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Abstract

Probabilistic frequent pattern mining over uncertain
data has received a great deal of attention recently due
to the wide applications of uncertain data. Similar to its
counterpart in deterministic databases, however, prob-
abilistic frequent pattern mining suffers from the same
problem of generating an exponential number of result
patterns. The large number of discovered patterns hin-
ders further evaluation and analysis, and calls for the
need to find a small number of representative patterns to
approximate all other patterns. This paper formally de-
fines the problem of probabilistic representative frequent
pattern (P-RFP) mining, which aims to find the mini-
mal set of patterns with sufficiently high probability to
represent all other patterns. The problem’s bottleneck
turns out to be checking whether a pattern can proba-
bilistically represent another, which involves the compu-
tation of a joint probability of supports of two patterns.
To address the problem, we propose a novel and efficient
dynamic programming-based approach. Moreover, we
have devised a set of effective optimization strategies to
further improve the computation efficiency. Our exper-
imental results demonstrate that the proposed P-RFP
mining effectively reduces the size of probabilistic fre-
quent patterns. Our proposed approach not only dis-
covers the set of P-RFPs efficiently, but also restores
the frequency probability information of patterns with
an error guarantee.

1 Introduction

Uncertainty is inherent in data from many different do-
mains, including sensor network monitoring, moving ob-
ject tracking, and protein-protein interaction data [6].
Instead of cleaning uncertain data by considering only
the most possible circumstance, it is more reasonable
to model the uncertainty of data. Consequently, data
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mining over uncertain data has become an active area of
research in recent years. A survey of state-of-the-art un-
certain data mining techniques can be found in [1]. As
one of the most fundamental data mining tasks, frequent
pattern mining over uncertain data has also received a
great deal of research attention, since it was first intro-
duced in [3]. Currently, there exist two different defi-
nitions of frequent patterns in the context of uncertain
data: expected support-based frequent patterns [3, 11],
and probabilistic frequent patterns [4, 5]. Both defini-
tions consider the support of a pattern as a discrete
random variable. The former uses the expectation of
the support as the measurement, while the latter con-
siders the probability that the support of a pattern is
no less than some specified minimum support thresh-
old. Various algorithms have been designed to mine fre-
quent patterns from uncertain data. A summarization
and comparison of eight algorithms, proposed to mine
respectively the two types of aforementioned frequent
patterns from uncertain databases, have been reported
recently in [6].

Note that, the anti-monotonic property holds for
both the expected support-based frequent patterns, as
well as the probabilistic frequent patterns. That is, if
a pattern is frequent in an uncertain database, then all
of its sub-patterns are frequent as well. This property
leads to the generation of an exponential number of re-
sult patterns. The large number of discovered frequent
patterns makes the understanding of, and further anal-
ysis of generated patterns troublesome. Therefore, it
is important to find a small number of representative
patterns to best approximate all other patterns.

Some initial research work has been undertaken
to find a small set of representative patterns. For
example, mining probabilistic frequent closed patterns
over uncertain data has been studied in [7, 8, 9].
However, the number of probabilistic frequent closed
patterns is still large because of the restrictive condition
for a pattern being closed. For instance, in [9], the
closed probability of a pattern is computed as the sum of
the probabilities of the possible worlds of an uncertain
database where the pattern is closed. In this work, we
aim to relax the restrictive condition to further reduce



the size of frequent patterns mined over uncertain data.
In the context of deterministic data, a pattern is

closed if it is the longest pattern that appears in the
same set of transactions supporting its sub-patterns.
As a generalization of the concept of frequent closed
patterns, Xin et al. [20] proposed the notion of a ε-
covered relationship between patterns. A pattern X1

is ε-covered by another pattern X2 if X1 is a subset
of X2 and (supp(X1) − supp(X2))/supp(X1) ≤ ε. The
goal is then to find a minimum set of representative
patterns that can ε-cover all frequent patterns. Since
the support of a pattern (supp(X)) becomes a discrete
random variable in an uncertain database, the ε-covered
relationship cannot be applied directly to probabilistic
frequent patterns.

