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Abstract—This paper presents an investigation into combining 

migration strategies inspired by multi-deme Parallel Genetic 
Algorithms with the XCS Learning Classifier System to provide 
parallel and distributed classifier migration.  Migrations occur 
between distributed XCS classifier sub-populations using 
classifiers ranked according to numerosity, fitness or randomly 
selected. The influence of the degree-of-connectivity introduced 
by Fully-Connected, Bi-directional Ring and Uni-directional 
Ring topologies is examined. Results indicate that classifier 
migration is an effective method for improving classification 
accuracy, improving learning speed and reducing final classifier 
population size, in the single-step classification of noisy, artefact-
inclusive human electroencephalographic signals. The 
experimental results will be used as part of our larger research 
effort investigating the feasibility of using EEG signals as an 
interface to allow paralysed persons to control a powered 
wheelchair or other devices. 
 

Index Terms— Learning classifier system (LCS), XCS, 
evolutionary computation, genetic-based machine learning 
(GBML), electroencephalogram, classifier migration.  
 

I. INTRODUCTION  
CS [1] is a key development in learning classifier 
systems (LCS) research that improves on the some of the 

limitations of traditional LCS, which were introduced by 
Holland [2]. XCS has proved to be effective in many domains, 
in particular data mining and single-step classification 
applications where it can perform better than other traditional 
machine learning techniques [3-5].  

The parallelisation of evolutionary algorithms, in particular, 
parallel genetic algorithms (PGA) has become an established 
research area [6-8]. However, only a small number of 
investigators have examined migration strategies inspired by 
multi-deme PGAs in parallel and distributed learning classifier 
systems, which also employ a genetic algorithm for improving 
a population of classifiers. 

Some early examples include Dorigo et al.’s [9] use of 
multiple LCS within a hierarchical structure to control an 
autonomous robot and Seredynski et al.’s [10] learning of 
Nash equilibria by coevolving distributed LCS in competitive 
or cooperative approaches. More recently, Cao et al [11] used 
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distributed LCS to learn and control signalling at road traffic 
junctions. Recently, Bull et al [12] investigated the inclusion 
of a rule migration mechanism into a derivative of XCS and 
found it to be an effective way to improve learning speed. 
Here, rule migration was applied to the 20-bit multiplexer test 
problem. Wyatt et al [13] investigated the migration of rules 
for two popular multi-step test environments (maze6 and 
woods1). Here rules were selected from eight Zeroth Level 
Learning Classifier System (ZCS) sub-populations and 
exchanged using a unidirectional ring topology.  

We have explored distributed classifier migration using a 
uni-directional ring topology where classifiers migrate to a 
single neighbouring XCS sub-population (deme) in one 
direction only. In addition, improved learning speed and 
reduction in the XCS sub-populations were achieved using 
fully-connected and bi-directional ring topologies. 

In this paper, six classifier selection/replacement schemes 
were investigated, based on combinations of classifier 
numerosity, fitness and random. Experimental results suggest 
that selection/replacement policies using random and 
numerosity bias provide improved classification performance 
and that fitness bias can lead to a reduction in classification 
performance, resulting from the selective pressure introduced 
by distributed classifier migration. 

Migration policies based on a range of migration rates and 
migration frequencies have been explored for each topology 
and selection/replacement scheme with some general 
recommendations presented to facilitate robust and improved 
classification performance. 

Section II provides a brief description of the Wilson’s XCS 
learning classifier system. Section III describes the multi-
deme topologies and migration policy used to control the rate 
at which classifiers disseminate between XCS sub-
populations. Section IV describes the experimental 
environment. Section V presents the experimental results and 
section VI summarises conclusions and future research. 

II. DESCRIPTION OF XCS 
XCS[1, 14] is an accuracy-based classifier system. It 

exploits a reinforcement learning method [15] coupled with 
the robust and global search capability of a genetic algorithm 
[2, 6] to produce a population of classifiers. The classifiers 
form a maximally accurate and maximally general knowledge 
representation (complete map) of the target problem in single- 
and multi-step environments. 

