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Abstract

This paper presents a novel approach to segmenting a three-dimensional
surface map by considering the task requirements and the movements of an in-
dustrial robot manipulator. Maintenance operations, such as abrasive blasting,
that are performed by a field robot manipulator can be made more efficient
by exploiting surface segmentation. The approach in this paper utilises an
aggregate of multiple connectivity graphs, with graph edges defined by task
constraints, and graph vertices that correspond to small, maintenance-specific
target surfaces, known as Scale-Like Discs (SLDs). The task constraints for
maintenance operations are based on the characteristics of neighbouring SLDs.
The combined connectivity graphs are analysed to find clusters of vertices, thus
segmenting the surface map into groups of related SLDs. Experiments con-
ducted in three typical bridge maintenance environments have shown that the
approach can reduce garnet usage by 10%-40% and reduce the manipulator joint
movements by up to 35%.

Keywords: Surface segmentation, Manipulator trajectory planning,
Maintenance operations.

1. Introduction

Rust and paint removal, along with the reapplication of a protective coating
are essential operations in the maintenance of large steel infrastructure such as
bridges. The assistance of an autonomous robotic system which incorporates
an industrial robot manipulator can potentially increase productivity and re-
duce the workers’ exposure to risk. However, an autonomous manipulator-based
system that is placed in a partially known or unknown complex environment
must determine the 3D surface geometry by exploring the environment before
commencing maintenance tasks. Advances in sensing technologies, such as laser
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range scanners [11], depth cameras [27], and manipulator-based exploration ap-
proaches [18][21][13] make it possible to measure the geometry of surfaces with
high accuracy even in complex 3D environments. However, the geometry data
that is gathered during exploration must first be processed before it can be
utilised for manipulator trajectory planning and coverage planning.

It is challenging to represent the geometry data from sensors so the data can
be easily and effectively used to plan manipulator movements that interact with
surfaces in an environment [7]. The sensor data that is returned from a depth
camera or laser range scanner is initially in a primitive form: distance mea-
surements from the sensor to an object, and relative bearing of each distance
measurement. When the sensor is attached to the end-effector of a manipula-
tor, which provides accurate information about the position and orientation of
the sensor, then the location of a surface point can be determined with high
confidence in the 3D coordinate frame of the manipulator. A group of these 3D
points, known as a point cloud, can be joined to produce a mesh [6][31] that con-
sists of multiple triangles. Where a robot manipulator must position/orientate
a tool within distance bounds of the surface and between angle to the surface
normal bounds then pose selection [18][31] can be used to determine the joint
angles. Pose selection is an optimisation process used to determine the joint
angles of a manipulator, so there is no collision with obstacles in the environ-
ment, and so the end-effector is positioned and orientated within a set of task
constraints. However, due to sensor noise, the triangle mesh often contains large
variations between neighbouring surface normals [15], which makes it difficult
to determine a trajectory such that the tool at the end-effector is orientated
correctly as it points at a continuous surface [28]. In a given position and
orientation, the venturi nozzle that is commonly used in abrasive blasting is
observed to clean a circular spot on the surface. A surface representation is re-
quired that is smoother than the sensed mesh, and which is more related to the
task of trajectory planning for a circular blasting spot. When performing abra-
sive blasting on disconnected or dissimilar surfaces, the process must be stopped
when moving between segments, to guarantee that only the correct areas are
covered, and so as to minimise the wastage of the abrasive blasting material
(i.e. garnet). Therefore, when a manipulator must interact with surfaces in an
environment, such as in abrasive blasting, a map of the environment is required.
The map must contain sets of small maintenance-specified targets representing
small surface areas that need to be aimed at when performing task-specific ma-
nipulator pose selection. Ideally related targets should then be grouped into
surface segments so as to improve the efficiency of the system.

Developing a map with a high-level of abstraction (i.e. object recognition)
has been shown to be valuable for motion planning of indoor mobile robots
[33][30]. Representations at low levels of abstraction that are popular in the
literature for improving the map building required for planning tasks include,
point clouds fitted with polynomials [2][24], marching cubes [16], marching tetra-
hedrons [14] and the volumetric method [6] that produces a high resolution tri-
angle mesh. Algorithms also exist which generate local machining tool paths
directly from a point cloud [28]. In manipulator pose selection that considers
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task-specific constraints to position a point projected from the end-effector, then
small 3D targets which approximate a surface [32][12] have been shown to aid
manipulator trajectory planning [23] in complex environments. In manipulator
trajectory planning the aim is to find a collision-free path made up of discrete
manipulator poses with a small angular differential between consecutive poses.
In steel bridge maintenance operations [19] it has been shown in [29] that manip-
ulator trajectories can be optimised for a small surface area in order to improve
efficiency, provided that targets are placed in close proximity to each other with
a small amount of overlap.

When a surface map is large and complex then planning a non-stop manip-
ulator trajectory over the entire set of targets in the map is computationally
expensive, possibly even intractable, and hence the resulting path is likely to be
inefficient. An inefficient blast path wastes blasting material (i.e. garnet) and
time, and will redundantly move the loaded manipulator joints through unnec-
essary blasting configurations - thus increasing wear. It has been shown that by
partitioning manipulator coverage problems into multiple planning spaces it is
possible to significantly reduce the computational efforts required for planning
[4]. An operator could assist the planning process by manually segmenting sur-
faces. However, this type of interaction would be time consuming and when the
manipulator movement considerations are included, the ideal surface segments
may be irregular shapes that are not obvious to an operator. Techniques ex-
ist in the literature for autonomous surface data segmentation [22][10][1] and
refinable surface enclosures for uniform spray painting coverage [3]. Segmen-
tation approaches also exist for use by climbing robots on planar surfaces [9].
These approaches typically group planar surface features into segments based
only on geometry considerations. Segmentation techniques need to be extended
so as to include the task-specific constraints that are relevant to manipulator
pose selection. Therefore, an approach is required that processes the map data
gathered so as to create targets that are representative of surfaces in the envi-
ronment. The approach should also include an algorithm to cluster the targets
into segments that are based on the surface geometry, the maintenance task
requirements, and the surface-interaction manipulator poses.

