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Whilst several agent-oriented modelling languages have been developed by independent research groups, it is now appropriate
to consider a consolidation of these various approaches. There are arguably three things that need consolidation and future
standardization: individual symbols, the underpinning metamodel, and the diagram types. Here we address only the third issue by
extending an earlier analysis that resulted in recommendations for various diagram types for the modelling of a multiagent system
(MAS). Here, we take each of these previously recommended diagram types and see how each is realized in a wide variety (over
20) of current agent-oriented software engineering (AOSE) methodologies. We also take the opportunity to express, as exemplars,
some of these diagram types using the recently published FAML notation.

1. Introduction

Any software development benefits from the use of amethod-
ology. Part of such a methodological approach is a means to
depict interim work products, typically documented using
a graphical notation (a.k.a. concrete syntax). Symbols are
used to represent single concepts, defined in an appropriate
modelling language (ML), itself typically represented, at least
in part, by a metamodel (e.g., [1]). These symbols can then
be grouped in heterogeneous yet semantically related ways.
A coherent model, thus depicted, is often said to be of a
specific diagram type. In other words, a diagram type refers
to a collection of classes in the metamodel, that is, it defines
which metaclasses can be appropriately instantiated for this
particular scope and focus.

For agent-oriented software engineering (AOSE), such
modelling languages (and their notations and recommended
diagram types) are in their infancy. A large number of
AOSE methodological approaches exist, all with their own
notational elements. As part of a community goal of stan-
dardizing agent-oriented modelling languages, collaborative
notations have been proposed (e.g., [2]), as well as mergers
at the conceptual level (e.g., [3, 4]), the latter of these being
complemented more recently by a concrete syntax [5].

Notations need to have a high degree of usability, which
can often be accomplished based on semiotic principles (e.g.,
[6–8]). Information is needed not only about individual
agents and interagent communications, but also on the con-
text of the environment in which they are situated. Current
practice in many methodological approaches is to utilize
standard object-oriented diagramming techniques, typically
using UML [9–11] as a notation, whenever possible, although
there are many concepts in AOSE not so representable. For
example, Garcia et al. [12] comment on the need to include
specific agenthood properties, including interaction/com-
munication, autonomy, and adaptation with possible addi-
tional properties of learning, mobility, collaboration, and
roles. A similar list, yet with a BDI (BDI = beliefs, desires,
and intentions (e.g., [13, 14])) slant, is given by Sturm and
Shehory [15, 16] as agent, belief, desire, intention, message,
norm, organization, protocol, role, society, and task. Taveter
and Wagner [17] identify the most important concepts as
including agents, events, actions, communication, and mes-
sage, underpinning these in terms of ontological theory
(e.g., endurants and perdurants). Bertolini et al. [18] focus
primarily on the Goal Diagram and the Actor Diagram in
their presentation of TAOM4E—an Eclipse-based tool to
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support the Tropos methodology and based solidly on a
metamodel.

Beydoun et al. [4] present a generic metamodel which
itself contains four connected perspectives. In this case, the
discrimination is between organization as compared to agent
level and between design time and run time. However, they
do not explicitly link these to diagram types, although there
is in fact a weak relationship.

Diagram types are often divided into two loosely defined
groups: static or structural diagrams and dynamic (a.k.a.
behavioural) diagrams (e.g., [69, 70])—a grouping that will
also be utilized here. The former depict aspects that might
be termed architectural, typified by variants of an OO class
diagram; the latter depict some forms of functionality and
time-dependent actions.

Torres da Silva et al. [71] have presented MAS-ML as
a metamodel-based modelling language for agent-oriented
software engineering. As well as introducing new agent-
focussed concepts, as discussed below, they also recommend
a suite of diagram types—three static and two dynamic:

(i) Extended UML Class Diagram,
(ii) Organization Diagram,
(iii) Role Diagram,
(iv) Extended UML Sequence Diagram,
(v) Extended UML Activity Diagram.

In contrast to the approach taken in the ML proposed by
Beydoun et al. [4] that focusses first on a viewpoint and later
on the detailed concepts, Torres da Silva et al. [71] propose not
viewpoints but specific diagram types, although they neglect
to give a clear problem statement for which these diagram
types are the proposed solution. In other words, whilst useful,
they are at the diagram level rather than the viewpoint level
as advocated in Henderson-Sellers [19]. We will therefore
comment on each of these diagrams in the appropriate place
in Sections 5 and 6.

In summary, we aim here to make a contribution towards
future standardization of agent-oriented modelling langua-
ges—focussing here on diagram suites. Section 2 outlines the
approach taken in determining an appropriate framework,
which we then use to analyze over 20 contemporary agent-
orientedmethodologies in terms of the kinds of diagrams that
they support and recommend. Section 3 discusses notational
aspects, introducing the FAML notation [5] that we use in
later examples in comparisonwith the notations used by these
individual AOSE methodologies. Following an overview of
diagram types in Section 4, in the next two sections, we
describe in detail static diagram types (Section 5) and then
dynamic diagram types (Section 6). In each of these two
sections, we categorize diagrams using the several views
derived in Section 2. Section 7 provides a final discussion
and indicates some other related work not otherwise cited
followed by a brief conclusion section (Section 8) including
some ideas for future research. From this detailed compar-
ison, we aim to draw out commonalities and variations in
the suite of diagram types utilized across all extant agent-
modelling languages as a precursor to future international
standardization.

Table 1: Set of diagram types recommended in Henderson-Sellers
[19] in the light of his analysis of AOSE methodologies. These
diagram types should then be supplemented by textual based
templates and descriptors as shown in Table 2.

Static diagram types Dynamic diagram types
Environment description Agent goal-based use case
Environmental connectivity Use case map
External organization
structure chart Conversation a.k.a. interaction

Architecture Protocol (a kind of conversation)
Agent society Workflow
Agent role Agent state
Role dependency Task specification
Agent internals Task state
Agent overview
Goal decomposition
Ontology
Plan
Capability
Service
Task decomposition
Deployment
UI design

Table 2: Textual work products (static and dynamic).

Static textual diagram types Dynamic textual diagram types
System requirements Goal-based use case template
Role definition template Contractual template
Agent descriptors Event descriptors
CRC cards Data descriptors
Plan descriptor Plan descriptors
Capability descriptors Task template
Service diagram Protocol descriptors
Task template Message descriptors
Percept descriptor Action descriptor

Process descriptor

2. Research Approach

As detailed in Henderson-Sellers [19], in order to analyze the
various options for a suite of AOSE relevant diagrams, the
first step was to identify static versus dynamic diagram types
(Tables 1 and 2) and then to group these in terms of their
relevance to a number of views or viewpoints as previously
discussed in the AOSE literature (e.g., [20, 48]). Seven such
views were identified (Table 3), and, for each, both static and
dynamic diagram types were identified (Table 4). (Details
of the several iterations needed to derive Table 4 are to
be found by Henderson-Sellers [19] and are not replicated
here.) Finally, the atomic elements identified for each of these
diagram types are listed in Table 5. However, this list is not
absolute in that different methodologies offer different inter-
pretations and consequently use different atomic elements on
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Table 3: Seven views recommended in the analysis of Henderson-Sellers [19]. Note that the original analysis was based on the AOSE literature
which essentially eschews aspects of user interface. To these seven, an eighth one, UI, needs to be added (reprinted from [19], copyright 2010,
with permission from IOS Press).

View name Focus of view
Environment External context, including system requirements
Architecture High level structure of system independent of agent technology
Agent societies Structure of agents into groups together with interactions and information exchange, typically within the group
Agent workflow Workflows
Agent knowledge Roles of individual agents, their responsibilities, and purpose

Agent services Services offered, tasks to be undertaken, goals to be attained, and detailed capabilities. Applied to a small
number of interacting agents

Deployment Interface with run-time platform

Table 4: Two dimensional matrix for views versus static/dynamic aspects for various AOSE diagram types (modified and reprinted from
[19], copyright 2010, with permission from IOS Press).

View Static diagram types Dynamic diagram types

Environment Environment description; environmental
connectivity; system requirements; use case N/A

Architecture Agent societies/organization N/A

Agent societies Agent society details; agent role Conversation (including interaction
and protocol); task

Agent workflow N/A Workflow
Agent knowledge Goal; agent type; agent role; plan; ontology Goal; agent state; capability
Agent services Agent society details; agent type; goal; ontology Goal; task; capability
Deployment Allocation to run-time platform N/A
UI User interface design States and transitions related to interface

any one named diagram—for example, Padgham et al. [2]
note that in the Prometheus methodology an Agent Society
model shows actions and percepts but would not use an
Ontology diagram, whereas users of the PASSI methodology
would use a separate Ontology diagram.

As the knowledge of AOSE increases, the diagram suite
suggested in Table 4 and the details of Table 5 will almost
certainly require further changes—this paper offers further
comments based on further investigation of the extant litera-
ture.

An initial assessment [19] resulted in some suggested
recommendations for each diagram type in Table 4. Here, we
commence with those recommendations and evaluate how
each particular diagram type is utilized in methodologies not
previously discussed. With the recent advent of a proposed
notational standard for FAML [5], we take the opportunity
of including an evaluation of how the symbols in this
modelling language (summarized in Figure 2) can be useful.
In cases where problems are identifiable, this could lead to
improvements to be proposed to the FAML notation itself.

3. Notations

Notations (a.k.a. concrete syntax) currently utilized for agent-
oriented methodologies are typically individualistic. How-
ever, there are efforts under way to systematize these. Two

proposed notations, AML [72, 73] and AUML [74, 75],
are essentially extensions of an object-oriented modelling
language—whether this is appropriate is discussed in, for
example, Torres da Silva and de Lucena [76], Choren and
Lucena [77], and Beydoun et al. [4].

In AML, UML class diagrams are used with subtypes
of Ontology Diagrams, Society Diagrams, Behavior Decom-
position Diagrams, and Mental Diagrams (with a further
subtype of Goal-Based Requirements Diagram). Composite
Structure Diagrams (from UML) can be either Entity or
Service Diagrams in AML; UML sequence diagrams are used
as Protocol Sequence Diagrams with a subtype of Service
Protocol Sequence Diagram. Finally, UML communication
diagrams are realized as Protocol Communication Diagrams,
a subtype of which is the Service Protocol Communication
Diagram.