This section provides a brief description of XCS in single-
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step environments, since the EEG classification task was 
modelled as a single-step problem. Figure 1 is a schematic 
illustration of XCS as described in this section. 

 

A. Knowledge Representation 
XCS evolves a population [P] of classifiers, where each 

classifier consists of a rule and three main parameters 
estimating the quality of the rule. Each rule consists of a 
condition and an action pair [ condition action→ ]. With a 
binary encoding scheme the input space can be denoted 
by {0,1}LS ⊆ , where L is the fixed length of a feature vector 
received from the environment. Thus, the condition part of the 
rule {0,1,#}LC ∈ specifies the input states s S∈ the classifier is 
capable of matching. In this case, for example, a condition 

1 2( , ,..., )nc c c  matches an input 1 2( , ,..., )ns s s , iff #i i ii c s c∀ = ∨ = . 
The hash symbol # means “don’t-care” and allows formation 
of generalisations in the condition part of a rule. The action 
part of the rule specifies the action a A∈ or class for which a 
payoff is predicted, that is, when the condition is satisfied.  

Three main parameters estimate the quality of each classifier 
in the population [P]. The prediction p estimates (keeps an 
average of) the payoff expected if the classifiers condition 
matches the input from the environment and its advocated 
action (class) is selected. The prediction error ε estimates the 
average error between the classifiers payoff prediction and the 
received payoff. The fitness F estimates the accuracy of the 
payoff prediction p and is an inverse function of the prediction 
error. The fitness metric ultimately defines the superiority of 
rules for XCS. 

 

B. Performance Component 
At each discrete time step, the system receives an input s(t) 

describing the current state of the environment at time t. Given 
s(t), XCS forms a match set [M] of classifiers in [P] whose 
conditions are satisfied by the current input. If the match set 
[M] contains less than mnaθ classifiers with different actions, 
covering is performed. The covering mechanism creates new 
classifiers with a condition that matches the current input and 
action selected randomly from those not contained in [M]. 
Specifically, each attribute in the condition part of a newly 
created covering classifier is set to # with a probability given 
by P# or alternatively to the corresponding input symbol{0,1} . 

XCS computes the system or payoff prediction, P(a) for each 
action a in [M]. P(a) estimates the payoff the system will 
receive if action a is chosen. It is computed by the fitness-
weighted average of all matching classifiers that specify 
action a. The different values of P(a) form the prediction 
array and XCS selects an winning action based upon the 
values stored in P(a).  

For the EEG signal classification task, XCS selects the 
winning action using either a pure explore mode or pure 
exploit mode. During training sessions pure explore mode was 
used so actions are selected randomly. During testing and 
validation sessions, i.e., when XCS attempts to classify new 
and unseen instances based on the knowledge it has gained, 
pure exploit mode was used so actions are selected 

deterministically according to the highest prediction. 

 
Figure 1: Block Diagram of XCS Classifier System, excluding Previous 
Action Set [A]-1 (Adapted from [1]) 

C. Reinforcement Component 
The selected action is sent to the environment and a reward 

R is returned, which is then used to update the parameters of 
classifiers currently stored in [A]. Furthermore, only those 
classifiers stored in [A] are updated in the following order. 
Firstly, the classifier prediction p is updated as follows: 
 ( )p p R pβ← + −  (1) 

where ( )0 1β β≤ ≤  is the learning rate and R is the reward 
received from the environment. Next, the prediction error is 
updated as follows: 
 ( )R pε ε β ε← + − −  (2) 

Finally, the classifiers fitness F is updated. But, first the 
classifiers accuracy κ and relative accuracy 'κ are computed 
as: 
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The parameter ( )0 0: 0ε ε >  is a constant that controls the 
tolerance for prediction error ε , under which a classifier is 
considered to be accurate; the parameters ( ): 0 1α α< <  and 

