al proposed to replace the Gaussian mixtures with
complex patterns such as “raising an arm” or “axiiey mixtures of Support Vector Machines. However, these
an object”. In many cases, the values of the st@tiables  gpproaches typically train the emission probabiitin a
cannot be directly measured, due to noise and other  sypervised manner, requiring knowledge of the gdeun
idealities such as occlusions and illumination ¢emnp and  tryth values of the hidden state variable. Evemghothey
have to be estimated from the available observstion may potentially achieve higher accuracy than marimu
Hidden Markov models and their several variatioaseh |ikelihood methods, they cannot be applied in teaegal



case where state ground-truth is not available vEsely, with G(-) the Gaussian function and the number of
maximum-likelihood HMMs can be trained just with a Gaussian components. We consider here the unigariat
sequence of observations that are, by definitionjlable case for the sake of simplicity of notation, but wél

and therefore we focus our attention on them in theeventually extend results to the multivariate caBbe
following. In our work, we want to retain the maxim- parameterization of such a GM requires the estiobtee
likelihood simultaneous estimation of all parameter weight, @, mean,y, and varianced?, for each of theM
offered by the Baum-Welch algorithm, while overcogii  Gaussian components (the sum of weights has to be
the known limitations of mixture of Gaussians. Gaais unitary). This estimate is typically performed ss @
mixtures suffer from limitations in modelling pdfia at maximize the likelihood,L, over a set of samples;,

least two well-known circumstances: a) when the lmem  i=1,...,N, independently drawn from this distribution:
of modes in the pdf is greater than that of the 3S&n N
components in the mixture, b) when the pdf hasoumif L(Xq e Xy ) =T p(xi ) (2)
regions. Kernel density estimation (KDE) has gelhera i=1

proven superior to GMs in these cases. On the ,ofiaed
the estimation of the optim&kernel bandwidthin KDE is
extremely critical for its performance. Severakamia for
optimality and corresponding methods have beengsegh
to this aim [11].

In this paper, we present a model for the emission
probabilities based on KDE that can be directlypgkd in
the Baum-Welch algorithm (referred to as KDE/HMM in
the following). For estimation of the kernel bandthi, we
propose an expectation-maximization algorithm under
maximum pseudo-likelihood criterion. Experimentse ar
performed on videos from the CAVIAR database and . 1 N
accuracy is measured against the state ground truthf = ﬁz p(l % ’@) )
provided by expert annotation [12]. The experimenta
results show the improved performance of KDE/HMM N
over conventional HMMs based on GMs. While thisgrap Z x p(l1x,0)
limits its analysis to video data, the proposed KB¥M new _ j=1 (4)
lends itself to general application and can improve N
performance in other domains. Experimental resats Z p(l |Xi19)
synthetic data omitted from this paper due to space i=1
limitations reassure in this direction. N ’

The rest of the paper is organised as follows: iGec Z (xi —,u|”ew) (I 1x,0)
describes kernel density estimation by expectation- g2new _ izl (5)
maximization and compares modelling of pdf's witfatt !
provided by a mixture of Gaussians with a fixed benof Z p(l [ 19)
components. Section 3 extends the kernel density i=1
estimation to the modelling of emission probalgtiin where © represents the current set of parameters and
HMMs. Section 4 presents the experiments perforameti p(l|x,©) is simply the probability of thd-th Gaussian
discusses results. The conclusions summarise thie ma component at sample
contributions of this work.

Operationally, the likelihood is conveniently conga in

log form with the main advantage of avoiding rapid
underflow. Maximization of (2) can be obtained by
estimating the GM parameters through an expectation
maximization (EM) algorithm. EM is an iterative
algorithm that improves the estimate of the paranseat
each iteration and is guaranteed to converge tocal |
maximum of the likelihood (or a saddle point in the
multivariate case). The equations used to estintage
parameters at each iterations are:

a G(xi; M ,0’|2)
M

. . . . I|x,0)= 6
2. Kernel density estimation with an pll 1%.0) ( 2) ©)
expectation-maximization algorithm 2. kG 14,0
k=1
Gaussian mixtures can be used to model the pratyabil . . .
density function of a random variabfgx), as: Equation (6) is often referred to as a membersimgtfon,
expressing the membership xfin each of the Gaussian
M K . . .
_ ( ) 2) components, and its computation is the expectatiep of
p(x) = Z a1 G\ 4,0 @) an EM iteration. The computation of update equati(8:
=1

5) is its maximization step. It is important to edhat each



of (3-5) provides an optimum for the respectiveapagter
independently of the other two.