These UML-based notations are not readily related to
the seven views identified by Henderson-Sellers [19] (see
Table 3), although they do discuss static versus dynamic
aspects of each diagram (Table 1).

Secondly, a number of methodologies use as their main
notation that of 𝑖∗ [78] (later mapped in the agent-oriented
context to UML by Mylopoulos et al. [79]). Designed for
requirements engineering, 𝑖∗’s usage in AOSE has been
primarily in the requirements and architectural design stages
of Tropos (in later stages Tropos uses AUML/UML diagrams)
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Table 5: Atomic elements and diagram types.

Diagram type Atomic elements to be displayed
(1) Static diagram types
Environment description Entities represented by classes; relationships between the modelled entities

Environmental connectivity Agents/MASs, internal and external resources, relationships across the
MAS/environment interface

External organization structure chart Organizational units in the real-life business
Architecture Technology-independent large-scale structure
Agent society Agents inside the MAS, how they associate with each other
Agent role Links between the agents and the roles they play
Role dependency Hierarchical structure of many roles
Agent internals Constituent elements in an individual agent or role
Agent overview High level view of an agent
Goal decomposition Goals, subgoals
Ontology The underpinning semantic structure
Plan The (process) steps needed to effect a task and accomplish a goal
Capability The ability or responsibility of an agent
Service Functionality offered by the agent
Task decomposition Tasks, subtasks
Deployment Allocation of MAS elements to nodes of the run-time platform

UI design TBD (the topic of proposed future research). (See brief discussion in Sections 5.7 and 6.5
on the relevant, non-AOSE UI literature)

(2) Dynamic diagram types
Agent goal-based use case Functionality offered by the MAS
Use case map Threads across many agents to realize a use case
Conversation Dynamic interaction details
Protocol Rules associated with interactions
Workflow Large-scale processes relating to problem solving (in the real world)
Agent state Attribute values determining the current state of an agent
Task specification Definitions of tasks needed to accomplish a specific goal
Task state The current state of a task, in terms of how far through the task enactment

because that agent-oriented methodology uses requirements
engineering concepts throughout the development process.
However, more recently this notation has been more widely
evaluated. For example, Lapouchnian and Lespérance [80]
map between 𝑖∗ and CASL (Cognitive Agents Specification
Language [81]) representing agents’ goals and knowledge as
mental states; Franch [82] assesses the predictability of 𝑖∗
models; Estrada et al. [83] undertake an empirical evaluation
of 𝑖∗ using industrial case studies and conclude that exten-
sions and modifications are needed for 𝑖∗ to address its lack
of modularization.

Although most methodologists devise their own nota-
tion, there has been over the last few years a groundswell of
opinion that notations (and metamodels) should be applica-
ble to more than just a single methodological approach. In
that spirit, Padgham et al. [2] suggest a notation based on
a merger between the notations that are part of O-MaSE,
Tropos, Prometheus, and PASSI. (Sources/citations for the
variousAOSEmethodologies are found in Table 7). Although
a huge step forward in the future creation of a widely
acceptable standard AOML, Henderson-Sellers et al. [5]

offered some areas for improvement, based on semiotic
considerations. Using that experience (of Padgham et al. [2]),
they then offered a notation that has a stronger semiotic
basis whilst retaining ideas from Padgham et al. [2] when
appropriate. This notation has elements that are conformant
to the FAML metamodel of Beydoun et al. [4].

In their definition of a modelling language, which con-
tains more detail than we seek at present, Beydoun et al.
[4] split their metamodel diagrams into four parts, which
correspond interestingly with the viewpoints discussed in
Henderson-Sellers [19] and outlined above. Beydoun et al. [4]
discriminate between internal versus external (to an agent)
and design versus runtime perspectives. Their System-level
diagram corresponds to the Organization view of Table 3
together with some aspects of the Knowledge view (specifi-
cally in terms of role modelling) and their Environment level
diagram to the Environment view. Their agent-definition
metamodel fragment depicts specifications for agent types,
messages, and plans, inter alia, and would therefore seem
to have a reasonable correlation with the Services view in
Table 3, whereas the agent-level (runtime) portion of the



ISRN Software Engineering 5

FAML

FAML
extensions

Trust
extensions

Mobility
extensions

Security
extensions

FAML
basics

11

1

0..1 0..1 0..1

Figure 1: Organizational structure of FAML into basic elements and extensional elements.

Table 6: Initially proposed families and their members.

Family Members Shape Colour
(optional) Source and/or influence for notation

Agents and roles1 Agent, role, group, position,
organization

Circle atop mask or
rectangle Yellow INGENIAS [20]

Tasks and plans Action specification, FAML
task, plan specification Curvilinear Green ISO/IEC [21]

Events and resources Event, resource Triangular Blue/green
Goals Hard goal, soft goal, belief Complex curvilinear Brown
Ontology Ontology, service, capability Polygonal Dark blue
Use cases Scenario, actor Double oval, stick figure None Padgham et al. [2]

Messages Conversation, message in,
message out Arrow heads B/W Padgham et al. [2]

1
Strictly agent types and role types (design time concepts) rather than their run-time equivalents of individual agents and individual roles.

metamodel goes somewhat beyond the views of Table 3, since
it describes metamodelling support for the runtime “Actions”
of individual agents, moving on from plan descriptors, for
example, to plan enactment. Run-time concepts can thus
be linked to some of the dynamic diagram types discussed
by other authors (and one of the two discriminators used
in this survey). An important distinction is made between
agent types (the equivalent to OO classes in a class diagram)
and (runtime) agents, which are individuals (equivalent to
objects in an OO environment) (see also [59, page 93]). This
distinction was made after surveying the literature wherein
agent types are often (mis)labelled agents.

The initial studies for the derivation of FAML’smetamodel
and notation were confined to what might be called “basics”
(Figure 1), in that they did not take into account security,
mobility, or trust. These are to be regarded as FAML Exten-
sions, the detailed derivation of which is yet to be undertaken.

The set of symbols proposed for the FAML Basics
(Figure 1) by Henderson-Sellers et al. [5] have since been
slightly modified as a result of questions and discussions
at the conference presentation. Figure 2 shows this final
set, which we evaluate further in this paper. The principles
behind the choice of symbol include ease of drawing, that
“families” of symbols should have the same shape and colour
(Table 6) and that colour should be an enhancer and not a

determinant; that is, the shapes should be understandable in
black and white as well as colour.These, and other principles,
accord well with the semiotic discussion and principles of
Constantine and Henderson-Sellers [6, 84] and Moody [7].

Symbols for agents and roles utilize the role “mask” and
its variations. Process-style symbols are similar to those
in ISO/IEC [21], topologically similar and green in colour.
Events and resources, whilst being a little difficult to defend
as a “family”, have, nevertheless, similar shapes and colours.
Goals, on the other hand, are linked to beliefs as part of the
mental state of agents. They use a familiar representation
using Yu’s [78] 𝑖∗ notation, as used in agent methodologies
like Tropos and Secure Tropos [85]. When used, the fill
colour is brown. Ontology, service, and capability are
grouped together because both Service and Ontology are
linked to Role in FAML. Finally, both scenarios and actors
can be linked by their common usage in use case style
diagrams. For these, we simply adopt the symbols proposed
by Padgham et al. [2].

Agent interactions utilize various variants of an arrow-
head (Figure 3). Two alternatives (for MessageIn and Mes-
sageOut) were also proposed, but discussants at the EMM-
SAD conference in June 2012 at which these ideas were first
presentedwere undecidedwhether the symbols in Figure 3 or
in Figure 4 were preferable. Here, we use those of Figure 3.
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Role Agent Organization

FAML task Plan specificationAction specification

ResourceEvent

Goal
(hard goal) Soft goal Belief

CapabilityServiceOntology

Scenario Actor

Group or “position”

⟨Name⟩
⟨Name⟩ ⟨Name⟩

⟨Name⟩⟨Name⟩

Figure 2: Symbols selected for FAML’s notation.

Message in Message out

Conversation = interaction protocol

Figure 3: Communication symbols in FAML (after [5]).

Message in Message out

Figure 4: Some suggested alternative representations of agent com-
munication.

4. Diagram Types Used in Current
AOSE Methodologies

Henderson-Sellers [19] proposed a number of static and
dynamic diagram types for the seven identified views, see
Table 4. He then discussed a small selection ofmethodologies
that supported each diagram type, the methodologies being
selected from over 20 contemporary AOSE methodologies
(Table 7)—excluding those dealing with mobility, for exam-
ple, Hachicha et al. [86], security (Low et al. [87] discuss
security diagrams, offering them as extensions to existing
diagrams—as shown here in Figure 4), for example, Moura-
tidis [85], and Bresciani et al. [66], or with noncooperative
and adaptive agents. (We, however, do include aspects of
ADELFE relevant to cooperative agents), for example, Georgé
et al. [88] and Steegmans et al. [89], which introduce addi-
tional specifically-focussed concepts, symbols, and diagram
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Table 7: Prime references for the AOSEmethodologies quoted here.

Methodology name Main references
ADELFE Picard and Gleizes [22]

Agent factory Collier et al. [23, 24]

CAMLE Shan and Zhu [25]

Cassiopeia
Collinot et al. [26]
Collinot and Dragoul [27]

Elammari and Lalonde Elammari and Lalonde [28]

Gaia
Wooldridge et al. [29]
Zambonelli et al. [30, 31]

ROADMAP extensions to Gaia
Juan et al. [32]
Sterling et al. [33]

INGENIAS
Pavón and Gómez-Sanz [34]
Pavón et al. [20]

ISLANDER Sierra et al. [35, 36]

MAS-CommonKADS
Iglesias and Garijo [37]
Iglesias et al. [38, 39]

MaSE
Wood and DeLoach [40]
DeLoach [41–43]
DeLoach and Kumar [44]

O-MaSE
Garcia-Ojeda et al. [45]
DeLoach and Garcia-Ojeda [46]

MESSAGE
Caire et al. [47, 48]
Garijo et al. [49]

MOBMAS
Tran et al. [50]
Tran and Low [51]

OperA
Dignum [52]
Mensonides et al. [53]

PASSI
Burrafato and Cossentino [54]
Cossentino [55, 56]
Cossentino and Potts [57, 58]

Prometheus
Padgham and Winikoff [59, 60]
Winikoff and Padgham [61]
Khallouf and Winikoff [62]

RAP/AOR Taveter and Wagner [17]

SODA Omicini [63]

SONIA Alonso et al. [64]

Tropos Bresciani et al. [65, 66]
Giorgini et al. [67]

types. Furthermore, Tran and Low [51] note that all are
deficient in at least one of the three areas of agent internal
design, agent interaction design, and MAS organization
modelling. The numbers for each diagram type proposed in
each of the methodologies of Table 7 are given in Table 8,
although it should be noted that some diagram types could
be classified under different headings.