( )0ν ν >  are constants controlling the rate of decline in 
accuracy κ when 0ε is exceeded and in this case the, classifier 
is considered inaccurate. The classifier accuracy κ  is 
determined from the prediction error ε  as in Eq(3). Next the 
accuracy values κ stored in [A] are converted to relative 
accuracies as in Eq(4). Finally, the classifier fitness F is 
updated according to the classifiers current relative accuracy 
as follows: 
 ( ).F F Fβ κ← + −′  (5) 

In XCS the classifier fitness F is an estimate of the classifiers 
accuracy relative to other classifiers in [A] and is an inverse 
function of the prediction error ε . 
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Furthermore, each time a classifier is included in [A], since 
its creation, the experience parameter exp is incremented 
tracking any previous participation. The action set size 
parameter as estimates the average size of the action set where 
the classifier participates.  

 

D. Genetic Search Component 
In XCS, a steady-state genetic algorithm (GA) is responsible 

for improving the set of rules. The GA attempts to discover 
new classifiers which contribute to existing knowledge and 
delete classifiers that do not offer improved contributions. 
Application of the GA takes place in niches defined by 
classifier in [A] iff the average time since the last GA 
application in [A] exceeds a constant threshold given by GAθ .  

Firstly, the GA selects two parental classifiers from the 
current [A] with probability proportional to their fitness F. In 
this paper the tournament selection method is used to select 
the fittest parental classifiers from a tour. The parental 
classifiers undergo uniform crossover with probability χ  and 
single-bit free mutation with probability µ per allele. Finally, 
the two resulting offspring classifiers are inserted into the 
population to compete with their parents.  

 

E. Classifier Deletion 
The deletion of classifiers from [P] maintains a constant 

population. Deletion of classifiers occurs if the total number 
of classifiers in [P] is greater than a constant threshold.  
Classifiers are selected for deletion with probability 
proportional to an estimate of the average size of [A] in which 
the classifier participated. The action set size parameter (as) 
stores this estimate. In addition, if the classifier is sufficiently 
experienced (exp > delθ , where delθ is the constant deletion 
threshold) and its fitness F is significantly lower than the 
average fitness of classifiers contained in [P], its probability of 
deletion is increased in inverse proportion to its fitness. 

 

F. Subsumption Component 
In XCS there are two subsumption deletion schemes aimed 

at broadening the generalisation capability and tending to 
compress [P] towards maximum generality. 

When an offspring classifier is created through the 
application of the GA, it is evaluated prior to its insertion into 
[P]. If the condition and action of the offspring classifier can 
be logically subsumed by the condition and action of an 
accurate ( )0ε ε< , sufficiently experienced (exp> subθ ) and 
formally more general parent classifier, then the offspring 
classifier is discarded and the parents numerosity (num) is 
incremented. This process is called GA subsumption. If the 
offspring classifier is not GA subsumed it is inserted into the 
population, deleting another classifier. 

The second method, action set subsumption searches the 
current [A] for the most general classifier that is both accurate 
and sufficiently experienced. Then, all the remaining 
classifiers in the [A] are evaluated against the most general 
classifier for possible subsumption. If a classifier is subsumed 

it is deleted from the population. Action set subsumption tends 
to create a stronger subsumption pressure than the GA 
subsumption method [16]. 

G. Macroclassifiers 
Macroclassifiers logically represent a set of classifiers with 

identical condition and action using the numerosity (num) 
parameter. In XCS, whenever a new classifier is generated, 
either at initialisation, by the GA or due to covering, the 
population [P] is searched to find an existing classifier with an 
identical condition and action. If a classifier is found its 
numerosity is incremented and the new classifier is discarded. 
If not, the new classifier is inserted into [P] with num=1. As a 
result, [P] contains structurally unique classifiers with 
numerosity ≥ 1. These classifiers are termed macroclassifiers. 
A macroclassifier with numerosity n is structurally equivalent 
to n individual classifiers.  