This paper presents an approach for segmenting a 3D surface map, which
is generated through exploration, by considering the task requirements and the
movements of an industrial robot manipulator that performs the task. Ini-
tially, the surface map is represented as partially overlapping Scale-Like Disc
(SLD) targets so as to facilitate a manipulator-based coverage task. Relevant
maintenance-operation task constraints are used to generate SLD connectivity
graphs, which are analysed to cluster vertices, thus segmenting the surface map
into groups of related SLDs. Surface segmentation based upon task require-
ments for manipulator motion planning will be shown to improve the efficiency
of manipulator-based maintenance operations. Section 2 describes the data
collection and the algorithm for target generation which transforms the fused
maps into a more usable and compact format via Principal Component Analysis
(PCA). Section 3 describes the algorithm to populate graphs based upon a set
of task constraints and then groups the targets by performing cluster analysis.
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Section 4 presents experimental results which show the segmentation outputs
for a number of environments along with the efficiency improvements. Finally,
Section 5 presents the conclusions and future work.

2. Task-specific Surface Representation

In order for an industrial robot manipulator to autonomously perform a
maintenance task on the surfaces of an initially unknown environment, explo-
ration is needed to generate a map of the environment [18]. To explore 3D
environments using a manipulator and a sensor such as a depth camera [27]
or a laser range scanning sensor [11], the manipulator is manoeuvred through
a sequence of viewpoints that are selected to maximise the quality of the map
generated. The result of exploring from multiple viewpoints is a point cloud that
represents the surfaces of an environment. It has been shown [29][23][19][31] that
for manipulator pose selection and trajectory planning in abrasive blasting op-
erations it is advantageous to have a small target to aim at. The venturi nozzle
that is used in maintenance operations must be kept at a specific range and ori-
entation to the surface so as to achieve the desired surface finish characteristics.
Fig. 1 shows a nozzle attached to the end-effector of a robot manipulator.
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Robot Manipulator
End-effector

Figure 1: Abrasive blasting operation utilising scale-like disc targets (SLDs).

A manipulator pose selection approach [18] can be used to find joint config-
urations that correctly position and orientate a tool on the end-effector, while
avoiding collisions and manipulator joint limits. Fig. 1 shows the important
maintenance task constraints: distance and orientation to a surface. These
constraints must be adhered to by the pose selection process. Therefore, it is
advantageous to utilise a task specific target called a Scale-Like Disc (SLD) that

includes a nozzle-specific diameter, a point, P̂i, to aim at along with a surface
normal, ~n. In maintenance operations, such as abrasive blasting, a single blast
spot is observed to be circular [5]. In Fig. 1, where three SLDs out of the
five SLDs have been blasted, the blasting spot is being moved downwards in a
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straight line such that the blast path has a rectangular shape with half-circles at
either end; a shape that can be approximated by several partially overlapping
SLDs. This section formalises the range data collection process and presents an
algorithm to generate specifically sized and positioned SLDs.

2.1. Point Cloud Map Generation

When a laser range scanner is mounted on the end-effector of a robot ma-
nipulator, and makes horizontal scans along its plane of orientation. Ranges,
ri, to reflecting points on an object’s surface are returned together with the
corresponding bearings, θi. The angle between the ith and (i + 1)th rays with
the bearings, θi and θi+1, is equivalent to the constant angular resolution of the
scan. A scan refers to one complete set of range and angle measurements.

Given the manipulator’s joint configuration, the instantaneous location and
orientation of the sensor can be obtained with reference to a 3D coordinate
system, T0 located at the base of the robot manipulator (Fig. 2). Given a

manipulator pose, ~Q = [q1, q2, . . . q6]T that describes the angular position of
each manipulator joint, and using forward kinematics, it is possible to compute
the position and orientation of the manipulator’s end-effector where the sensor
is mounted.
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Figure 2: The robot joints and the coordinate frames: robot base, end-effector and sensor.

A position and orientation combination of an end-effector can be expressed in
the 4×4 rotation and translation homogeneous transformation matrix, 0Tf ( ~Q),
by performing transformations based upon the manipulator model and the ma-
nipulator joint angles qi for i ∈ {1, . . . 6} as,

0Tf ( ~Q) =

6∏
i=1

i−1Ti(qi). (1)

The transformation matrix between the end-effector and the sensor is denoted
as fTs. Together these two matrices describe the viewpoint in the manipulator
base coordinate frame, 0Ts( ~Q) = 0Tf ( ~Q)fTs. The sensor position is [x, y, z]T ,
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the centre laser ray is in the direction of the vector, [ax, ay, az]
T , the ray’s axis

of rotation is [nx, ny, nz]
T , and the ±90◦ laser ray direction is [ox, oy, oz]

T . Then
the transformation matrix is,

0Ts( ~Q) =


nx ox ax x
ny oy ay y
nz oz az z
0 0 0 1

 . (2)

The location of a data point, pi = [xi, yi, zi]
T , on an object returned from

the ith ray with range ri and angle to the centre ray θi is calculated as,

[xi, yi, zi, 1]T = 0Ts( ~Q) [0,−ri sin θi, ri cos θi, 1]
T
. (3)

The laser scanner is driven in a tilting movement using the fifth joint of the
manipulator, q5, such that both the end-effector transformation matrix, 0Tf ( ~Q),

varies along with the viewpoint, 0Ts( ~Q). The tilting motion enables the laser
sensor to deliver a set of range data to the 3D surfaces in the environment
that surrounds the manipulator. The accurately calibrated manipulator pro-
vides time-stamped configuration data that is combined with the continuously-
acquired range data. By combining the range data with the positional informa-
tion of the end-effector, a set of n points, is generated as a point cloud,

P = {pi}, i = {1, · · ·n}. (4)

At each viewpoint, the adjacency of the range data is maintained so that a
triangle mesh can be created. The ordering of vertices in the face definition of
each triangle inherently contains the normal direction. The normal direction is
defined so that it is directed more towards the sensor location than its negative
alternative. To fuse data from multiple viewpoints into a single triangle mesh,
an adaptive distance field map representation (i.e. a volumetric technique) has
been chosen. The data fusion process is based on the technique proposed by
Curless [6] and improved by Webb [31] for real-time and online implementation,
and for being able to handle thin plates and sharp features. The implementation
includes a spatial index over multiple signed distance fields, implemented as an
octree of small 3D grids. This provides a sparse representation to minimise
memory usage and an index for efficient updates. The output of the fusion
process is a mesh map where the vertices (i.e. the point cloud, P) can be
rapidly queried. Fig. 3 shows a point cloud generated by sensing an overhanging
structure from multiple viewpoints.