In determining to which view (of Table 3) any specific
methodological diagram type should be allotted, terminology
definitions were sometimes found to be absent, ambiguous,
or apparently contradictory. There are several sets of such

terms including (i) organization and domain, (ii) interaction
diagram and protocol diagram, (iii) goal and task, and (iv)
“capability,” “service,” “responsibility,” and “functionality”.

Since some authors are using their own definitions, for
example, in categorizing views/perspectives, the scoping we
have established in Table 3 is sometimes not matched by par-
ticular methodological approaches. In particular, our antic-
ipation that the Architecture view should be independent of
technology chosen for the solution, as described, for instance,
in Giorgini et al. [67], is not met (see further discussion
in Section 5.2). In other methodologies, the different use of
terms such as “model,” “diagram,” “view,” and “viewpoint”
is often unclear (e.g., [20, 29, 31, 39, 49, 90]). As another
example, PASSI confounds work product terms with process
terms by using model/diagram names to describe tasks.

Another challenge in developing a standard diagramming
suite, useful for all AOSE methodologies, is that, while
some publishedmethodologies recommend a set of diagrams
that occurs in every publication (e.g., [17, 44, 45]), other
methodologies continue to evolve so that examination of any
one methodology-specific paper often results in difficulty in
our determining of what diagrams are recommended for that
particular methodology at the present time, although some
authors do make it clear what changes have been made (e.g.,
[62]). In other words, some methodologies contain a stable
set of work products, whilst in others the recommended
diagramming suite has not yet stabilized.

While Henderson-Sellers [19] attempted to be compre-
hensive, here we will emphasize those diagram types and dia-
gram usages recommended therein, extending the discussion
and incorporating new ideas on AOML notations [5]. When
standard UML (OO) diagrams are recommended, we will
not include a pictorial representation of what (we assume)
will be a diagram well known to readers, being part of the
International Standard 19501 [93].

We do not undertake a side-by-side methodology com-
parison, as is done, for example, in Tran and Low [94] or,
more recently, in Dam and Winikoff [95]. Rather, we try to
exemplify some of the differences in representational style for
diagrams pertinent to each of the several views identified in
Henderson-Sellers [19] and summarized below.

In the following two sections, we analyze diagram types
currently used in a number of AOSE methodologies using
the framework of Table 4. Section 5 discusses the various
static diagram types and Section 6 the dynamic counterparts.
For both sections, we adopt the seven views deduced in
Henderson-Sellers [19] plus the added UI view (Table 3)
and try to make additional suggestions, where appropriate,
regarding appropriate notations for these identified diagram
types.

The Environment View is used either to describe the
interface between the MAS and the external entities in
the problem domain and/or the externalities to the MAS
(Figure 5). Indeed, domain modelling is seen by Müller [96],
Parunak and Odell [97], and Dignum and Dignum [98] as
being crucial.

Relevant diagram types may be solely focussed on the
environment (a.k.a. domain), but there are manymethodolo-
gies in which an organizational diagram type, as discussed
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Table 8: Summary of the number of distinct usages of each diagram type per methodology.

View
Environment Architecture Agent societies Agent knowledge Agent services Deployment User

interfaceStatic Dynamic Static Static Dynamic Static Dynamic Static Dynamic Static
ADELFE 1 1 1
Agent factory 1 1 3
CAMLE 1 1 2
Cassiopeia 1

Elammari and Lalonde 1 1 1 + 2
textual

1
textual

Gaia 1 1 2 + 1
textual

2
textual

ROADMAP extensions
to Gaia 1 1

textual 1

INGENIAS 1 2 2 1 1

ISLANDER 2 1 + 1
textual 1 1 1

MAS-CommonKADS 1 1 1 2 4 + 1
textual 1 2

MaSE 1 1 2 2 1 2 1 1
O-MaSE (extras) 2 1 3
MESSAGE 4 5 1 2 1 2

MOBMAS 4 1 2 2 7 + 1
textual 1 1

OperA 4 + 5
textual 1 1 + 1

textual

PASSI 1 1 2 3 2 1 1 1 + 1
textual

Prometheus 2 2 2 5 + 2
textual 1

RAP/AOR 2 5 2 1

SODA 1 2 2
textual

SONIA 3 1
Tropos 1 5 1

in Section 5.3, serves a second purpose: that of including
not only the agent organization but also its interface with
the environment, whilst retaining the (perhaps confusing)
name of “organizational diagram.” This is especially seen
in methodological approaches such as MAS-CommonKADS
and MESSAGE. For the organizational model of the former,
it is clear that the organization model is intended to serve
also beyond the agent organization and to interface with the
environment, since the recommended notation for the orga-
nizational model (Figure 6) includes sensors and actuators
(a.k.a. effectors) in the agent symbol (actually an agent type—
see earlier discussion).

In other words, some of the diagram types discussed in
Section 5.1 could well be equally allocated to Section 5.3 (and
vice versa). (For a more detailed and more philosophical
discussion of environment abstractions, see Viroli et al. [99]).
Environment was also recently a major topic of conversation

within the OMG as part of their emerging interests in agents
[100].

For the Architecture View, we note that the term “archi-
tecture” can have many interpretations in the context of an
MAS. Here, we use it to describe large-scale features that are
independent of the technology used to undertake the imple-
mentation of theMAS. In different AOSEmethodologies, the
level of detail can vary—some diagrams include agents and
their roles whilst others do not.

Both the Environment View and the Architecture View
diagrams are restricted to static diagram types.

In the Agent Societies View, diagrams depict agent soci-
eties or organizations. (As noted earlier, the term orga-
nization can be used both as a synonym for society and
to represent the environment); for example, Ferber and
Gutknecht [102] provide more detail than that of an archi-
tecture diagram. They typically focus on agent interaction
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MAS

Agent 
interactions

Agent

Agent

Agent

Sensors/effectors

Environment

Figure 5: Agents in an MAS interact with their environment using sensors and effectors.

Name

Goals
Plans
Beliefs

Sensors
Actuators
Services

Mental state

External interface

Figure 6: Organizational model notation for MAS-CommonKADS
(based on [37], reprinted by permission of the publisher © IGI
Global).

rather than system structure (e.g., [63, 103]). Indeed, the
architectural diagrams identified in Section 5.2 for various
AOSE methodologies can also be extended to depict agent
society details.

Furthermore, “organizational patterns” (i.e., patterns
applied to agent societies) are discussed in Zambonelli et al.
[30] and Gonzalez-Palacios and Luck [104]. Typical examples
include pipeline, single hierarchy, and multiple hierarchies.

Here, we seek to depict how agents interact in terms
of such an interacting society of agents and/or roles, again
dividing the discussion into static and dynamic aspects.

The Agent Workflow View relates solely to dynamic
diagram types since a workflow reflects agent behaviour.This
can involves concepts such as process, actions, and interagent
messaging.

For the Agent Knowledge View we need to represent
the internal structure and behaviour of individual agents.
Concepts such as goals, beliefs, commitments, plans, capa-
bilities, perceptions, protocols, events, sensors, actuators,
and services are all considered by one or more authors. In
Section 5.4 we focus particularly on goals, ontologies, and
plans.

TheAgent Services View can involve a number of different
diagramming techniques (see Table 4) including goals, tasks,
capabilities, and a domain ontology. Services can be described
as encapsulated blocks of offered functionality [30, 32, 105].
In AOSE, a service may be described in terms of capabilities,
where a capability is defined as “the ability of an actor of
defining, choosing and executing a plan for the fulfillment
of a goal, given certain world conditions and in presence
of a specific event” [65], a definition similar to that used in
Prometheus.

For the Deployment View, the allocation of software
components to hardware nodes has traditionally been the
focus; for AOSE a greater emphasis is placed on agent
conversations.

Finally, the UI View is ill represented in current AOSE
methodologies. Our discussion therefore makes suggestions
from outside the agent-oriented methodology community.

In the following two sections, citations to specific metho-
dologies will be by methodology name rather than author
name(s)—these are found in Table 7—unless a specific paper
needs a direct citation. We introduce methodology-specific
examples of diagram types not discussed in Henderson-
Sellers [19] and assess their match to the previous recom-
mendations. We also describe a selection of these diagrams
with the new FAML notation [5], merely as an illustration of
the visualization resulting from the combination of a specific
diagram type and this notation. We introduce an oversim-
plified running example in the Travel Agent domain. None
of these diagrams are intended to be a complete depiction
but rather should be regarded as merely illustrations of the
diagramming style to which they refer.

5. Static Diagram Types

5.1. Environment View. For an MAS, the environment is
relevant to two separate phases of the development lifecycle.
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Figure 7: Organization context chart in MOBMAS.

Initially, requirements will relate to real-life problems, and
the MAS will itself interact with this environment. This
interaction will be evident in both the analysis and design
phases. Secondly, environment issues are relevant in the
deployment phase, when allocation of software code to a
specific run-time platform node is necessitated. This second
interface occasion is described in Section 5.6.

The recommended diagram type [19] for the environment
description diagram, which models the external environ-
ment, is a UML-style class diagram with entities repre-
senting domain entities. For the environmental connectivity
diagram, which shows the interfacial linkages between the
environment and the top level agents in theMAS, particularly
in terms of how agents are likely to access external resources
such as databases, actors, and other MASs, a UML-style class
diagram can also be useful. A third diagram type (more
optional) is an External organization structure chart: a UML-
style class diagramwith entities = organizational unit, decom-
position using the membership relation and acquaintance
relationships between collaborating organizational units (see,
e.g., Figure 7, which shows the use of this style of diagram in
MOBMAS).