 

III. MULTI-DEME XCS MODELS 
This section describes the parallel and distributed topologies 

and the migration policy used to control the rate at which 
classifiers disseminate between XCS demes. 

 

A. Multi-Deme Topology 
The simplest example of distributed populations in 

evolutionary algorithms is modelled on a network of isolated 
islands, each being panmictic. The Island Model [17] is 
derived from the evolutionary biological theory known as 
Punctuated Equilibria [18], where individuals can periodically 
migrate to a single destination sub-population. Cantu-paz [19] 
performed an exhaustive investigation on the impact of 
migration pressure in uni-directional ring, bi-directional ring 
and fully-connected topologies using PGAs and found that at 
any given time, topologies where the demes have more 
neighbours reach higher quality solutions more rapidly than 
sparse topologies.  

Given that XCS consists of a population of co-evolving 
classifiers, we can similarly explore the uni-, bi-directional 
and fully-connected topologies and the influence of their 
explicit degree-of-connectivity (φ) on classification accuracy, 
learning speed and classifier population size.  Here, topologies 
uses eight XCS demes with a fixed population size (N=8000), 
as illustrated in Figure 2. Two and four deme topologies (not 
shown) where also examined, but improvements where less 
marked. 

 

B. Migration Policy  
Tanese [20] was one of the first to initiate a systematic study 

of migration policies and its effects on the efficiency and 
quality of loosely-coupled, coarse-grained PGAs. Her 
experimental method consisted in dividing a fixed number of 
individuals into equally-sized demes, and to vary the 
migration rates and migration frequency. The findings suggest 
that, infrequent migrations with a small number of individuals 
provide an efficient and accurate PGA.  
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Recent studies have considered the effect of migration due 
to selection/replacement pressure and compared several 
frequently-used configurations of migration policies in PGAs 
[19]. More recently, the authors carried out a performance 
study of a multi-deme PGA with adaptive mutation on a 
common set of highly multi-modal test problems [21]. 

 
 

 
Figure 2: (a) Uni-directional Ring, (b) bi-directional ring and (c) fully-
connected topologies using eight XCS demes, with degree-of-connectivity 
φ=1, 2, and 7 respectively.  

 
The migration policy for the multi-deme XCS model can be 

conveniently defined by six parameters: 
 

( ),, , , ,HR F RSM m m t sψ ψ=  (6) 
where: 

• mR: is the migration rate specifies the number of 
micro-classifiers undertaking migration as a 
proportion of the XCS deme population, N, 

{0,0.01 ,0.02 ,0.04 ,0.06 }Rm N N N N∈ . 
• mF: is the migration frequency and specifies how 

often migrations occur, {50,100,200,500}Fm ∈  
(XCS explore iterations). 

• tH: is the hold-off period before migrations occur, 
0.1Ht max_nr_steps= ×  

• ψS: is the classifier selection policy specified by 
either classifier numerosity (N), fitness (F) or random 
(R). 

• ψR: is the classifier replacement policy specified by 
either classifier fitness (F) or random (R). 

• s: is the communication type, either synchronous or 
asynchronous. 

 
The selection and replacement algorithms operate on [P], as 

illustrated in Figure 3. Following each initiation of the GA, mF 
and tH are tested within each XCS deme. No migration occurs 
until the hold-off period (tH) has elapsed, allowing demes to 
converge during the initial stage of learning [19]. If the 
number of explore trials is equal to mF and greater than tH, mR 
emigrants are selected from [P] for migration according to ψS. 

Emigrants are selected according to ranked classifier 
numerosity, fitness or unranked random selection.  
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Figure 3: Classifier selection and replacement mechanisms operate on the 
local XCS population [P]. Producing [I] and [E] classifier populations. 