Kernel density estimation models a pdf as:

N
_ 1 X~ X]
pKDE(X)—NhJZ:l K( H ]

whereK(:) is a function with particular properties, called
kernel and h is the kernel bandwidth (or smoothing
factor). By using the Gaussian kernel and notirggkigrnel
bandwidth withg, (7) becomes:

ProE (X :%Z:: (Xxj' )

Although (8) reduces KDE to another Gaussian méxtur
the similarity between (1) and (8) is mainly appérdrst,

in (1) the number of Gaussian componehtsjs typically
very low compared to the number of samplés,
Moreover, the weight, position and width, (i, 0) of each
component are determined as a trade-off over thwlsa
set. In (8), instead, each Gaussian componentridyfi
located on a sample. The only parameter to be atris
the varianced” (or, equivalently, the standard deviation,
0), common to all the Gaussian components.

Estimate of the optimal variance?, can be performed
according to a number of different criteria (se&][fbr a
comprehensive review). It is interesting to notatth
maximizing the likelihood for the KDE case leadsao
obvious but impractical solution:

N

(7

8

Lkpe (X1,-XN) = |_| proe (%) =
1=1
9)
N N
1
— Gix; x:,0 —»oasg - 0
1% i x.07)

While several criteria could be chosen to deternaine
optimal value forg, here we are interested in retaining the
maximum likelihood framework so that our results ¢
more easily transferred to the estimate of parametta
hidden Markov model. Thus, we use the pseudo-hikeld
defined as [11]:

%i (Xi'XJ' )

J=1i%x

N
PLlkpe (X1,-+XN) = |_| (10)

1=1
is

Essentially, the probability of eacly; sample

computed by excluding the Gaussian component aéntre unfeasibly time consuming.

on x; itself. Maximization of (10) can be performed in
various ways. Duin in [13] suggested computing ftret
derivative of (10) with respect tar and iteratively

calculating its zero crossings. He reported thatuding a
specially adapted version of the regula falsi atpor, 5-

20 iterations were needed to reach an accuracydfirl

the value ofg over a set of experiments. Here, we use the
expectation-maximization algorithm by adapting upda
equation (5) to the case of a common valuedféor all the
Gaussian components. From [7], it can be easilygro

S8 kewntinel
£ wna

I=1\i=1
provides the optimal value foo when such a value is
constrained to be the same for all thd Gaussian
components. Again, if we use (11) directly for mstiing
o in the KDE case, we will converge to the undesired
value g = 0. Thus, for KDE we adjust (11) to reflect the
definition of pseudo-likelihood given in (10) as:

(11)

Z Z(X|_X) (i1%.0)
e (12)
z Zp |X|,
i=1 j=1x#X%

Equation (12) can be derived as follows: for GMe th
derivation of (3-5) is possible under the simplifyi
assumption that the generative model of each samjde
not the whole GM, but only the best Gaussian carepb
indicated by an unobserved indicator variable. KDE,
under the further assumption of pseudo maximum
likelihood, the probability at (6) is assumed nulienx; =

x;; thus, (12) derives from (11). For testing, weédaun a
set of experiments on a range of simulated data:
convergence oty was always obtained, and always to a
local maximum of the pseudo-likelihood.

2.1. Comparing KDE and GM pdf estimation

GMs show limitations in modelling certain distribirts.
One limitation is in the modelling of distributiornghich
show more modes than the Gaussian componentsisin th
case, one single Gaussian component has to bedit o
multiple modes, thus leading to poor modelling basa
eye judgment and relatively low likelihood. Althdug
estimating the “right” number of modes is possihi@ugh
procedures such as the mean-shift vector, it ignoft
The same poor modelling
occurs when the distribution shows uniform regiamch
are inaccurately modelled by means of only a few
Gaussians. KDE can overcome both these limitatidves.



argue that in some cases feature values obtaired fr
human activities in videos such as speed and paositi
exhibit such uniform regions. Moreover, we arguatth
KDE could also lead to improved hidden Markov madel
of such activities. Figures 1 and 2 show an exangble
density estimation with a GM with two componentsdza
on (3-6) and with KDE based on our estimator doiFor
the latter case, the fitting of the distributioneovthe

A are called the state transition probabilities erpress
the Markovian hypothesis that the valieof the current
state,X,, is only dependent on the valyepf the previous
state, X.;. B are called the emission (or observation)
probabilities, quantifying the probability of obsemg
valueo, when the current state jisEventually,itare called
the initial state probabilities and quantify thelpabilities
of values for the initial state. When observatiaiues are

samples seems generally very good. As an obviouscontinuous, HMMs typically use GMs to model their

consequence, the likelihood obtained for KDE hamgs

emission probabilities. Each state’s value; 1.N, has a

been greater or equal than that for GM in all our corresponding GM. Thus, the observation probakiliy,)

experiments. Obviously, this comes at an
computational cost for the evaluation of (8) widspect to

).

o002} /

Figure 1. GM density estimation of a seemingly armii
distribution. Estimation seems generally inaccurdimritial
parametersm = a, = 0.5;44 = 85,16 = 170; 01 = 05 = 16).