Environment description diagrams are also used in
SODA and PASSI. INGENIAS offers an Environment View-
point diagram (Figure 8) depicting the external entities with
which the MAS-to-be-constructed will interact.

A second style of diagram is often used to describe
the functionality aspects relevant to the interaction between
external stakeholders and the software system. This often
relates to an early stage in the lifecycle, when requirements
need to be identified and documented. Here, it is fairly
common practice to use some sort of use case diagram,
identical or very similar to that proposed in UML [10].
Henderson-Sellers [19] recommends that, to appropriately
support the agent aspects more accurately, a goal-based use
diagram that extends the “User-Environment-Responsibility
(UER) case” diagram of Iglesias and Garijo [106] is useful for
showing agent actors as well as human actors. An example
of this is shown in Figure 9. To accompany this, a set of
completed use case templates is necessary, such as that
provided in Prometheus or by Taveter and Wagner [17],
as originally proposed by Cockburn [107] (see example in
Table 9). Here, the internal and external actors correspond
directly to internal and external agents in AOR modelling.

Table 9: Example of a goal-based use case, here for the business
process type “Process the request for a quote” (after [17], reprinted
by permission of the publisher © IGI Global).

Use case 1 Process the request for a quote
Goal of the
primary actor To receive from the seller the quote

Goal of the
focus actor To provide the buyer with the quote

Scope and
level Seller, primary task

Success end
condition The buyer has received from the seller the quote

Primary actor Buyer
Secondary
actors
Triggering
event A request for a quote by the buyer

Description Step Action

1
Check and register the availability of the
product items included in the request for
a quote

2 Send the quote to the buyer.

As is the case with the use of use cases in object-oriented
software development, the use case diagram only offers a
high level viewpoint on requirements. Of more value [107]
is the textual description of each use case. In the Prometheus
approach, Padgham andWinikoff [59] note that, since agents
have abilities beyond those of objects, it is necessary to
provide a textual template significantly beyond those found
in OO requirements engineering. Specifically, their textual
template (called a “functionality descriptor”) describes the
system functionality in terms of name, description, percepts,
actions, data used/produced, and a brief discussion of inter-
actions with other functionality. While these functionality
descriptors are said to be intermediate work products, a final
work product that is cross-checked (Figure 10) with them is
the use case scenarios (or “scenarios” for short). These are
again textual—a typical scenario descriptor in Prometheus
is given in Table 10. Each step described in the scenario is a
small piece of functionality.

Other methodologies use UML use cases “as-is,” for
example, MaSE, ROADMAP, ADELFE, MAS-Common-
KADS and PASSI where it is called a “domain descriptor
diagram.”

5.2. Architecture View. Henderson-Sellers [19] recommends
a UML-style package diagram as the Organization-based
architecture diagram (Figure 11) similar to that used in
MESSAGE [49] (Figure 12), although this diagram often has
a different name, using different basic shapes, for example,
organization structure model in Gaia [29] (Figure 13), or as a
jurisdictional diagram (as in Figure 14).

In INGENIAS, the generic elements of Figure 15 are used
to depict an exemplar organizational viewpoint model in
Figure 16 (notational key is given in Figure 17).
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5.3. Agent Societies View. A large number of AOSE method-
ologies have a strong focus on agent societies, especially
SODA, ISLANDER, andOperA. Social structureswere added
to the earlier version of Gaia by Zambonelli et al. [30].

The style of an agent society diagram recommended in
Henderson-Sellers [19] is that of a UML-style class diagram
showing all agents and all interrelationships. Other infor-
mation that may be chosen for display includes percepts,
actions, capabilities, plans, data, and messages represented
by entities rather than relationships. An example is seen

in Figure 18, which uses Prometheus notation and depicts
individual messages in the style of Padgham and Winikoff
[60], for example, their Figure 5 (p. 123). An alternative
depiction is given in Figure 19, which gathers messages into
interaction protocols, following the style of Padgham and
Winikoff [60], for example, their figure in page 93; part of
which is also represented with FAML’s notation in Figure 20.

Other diagram styles can be seen in, for instance, MAS-
CommonKADS (Figure 21), which shows the mental state
and internal attributes of an agent (e.g., goals, beliefs, and
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Figure 11: Recommended diagram style for an Architecture Diagram.

plans) (upper box) together with the external attributes of
the agent (e.g., services, sensors, and effectors) (lower box)
(Figure 6); MASE (Figure 22), in which the connections
between classes denote conversations that are held between
agent classes, and the second label in each agent class

represents the role the agent plays in a conversation; MOB-
MAS (Figure 23), which shows acquaintances between agent
classes and connections between these and any wrapped
resources, a diagram that may also be enhanced to show
protocols and associated ontologies; AOR (Figure 24), which
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Table 10: Example of a Prometheus scenario descriptor (after [60], reprinted by permission of the publisher © IGI Global).

Name: new meeting scheduled
Description: the user adds a new meeting
Trigger: new meeting requested by user
Steps:
No. Type Name Functionality Data
1 Percept Request meeting User interaction
2 Goal Propose time meeting user preferences Meeting scheduler MeetDB(R), Prefs(R)
3 Goal Negotiate with other users Negotiator MeetDB(R), Prefs(R)
4 Goal Update user’s diary Meeting manager MeetDB(W)
5 Goal Inform others of meeting Contact notify
6 Other Wait for day of meeting
7 Goal Remind user of meeting User notify MeetDB(R), Prefs(R)
8 Goal Remind others of meeting Contact notify ContactInfo(R)
Variations:
(i) Steps 2-3 may be repeated in order to obtain agreement.
(ii) If agreement on a meeting time is not reached then steps 4–8 are replaced with notifying the user that the meeting could not be scheduled.
(iii) The meeting can be rescheduled or cancelled during step 6 (waiting).
Key:
(i) MeetDB(R): meetings database read.
(ii) Prefs(R): user preferences read.
(iii) MeetDB(W): meetings database written.
(iv) ContactInfo(R): contact information read.

depicts agent types, their internal agents, and the rela-
tionships between them; PASSI (Figure 25); and ADELFE
(Figure 26), which depicts the connectivity between coop-
erative agents, for which ADELFE was specifically designed
(Figure 26).

Another approach to agent societies is to utilize a version
of the UML collaboration diagram, although the omission of
any sequencing of communicationsmakes this use somewhat
dubious. Typically, they depict static aspects of the agent
society rather than being dynamic interaction diagrams (as
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Figure 14: A jurisdictional model, showing management agents, actor agents, and subagents, part of the Agent Relationship Model (after
[28]).

any true variant on a UML collaboration would be classified).
Hence, they are summarized in this subsection.

The event flow diagram of MAS-CommonKADS [39],
for example, represents events (the exchange of messages)
(Figure 27) but does not depict any message sequencing.

A somewhat similar diagram is to be found in OperA
(Figure 28).

Visually different are the interaction-frame diagrams of
RAP/AOR.This is used at both the class level (Figure 29) and
the agent-instance level (Figure 30). In these diagrams, the
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solid arrows indicate a noncommunicative action event type,
and the chain dashed arrows are message types.

Whilst not a methodology, MAS-ML [71] suggests, in
this context, the use of two diagrams that have a UML
style class diagram to them: (i) the organization diagram

and (ii) an extended UML Class Diagram that shows the
“structural aspects of classes, agents, organizations, envi-
ronments, and the relationships between these entities,” by
introducing additional concepts (i.e., additional to those
of UML Class Diagrams), including Environment Class,
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OrganizationClass, andAgent Class.Thenotation used (both
for these two diagrams and their role diagram—see later
discussion) is shown in Figure 31.

5.3.1. Roles. Although supported to some degree in object-
oriented modelling languages, the much greater importance
of roles in AOSE modelling [109–113] requires separate

consideration, despite the common adoption of a UML-style
class diagram to depict roles (Figure 32), for example, as used
in Agent Factory, MOBMAS, PASSI, and O-MaSE. It should
be noted that, in Figure 32, each role class is characterized
by its associated so-called protocol identifiers, while each
agent class is characterized by a list of protocol identifiers
(any not specified in the associated role) and activities.
Consequently, it is argued that a two-compartment symbol is
needed for roles, and a three-compartment symbol for agents.
In ROADMAP also, roles are explicitly linked to agents, as
shown in Figure 33 [114]. Such role-focussed diagrams should
be supplemented by a Role definition template (see, e.g.,
Table 11). The original ROADMAP template [115] was later
simplified by Sterling et al. [33] as shown in Table 12.

A second role-focussed diagram is the role dependency
diagram: a simple role decomposition diagram, using just
names and unadorned lines. Figure 34 is one such example.
This may be supplemented by a textual description of all the
roles and their dependencies (Table 13).

Whilst not amethodology,MAS-ML [71] uses aUML-like
Role Diagram using the notation given in Figure 31 to show
“structural aspects of agents roles and object roles defined
in the organisations” and their interrelationships. Concepts
additional to those of UML Class Diagrams include Object
Role Class to represent resources utilized by an Agent Role
Class.



18 ISRN Software Engineering

QuoteLineItem

RFQ/Quote

RequestedResponseDate

QuoteLineItem
StatusCode

isBid

isSubstituteProductAcceptable
requestedQuantity
globalProductUnitOfMeasureCode
globalProductIdentifier
unitPrice

PurchaseOrder/Confirmation

ProductLineItem

requestedQuantity
requestedUnitPrice
globalProductUnitOfMeasureCode
globalProductIdentifier
shippedQuantity
unitPrice

ProductLineItem
StatusCode

IsAccept

Substitute
ProductReference

globalProductSubstitution-
ReasonCode
globalProductIdentifier

Substitute
ProductReference

GlobalProductSubstitution-
ReasonCode
globalProductIdentifier

1

1

Invoice

billToAccount
globalPaymentTermsCode
totalInvoiceAmount

InvoiceLineItem

totalLineItemAmount

11

1

1

1

1

isNoBid

isPending

IsReject

IsPending

Buyer

Seller

ProductItem
OfSeller

1

Software
agent

Clerk

Seller

Product
item

Software
agent

Clerk

<<isBenevolentTo>>

0..∗

0..∗

0..∗

0..∗ 0..∗

0..∗

0..∗

Figure 24: AOR agent diagram for the domain of B2B e-commerce (after [17], reprinted by permission of the publisher © IGI Global).
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Table 11: Role definition as used in OperA (after [52]).