Classifiers migrated from different XCS demes are received 
as immigrants. Immigrants are inserted into the recipient [P] 
with replacement of local classifiers according to ψR, which is 
random or fitness biased. Insertion and deletion of classifiers 
into the local [P] performed using the same algorithms as for 
GA deletion. Furthermore, all distributed classifier migrations 
occur synchronously as specified by s.  

IV. EXPERIMENTAL ENVIRONMENT 
This section provides a description of the experimental 

environment for the single-step classification of multi-channel 
human EEG signals. Training and testing was performed 
using a subset of EEG data taken from the authors previous 
study. The study was approved by the institutional research 
ethics committee and participants were only entered into the 
study after informed consent. 

A. Experimental Tasks 
The participants performed two mental tasks, chosen to 

invoke changes in brainwave activity across different 
hemispheres and across different electrodes [22]. Each task 
was performed for a continuous period of 10 seconds and 
repeated for 10 independent trials during a single EEG 
recording session. The participants were asked to remain still, 
not make any overt movements or vocalise any task aimed at 
minimising muscular artefacts. The two subset tasks studied in 
this paper were performed with eyes opened as follows: 
• Mental Counting (MC): The participant was instructed to 
imagine counting consecutive numbers. 
• Figure Rotation (FR): The participant was instructed to 
visualise a complex object being rotated about one of its axis. 

B. Data Acquisition and Pre-processing 
The BiosemiTM Active-Two System (www.biosemi.com) 

was used in this study for recording EEG signals from the 
participant. Raw data was acquired using 32-channels at a 
sampling rate of 1024Hz with 24-bit digital resolution per 
channel, using the biopotential measurement system and 
active electrodes. The EEG electrode montage was adapted 
from the extended 10-20 electrode system [23] and all 32 
channels were referenced to electrically-linked electrodes 
located on the ear lobes of the participant. 

A 32-electrode set of Ag-AgCl, Pin-type Active electrodes 
were used to measure the EEG signal. To record brain activity 
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from a participants scalp, the electrodes were mounted into 
electrode holders located on the Biosemi head cap. To provide 
sufficient electrical contact between the participants scalp and 
EEG electrodes, electrode holders were filled with low 
impedance, highly conductive electrode gel before attaching 
the electrodes. The recording of the EEG signals was 
conducted in a dedicated temperature controlled research 
laboratory.  

Several pre-processing steps were performed prior to 
applying parametric transform methods to the raw EEG data. 
Firstly, the number of channels was reduced from 32- to 6-
channels. As in previous research work [24], this study 
focused on EEG channels (O2, P4, C4) for the right hemisphere 
(R) and (O1, P3, C3) for the left hemisphere (L). The remaining 
six channels were down-sampled to 256Hz, removing 
frequencies not typically found in human EEG signals, which 
can range from 0.1Hz to 100Hz, as shown in Figure 4(a). 
Each 10 second recording was reduced to 8 seconds by 
removing 1 second of data from the beginning and end of the 
EEG window. This was aimed at removing transitional effects 
introduced prior to or following each recording experiment as 
a participant initiates the mental task or concludes early.  

Finally, the remaining time-domain EEG data was 
partitioned into separate segments of 2 seconds, allowing the 
parametric method to operate on smaller portions of EEG data 
as illustrated in Figure 4(b). For each mental task this 
produces 240 samples for 2 second segments respectively. 

 

 
Figure 4: Feature vector creation – from multi-channel EEG signal to binary 
string for input into XCS. 

C. Parametric Methods for EEG Signal Representation 
Parametric methods assume a description of an EEG signal 

can be devised from a time-series model of a random process.  
As such, parametric methods model fixed blocks of EEG data 
as the output of a linear filter of order p driven by a Gaussian 
white noise sequence with zero-mean Ch6,[25]. The output for 
such a filter is a pth order autoregresssive (AR) process or 
maximum entropy method (MEM), given by Eq(7). 