The point cloud that is generated must be transformed into a set of SLD
targets, which are smoothed circular targets that can be used to plan the task-
specific motions of a manipulator. Therefore, after obtaining the point cloud,
P, the goal is to segment or classify the points into nss distinct point groups,
PGj , for j ∈ {1, . . . nss} such that,

P =

nss⋃
j=1

PGj , (5)
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Figure 3: A manipulator explores using a range sensor and generates a fused map consisting
of a point cloud, P containing np = 80977 points.

where
⋃

stands for set union combining the nss point groups. Each point group
is a candidate to be represented by a SLD.

2.2. Scale-Like Disc Generation

The generation of Scale-Like Discs (SLDs) is considered to be both a data
reduction and a dimensionality reduction problem. It is observed that if a set
of 3D points could form a small planar surface, one of the dimensions will van-
ish, and hence a reduction of the dimensionality is achieved. If the remaining
dimensions are utilised, the 3D points are reduced to a single surface normal, a
3D centre point, and a radius from the centre point. The representation which
is created is therefore equivalent to a disc. To this end, an approach based on
Principle Components Analysis (PCA) is adopted [25][8]. One of the benefits
of using PCA is that a normal vector, which describes the orientation of the
surface, can be determined. This is since the surface normal is the eigenvector
that corresponds to the minimum eigenvalue of the covariance matrix. A fur-
ther advantage of PCA is that if the centre point of each disc is strategically
positioned, then a surface in the environment can be represented by a set of
discs which are partially overlapping in a scale-like pattern (i.e. SLDs). SLDs
can be used to represent both flat and curved surfaces, and most importantly
the SLDs facilitate the processes of manipulator pose selection and manipulator
trajectory planning [17].

A flowchart of the SLD generation algorithm is presented in Fig. 4. The SLD
generation algorithm simultaneously creates the SLDs through the PCA data
reduction technique, and arranges the SLDs in the required scale-like pattern.

The first step of the algorithm is to divide the environment into cubic voxels
(i.e. equally sized, cube-shaped volumetric pixels) so that each point in the
point cloud is associated with a voxel [26][19]. This technique is used to both,
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Figure 4: The SLD generation algorithm: reduces the dimensionality of the point cloud and
positions the SLDs in a partially overlapping pattern.

determine which voxel each 3D point is associated with, and to improve the
efficiency of the algorithm. An occupied voxel is defined as a voxel that contains
one or more 3D points. The number of points in an occupied voxel is a function
of the size of the voxels and the density of the point cloud. In order to determine
which voxel contains which 3D point, each point is divided by the length of the
sides of a voxel. The three real number resultants are then mapped to the
largest previous rounding integer (i.e. b·c). Thus, if the length of the sides of a
voxel is 10mm, then the ith point, pi = [130,−25, 35]T , is associated with the
voxel, [13,−3, 3]T . Each point is thereby associated to a voxel which is labelled
with a 3×1 vector of integers. The required pattern for the SLDs is maintained
by ensuring that the radius of the SLDs, µ, is greater than the empirically
determined

√
3 times larger than the voxel size, just as the longest diagonal of

a cube is
√

3 times larger than each side. Therefore, the 3D points contained by
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two adjacent voxels, can be used to generate SLDs which at least touch at the
edges, or that will more likely partially overlap. To ensure the required SLDs
do not completely overlap, each occupied voxel is limited to only contain one
SLD.

The next step of the algorithm is to focus on an occupied voxel that does
not contain a SLD. An unregistered point is then randomly selected from this
voxel and denoted as a potential SLD centre point P̂j . A search is conducted
on the enclosing voxel and the surrounding 33 − 1 = 26 voxels, to find a point
group, PGj , that are within the specific distance, µ, from P̂j . This is equivalent

to searching the spherical volume, (4/3πµ3) around P̂j .
PCA must then be performed on each point group, PGj , so a normal of the

point cloud, ~nj , can be extracted. The measurements obtained from the laser
sensor give a 3D description of the location of a point on an object’s surface.
The goal is to reduce the dimensionality to 2D such that the surface is still
adequately represented.

A subset point cloud, PGj containing jnp points returned by the laser sensor
and transformed into global coordinates is,

PGj = {pi}, i = {1, · · · jnp}. (6)

The mean of the point group, pgj , is first calculated as,

pgj =
1
jnp

jnp∑
i=1

pi. (7)

where pgj is a 3D vector, the difference between the point group and the mean
is,

∆ = PGj − pgj × 1, (8)

where ∆ is a 3× jnp matrix and 1 = [1, · · · 1] is a vector containing jnp values
of 1.

A covariance matrix, C, representing the spread of the points is calculated
from,

C =
1
jnp

∆∆T , C ∈ R3×3 (9)

In order to determine the principal components of the matrix, the covariance
matrix, C, is used to determine the eigenvectors, V, which diagonalises C as
in,

V−1CV = D (10)

where the diagonal matrix, D = {Di,i} and Di,i is equivalent to the ith eigen-
values, λi, which in turn correspond to the eigenvectors, vi in the matrix,
V = [v1,v2,v3]T .
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The magnitude of the eigenvalues has a significant role in the representation
of a data set. In conventional applications of PCA, the dimensions of data cor-
responding to larger eigenvalues are selected to represent the data set. Thus,
the eigenvalues are further sorted in descending order. A dimensionality reduc-
tion is possible in this case if the ratio between the maximum and minimum
eigenvalue, and the ratio between the median and minimum eigenvalue is such
that the eigenvector corresponding to the minimum eigenvalue is not required
to describe the set of points. It is then possible to remove the dimensions cor-
responding to the minimum eigenvalue. Therefore, the data can be described
as being on the plane represented by the remaining eigenvectors. Thus, the
dimensionality of the dataset is reduced from a 3D point cloud to 2D plane.