0014
0012 [ J
001
0008
0006
0004
o002
El

Figure 2: KDE from the same set of samples as Eiguwith the

proposed estimator foo. Estimation seems generally accurate

(initial parametero = 16).

3. Hidden Markov modelswith kerndl density
estimation of emission probabilities

A hidden Markov model (HMM) offers a mean to
estimate the joint probability of a sequence ofetim
discrete observation®;, t = 1.T, and corresponding
hidden statesg; (0{1..N} [7]. The model is fully described
by the set of parameteds= {A, B, 73:

A=tay}= p(X =i1Xq = ]) O,
B:{bj(ot)}: ploy =0 | Xy =) Doy, j

p(X, =i) Oi

(13)
(14)

m={m}=
(15)

increasedis given by:

M
— . 2
h(ot)-zail G(Otuuil vail) :
1=1
The Baum-Welch algorithm provides update equatfons
the iterative optimisation of the model's parameter
Herewith, we concentrate on B. First, similarly(&), we
pose:

(16)

pi(110.6)= ozt an
Zaik G(Ot;ﬂik’aizk)
k=1

to express the probability of tthéh component in the GM

of statei. Then, the weights, means and variances of the
emission probabilities are obtained in a way simita(3-

5) over the set of observed valueg,t = 1.T. The basic
difference is that the terms in the numerators and
denominators are multiplied by the probability @frmg in
statei at timet, p(t):

ipi (0,0) 4 (1)

a,irlwew —t=1 = (18)
2l
t=1
;
Do pi(to,0) yit)
e =2 (19)
> p(lo,0) )
t=1
Ll 2
Z(Ot - ut®F b, (110,0) i 1)
oW = 12 (20)

T
Y p(10,0) K ()
t=1

In turn, ¥(t) can be expressed from the current estimates of

A andB (see [7] for details).



From (18-20) and the considerations addressed inof the KDE/HMM, we present some results with sytithe

Section 2, we can finally derive the update equatifor
the KDE case:

T
D pilo,0)yt)

e =270 (21)

(22)

(23)

-
> pllo.0) 4 (t)
t=11=1q#0,

In (22), the centres of the Gaussian componentsi@re
subject to update and sit, as usual, on the sam{@8yis
the re-writing of (12) integrated byt). Again, we exclude
the Gaussian component centred on the sample ttself
prevent convergence ta® = 0. We conveniently obtain
this by settingpi(l | 0, @ = 0 at the beginning of the
iteration. Weight adjustment is needed also in KizE
case since observations need to be “dispatchedhdo
states in any case. To this aim, (21) is identcd[L8) and

data and the weight assignment as simple as simpte
(). Subsequently, we carried out some tests for the
human activity classification with the well knowatdbase

of CAVIAR [12].

4.1. Experimentswith synthetic data

The first set of experiments consists of a syntheita
distributed in three clusters of two-dimensionakda
= Class 1: A two-dimensional uniform function
betweerx, ybetween 0 and 18.
= Class 2: Four two-dimensional independent
Gaussians functions betwerny =21 and 26 and
o=2.
Class 3: Another two-dimensional
betweerx, ybetween 30 and 60

uniform

Figure 3. Distribution of the training data.

The initialization of the parameters for the KDEH&BMs

just follows the way EM updates the GM weights. The are set as follows:

only difference in (21) is thap(l | 0, ©) is, again, set
equal to 0. In this way, the weights are essentiddfined
by the neighbouring kernels, not the one centredhen
point itself, like in update equation (23). Altetivas for
weight assignment are possible, such as a simptey(l),
but they have not been experimented in real datd,if
the synthetic data showed in the section 4.1. Qlyera
equations at (21-23) define the KDE/HMM proposed in
this paper. Merely to prove that these results aimsly
extend to the multivariate case, we conclude thigien
by showing (23) for the case of multivariate obséions:

i i o, -0 )0, -0,)" p (10.0) y;t)