 ( ) ( ) ( ) ( )
1

p

k
k n k nx n a x u

=
−= − +∑  (7) 

where, x(n) is the stationary time-series output sequence that 
models the fixed segment of EEG data, a(k) are the AR 
coefficients and u(n) is a white noise input driving sequence. 

The Burg AR parameter estimation algorithm was used in 
this study. This method operates on a fixed segment of EEG 
data recursively yield a pth order AR model of parameter 
estimates a[k], called AR coefficients. It is the AR coefficients 
that are used to describe the EEG signal opposed to the 
estimate of the spectral density, as illustrated in Figure 4(c). 

The computationally efficient Burg method estimates AF 
coefficients from the complex-valued reflection coefficient 
sequence, based on a least squares criterion, while satisfying 
the Levinson-Durbin recursion Ch8,[25].  

Selection of the AR model order (p) for real-world signals, 
represents a trade-off between increased resolution and 
decreased prediction variance. Model order determination was 
performed using a random selection of ten 2 second EEG 
segments from the two mental tasks. As the model order was 
incrementally increased from p=1 to p=50 the rate of decrease 
in prediction error variance curve and minimisation of the 
Akaike information criterion (AIC)[25]  curve suggested a 
model order of between  5 ≤ p ≤ 10. The AR model used for 
all experiments were implemented with order p=6.  

 

D. Feature Vector Encoding 
The production of feature sets was the final stage of 

transforming raw EEG signals into a form that was amenable 
to the parallel and distributed XCS learning classifier system.  

Separate training and testing sets, containing multiple 
feature vectors were created to train XCS and test 
classification accuracy, specificity and sensitivity. Single 
feature vectors (instances) were encoded from the six AR 
coefficients that represent a single EEG 2.0sec segment for 
each EEG channel (O1, P3, C3, O2, P4, C4). Each real-valued 
Burg AR coefficient was converted to a positive value, 
normalised and finally converted to an unsigned binary string. 
The final feature vector for a single EEG segment was created 
from the concatenation of the six EEG channels containing the 
six AR coefficients represented as 3-bit binary strings as 
illustrated in Figure 4(d). Thus, a single instance was 
represented by a 108-bit binary string and a class label (FR or 
MC) corresponding to the two mental tasks used in this paper. 

A total of 40 instances were randomly inserted into training 
and testing sets, which provided 50% of the data for the 
training phase and the remaining 50% for the testing phase.  
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E. XCS Parameter Settings 
The parameters for each XCS deme were set as follows: 

N=8000, α=0.1, β=0.2, δ=0.1, εo=0.01, ν=5, θGA=25, 
θmna=#actions, χ=0.9, µ=0.005, θdel=100, θsub=100, P#=0.76, 
doGAsubsumption=1, doASsubsumption=0, reward=1000/0, 
toursize=0.4, Pexplore=1, crossover_type=uniform,  initpop=0, 
fitness_reduction=1, general_mutation=0, niche_mutation=0, 
force_different_in_tournament=0, select_tolerance=0.001, 
do_mam=1,  pI =10, εI =0.0, fI =0.01. 

A total of 25 independent experiments were performed for a 
maximum of 20000 explore iterations. All remaining 
parameters were set to default values.  

Parameter values for distributed classifier migration in XCS 
used the following sets: { }2000Ht = , {50,100,200,500}Fm ∈ , 

{0.01 ,0.02 ,0.04 ,0.06 }Rm N N N N∈ , {N, F, R}Sψ ∈ , and 
{F, R}Rψ ∈ . XCS demes used synchronous communications. 