For the problem considered in this work, a disc needs to be extracted from
a point group in 3D space as shown in Fig. 5a. The dimension perpendicular
to the disc contains less information than the dimensions which are parallel to
the plane. This is since the points on the disc are dense along the perpendic-
ular dimension. In contrast to conventional PCA applications, the eigenvector
that corresponds to the minimum eigenvalue is selected to represent the normal
vector, ~n. That is,

~n ≡ vi, (11)

where vi is selected based on the corresponding minimum eigenvalue, λi. Each
triangle in the original fused triangular mesh contains a normal that is the cross
product of the first two sides of each triangle. The plus or minus direction of
~n is based upon the normals to the triangle mesh from which the points were
extracted [31]. In the case of the 3D points, the ‘surface normal’ (i.e. the vector

perpendicular to the surface) originates from the centre of the disc, P̂j (note

that P̂j can be different from the centre of mass of the point group). Hence, a

single SLD is characterised by {P̂j , ~nj}. All points, Pj , within µ of the home
point and within µ of the plane are registered to the jth SLD.

Point 

Group

Normal 

Centre

jP̂
jn
r

jPG

(a) (b)

Figure 5: a) SLD (point and surface normal {P̂j , ~nj}) represents point group, PGj (a subset
of the full point cloud dataset); b) Five SLDs with normal vectors shown, represent a curved
surface. The SLD connectivity must be defined so as to cluster SLDs into map segments for
ease-of-use by the manipulator path planner.

Once the geometry of the surfaces in the environment has been mapped, the
SLDs are generated from the point cloud using the PCA-based algorithm. This
reduces the complexity of the abrasive blasting task by simplifying the number

10



of parameters required to represent a segmented surface, and by providing man-
ageable sets of targets on the surface. Additionally, the approximate surface is
smoother and the overlap of the SLDs can assist in planning continuous manip-
ulator motions. The task-specific manipulator ‘pose selection’ algorithm [31][18]
is used (as shown in Fig. 1) to find an acceptable manipulator pose for each
SLD. This deterministic algorithm is used since it facilitates the rapid discovery
of a valid joint configuration for a given SLD target, and it can incorporate the
significant parameters for abrasive blasting: stream length, the angle between
the blast stream and the surface normal, the proximity of the manipulator to
the environment, and the physical joint limitations.

3. Map Segmentation

The map that is generated through exploration and mapping has a set of
SLDs each of which has an associated manipulator pose. In order to perform
the abrasive blasting task effectively the SLDs are ordered in a boustrophe-
don pattern [20]. Although the boustrophedon pattern produces the required
coverage results, it generally results in inefficient manipulator movements and
cannot efficiently cover areas where there is large variation between the surface
normals [29]. Also, since the nozzle must always be pointing in a safe direction
when blasting, then the blast stream must be halted when moving between two
disconnected areas. By segmenting the map (i.e. grouping SLDs) there can be
numerous efficiency improvements: reduce the number of times the blast stream
must be halted; reduce the total time to perform a task; reduce the wastage of
the abrasive (i.e. minimise excessive blast spot movements over the surface); and
reduce the manipulator joint movements while blasting. In order to obtain the
efficiency gains the map segmentation algorithm must consider the geometric
movements of the abrasive blasting spot and the joints of the manipulator.

As presented in the previous section, the ith SLD consists of a surface normal
~ni a centre point P̂i, and has a collision-free manipulator pose associated with
it, ~Qi, that can point the blast stream at the SLD. An algorithm is devised
that clusters SLDs into segments based on connectivity of SLDs. Graph theory
is utilised where each SLD is a graph’s vertex and an edge exists between two
vertices only when two SLDs are connected according to a specific rule. Four
distinct graphs are created by thresholding the following four parameters: the
angular difference between the SLD normals; the distance between centre points
of SLDs; the average distance between SLD centre points and other SLD planes;
and the angular difference between the poses which enable the manipulator to
act (i.e. perform a task) on a SLD target.

Consider the case shown in Fig. 5b where there are five SLDs. Even if SLDs
1 and 5 would not be connected directly, if the manipulator poses for all SLDs
were known to be similar, then a manipulator trajectory could be planned from
SLD 1 to 5 through SLDs 2, 3 and 4. Fig. 5b may then be regarded as a single
map segment, assuming that the remaining three aforementioned conditions
of SLD connectivity are met. Henceforth, the connectivity of SLDs will be
formulated.
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3.1. Segmentation Formulation

3.1.1. Angle Between Surface Normals

Every SLD has a surface normal which defines its orientation. Using this
normal vector, ~n, it is possible to determine the angle between neighbouring
SLDs. As shown in Fig. 6a, for SLD si and sj , the angular difference, δθij , of
their surface normals is calculated as,

δθij = acos(~ni · ~nj), i = {1, · · ·nss}, j = {1, · · ·nss} (12)

where nss is the number of SLDs. The nss by nss angular difference matrix can
then be formed as δΘ = [δθij ] with δθij = δθji and δθii = 0.

ijδθ

inrjnr

is

js is js
ijdδ

iP̂ jP̂

inr jnr
is

js

iP̂

jP̂

isjP→
ˆ

jsiP→
ˆ

inr

jnr

(a) (b) (c)

Figure 6: a) Angle difference, δθij , between normals on the ith and jth SLDs. b) Distance

between centres of the ith and jth SLDs is δdij = ‖P̂i − P̂j‖. c) The point of intersection be-

tween the normal of the ith SLD and the jth SLD’s plane, P̂i→sj , and the point of intersection

between the jth SLD’s normal and the ith SLD’s plane, P̂j→si .

It is possible to compare this matrix of angles to a constant threshold, τθ,
which is the maximum allowable angular difference between the normals of any
two SLDs, si and sj . If δθii ≤ τθ, then an edge connects the graph vertices for
SLDs i and j. This will give a binary connection graph, δθB = [δθbij ], which is
an nss × nss matrix of binary values where,

δθbij =

{
1, δθij ≤ τθ
0, otherwise.

(13)

3.1.2. Distance Between Centres of SLDs

Denoting the position of centres of two SLDs as P̂i and P̂j , the Euclidean
distance vector between them (Fig. 6b) is found by,

δdij = ‖P̂i − P̂j‖, (14)

where ‖ · ‖ is the Euclidean distance.
This can also be transformed into a binary connectivity graph, δdB = [δdbij ],

such that,
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δdbij =

{
1, δdij ≤ τd
0, otherwise.