In this work, we first extend the concept of ε-
covered by defining a new (ε, δ)-covered relationship
between probabilistic frequent patterns. Informally, a
pattern X1 is (ε, δ)-covered by another pattern X2 in
an uncertain database if X1 is a subset of X2, and the
probability that the support distance between X1 and
X2 is no greater than ε is no less than δ. The objective of
probabilistic representative frequent pattern (P−RFP )
mining is then to find the minimal set of patterns that
can (ε, δ)-cover all probabilistic frequent patterns.

The approach for P-RFPs mining can be divided
into two steps: 1) finding the set of patterns that can be
(ε, δ)-covered by others; 2) finding minimal P-RFPs by
solving a set cover problem. The approach’s bottleneck
is checking whether a pattern (ε, δ)-covers another in
the first step, which involves the computation of a joint
probability of the supports of two patterns. To address
the problem, we propose a dynamic programming based
approach, which iteratively updates the (ε, δ)-cover
probability of two patterns in the first j transactions
in an uncertain database. We also develop a set of
effective optimization strategies to further improve the
computation efficiency of the proposed approach.

To our knowledge, this is the first work that summa-
rizes frequent patterns mined over uncertain databases
by probabilistic representative pattern mining. Our
experimental results show that our approach summa-
rizes frequent patterns effectively, and restores the pat-
terns and their original frequency probability informa-
tion with a guaranteed error bound.

The remainder of the paper is structured as follows.
The next section introduces related works to this paper.
We define important concepts and provide a problem
statement in Section 3. Section 4 describes the pro-
posed data mining approach. Experimental results are
presented in Section 5. Section 6 closes this paper with
some conclusive remarks.

2 Related Work

In this section, we review related research from two sub-
areas: frequent pattern mining over uncertain data and
frequent pattern summarization.

Frequent pattern mining over uncertain data.
Many approaches have been proposed to mine frequent
patterns from uncertain databases in past years. Based
on the definition of a frequent pattern, existing work
on mining frequent patterns over uncertain data falls
into two categories: expected support-based frequent pat-
tern mining [3, 10, 11] and probabilistic frequent pat-
tern mining [4, 5]. The former employs the expectation
of support as the measurement. That is, a pattern is
frequent only if its expected support is no less than a
specified minimum expected support. The latter consid-
ers the frequency probability as the measurement, which
refers to the probability that a pattern appears no less
than a specified minimum number of support times. A
pattern is therefore frequent only if its frequency prob-
ability is no less than a specified minimum probability
(i.e. Pr(supp(X) ≥ minsup) ≥ minprob).

For mining expected support-based frequent pat-
terns, there are three representative algorithms: UApri-
ori [3], UFP-growth [10], UH-Mine [11]. UApriori is
the uncertain version of the well-known Apriori algo-
rithm. Both UFP-growth and UH-Mine are based on
the divide-and-conquer framework that uses the depth-
first strategy to search frequent patterns. For mining
probabilistic frequent patterns, two representative al-
gorithms are DP − dynamic programming-based Apri-
ori algorithm [4], and DC − divide-and-conquer-based
Apriori algorithm [5]. Observing that the support of a
pattern in an uncertain database can be represented by
poisson binomial distribution, some approximate prob-
abilistic frequent pattern mining algorithms have also
been proposed. [12, 13] respectively use the normal
distribution and the poisson method to approximate
the frequency probability of patterns. Recently, Tong
et al. [6] verified that the two types of frequent pat-
terns mined from uncertain data have a tight connec-
tion and can be unified when the size of data is large
enough. They also empirically compared the perfor-
mance of eight existing representative algorithms with
uniform measures.

Frequent pattern summarization. Motivated
by the fact that frequent pattern mining may generate
an exponential number of patterns due to the down-
ward closure property, a lot of research work has been
dedicated to summarizing the complete set of patterns
with a small set of representative ones. Various concepts
have been proposed, such as maximal patterns [14],
frequent closed patterns [15], and non-derivable pat-
terns [16]. While all frequent patterns can be recov-



ered from maximal patterns, the support information
is lost. Although the set of frequent closed patterns
preserve the exact support of all frequent patterns, the
number of frequent closed patterns can still be tens of
thousands or even more. There are several generaliza-
tions of closed patterns, such as the pattern profiling
based approaches [17, 18, 19] and the support distance
based approaches [20, 21]. It was observed in [21] that
the profile-based approaches [17, 18] have some draw-
backs, such as no error guarantee on restored support.
This work borrows the framework of the support dis-
tance based approaches to find probabilistic representa-
tive frequent patterns.