F. Cluster Computing Environment 
All experiments were performed using a computing cluster 

specified in Table I.  
TABLE I 

CLUSTER COMPUTING HARDWARE AND SOFTWARE ENVIRONMENT 
Computing Environment 
Component 

Description 

Number of Node Utilised  2,4,8 
Processor Type and core Speed Pentium Core2 Duo @ 2.93Ghz 
Front-side Bus Bandwidth 1066MHz 
DRAM capacity and bandwidth 4GB DDR2 @ 667MHz 
Network Type and Bandwidth 1000Mbps Ethernet 
Network Switching Type Gigabit Switching Fabric 
Network Protocol TCP/IP V4 
OS Kernel Type and Version RH E Linux 4.0 (2.4.20-19.8) 
MPI Type and Version LAM 7.0.6 / MPI 2 
Compiler Type and Version mpiCC and gcc (3.2.3) 
Coding Language Standard  ISO C 

V. RESULTS  
Figure 5 to Figure 7 provide a comparison between the 

different selection/replacement (ψS:ψR) policies for each 
topology, which achieved better classification performance. 

In Figure 5, the fully-connected topology maintains a 
significant improvement in classification accuracy and 
learning speed after 6K iterations, for all (ψS:ψR) policies 
compared to XCS without migration, according to a paired t-
test at a 99.5% confidence level. 

In Figure 6, the bi-directional ring topology maintains a 
significant improvement in classification accuracy and 
learning speed after 8K iterations, for all (ψS:ψR) policies 
compared to XCS without migration, according to a paired t-
test at a 99.5% confidence level. Policies {N,R}, {N,F}, 
{R,R} and {R,F} provide improved classification accuracy, 
although those based on random selection (ψS=R) have a 
slower learning speed. The {F,R} and {F,F} policies initially 
provide the highest learning speed, but lower classification 
accuracy after the 20K explore iterations. 

In Figure 7, the uni-directional ring topology maintains a 
significant improvement in classification accuracy and 
learning speed after 13K iterations, for all (ψS:ψR) policies 
compared to XCS without migration, according to a paired t-
test at a 99.5% confidence level. Policies {N,R} and {N,F} 

provide better classification accuracy. The {F,R}, {F,F}, 
{R,R} and {R,F} policies result in similar classification 
accuracies after 20K explore iterations, with those based on 
random selection (ψS=R) having less of an effect on learning 
speed. 
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Figure 5: Best classification performance for fully-connected topology using 
different selection (ψS) and replacement (ψR) policies (mR=0.04N, mF=500). 

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

500 7000 13500 20000Iterations

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

R,R R,F N,R N,F F,R F,F XCS
 

Figure 6: Best classification performance for bi-directional topology using 
different selection (ψS) and replacement (ψR) policies (mR=0.04N, mF=100) 
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Figure 7: Best classification performance for uni-directional topology using 
different selection (ψS) and replacement (ψR) policies (mR=0.04N, mF=100). 

The results indicate that learning speed is influenced by the 
selection/replacement policy and degree-of-connectivity (φ). 
Selection/replacement policies based on random selection 
typically provide slower learning speed than policies with 
numerosity or fitness biased selection for the same mR and mF 
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values. The fully-connected topology (φ=7) provides the 
highest learning speed for all selection/replacement policies. 
The bi-directional ring topology (φ=2) has a lower learning 
speed than the fully-connected topology, but is faster than the 
uni-directional ring topology (φ=1) for the same mR and mF 
values.  

We also found, declining classification accuracy can occur 
for policies using fitness biased selection if mR and mF are not 
appropriately selected for the topology as illustrated by the 
example in Figure 8.  
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Figure 8: Classification performance can decline when mR≥0.04N and 
mF≤200 for the fully-connected topology. This occurs for policies based on 
fitness biased selection. 

Table II, shows the maximum value for migration rate (mR) 
versus migration frequencies (mF) that were reached, before 
classification accuracy declined below the baseline result 
achieved by XCS. The starred (*) values indicate a maximum 
migration rate was beyond the upper bound of mR=0.06N, 
used in this study.  