(15)

3.1.3. SLD Centre-to-Plane Distance

The normal from the centre of the jth SLD intersects with the ith SLD plane
at P̂j→si . Conversely, the normal from the centre of the ith SLD intersects

with the jth SLD plane at P̂i→sj . The average distance between the points
of intersection and the respective centres of the SLDs is denoted as δpij and
calculated as,

δpij =

∥∥∥P̂j→si − P̂j

∥∥∥+
∥∥∥P̂i→sj − P̂i

∥∥∥
2

(16)

The average of two SLD centre-to-plane distances have to be within a limiting
threshold, τp. The binary graph is constructed from δpB = [δpbij ], where,

δpbij =

{
1, δpij ≤ τp
0, otherwise.

(17)

3.1.4. Difference Between Manipulator Poses

For the ith SLD there is an associated manipulator pose, ~Qi which is deter-
mined through the task-specific pose selection process. The joint angles for a
manipulator pose can be determined for each SLD target [31][18]. The angular
difference between joints used in a manipulator pose for SLDs i and j is another
measure for map segmentation. When the angular difference for each joint is
small, then the manipulator movement required from SLD i to SLD j is also
small. The joint difference between poses ~Qi and ~Qj is formed as,

δQij =
∣∣∣ ~Qi − ~Qj

∣∣∣ (18)

where |·| denotes the absolute angular difference between two manipulator poses
such that δQij = [δq1,ij , δq2,ij , δq3,ij , δq4,ij , δq5,ij , δq6,ij ]

T .
Where τqk is the constraint on the kth manipulator joint, the binary graph

δqB = [δqbij ], is constructed as,

δqbij =

{
1, δqk,ij ≤ τqk , k ∈ {1, . . . 6}
0, otherwise.

(19)

3.2. SLD Clustering Algorithm

Based upon the four binary graphs, one single connectivity binary graph (i.e.
an nss × nss binary matrix) is generated.

B =
{
δθB ∧ δdB ∧ δpB ∧ δqB ∧ (¬I)

}
= [bij ] (20)

where ∧ is the intersection between the binary graphs such that [1] ∧ [0] =
[0] and [1] ∧ [1] = [1]. Also, ¬I is the logical negation of the identity truth
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matrix, which forms an nss by nss matrix of ones (true) with the diagonal
as zeros (false). Therefore, the self-connectivity is disabled by this Boolean
combinatorial process. This is notionally similar to removing edges between the
same graph vertices, thus bii = 0. The edges in the graph, bij , represent the
connection between two SLDs. The combined graph then must be searched for
clusters of vertices which correspond to map segments. Algorithm 1 shows how
a breadth-first search is used recursively in B to find the ns clusters of SLDs
(i.e. the segments), such that ns ≥ 1. Each SLD in a segment has a connection
to at least one other SLD in that segment.

Algorithm 1 Clustering SLDs into map segments

1: Set the number of segments, ns, to one
2: Enqueue an unregistered root SLD
3: for each SLD in the current queue do
4: Dequeue a SLD and examine it
5: Check for connected SLDs in combined graph B
6: Enqueue these SLDs to the stack of the nsth segment
7: if there are no more SLDs to dequeue then
8: Segment is complete
9: Increment ns

10: end if
11: end for
12: if all nss SLDs are registered to segments then
13: FINISH
14: else
15: Repeat from Step 2
16: end if

4. Results

This section presents experimental results from the surface representation
and map segmentation process. Geometry data is gathered in three differ-
ent bridge maintenance environments using the exploration and mapping ap-
proach [18]. Experiment 1 presents the details of the segmentation approach
in a straightforward environment. The environment consists of a portion of
a replica bridge I-beam channel section. Experiment 2 shows a second, more
complex environment, modelled on a different bridge environment. Experiment
3 uses data from a main I-beam section on an actual bridge. In all experiments
SLDs are generated from the geometric data based upon consideration from
the maintenance operation. Corresponding robot manipulator poses are deter-
mined for each SLD and the segmentation algorithm is used to cluster the SLDs
into segments. The resulting differences are presented in terms of both abrasive
blasting point travel (indicative of the abrasive blasting material usage and the
time taken) and manipulator joint movement. The segmentation parameters
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that are used in the experiments were determined empirically by laboratory
and field trials [19], and are shown in Table 1. The manipulator joint limitation
τq is determined based upon µ and τd. Using forward kinematics the maximum
acceptable joint movements are found such that the end effector location does
not deviate by µ when moving τd between two SLDs. Note the lower the joint
index, the smaller the joint limitation is since lower joints have more affect on
the end effector location, while joint 6’s affect is negligible.

Table 1: Map Segmentation Demonstration Constraint Parameters

Param. Purpose Value

µ Radius of the SLDs 40mm
nmin Ensure SLDs contain enough points 8 points
τθ Min. angle between surface normals 5× π

180 rads
τd Min. distance between SLD centres 200mm
τp Min. average SLD centre-to-plane dist. 50mm
τq Min. angle between manipulator poses 9,10,13,20,20,120◦

4.1. Experiment 1

Fig. 7 shows a section of I-beam channel consisting of two I-beams and a
flat roof. The robot is placed underneath the structure and tasked with the
maintenance of the inside section. Exploration and mapping processes were
performed and a number of vertices, np = 10758, were extracted from the
fused mesh map. Using the points which are inside the manipulator’s work
envelope, the SLD generation algorithm created nss = 391 SLDs. For each
SLD a pose is generated using the pose selection algorithm so as to meet the
application-specific requirements. The segmentation algorithm is then applied.
The individual binary graphs (δθB, δdB, δpB, δqB) are shown in Fig. 8. It is noted
that for each of the four conditions the connectivity of the graphs is different.
Fig. 8b and Fig. 8c are also observed to be similar but not identical. All graphs
can be seen to be symmetric about the diagonal (i.e. Bi,j = Bj,i).

The graph of angle differences between surface normals, Fig. 8a, contains
several clusters. The first cluster contains most SLDs with index 1 to 50 and
indexes around 200, 270 and 360. The second cluster is from 50 to 200 and the
third is from 270 to 360. Similarly, for the surfaces on the same plane, δpB, in
Fig. 8c there are three clusters which is intuitive since Fig. 7 contains three
predominantly planar surfaces. Fig. 8b shows the graph of distances between the
centres of the SLDs, δθB which, as expected for the proximity constraint, only
has local connectivity. Conversely to the first three graphs, the configuration
space constraint (Fig. 8d) results in a completely different pattern, since the
poses of the manipulator may be similar for completely different SLDs. At the
bottom right of Fig. 8d there is clustering around the SLD index of 350.