Role: PC member
Objectives:
Paper reviewed(Paper, Report)
Subobjectives:
{read(P), report written(P, Rep), review received(org, P, Rep)
Rights:
access-confman-programme(me)
Norms:
OBLIGED understand(English)
IF DONE assigned(P,me, Deadline)

THEN OBLIGED paper reviewed(P, Rep) BEFORE Deadline
IF DONE paper assigned(P,me, ) AND is a direct
colleague(author(P))

THEN OBLIGED review refused(P) BEFORE TOMORROW
Type:
External

Figures 35 and 36 show how the role dependency diagram
of Figure 34 and the Agent-role dependency diagram of

Figure 33 can be depicted using the FAML notation of
Figure 4.

5.4. Agent Knowledge View. The static knowledge of individ-
ual agents is encapsulated in symbols for each agent type,
typically by extending a basic icon, such as theUML rectangle
or the MOSES tablet (as used, for instance, in Figure 21).
Suggestions here include goals, beliefs, commitments, and
plans added to the basic class symbol (Figure 37); however,
several authors (e.g., [76]) argue that it is not yet clear
whether the attributes and operations are valid features of
an agent type. Since these are derived (via the metamodel)
from the UML Classifier, their rejection would negate the
generalization relationship between Agent and Classifier (as
shown in Figure 36). (This is another illustration of the
confounding in the literature between agent and agent type.
Often what is referred to as an agent is an agent type, that
is, the word is used to describe an entity that conforms to
some subtype of Classifier in the metamodel. Although in
our following analysis we will continue to use “agent” when
quoting from the AOSE literature, it should be remembered
that usually this should be replaced by “agent type”).

Thus this suggests the need for an agent modelling
language not based on UML (see revisions, proposed here,
in Figure 38). Other proposals are to explicitly depict
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Table 12: Simplified version of the role template as used in more
recent versions of ROADMAP—here for an Intruder Handler agent
(reprinted from [33], copyright 2006, with permission from IOS
Press).

Role name
Intruder handler
Description
Identifies and responds to the intruder detected
Responsibilities
Detect the presence of a person in the environment
Check the house schedule for strangers scheduled to be there
Take an image of the person
Compare the image against the database of known people
Contact the police and send the image to them
Check the house schedule for planned visitors
Send a message to stay away to each visitor expected that day
Inform the owner that the police are on their way and the visitors
have been warned not to enter the house
Constraints
The owner and each person pointed out by him/her needs to
provide in advance personal information (face) to be recognised
A subject to be detected needs to be seen within the camera’s
image area
The user must maintain the schedule
Visitors must be within the coverage area of mobile
communication with their mobile access terminals switched on

Table 13: Social structure definition in OperA (after [52]).

Social structure definition
Roles:
A list of role definitions
Role dependencies:
A list of triples of two role names and the name of the
relationship between them
Groups:
A list of sets of roles

capabilities, perceptions, protocols, and organizations
(Figure 39); belief conceptualization and events (Figure 40);
or sensors, actuators, and services (Figure 6); these often
being supplemented by agent descriptors (see, e.g., Boxes 1
and 2). Textual templates for agent roles are recommended
in Gaia [29]. Such a schema (one per role) gives information
about the protocols, permissions, and responsibilities
(liveness and safety) as well as an overall description for each
agent role. It is also used by Suganthy and Chithralekha [118]
and in SODA.

Knowledge is often expressed in terms of the “mental
state” (Figure 41) of an agent, as described, for instance, in
the Agent viewpoint of INGENIAS [20]—see example in
Figure 42. This idea of “mental state” is also found in AOR
(Figure 43) and in Silva et al. [119] who link the set of beliefs,
goals, plans, and actions to the mental state of the agent.

Agent internals are represented in Prometheus in terms
of an Agent Overview diagram (one for each agent). For
the Travel Agent agent in Figure 19, Figure 44 shows its
capabilities, percepts, and messages utilized. It is similar in
style to the System Overview diagram of Figure 19 but at
a finer granularity (Figure 45). Then each capability in the
Agent Overview diagram can be expanded in a Capability
Overview diagram (Figures 46 and 47).

In SONIA, the knowledge model is represented dif-
ferently, by blocks of knowledge that group concepts and
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Name: Travel agent
Description: Arranges holiday for holidaymaker client
Cardinality: One per holidaymaker client
Lifetime: Duration of interaction with Holidaymaker
Initialization: Reads Customer database, receives messages from Holidaymaker
Demise: Closes open database connections
Functionalities included: Obtaining wholesale product, supplying packaged holiday to holidaymaker
Uses data: Customer database, Holiday information database
Produces data: Recommendation to holidaymaker client
Goals: Respond to queries; obtain best deal for wholesaler; package wholesale products for client
Percepts responded to: Logon by holidaymaker
Actions: Advice of cost; Send receipt
Protocols and interactions: Holiday booking protocol, Wholesale holiday purchase

Box 1: Example agent descriptor in Prometheus format.

Agent: Travel agent
Role: Arranger of holidays for holidaymaker clients
Location: Inside holiday booking agent society
Description: This agent manages client requests and interfaces with wholesaler of holidays
Objective: Get best deal for holidaymaker client subject to client preferences
Exceptions: Missing preferences or fully booked holidays
Input parameter: Client preferences
Output parameter: Recommendations to client including costing
Services: Recommendation to holidaymaker client; holiday booking with wholesaler
Expertise: Respond to queries; obtain best deal for wholesaler; package wholesale products for client
Communication: Holidaymaker agent; Wholesaler agent
Coordination: Wholesaler agent

Box 2: Example of an agent definition template as proposed in MAS-CommonKADS—a format suggested by Peyravi and Taghyareh [68].

associations from the structural model. These knowledge
blocks may be used internally or shared between agents.

5.4.1. Goals. Another aspect of agent knowledge is that of
goals: agent goals as well as system goals. A goals is said

to represent a state that is to be achieved, for example,
Braubach et al. [120]—although other kinds of goals are
possible, and goals may conflict with each other, for example,
Van Riemsdijk et al. [121]. Goals are achieved by means of
actions (a.k.a. tasks) (Figures 48 and 49), the combination of
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ObjectRoleClass
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Figure 31: Notation used in MAS-ML.
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Figure 32: Example of Agent Factory’s agent model.

Company 
board member

Accountant Company
secretary

Managing 
director

Figure 33: Agent-role coupling diagram of ROADMAP.

actions and goals forming the plan body. Tasks are discussed
later in Section 6.4.

Goal-focussed diagrams are found in Prometheus
(Figure 50), in MaSE, and in MESSAGE’s “Level 0 Goal/Task
Implication Diagram” (Figure 51). Prometheus also suggests
a textual goal descriptor—with three lines only: name,
description, and subgoals. (We note that in Figure 50,

following Prometheus’ guidelines, the names of the goals are
almost task-like (i.e., verbs). Here, from Figure 48, we argue
for state-like names for goals, as shown in Figure 52).

Relationships between goals are captured in MOBMAS’s
agent-goal diagram (Figure 53) and in the two goal-focussed
diagrams of Tropos (Figures 54 and 55). The actor dia-
gram (Figure 54) links actors to goals, whereas the goal
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Programme organized

Paper reviewed
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Session organized

Local organized

Figure 34: Role dependency diagram as used in OperA for the “Conference Society” (after [52]).

diagram (Figure 55) expands the internal details of the goal
itself—here using the 𝑖∗ notation of Yu [78] which permits
discrimination between hard goals and soft goals. (It can be
determined whether or not a hard goal has been satisfied;
in contrast soft goals do not have well-defined achievement
criteria and can only be “satisficed” (e.g., [65, page 207]).
Hard goals are associated with capturing functional require-
ments and soft goals with nonfunctional requirements, e.g.,
Braubach et al. [120]). The goals, labelled Gx in Figure 53, are
also captured in the third partition of the Agent class diagram
(Figure 40).

A diagram type that appears to have some ambiguity
in terms of its scoping (system versus agent) is found in
MaSE, called the “goal hierarchy diagram” (Figure 56) (called
Goal Model in OMaSE), and in MESSAGE, where it is called
an agent goal decomposition diagram linking goals, tasks,
actions, and facts. In both methodologies, it is a relatively
simple tree structurewhere goals are represented as boxes and
goal-subgoal relationships as directed arrows from parent
to children (MASE) or children to parent (MESSAGE).
(Clearly, such directional contradictions form an ideal target
for standardization). It is interesting to observe that this
would appear to be topologically isomorphic with Graham’s
[122] task decomposition diagram (using hierarchical task
analysis). Indeed, based on our earlier discussion, Figure 56
is, more realistically, either a task (not a goal) diagram or else
is a goal diagram with poorly named goals.

Goal hierarchy diagrams are also used in Hermes [123]
but associated with agent interactions (Figure 57), and a goal-
oriented interaction modelling technique is also introduced

into Prometheus by Cheong andWinikoff [124] to replace the
previous interaction protocol modelling techniques used in
Prometheus.

A more elaborated version of this approach, based on
the well-established AND/OR approach to goal modelling,
is shown in Figure 58, as presented in OMaSE. The numbers
indicate a precedence ordering of the goals, again suggesting
tasks rather than goals, although goals are, of course, closely
linked to tasks (see Section 6.4), as shown in the metamodel
of Figure 48.