Recently, some research work has been undertaken
to summarize frequent patterns mined over uncertain
data. Tang and Peterson [8] proposed mining proba-
bilistic frequent closed patterns, based on the concept
called probabilistic support. Tong et al. [9] pointed out
that frequent closed patterns defined on probabilistic
support cannot guarantee the patterns are closed in
possible worlds which contribute to their probabilistic
supports. Instead, they defined the threshold-based fre-
quent closed patterns over probabilistic data, which con-
siders the probabilities of possible worlds where a pat-
tern is closed. Our research relaxes the condition to
further reduce the size of patterns by considering the
probabilities of possible worlds where a pattern can ε-
cover another one.

3 Problem Definition

This section first introduces preliminary definitions and
then formulates the problem of probabilistic represen-
tative frequent pattern (P-RFP) mining.

Xin et al. [20] defined a robust distance measure
between patterns in deterministic data.

Definition 3.1. (distance measure) Given two pat-
terns X1 and X2, the distance between them, denoted as
d(X1, X2), is defined as 1− |T (X1)∩T (X2)|

|T (X1)∪T (X2)|
, where T (Xi)

is the set of transactions supporting pattern Xi.

Then, an ε-covered relationship is defined on two pat-
terns where one subsumes another.

Definition 3.2. (ε-covered) Given a real number ε ∈
[0, 1] and two patterns X1 and X2, we say X1 is ε-
covered by X2 if X1 ⊆ X2 and d(X1, X2) ≤ ε.

As commonly used in frequent pattern mining,
X1 ⊆ X2 denotes X1 is a subset of X2 (e.g. {a} ⊆
{a, b}). It can be proved easily that, if X2 ε-covers X1,
supp(X1)−supp(X2)

supp(X1)
≤ ε. The goal of representative fre-

quent pattern mining then becomes finding the minimal
set of patterns that ε-cover all frequent patterns.

ID Transactions
T1 a:0.7 b:0.2
T2 a:1.0 c:0.5

Table 1: An uncertain database with attribute uncer-
tainty

ID Possible World Prob.
w1 {T1 : φ, T2 : {a}} 0.12
w2 {T1 : {a}, T2 : {a}} 0.28
w3 {T1 : {b}, T2 : {a}} 0.03
w4 {T1 : {a, b}, T2 : {a}} 0.07
w5 {T1 : φ, T2 : {a, c}} 0.12
w6 {T1 : {a}, T2 : {a, c}} 0.28
w7 {T1 : {b}, T2 : {a, c}} 0.03
w8 {T1 : {a, b}, T2 : {a, c}} 0.07

Table 2: An example of possible worlds

In the context of uncertain data, the support of
a pattern, supp(Xi), becomes a discrete random vari-
able. Therefore, we cannot directly apply the ε-cover
relationship to probabilistic frequent patterns. Before
explaining how to extend the concept of ε-covered in
the context of uncertain data, we examine an uncertain
database where attributes are associated with existen-
tial probabilities. Table 1 shows an uncertain transac-
tion database where each transaction consists of a set of
probabilistic items. For example, the probability that
item a appears in the first transaction T1 is 0.7. Possi-
ble world semantics are commonly used to explain the
existence of data in an uncertain database. For exam-
ple, the database in Table 1 has eight possible worlds,
which are listed in Table 2. Each possible world is as-
sociated with an existential probability. For instance,
the probability that the first possible world w1 exists is
(1− 0.7)× (1− 0.2)× 1× (1− 0.5) = 0.12.

Considering that the occurrences of items in every
possible world are deterministic, we can define the prob-
abilistic distance between two probabilistic frequent
patterns based on their distance in possible worlds.