Fig. 9a shows the overall connectivity binary graph. Using the map segmen-
tation algorithm, four clusters (i.e. map segments) are found with the resulting

15



Grit-blast 
Nozzle

Manipulator

I-Beam 
Channel

(a) (b)

Figure 7: a) Bridge maintenance environment; b) Corresponding point cloud, P, with np =
10758 vertices represented by nss = 391 overlayed SLDs requiring maintenance.
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Figure 8: SLD connectivity Binary graphs: a) Angle between normals, δθB; b) Distance
between centres, δdB; c) Average distance from an SLD centre to another SLD plane, δpB; d)
Manipulator pose angular difference, δqB.
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Figure 9: a) Clusters highlighted in the combined connectivity graph, B. Graphs are binary
(black=connection, white=no connection) and symmetric. b) Resulting surface segmentation
corresponding to the clusters in (a).

segmented map shown in Fig. 9b. Segment 1 is made up of nss = 69 SLDs.
These SLDs represent np = 1623 points to the left of the manipulator and
Segment 2 has nss = 66 SLDs generated from np = 1534 points. Fig. 10
shows segment 3 and segment 4 relative to the manipulator along with the his-
togram of manipulator poses. Fig. 10b shows the angular histogram of joint
angles for the manipulator poses which direct the nozzle on the end-effector
at the SLD targets in segment 3. These angular histograms show that the
poses for all the SLD on the segment are similar with q1 to q6 concentrated
around [30, 15,−60,−20,−30, 15] degrees which indicates that moving over the
segment requires relatively few motions of the robot joints. Fig. 10c, d shows
that even though segment 4 is similar to segment 3 in terms of geometry since
it lies on the same plane, the poses are significantly different and hence is it
advantageous to separate the surface into two segments. In Fig. 10d the ma-
nipulator poses for q1 to q6 corresponding to the SLDs are concentrated around
[−30,−30,−30,−20, 80, 60] degrees. This is significantly different to the angular
histograms for segment 3.

Experiment 1 showed that segments are not necessarily regular geometric
shapes due to the poses considered being in the configuration space of the ma-
nipulator. Also, the blasting motions for a segment can occur with relatively
small total joint changes. Finally, surfaces that are in close proximity may still
require significantly different manipulator poses.

4.2. Experiment 2

The second experiment uses a Schunk manipulator in a more complex labora-
tory environment that includes part of an I-beam, and a corrugated shaped roof
as shown in Fig. 11a. The robot is placed underneath the structure and tasked
with the maintenance of the inside section. Exploration and mapping processes
were performed and a number of vertices, np = 39104, were extracted from the
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Figure 10: a) The third segment in relation to the manipulator; b) Angular histogram for
each joint of the poses for the third segment, showing that manipulator poses are similar to
each other. c) The fourth segment in relation to the manipulator; d) Angular histogram for
each manipulator joint with different angular histograms to (b).

generated mesh map. Using the points which are inside the manipulator’s work
envelope, the SLD generation algorithm created nss = 1736 SLDs. For each
SLD a pose is generated and then the segmentation algorithm is applied.

Fig. 12 shows the results of the segmentation algorithm, 37 segments are
found. The segments are labelled and both the top view (Fig. 12a) and part
of the isometric view (Fig. 12b) are shown. It is clear from the top view that,
although there is geometric connectivity between SLDs on the roof, the poses
to point at the roof are significantly different to each other, and they tend to
cluster for SLDs where the normals are similar in a local geometric region. In
the lower part of Fig. 12a, nearby segment 31, there are several uncoloured
SLDs. These SLDs could not be clustered with other SLDs due to the large
differences between the associated manipulator poses. The uncoloured SLDs
are not disregarded. For completeness, these SLDs must be blasted individually.
The joint movements and blast stream movements required to blast these SLDs
are still added to the cumulative sum of movements for all segments, and are
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Figure 11: a) Second bridge maintenance environment; b) Corresponding point cloud, P, with
np = 39104 vertices represented by nss = 1736 SLDs to be maintained in the environment
overlayed.
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Figure 12: Resulting surface segmentation corresponding to the clusters.

4.3. Experiment 3

Fig. 13 shows a dataset from the side I-beam of an actual bridge during field
trials. The robot is placed in front and is tasked with the maintenance of the
surfaces. Exploration and mapping processes were performed and np = 90136
vertices, were extracted from the map. The SLD generation algorithm created
nss = 681 SLDs, a manipulator pose is generated for each SLD, and then the
segmentation algorithm is applied.

Using the map segmentation algorithm, 6 segments are found as shown in
Fig. 14. It is noted that segment 5 is separated from segment 1 because of
a difference in joint angles. There are 7 SLDs in the bottom left hand corner
which are not in any segment and must be blasted individually. A limitation
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(a) (b)

Figure 13: a) Real bridge maintenance environment; b) Corresponding point cloud, P, with
np = 90136 vertices represented by nss = 681 SLDs to be maintained.

to the segmentation approach is also observed in this experiment which has led
to segment 1 being on either sides of the vertical ribs (e.g. segments 2 and
3). Although it is possible to blast segment 1, this will probably lead to the
inadvertent partial blasting of segment 2 and/or segment 3. A solution to this
could be to add an additional segmentation rule that separates SLDs if there is
a perpendicular surface between them.
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(a) Side View (b) Isometric View

Figure 14: Resulting surface segments.

The blast stream spot travel results (in meters) for the three experiments
are shown in Table 2. For clarity all distances and percentages are rounded to
the nearest meter. In a typical scenario as demonstrated in [20], with a mid-
range nozzle the required blast spot velocity is approximately 30mm/s. Hence a
reduction in blast spot travel of 1m equates to efficiency gain of 30 seconds and
saves 0.5kg of abrasive blasting material. Therefore in the cases of experiment
2, by segmenting the surface and moving the blast nozzle more efficiently over
the SLDs, there is a reduction of 81m which equates to saving approximately
40 minutes and 40kgs of garnet.