TABLE II 
MIGRATION RATES AND FREQUENCIES FOR VARYING DEGREES-OF-

CONNECTIVITY FOR FITNESS BIASED SELECTION  
mF φ=7 φ=2 φ=1 

500 ≤ 0.06N * * 
200 < 0.04N ≤ 0.06N * 
100 ≤ 0.02N ≤ 0.04N * 
50 ≤ 0.01N ≤ 0.02N ≤ 0.06N 

 
In addition to improved classification accuracy and learning 

speed the inclusion of distributed classifier migration can 
significantly reduce the XCS classifier population as 
illustrated in Figure 9 to Figure 11.  

Compaction of the classifier population has two important 
benefits. Firstly, a compact rule set can be readable by 
humans, allowing off-line interpretation and understanding of 
what XCS has learnt, as compared, for example, with a trained 
neural network, that contains a weight matrix of real-valued 
numbers making off-line interpretation very difficult. 
Secondly, a smaller classifier population that maintains high 
classification performance is appealing for use in EEG 
classification applications that utilise embedded hardware for 
mobile or remote classification of multi-channel EEG signals, 
where computational power and memory capacity is limited. 

In this paper, compaction of the classifier sub-populations 
takes place during the learning phase, unlike existing off-line 

compaction algorithms [26], which achieve human-readable 
set of high-quality classifiers. Furthermore, the experimental 
results show the reduction of classifier population is 
determined solely by the selection policy (ψS). The 
replacement policy (ψR) has no influence.  

Fitness biased selection provides the fastest reduction in 
classifier population size, reaching a minimum of 0.40N after 
12K iterations for the fully-connected topology as illustrated 
in Figure 9. Classifier selection policies using numerosity bias 
or random are slower to converge to a similar classifier 
population (0.41N), which is reached after 17K iterations. A 
single, XCS classifier population reaches a minimum of 
0.93N. 
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Figure 9: Classifier population for different selection policies (ψS) of the best 
performing fully-connected topology (mR=0.04N, mF=500). 

For the bi-directional ring topology, random classifier 
selection provides the fastest reduction in classifier population 
size, reaching 0.28N after 10K iterations, as illustrated in 
Figure 10. Classifier selection policies using numerosity or 
fitness bias are slower to converge and reach 0.36N and 0.39N 
after 18K iterations respectively. 
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Figure 10: Classifier population for different selection policies (ψS) of the 
best performing bi-directional ring topology (mR=0.04N, mF=100). 

For the uni-directional ring topology, random classifier 
selection also provides the fastest reduction in classifier 
population size, reaching a minimum of 0.27N after 7K 
iterations, as illustrated in Figure 11. Classifier selection 
policies using numerosity or fitness bias are slower to 
converge and reach 0.46N and 0.36N after 19K iterations 
respectively. 
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Figure 11: Classifier population for different selection policies (ψS) of the 
best performing uni-directional ring topology (mR=0.04N, mF=100). 

VI. CONCLUSIONS AND FUTURE WORK 
This paper presented an investigation into exploiting the 

population-based nature of a learning classifier system by 
introducing a migratory pressure inspired by multi-deme 
parallel genetic algorithms. We found that distributed 
classifier migration between multiple XCS demes can be an 
effective method to improve classification accuracy, improve 
learning speed and reduce classifier population size when 
applied to the classification of multi-channel human 
electroencephalographic signals. 

Migration policies with classifier selection/replacement 
based upon numerosity, fitness and random selection can 
provide significant improvements in classification accuracy 
and learning speed, according to a paired t-test at a 99.5% 
confidence level. Although, policies based on fitness bias can 
decline in performance if the migration rate or migration 
frequency are set too high. Learning speed and the rate of 
compaction in the classifier population is influenced by the 
degree-of-connectivity explicit in each of the three topologies 
examined, namely, the fully-connected, bi-directional ring and 
uni-directional ring topologies. Also, compaction of classifier 
population is determined exclusively by the selection policy. 

Future research aims to utilise XCS classifiers evolved using 
distributed classifier migration in an ensemble machine format 
for the classification of multi-channel data derived from EEG 
signals of ten participants and multiple-tasks (≥4).  
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