Notwithstanding, this pair of concepts (“task” and “goal”)
are frequently confused. In an etymological analysis of these
terms, Henderson-Sellers et al. [101] recommend goals as
future-desired states that, when committed to, require the
enactment of a task (sometimes called “action”) in order to
achieve such a desired state (Figure 48). Thus the enactment
of a task requires a duration. At the point of time at which this
ends, the goal has been achieved (Figure 59).This means that
goal names should be state names; that is, nouns, whereas task
names should bemore verb-like. Splitting up the achievement
of a final goal into a set of intermediate or subgoals, as shown
here, permits a differentiation (goal/subgoal) that could be
seen as commensurate with the action/task differentiation
of Figure 60; that is, a goal is achieved by an action, which
can be broken down into more granular sections each of
which depicts a subgoal being achieved by a task. However,
in some methodologies these two terms (goal and task) are
equated; that is, used as synonyms. This can often lead to
names that are cognitive misdirectional, for example, in such
methodologies, the names of goals are typically imperative
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Figure 35: Role dependency diagram depicted using the FAML notation.
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Figure 36: Agent-role coupling diagram depicted using the FAML notation.
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Figure 37: One proposal for extended UML notation for an individual agent type plus the underpinning metamodel fragment (after [91]).
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Figure 38: Revised proposal for an agent representation (model-scope symbol plus supporting metamodel fragment).
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Protocols
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“Agent”

Figure 39: Agent symbol illustrating the kind of information proposed by Huget [92] to show agent attributes.

verb-like which, at first glance, suggests tasks rather than
goals. This, therefore, needs to be borne in mind when
reading or writing such diagrams.

5.4.2. Ontologies and Plans. Also in this group of recommen-
dations (for static diagram types relevant to agent knowledge)
are the ontology diagram and the plan diagram.
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Figure 40: Agent class definition diagram of MOBMAS.
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Figure 41: Example of an agent’s mental state (which links mental state to facts, beliefs, and events and involves goals, tasks, and roles) as
depicted by INGENIAS (after [20], reprinted by permission of the publisher © IGI Global).

Agent Role

plays

Goal

pursues

task
P

M

Belief

Mental
state

responsible

modifies
Fact

has

Concrete 
agent

Event

PlaysPursues

Task
P

M

BeliefBelief

Responsible

Modifies
FactFact

Has

Has

Figure 42: Typical elements in the agent viewpoint and the agent’s mental state as depicted by INGENIAS (after [20], reprinted by permission
of the publisher © IGI Global).

Agent
type

Message type

Non-communicative
action event type

Non-action
event type

Commitment/claim

type

Sends

Does
Internal

object type

External
object type Receives

Perceives

Perceives

Action event type

Figure 43: Core mental state structure modelling elements of external AOR diagrams (after [17], reprinted by permission of the
publisher © IGI Global).
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Figure 44: Example of Prometheus Agent Overview diagram showing some of the details of the Travel Agent agent and including percepts.
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Capabilities + goals

Sub-capabilities + plans

Sub-capabilities + plans
etc.

Figure 45: Increasing detail from system overview diagram to agent overview diagram to capability overview diagrams (as envisaged in the
Prometheus methodology).

Ontologies are explicit in only a handful of methodologi-
cal approaches: PASSI andMAS-CommonKADS,MOBMAS
and AML [105], and, to a lesser extent, in OperA and
ISLANDER. Ontologies, particularly domain ontologies as
need here, represent knowledge that is effectively static. It is
thus reasonable to depict that knowledge as a fairly standard
UML class diagram (Figure 61).

Plans depict the internal details of how a task is to be
performed and a goal attained. Plans are typically internal to
a single agent and are linked to the tasks (or actions) needed
to attain goals (Figure 48) or to the capabilities (Figures 44
and 46). Since the execution of plans may or may not be

successful, alternative paths must be included (Figure 62).
These alternatives may utilize AND/OR gates, which can
be used either in context of an activity diagram or a state
transition diagram—depending upon whether the developer
wishes to have as his/her prime focus the process or the
product aspect. In Tropos, the internal structure of a plan can
be summarized as a single node on a Capability diagram (e.g.,
Figure 46). Plan diagrams may be based on the UML activity
diagram as in Tropos or UML STD diagram as in O-MaSE.
Mylopoulos et al. [79] show how the Tropos plan diagram can
also be depicted usingUMLnotations. Plan diagrams are also
used in MOBMAS.
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Plan name: Identify location and dates
Description: Ascertain possible holiday places and date
Trigger: Request from client
Context: Holiday not already booked
Data used and produced: Holiday brochures/database
Goal: Recommend time and place(s)
Failure: All likely holidays booked
Failure recovery: Change dates and/or place
Procedure: (1) Search data for location commensurate with client’s desire

(2) Check dates holiday is possible
(3) Create list of possible place/date combinations

Box 3: Prometheus-style plan descriptor for the plan to identify holiday location and dates of Figure 46.

Hotel
info DB

Possible location

Possible dates

Request booking

Check availability

Identify location
and dates

Capability

Database

Message

Figure 46: Example of Prometheus Capability Overview diagram for Recommend Holiday Details capability of Figure 44. This also shows a
subcapability of identify location and dates, which, in turn, could be depicted graphically by another Capability Overview diagram.

Check
availability

Holiday
information

database

Request booking Identify
location and

dates

Possible locations

Possible dates

Figure 47: Translation of part of Figure 46 into FAML notation.

Plan diagrams, whether of the activity diagram style or
the STD style, can be augmented by text in the form of a plan
descriptor (Box 3), as used, for example, inMOBMAS, which
defines the plan in terms of initial state, goals, strategies,
actions, and events, and Prometheus, which defines a plan in

terms of triggering events, messages, actions, and plan steps
(a completed example of which is shown in Box 3).

Thangarajah et al. [125] note that there may be several
acceptable plans for achieving a single goal such that there is
an overlap. This led these authors to formulate mathematical
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Figure 48: Metamodel fragment relevant to goals, tasks, and plans (after [101]).
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Figure 49: Generic model of plans, tasks, and goals conformant to a fragment of the metamodel of Figure 48.
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Figure 50: Example Prometheus Goal Overview Diagram.
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Mode of travel 
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Figure 51: Level 0 Goal/Task Implication Diagram of MESSAGE.
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Travel agent 
options considered

Figure 52: Example of Prometheus Goal Overview Diagram with state-like goal names.

Agent goal
Goal-subgoal relationship

G1
Holiday booked

G2

Holiday selected

G3
Holiday paid for

G4
Holiday destination chosen

G5
Mode of travel selected

Holiday maker

Figure 53: MOBMAS’s agent-goal diagram.

expressions for this overlap and also the coverage. Overlap is
readily represented using a Venn diagram; a typical goal-plan
hierarchy is shown in Figure 63.

5.5. Agent Services View. UML-style class diagram is sup-
plemented by UML-style activity diagrams to show details
for each capability to expand a portion of the Capability
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Figure 54: (a) Example actor diagram showing goals attached to actors. (b) Example of actor diagram showing an explicit depender
(Holidaymaker), dependee (Travel Agent), and dependum (Select good travel agent).
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Figure 55: Example of a Tropos goal diagram.
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Figure 56: Goal hierarchy diagram (MaSE).
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Figure 57: Interaction goal hierarchy of Hermes/Prometheus.
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Figure 58: Refined GMoDS goal model using AND/OR decomposition technique (O-MaSE).

Overview diagram of Figure 46 into a more detailed Capa-
bility diagram—one diagram for each subcapability. An
example, compatible with the Check availability capability
of Figure 64, is given in Figure 65 (Prometheus notation).
A textual template to accompany the diagram might also
be useful to present in textual format details of goals,
processes protocols, messages, percepts, actions, capabilities,
plans, and data utilized in different ways. Figure 66 shows
the alternative use of an Activity Diagram in this context,
Capability Diagrams being used in Tropos (Figure 66 for a
specific agent) wherein each node may be expanded into a
Plan Diagram (see Section 5.4.2).

Services can alternatively be represented directly in either
graphical or tabular form, the latter following, for example,
the Gaia Service Model, which lists Services and their Inputs,
Outputs, Preconditions and Postconditions, the former as

depicted in the Level 1 analysis phase of MESSAGE [48, page
186], wherein a service is realized by a partially ordered set of
tasks (see later discussion of Figure 81). Direct representation
of service protocols is found also in AML (see later discussion
of Figures 76 and 77) and in the ServiceModel of ISLANDER
[35].

5.6. Deployment View. Henderson-Sellers [19] recommends
using a fairly standard UML (or AUML) deployment dia-
gram. MaSE uses a similar diagram (Figure 67) but notes
that it differs from the standard use of the UML Deployment
Diagram since

(i) the three-dimensional boxes represent agents in
MASE, whereas they represent (hardware) nodes in
UML,
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(b)
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t3 − t2t2 − t1t1 − t0

Time (t)
t = t0 t = t1 t = t2 t = t3

Figure 59: Milestones, subgoals, and goals: (a) a single action attains the goal or (b) several actions are needed, each achieving a subgoal
(after [101]).
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Figure 60: The action perspective of the metamodel of Azaiez et al. [108], (reprinted from [108], copyright 2007, with permission from IOS
Press).

(ii) the connecting lines represent conversations between
agents in MASE whereas in UML they represent
physical connections between nodes,

(iii) MASE uses dashed-line box around agents to indicate
that these agents are housed on the same physical
platform.

Other methodologies adopting this UML style of deploy-
ment diagram include PASSI and RAP/AOR. Most other
approaches neglect it. Whilst not employing such a diagram,
Tropos does discuss implementation issues as related to its
use of class diagrams (Figure 68). SODA only hints at imple-
mentation in terms of their environmentmodel, preferring to
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Figure 61: Ontology diagram as used in MOBMAS.
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Figure 62: Plan diagram in which ac is the activation condition and 𝛼 is the activation action. Stop states are labeled as success states “✓”
(success action “𝜎”), fail states “×” (fail action “𝜑”), unknown states “?” (unknown action “𝜐”), or abort states “A” (abort condition “ab”; abort
action “𝜔”) (after [116], reprinted by permission of the publisher © IGI Global).
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Figure 63: An example goal-plan hierarchy diagram using the notation proposed by Shapiro et al. [117].
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Figure 64: Duplicate of Prometheus Capability Overview diagram for Recommend Holiday Details capability of Figure 44 in comparison
with Figure 65.
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whole saler

Decide supplier
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by price

Decide supplier by
speed of response

Holiday
information

DB

Plan
Message

Database

Figure 65: Example of Prometheus Capability diagram showing the plans for the Check availability capability of the Travel Agent agent shown
in Figure 64.

defer such details to specific implementation methodologies.
PASSI and O-MaSE seem to be the only methodologies that
discuss implementation issues directly (i.e., at the code level).