Table 3 shows the robot joint movement for each joint, and in total, for the
three experiments. In experiments 1 and 2, where the environment contains
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Table 2: Blast spot travel (in meters) before and after segmentation.

Experiment 1 Experiment 2 Experiment 3∑
δdij

∑
δdij

∑
δdij

Before (m) 39 170 53
After (m) 31 89 47

Improvement (%) 12% 48% 10%

segments that are both above and to the side of the manipulator, there is a
significant reduction in the joint movements (i.e. an improvement). In experi-
ment 2 where the SLD are significantly different and spread out in the robot’s
workspace, the total joints movement after segmentation is only 63% of the mo-
tion before, a 37% improvement. Note that this also includes covering all SLDs
not just those in segments. In experiment 3, there is a 10% improvement in the
blast spot travel. However since the poses for the SLDs in front of the robot
are in similar configuration space, joints 1, 4 and 6 have a net increase in joint
movement (i.e. a negative improvement percentage). Therefore, for experiment
3 there is only a small overall improvement in joint movement by segmenting
the surfaces.

Table 3: Total rounded joint movement (in radians) before and after segmentation.

Experiment 1
Manipulator joint(s)

1 2 3 4 5 6 all
Before 39 43 29 43 74 47 275
After 33 28 19 32 40 39 192

Improvement 16% 34% 32% 24% 46% 17% 30%

Experiment 2
Manipulator joint(s)

1 2 3 4 5 6 all
Before 437 281 304 333 364 632 2352
After 268 206 184 222 234 364 1478

Improvement 39% 27% 39% 33% 36% 42% 37%

Experiment 3
Manipulator joint(s)

1 2 3 4 5 6 all
Before 16 46 93 24 45 35 259
After 22 41 85 30 40 39 257

Improvement -37% 11% 9% -24% 11% -11% 1%
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4.4. Discussion

In all the experiments conducted, a reduction is seen in both the blast spot
movement and the manipulator joint movement. When a continuous trajectory
is executed over the surfaces there are many inefficient manipulator movements,
due to the different points and normals that must be pointed at. In the case
where surfaces are curved rather than smooth it can be difficult to obtain con-
tinuous manipulator trajectories.

The manipulator joint motions that are recorded in Table 3 actually includes
two components: the blasting joint motions and the joint movements between
segments. The blasting motions are performed slowly so as to blast with the
required tool speed. However, the movements between segments (i.e. to link the
segments together) can be performed quickly and without the additional load
of the abrasive blasting stream (since it can be halted during this time). By
examining the robot joint motion control logs (not shown here) it was observed
that more than 20% of joint movements in experiment 3 consisted of these
linking joint motions.

The segmentation algorithm has only been tested using one pose selection
algorithm. Attempts to calculate a trajectory prior to segmentation were un-
successful with the current pose selection algorithm. An alternative trajectory
planner may be able to determine valid poses for a group of SLDs. Additionally,
a possible way to improve surface segmentation improvement would be to de-
termine numerous manipulator poses for each SLD, and then use another level
of optimisation to determine the best poses out of the set for each SLD that
would lead to the best segmentation. This would be more time consuming but
could lead to a better segmentation result with improved movement efficiency.

It is noted that currently segments are not formed by dividing surfaces based
upon perpendicular partitions that may exist. In experiment 3, where there were
two vertical rib dividers that were perpendicular to the main surface, the seg-
mentation algorithm found a segment (i.e. index = 1) that exists on either side
of these. The manipulator poses and the SLD positions and orientations were
similar enough to result in the main wall consisting of one large segment, even
though this is not an ideal segmentation. It would therefore be advantageous to
augment the current algorithm with the consideration of perpendicular surface
partitions so as to perform more logical segmentation. Additionally, comple-
mentary sensor data could be included, such as material-type information and
image data, so as to improve segmentation.

5. Conclusions

This paper has presented a novel segmentation approach which can be used
in maintenance-operations that utilise a robot manipulator. It has been shown
that map segmentation can occur autonomously. Additionally, a segmented
environment is shown to be beneficial to maintenance-operation planning when
segmentation is done based upon the task considerations, such as the distance
and angle between successive targets, and the difference in manipulator joint
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angles required to perform the task. Initially, a geometry map of an environment
such as a triangle mesh is converted to a group of task-specific SLD targets with
associated manipulator poses. These SLDs can be grouped to form segments
based upon the SLDs’ proximity/ orientation and the associated manipulator
poses. The segmentation algorithm presented simplifies trajectory planning by
enabling map segments to be handled separately. This has been shown to reduce
the movement of a blasting spot over a surface and thus make operations more
efficient and reduce the amount of abrasive material wastage. The segmented
surfaces have also been shown to reduce the manipulator joint motion while
blasting, which reduces the stress on the joints caused by the labour-intensive
blasting operation.

Future work will see further testing of this approach as part of the mainte-
nance system, including measuring the improvements in effective blast coverage
due to the map segmentation. Further pose selection optimisation testing, and
trajectory optimisation will also be undertaken so as to increase the indepen-
dence of the approach. The future incorporation of additional information such
as image data as well as surface material-type data is also predicted to comple-
ment this surface segmentation approach.

Acknowledgment

This work is supported by the ARC Linkage Grant (ARC-LP0776312), by
the ARC Centre of Excellence for Autonomous Systems (CAS), the Roads and
Traffic Authority (RTA) NSW, and the University of Technology (UTS), Sydney.

References

[1] Adan, A., Hube, D., 2011. 3d reconstruction of interior wall surfaces under
occlusion and clutter. In: Proc. International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission. Hangzhou, pp. 275
– 281.

[2] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C. T.,
2003. Computing and rendering point set surfaces. IEEE Transactions on
Visualization and Computer Graphics 9 (1), 3–15.

[3] Atkar, P. N., Conner, D. C., Greenfield, A., Choset, H., Rizzi, A. A., 2009.
Hierarchical segmentation of piecewise pseudoextruded surfaces for uniform
coverage. IEEE Transactions on Automation Science and Engineering 6 (1),
107–120.

[4] Chitta, S., Cohen, B., Likhachev, M., 2010. Planning for autonomous
door opening with a mobile manipulator. In: International Conference on
Robotics and Automation. Anchorage, Alaska, pp. 1799 – 1806.