3 new _ t=1 I=1,9#0,
[

T

> Y p10.0) 1)

t=1 I=1q#0,
(24)

4. Experiments

In this section, we report results divided in twetssof
experiments. First of all, in order to show thefpenance

* Means (only for the GMs caseys; = [10 23
50]

. . 01 O 05 0
. Covarlance.zl: 0 01,22: 0 05,

10 25 0 50
,24: ,25: )

01 0 25 0 5
10 O

2=
0 10

= Weight for each of the Gaussian components:
random in the case of GMs, and 1 for KDE.
= Number of Gaussians per state (only GMs case):
M= 2.
= State transition matrix (3 x 3A = [0.6 0.2 0.2;
0.2 0.6 0.2; 0.2 0.2 0.6].
= |nitial probabilities:IT = [1 0 O]
= Maximum number of iterations for the EM
algorithm:max-iter=50
The experiments are carried out by changing thaevaf
the initial covariance and using 2-fold cross vation. We
took 150 points for the first and third class aid for the
second one.

2, =



Table 1. Total classification error for the training andigation
sets of synthetic data.

Error (%) KDE GMs
@z Training 0.0 67.4
Validatior 0.C 67.4
2 %, Training 0.C 67.4
Validation 0.0 67.4
) = Training 0.0 43.7
Validatior 0.C 46.%
4 x, Training 2.4 43.7
Validation 0.0 46.3
(5) X5 Training 0.C 43.7
Validatior 0.C 46.2
(6) X6 Training 0.0 43.7
Validation 0.0 46.3

Figure 4. Picture of the classification and cordasmatrix after
the training for experiments from 3 to 6 with GMs.

We can check that the KDE outperforms in all the
experiments the GMs method by modeling perfectly th
two uniforms and the group of Gaussians. On theroth
hand, the GMs improves its performance with coverga
values higher than 2, whereas the classificationeis
poor below this threshold.

Table 2. Confusion matrix for the classification with thevi
(experiments from 3 to 6)

GMs Predictes
Actual 1 2 3
1 15C 0 0
2 160 0 0
3 0 41 10¢

4.2. Experimentsfor the human activity
recognition

Finally, we report results on the application of
KDE/HMM to the classification of human activitieg/e

used the CAVIAR video dataset [12] and selectedtwte
videos named Fight_RunAwayl.mpg and
Fight_ OneManDown.mpg. Among all the activities
showed in these videos, we focused on three: {imact
(“in"), Walking (“wk”) and Running (f")}. Both videos
come accompanied by the ground truth provided lgy th
dataset’'s authors. Each person in each frame &ldab
with an activity value. This ground truth was detered

by hand-labelling and we must take into account the
subjectivity when classifying, especially betwedasses
walking and running. The tool used for the experitae
was the Kevin Murphy’s Matlab Toolbox for HMM [14].
We later modified this toolbox to add the implenagiain

of the KDE model.

The features that we selected in order to clagsiéy
activities are the magnitudes of the subject’'s dpee
measured over different time intervals. In partculwe
computed the speed at 5 and 25 frame intervaisllasvé:

speed :%\/(Xi ~Xiot)2 (Y ~Yieg)? (25)

wheref is set to 5 and 25, respectively, ard ¥) and
(X1, Yi.r) are the subject’s positions in the image plane.

Figure 3 shows histograms of the two velocitiestfar
three activities and how challenging the separatibthe
activities promises to be based on such features.
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Figure 5: Histograms of features spg@dft column) and speeggl
(right column) for states “in” (inactive), “wk” (Wking) and “r”
(running).

The experiments consisted of learning the HMM
parameters for both models, and their subsequenfars
activity classification, i.e. Viterbi state decodirnThe prior
probability was fixed to {state 1 = 1; state 2 =sfgte 3 =
0} as we assume that the state of an individuadt fir
appearing in the scene is always ‘“inactive”. This
assignment results very useful when decoding the
sequence, as we do not know a priori the correspuel
between the states in the Viterbi output and thostne
ground truth. By fixing this probability we assutet the
first code of the Viterbi output will match the otave
state.



was carried out as follows:

The initialization of the variables for the EM atgbm covariance parameters. This shows the limitatiorthef
GM model as a highly parametric technique of diffic
initialization. The error on the training and valtibn sets
for the KDE model remains around 14-16% while foe t
and 4, =[0.1 2 4] GMs model varies between 15 and 24% depending @n th
Covariance: we started with high and low values of different combinations of initial covariances andams.
covariance as we do not know a priori to what value To provide further detail into these results, Tablshows
the algorithm is expected to converge. Moreover, we the confusion matrix for the GMs and the KDE cafees

chose a diagonal covariance matrix and two positive €xperiments 1, 3, 5 and 6 in Table 3. Each colufrthe

Means (only for the GMs case)7;, =[0.2 0.8 1.5]

semidefinite matrix and not diagonal.

s (54 (001 0
174 5)° 2

o
oo

23

= Weight for each of the Gaussian components: random

in the case of GMs, and 1 for KDE.