5.7. UI View. Henderson-Sellers [19] noted the lack, in pub-
lished AOSE methodologies, of any diagrams relating to the
user interface. He therefore recommended adding (at least) a
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Figure 66: Example of a Tropos-style capability diagram for the capability of Check availability of Figure 64.

Travel
agent

Holiday
maker Wholesaler 

Figure 67: Example deployment diagram using MaSE notation.

UI design diagram, which could likely be represented using
a semantic net (Figure 69). Henderson-Sellers [19] offers this
as a placeholder; that is, a generic “UI design” diagram type
pending future empirical work and utilization of the visual
design theories of, for example,Ware [127] and the insights of
Graham [122] and Constantine and Lockwood [128] (see also
http://www.foruse.com/). This latter book also recommends
user role maps and structure role models (where “role” refers
to human roles in the software development process). These
authors also provide heuristics on menu design, the use of
iconic interfaces, and other more innovative interface design
approaches. The topic was also explored in a non-AOSE
context by Gonzalez-Perez [129].

Other suggestions in the literature, although sparse,
include a placeholder for a UI prototype in ADELFE’s (http://
www.irit.fr/ADELFE/) Activities 8 and 9 (see also Jorquera
et al. [130] who discuss UI prototyping as a work unit but do
not offer a notation for the resultant work product).

6. Dynamic Diagram Types

6.1. Agent Societies View. Agent behaviour is usually depicted
in terms of agent-agent interactions, including message
passing. A typical agent-oriented interaction diagram also
shows the order of these messages needed to effect a single
service. Consequently, a standard AUML [75] or AML [73]
interaction diagram can be used as the basic interaction
diagram (a.k.a. conversation diagram) (Figure 70). Further
addition of more formal protocol information to the basic
conversation diagram, again using, say, AUML or AML as
the notation, would result in a protocol diagram. Prometheus
optionally enhances these interaction diagrams with percepts
and actions; that is, messages to and from an invisible
timeline/agent. In addition to percepts, input from the envi-
ronment and other events, including those self-generated,
for example, by a clock, can be shown [131]. Events typically
generate an action within the agent. The result is really



ISRN Software Engineering 37

id : long
itemNbr : string
itemTitle : string

MediaItem

itemBarCode : OLE
itemPicture : OLE
category :string
genre : string

publisher : string
editor : string
description : string

date : date

weight : single
unitPrice : currency

CD CDromDVD Book Video

itemCount: integer

ShoppingCartCartForm

“button” Recalculate

getCart()
buildItemTable()
writeTableRow()
updateItems()
loadCartForm()
updateCartForm()
killCartForm()

ItemDetail

CustomerData

weight()
cost()

ItemLine

allowsSubs: boolean
qty: integer
id: long

1

“text” currentTotal: currency

“submit” AddItem
“submit” Checkout

“submit” Confirm
“button” Cancel

tax: currency
taxRate: float
total: Currency
totWeight: Single

ShippingCost: currency

itemCount() notification()

1

getIdentDetails

verifyCC
logout
cancel
checkout
addItem
selectItem
initialize

failure
confirm
removeItem
succeded
propose
refuse

Plans: 

calculateTotals()
calculateQty()

initializeReport()
getLineItem() inform()
computeWeight()

Catalogue
On-line

CustomerProfiler

customerid: long

middleName: string

customerName: string
firstName: string

tel: string
address: string

e-mail: string
dob: date
profession: string
salary : integer
maritalStatus : string
familyComp [0..1]: integer
internetPref [0..10]: boolean
entertPref [0..10]: string
hobbies [0..5]: string
comments: string
Credit card#: integer

: string

: integer

CustomerProfileCard

1

PrevPurchase [[0.. ∗] [0..∗]]

PrevPurchPrice [[0.. ∗] [0..∗]]

“text” itemCount: integer
“text” qty [0..∗]: integer

“checkbox” selectItem [0..∗]

“i∗ actor”
“i∗ actor”

“i∗ actor”

0..∗

0..∗

0..∗

0..∗

0..∗

qty [0..∗]: integer
subTotals [0..∗]: currency

not understood

. . .

0..∗

Figure 68: Partial class diagram for a Tropos implementation in their Store Front case study (after [67], reprinted by permission of the
publisher © IGI Global).
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Figure 69: An OPEN/Metis user interface sketch (after [126]).

highly notation dependent but with AUML might look like
Figure 71 andwith AML it would look like Figure 72.This can
then be supplemented by protocol descriptors and message
descriptors. In Prometheus, Padgham and Winikoff [59]
recommend fields for the protocol descriptor as Description,
Scenarios, Agent names, a list ofMessages in the protocol, and
a final field to contain other miscellaneous information. For
the Message descriptor, they recommend a natural language
descriptor, the source and target of the message together with

a statement on its purpose, and the information carried by the
message.

Behavioural diagrams used in AOSE often adopt (or
adapt) one of the two basic kinds of UML interaction
diagram: sequence charts and collaboration diagrams (said to
be semantically equivalent), the latter renamed as Communi-
cation diagram in UML Version 2.

Sequence-style diagrams are used in MaSE (e.g., [44]),
PASSI, ADELFE, and MOBMAS as well as in OperA and
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Request cost of selected holiday

Costing provided
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Figure 70: Interaction diagram between Holidaymaker agent and Travel Agent agent.

Holidaymaker Travel agent

Request information

Possible holidays

Request cost of selected holiday

Costing provided

Book holiday

Travel agent unavailableBreak

Request cheaper optionBreak

Revised costing provided

Figure 71: Example of Prometheus protocol diagram equivalent to Figure 70.

Agent Factory (Figure 73), where it is called a “protocol”
and a “protocol model,” respectively, and in MESSAGE
(Figure 74) and Tropos (Figure 75). MOBMAS uses a slightly
different version of an AUML sequence diagram in which
ACL messages are replaced by tuples.

A specialized form of the AML Interaction Protocol Dia-
gram (Figure 72) is the Service Protocol Diagram (Figure 76),
used only within the context of the service specification.

Whilst not a methodology, MAS-ML [71] uses an extend-
ed UML Sequence Diagram to show interactions and their
sequencing. These authors use this approach to depict the

modelling of plans and actions, of protocols, and of role
commitment.

Collaboration-style diagrams are used in Agent Factory,
CAMLE, andAML (Figure 77) but seldomelsewherewherein
the sequence-style diagram is the preferred option.

6.2. Workflow View. Workflows reflect agent behaviour so
that a standard workflow diagram would seem appropriate.
UML-style activity diagrams are used in Prometheus to
illustrate processes within an agent, including allusions to
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Figure 72: Example of AML Interaction Protocol as a sequence diagram.

Holidaymaker Booking manager
“role”

X

request(information)

Information and costing

Request cheaper option

Revised quote

Book holiday

Book holiday

“agent”

Figure 73: Example Protocol Model as used in MaSE, Agent Factory, OperA, PASSI, and ADELFE.

interactions with other agents. Figure 78 shows an example
of a Prometheus Process Diagram. In this diagram, details
of a process are shown together with interactions with
other agents; these are depicted minimalistically by a single

(envelope-shaped) icon. A Process Diagram can then be
supplemented by a process descriptor listing activities, trig-
gers, messages, and protocols. Whilst these diagrams show
the higher level view, details can be presented textually
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Holidaymaker Booking manager

request(information)

Information and costing

Request cheaper option

Revised quote

Book holiday

Figure 74: Example of an MESSAGE interaction protocol diagram.

Request holiday information

Not available

Possible holidays

Request costing

X

X

Costing provided

Accept costing

Request revised
costing

Updated costing provided

Book holiday

Decision

Holidaymaker Travel agent
“actor” “actor”

Figure 75: Example agent interaction protocol as used in Tropos.

[132]: for percepts, actions, and events.The percept descriptor
lists the information gleaned by the agent in its interaction
with the environment, whereas the action descriptor depicts
the effect of the agent on the environment. An event descrip-
tor defines an event in terms of its purpose, together with the
data that the event carries. (For details of these templates, see
[59, Chapter 7]).

UML-style activity diagrams are also used in Agent
Factory, called there an “activity model.” These illuminate all

the “activity scenarios,” wherein each swimlane represents
the processing of a role involved in the scenario. In PASSI,
a similar use is made of swimlanes to specify the methods of
each agent or of each agent’s task.

Workflows are also represented explicitly in INGENIAS
(Figure 79) using the notation shown in Figure 80. In this
approach, a workflow is created from the tasks identified
in the interaction specification diagram together with the
goal/task view (see later discussion of Figure 84). Similarly,



ISRN Software Engineering 41
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decideAbout(costing)
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Costing
protocol

[accepted]

[rejected]

Initiator: Holidaymaker
Participant: Travel agent
Decide about: capability

Request costing

Figure 76: Example of AML Service Protocol as a sequence diagram.

(2) Supply costing

:Initiator

:Participant

Ip holiday 
Costing
protocol

(1) Request costing
(3) [accepted] accept quotation
(4) [rejected] revising costing accepted

Initiator: Holidaymaker
Participant: Travel agent

(5) 

Figure 77: Example of AML Service Protocol as a communication diagram showing the same information as Figure 76.

MESSAGE depicts a workflow in terms of a partially ordered
set of tasks that realize a service (Figure 81). AOR also uses
workflow as the basis for its activity diagram (Figure 82).

MAS-ML [71] includes extensions proposed to the UML
Activity Diagram in order to depict “a flow of execution
through the sequencing of subordinate units called action.”
In this way, the authors can model plans and actions; goals;
and messages, roles, organizations, and environment (for full
details, see [133]).

6.3. Agent Knowledge View. The dynamic aspects of agent
behaviour are addressed in several methodologies, both in
terms of interagent behaviour and single agent behaviour.
This is exemplified inMaSE’s “communication class diagram”
a.k.a. conversation diagram [43], based on the notation of
a UML State Transition Diagram. It should be noted that

this diagram type focusses on the states of an agent during
a particular conversation. This means that for a conversation
between two agents (initiator and responder) two state dia-
grams are required. Actions specified within a state represent
processing required by the agent.