[5] Corporation, C. I., 1994. Blast Off: Your Guide to Safe and Efficient Abra-
sive Blasting. Clemco Industries, Washington.

23



[6] Curless, B., Levoy, M., 1996. A volumetric method for building complex
models from range images. In: Computer graphics proceedings, annual
conference series. Vol. 2006. Association for Computing Machinery SIG-
GRAPH, New Orleans, pp. 303–312.

[7] Gissler, M., Dornhege, C., Nebel, B., Teschner, M., 2009. Deformable prox-
imity queries and their application in mobile manipulation planning. Ad-
vances in Visual Computing, Lecture Notes in Computer Science 5875,
79–88.

[8] Godil, A., Ressler, S., Grother, P., 2005. Face recognition using 3d sur-
face and color map information: Comparison and combination. Biometric
Technology for Human Identification, SPIE 5404, 351–361.

[9] Howarth, B., Katupitiya, J., Guivant, J., Whitty, M., 2011. Extraction
and grouping of surface features for 3d mapping. In: Proc. Australasian
Conference on Robotics and Automation. Melbourne, pp. 1–6.

[10] Jiang, X., Bunke, H., 1994. Fast segmentation of range images into planar
regions by scan line grouping. Machine Vision and Application 7 (2), 115–
122.

[11] Kawata, H., Ohya, A., Yuta, S., Santosh, W., Mori, T., 2005. Development
of ultra-small lightweight optical range sensor system. In: Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS. Al-
berta, Canada, pp. 1078–1083.

[12] Ko, K. H., Maekawa, T., Patrikalakis, N. M., 2005. Algorithms for optimal
partial matching of free-form objects with scaling effects. Graphical Models
67 (2), 120–148.

[13] Larsson, S., Kjellander, J. A. P., 2006. Motion control and data captur-
ing for laser scanning with an industrial robot. Robotics and Autonomous
Systems 54 (6), 453–460.

[14] Levinski, K., Sourin, A., 2002. Interactive function-based artistic shape
modeling. In: Proc. IEEE First International Symposium on Cyber Worlds.
Tokyo, pp. 521–528.

[15] Mederos, B., Amenta, N., Velho, L., de Figueiredo, L. H., 2005. Surface
reconstruction from noisy point clouds. In: Proceedings of the third Eu-
rographics symposium on Geometry processing. Eurographics Association,
Aire-la-Ville, Switzerland.

[16] Nielson, G. M., 2003. On marching cubes. IEEE Transactions on Visual-
ization and Computer Graphics 9 (3), 283–297.

[17] Paul, G., 2010. Autonomous exploration and mapping of complex 3d en-
vironments by means of a 6dof manipulator. Ph.D. thesis, University of
Technology, Sydney.

24



[18] Paul, G., Kirchner, N., Liu, D. K., Dissanayake, G., 2009. An effective
exploration approach to simultaneous mapping and surface material-type
identification of complex 3d environments. Journal of Field Robotics, Spe-
cial Issue on Three-Dimensional Mapping 26 (11-12 SI), 915–933.

[19] Paul, G., Liu, D. K., Kirchner, N., 2007. An algorithm for surface growing
from laser scan generated point clouds. In: Tarn, T., Chen, S., Zhou, C.
(Eds.), Robotic Welding, Intelligence and Automation. Springer-Verlag,
Berlin, pp. 481–491.

[20] Paul, G., Webb, S., Liu, D. K., Dissanayake, G., 2010. A robotic system for
steel bridge maintenance: Field testing. In: Proc. Australasian Conference
on Robotics and Automation. Brisbane, pp. 1–8.

[21] Paul, G., Webb, S., Liu, D. K., Dissanayake, G., 2011. Autonomous robot
manipulator-based exploration and mapping system for bridge mainte-
nance. Robotics and Autonomous Systems 59, 543–554.

[22] Peters, J., Wu, X., 2000. Optimized refinable surface enclosures. Tech. rep.,
University of Florida.

[23] Ren, T. R., Kwok, N. M., Liu, D. K., Huang, S. D., 2008. Path planning
for a robotic arm sand-blasting system. In: Proc. International Conference
on Information and Automation, ICIA. Hunan, China, pp. 1067–1072.

[24] Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., Beetz, M., 2008.
Towards 3d point cloud based object maps for household environments.
Robotics and Autonomous Systems 56 (11), 927–941.

[25] Smith, L. I., 2002. A tutorial on principal component analysis. Tech. rep.,
University of Otago, New Zealand.

[26] Sujan, V. A., Dubowsky, S., 2005. Efficient information-based visual
robotic mapping in unstructured environments. The International Journal
of Robotics Research 24 (4), 275–293.

[27] Taylor, C., Cowley, A., 2011. Fast scene analysis using image and range
data. In: Proc. IEEE International Conference on Robotics and Automa-
tion (ICRA). Shanghai, pp. 3562 – 3567.

[28] Teng, Z., Feng, H. Y., Azeem, A., 2006. Generating efficient tool paths
from point cloud data via machining area segmentation. The International
Journal of Advanced Manufacturing Technology 30 (3-4), 254–260.

[29] To, W. K., Paul, G., Kwok, N. M., Liu, D. K., 2009. An efficient trajec-
tory planning approach for autonomous robots in complex bridge environ-
ments. International Journal of Computer Aided Engineering and Technol-
ogy 1 (2), 185–208.

25



[30] Vasudevan, S., Siegwart, R., 2008. Bayesian space conceptualization and
place classification for semantic maps in mobile robotics. Robotics and
Autonomous Systems 56 (6), 522–537.

[31] Webb, S. S., 2008. Belief driven autonomous manipulator pose selection for
less controlled environments. Ph.D. thesis, University of New South Wales
Australia.

[32] Weingarten, J. W., Gruener, G., Siegwart, R., 2004. Probabilistic plane
fitting in 3d and an application to robotic mapping. In: Proc. IEEE In-
ternational Conference on Robotics and Automation, ICRA. Vol. 1. New
Orleans, pp. 927–932.

[33] Zender, H., Mozos, O. M., Jensfelt, P., Kruijff, G.-J., Burgard, W., 2008.
Conceptual spatial representations for indoor mobile robots. Robotics and
Autonomous Systems 56 (6), 493–502.

26