= Number of Gaussians per state (only GMs cddey:
2.

= State transition matrix (3 x 3A = [0.6 0.2 0.2; 0.2
0.6 0.2; 0.2 0.6 0.2]. The running activities asrw
few and their duration is very short. That is teason
why theas , is such a high value whereas; is low.

=  Maximum number of iterations for the EM algorithm:
max-iter=50

The data are divided into two sets of sequencesdaning
and testing: one of 7 sequences of 1975 data &h &mid
another of 6 sequences and 1605 data. The firg ssed
for training while both are separately used foridagion.
Table 3 shows the total classification error onttiaging
and validation sets for the GMs and the KDE.

Table 3. Total classification error for the training andigation

sets.

Error (%) Training | Validation
(1) GMs (ny, X9) 23,59 17,32
(2) GMs(up, X9) 16,8¢ 15.82
(3) KDE (X 1) 14,4¢ 16,4F
(4) GMs (g, o) 18,38 15,07
(5) GMs (ny, X)) 17,37 15,32
(6) KDE (X5) 14,15 16,01
(7) GMs (g, X3) 23,5¢ 17,32
(8) GMs (uy, X3) 23,59 17,32
(9) KDE (X3) 14.4¢ 16,2¢

The experiments show the stable results of KDE/HMM
independently of the initialisation of its covarian
parameter. It appears that the parameter spaceris v
simple to search and the learning converges tosémee
value of Z irrespectively of very different initial values.
Conversely, the GMs HMM obtains significantly diiéat
error rates depending on the initial values ofritans and

matrix represents the instances in a predicteds clakile
each row represents the instances in an actuak clas
(ground truth). Table 4 shows that the better di/ezaults

of KDE also correspond to improved inter-class iro
with respect to the GMs model.

Table 4. Confusion matrix for the classification with th&/G
(experiment 1) and KDE (experiments 3 and 6) mofielthe
validation data.

GMs (1) Predicted
Actual in Wk r
in | 560 16 0
wk | 108 71¢ 124
r 0 30 48
KDE (3) Predicted
Actual in Wk r
in | 567 8 1
wk | 135 736 80
r 0 40 38
KDE (6) Predicted
Actual in Wk r
in | 569 6 1
wk | 143 743 65
r 0 42 36

Finally, Figure 6 shows the pdf's of the emission
probabilities for the GMs and KDE for experimentaril
6 for each of the states. The pdf's show the iivieliy
different modelling of GMs and KDE. In particulahe
KDE emission probabilities are not required to bepact
and spontaneously adjust to model non-clustereal alad
with data with uniform regions.

(d)

@



[1]

(2]

(3]

[4]

Figure 6: GMs derived from the EM algorithm, expeent (5)
(in a scale 0-7) for inactive (a), walking (b) antghning (c).
KDE derived from the modified EM algorithm, expeédm (6)
(in a scale 0-0.25) for inactive (d), walking &d running (f).

[5]

[6]

5. Conclusions
[7]

In this paper, we have presented a modified hidden
Markov model with KDE emission probabilities
(HMM/KDE) and its use for activity recognition indeos.

In the proposed approach, kernel density estimatfdhe
emission probabilities occurs simultaneously wthhttof

all the other model parameters thanks to an ad&gaed-
Welch algorithm. This has allowed us to retain maxin-
likelihood estimation while overcoming the known
limitations of mixture of Gaussians in modellingrtegn
data distributions such as uniform and non-clustetata.
Experiments on activity recognition have been pentd

on the CAVIAR video surveillance database and riegubr
in the paper. Overall, the error on the trainingd an
validation sets with kernel density estimation remsa
around 14-16% while for the conventional Gaussian
mixture approach varies between 15 and 24%. The& mai
advantage that we identify in the proposed KDE/HMM
model is that its accuracy seems substantiallypaddent
from the choice of the initial value of its onlyrpaneter,
the covariance matrix common to all its kernel

(8]

9]

the heavy low-level processing of foreground exicec
and tracking.
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