STD-style diagrams are recommended by PASSI, MES-
SAGE (Figure 83), and MOBMAS. Also with a slightly dif-
ferent visualization is the state machine-focussed Interac-
tion Structure of ISLANDER, which shows dialogues called
scenes. These then define protocols.

6.4. Agent Services View: Task Diagrams. Tasks represent the
dynamic counterbalance to goals. Indeed, they are closely
linked, as shown in the metamodel of Figure 48 and in
INGENIAS (Figure 84). Indeed, in the SONIA methodology,
a task model is one of the first to be developed, although
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Figure 78: Example process diagram for the Request cost functionality.
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Figure 79: Example of workflow as used in INGENIAS (after [20], reprinted by permission of the publisher © IGI Global).

goals are not considered until later, in a Goal Model.
Tasks are accomplished by the enactment of a Plan (see
Section 5.4.2).

Several AOSE methodologies address task descriptions
and task decomposition, for example, using a UML activity

diagram with two swimlanes (Figure 85) or incorporating
AND/OR task decomposition (Figure 86) to create a task
hierarchy. Both diagram styles can be supplemented by Task
templates. For the current state(s) of any task, a standard
UML-style Statechart diagram can be used.
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Figure 80: Typical elements in an INGENIAS’s workflow (after [20], reprinted by permission of the publisher © IGI Global).
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Figure 81: Task workflow from MESSAGE showing how a service is implemented by a series of tasks (after [49], reprinted by permission of
the publisher © IGI Global).

A task model is also included in the diagram suite of
MAS-CommonKADS. It consists of two elements for each
task: a “task hierarchy diagram” and a “task textual template.”
Peyravi and Taghyareh [68] suggest the addition to MAS-
CommonKADS of a standard activity diagram to represent
the activity flow of a task together with a textual template for
each individual task within the activity flow, together with
a tabular rendering of task knowledge. Task models are also
found in MaSE and in ISLANDER.

Interestingly, Fuentes-Fernández et al. [134] investigate
the ideas of Activity Theory [135] as applied to AOSE.

They propose mapping these activities to tasks and possibly
to workflows or interactions. This is clearly a topic for
further discussion beyond the standard methodological use
of diagram types as outlined here.

6.5. UI View. In Section 5.7, we noted the possibility of
introducing, as a static diagram type, a UI design diagram.
There is also a need for a dynamic view on the UI. Gonzalez-
Perez [126] suggests a service state diagram (Figure 87)
to represent the various states of the UI and linking this
directly to UI design diagram of Figure 69. Constantine
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Figure 82: IncompleteAORactivity diagram for the quoting business process type from the perspective of the Seller agent (after [17], reprinted
by permission of the publisher © IGI Global).
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Figure 83: State chart in MESSAGE for a Booking Manager role (after [49], reprinted by permission of the publisher © IGI Global).

and Lockwood [128] also recommend the utilization of task
modelling, essential use cases, and context navigation maps
to describe the dynamic aspects of user interface design.

7. Discussion and Related Work

Recommendations for a standardized agent-orientedmodell-
ing language are still indeterminate with several approaches
being investigated.These include use of manyUML diagrams
with little or no change (e.g., [20, 37, 49, 59, 136]) or bundled
as a UML profile (e.g., [17, page 286]). Formal proposals to
create an agent-oriented extension to UML include AUML
[74, 137, 138] and AML [73].They provide all the fine detail of
the UML, also making some recommendations for diagram
types in passing. Here, we have taken the results of the
deliberations ofHenderson-Sellers [19] regarding appropriate
diagram types that could be recommended as part of a future
standardized agent-oriented modelling language and have
investigated a wider range of examples from the literature.

In addition, we have introduced the FAML notation in
order to see whether (i) the recommended diagram types
can be visualized using this notation and (ii) there are any
deficiencies in the FAML notation.

Our discussion here has focussed solely on the suite
of diagram types, whilst recognizing that there are two
other major elements of any modelling language: notation of
individual atomic elements (e.g., [2, 100]) and the defining
metamodel (e.g., [1]). In the latter case, there have been
attempts to combine existing metamodels synergistically for
(a) work products (e.g., [4, 71, 139]) and (b) method elements
(e.g., [3, 140–142]).

In the A&A (agents and artifacts) approach [143], the
three basic categories identified of agent, society, and envi-
ronment align well with three of the views presented here
(Tables 3 and 4). The aim of these authors is to be able to
manipulate agent societies and theMAS environment as first-
class entities.Their utilization of amultidisciplinary approach
including speech act analysis [144] and activity theory [135]
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Figure 87: An OPEN/Metis service state diagram in which some of the annotations on arcs and nodes refer back to elements in the user
interface sketch of Figure 69 (after [126]).

is a promising approach to gain a well-grounded conceptual
foundation for agent-oriented modelling.

It should also be noted that all work products go through
their own “lifecycle” in the sense that they are first created,
and then modified towards maturity of a final state. This
means that there will likely be several versions of each work
product (e.g., [145, Appendix G]); that is, the notion of a
“state” can be associated with each work product (e.g., [45,
146]).

As well as agent-oriented metamodelling treatises, some
authors have sought to set their work in the context of model-
driven engineering (MDE) or model-driven development
(MDD), for example, Amor et al. [147]; Fischer et al. [148];
Taveter and Sterling [149] and the proposal by Benguria et
al. [150] of Platform Independent Model (PIM) for Service-
Oriented Architecture (SOA) named PIM4SOA. Others (e.g.,
Liu et al. [151]) have examined the possible utilization of
agents for developing web services and in SOA (Service-
Oriented Architecture). Internet development is also dis-
cussed by Zambonelli et al. [152].

There is also an emerging trend to adopt a method engi-
neering mindset for agent-oriented software construction
(e.g., [153]). In a recent paper on O-MaSE [46], the authors
tabulate their recommended diagram types in the form of
method fragments (Table 14).

In addition to these related works on notation and
metamodelling, we were only able to find a small number of
additional papers in the main topic area that are not already
cited above. In particularly, although differently named in
part, the six diagram types proffered by Juan et al. [154] in
their “skeleton methodology” are commensurate with those
discussed here. They are given as Use-case model, Envi-
ronmental Interface Model, Agent Model, Service Model,
Acquaintance Model, and Interaction Model. In addition,
they proffer (i) from Prometheus: System Overview Dia-
gram, Agent Overview Diagram, Capability Diagram, and
Event, Data, Plan, and Capability Descriptors; and (ii) from

ROADMAP: Environment Model, Knowledge Model, and
Role Model.

Our use of FAML notation has only been indicative
rather than the provision of any conclusive results. We have
anticipated following the comprehensive evaluation method
of the notation for ISO/IEC 24744 International Standard
[21] as undertaken by Sousa et al. [8]. However, it turns
out that there are significant differences between the mode
of utilization of symbols in creating a process model (for
which ISO/IEC 24744 was designed) and the way symbols are
used in an AOML. In the former, not only are the symbols
evaluated but also, perhaps more critically, the superposition
of various combinations in terms of their usability vis-a-vis
their shape and colour turns out to be the more important
aspect. On the contrary, for an AOML, there is little (or zero)
need to superpose symbols rather than to have a collection of
them related to each other in any specific diagram type. This
means that a symbol set for a AOSE diagramming suite need
have little concern for juxtapositioning and superpositioning
issues but simply be evaluated in terms of its semiotic value
in terms of the degree to which each symbol successfully rep-
resents each AOSE concept. That means that our illustration
of only a few diagram types, chosen to illustrate elements
of the different “families” of Figure 2, indicates that further
one-to-one translation of symbols between, say, Prometheus
and FAML or between INGENIAS and FAML should be
as successful. In terms of the goals of this current paper,
the profferings of FAML diagram types are adequate, whilst
leaving to future work (Section 8) comprehensive user and
usability studies.

Thus, creating a standard, for which this paper is intended
to be a potential precursor, needs careful mappings between
the various methodology-linked diagram types by consider-
ation of their associated semantics (i.e., not just names and
notations). Once these similarities and any overlaps have
been identified, it is likely that the number of diagram types
needed for AOSE can be significantly reduced from the sum
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Table 14: Diagram types recommended in O-MaSE depicted as method fragments (after [46]) and reprinted by permission of the
publisher © Inderscience.

Activities Tasks Work products created or modified Responsible method roles
Requirements gathering Requirements specification Requirements specification Requirements engineer
Problem analysis Model goals Goal model Goal modeller

Refine goals
Model domain Domain model Domain modeller

Solution analysis Model organization interfaces Organization model Organization modeller
Model roles Role model Role modeller
Define roles Role description document

Define role goals Role goal model
Architecture design Model agent classes Agent class model Agent class modeller

Model protocols Protocol model Protocol modeller
Model policies Policy model Policy modeller

Low level design Model plans Agent plan model Plan modeller
Model capabilities Capabilities model Capabilities modeller
Model actions Action model Action modeller

Code generation Generate code Source code Programmer

of all the diagram types across all AOSE methodologies—the
aim of this current project.

8. Conclusions and Future Work

Using the list of over two dozen proposed diagram types in
the AOSE literature, we have here extended the analysis of
Henderson-Sellers [19] commencing with his recommenda-
tions and assessing to what extent these recommendations
are seen in this wide range of AOSE methodologies. We have
also taken the opportunity, as indicated in the Future Work
Section of Henderson-Sellers [19], to express several of these
recommended diagram types using the new FAML notation
[5], itself conformant to the metamodel of Beydoun et al. [4],
and derived in part from the suggestions of Padgham et al. [2]
andDeLoach et al. [155], and taking into account the semiotic
advice of Moody [7].

In summary, we have added further evaluations of the
recommendations ofHenderson-Sellers [19] by consideration
of a wider range of diagram types in theAOSEmethodologies
listed in Table 7, the motivation being a small additional
contribution to standards efforts current in organizations like
FIPA, OMG, and ISO.

As noted inHenderson-Sellers et al. [5], further empirical
research is required to evaluate the usability of these various
diagram types using FAML’s notation. We plan to undertake
an experiment in which creative design students are asked to
supply appropriate symbols for the FAML concepts as well as
evaluating our current proposals (Figure 2).We also intend to
conduct a comprehensive evaluation using a large group (20
plus) of experts followed by a usability study in a real world
case study.
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