Definition 3.3. (probabilistic distance measure)
Given an uncertain database D, and two patterns X1

and X2, let PW= {w1, . . . , wm} be the set of possible
worlds derived from D, the distance between X1 and
X2 in a possible world wj ∈ PW is

(3.1) dist(X1, X2;wj) = 1−
|T (X1;wj) ∩ T (X2;wj)|

|T (X1;wj) ∪ T (X2;wj)|

where T (Xi;wj) is the set of transactions contain-
ing pattern Xi in the possible world wj. Then, the
probabilistic distance between X1 and X2, denoted by



dist(X1, X2), is a random variable. The probability
mass function of dist(X1, X2) is:
(3.2)

Pr(dist(X1, X2) = d) =
∑

wj∈PW,dist(X1,X2;wj)=d

Pr(wj)

That is, the probability that the distance between two
probabilistic frequent patterns is d equals to the sum of
the probabilities of possible worlds where the distance
between the two patterns is d.

For example, consider the uncertain database in
Table 1. Let X1 = {a} and X2 = {a, b}. The
probability that the distance between X1 and X2 is
equal to 0.5, Pr(dist(X1, X2) = 0.5), can be computed
by adding the probabilities of the possible worlds w4 and
w8. This is because only in the two possible worlds, the
distance between the two patterns is 0.5. Therefore,
Pr(dist(X1, X2) = 0.5) = 0.14.

Based on the probabilistic distance measure, we
define the ε-cover probability as follows.

Definition 3.4. (ε-cover probability) Given an uncer-
tain database D, two patterns X1 and X2, and a dis-
tance threshold ε, the ε-cover probability of X1 and X2

is Prcover(X1, X2; ε) = Pr(dist(X1, X2) ≤ ε).

Definition 3.5. ((ε, δ)-covered) Given an uncertain
database D, two patterns X1 and X2, a distance thresh-
old ε and a cover probability threshold δ, we say X2

(ε, δ)-covers X1 if X1 ⊆ X2 and Prcover(X1, X2; ε) ≥ δ.

Our goal is then to obtain the minimal set of pat-
terns that will (ε, δ)-cover all the probabilistic frequent
patterns. The formal statement of the probabilistic rep-
resentative frequent pattern (P-RFP) mining is as fol-
lows.

Definition 3.6. (Problem Statement) Given an uncer-
tain database D, a set of probabilistic frequent patterns
F , a probabilistic distance threshold ε and a cover proba-
bility threshold δ, the problem of probabilistic representa-
tive frequent pattern (P-RFP) mining is to find the min-
imal set of patterns R so that, for any frequent pattern
X ∈ F , there exists a representative pattern X ′ ∈ R
where X ′ (ε, δ)-covers X.

It is obvious that when ε = 0, the probabilistic rep-
resentative pattern set is probabilistic closed patterns,
and when ε = 1, it is probabilistic maximal patterns.

4 P-RFP Mining

This section first describes the framework of our pro-
posed approach. Then, we explain the details of the
main steps for P-RFP mining.

4.1 Framework of P-RFP Mining. Before pre-
senting the framework of our approach for P-RFP min-
ing, we develop some important lemmas between two
patterns where one (ε, δ)-covers another.

Lemma 4.1. Given an uncertain database D and two
patterns X1 and X2 s.t. X2 (ε, δ)-covers X1, the
distance between X1 and X2 in the possible world wj

can be represented by the support of the patterns in wj:

(4.3) dist(X1, X2;wj) = 1−
supp(X2;wj)

supp(X1;wj)

Proof. Since X2 (ε, δ)-covers X1, then X1 ⊆ X2,

dist(X1, X2;wj) = 1−
|T (X1;wj) ∩ T (X2;wj)|

|T (X1;wj) ∪ T (X2;wj)|

= 1−
|T (X2;wj)|

|T (X1;wj)|
= 1−

supp(X2;wj)

supp(X1;wj)
!

Lemma 4.2. Given an uncertain database D and two
patterns X1 and X2 s.t. X2 (ε, δ)-covers X1, the
probabilistic distance dist(X1, X2) can be represented by
the support distribution of X1 and X2:

(4.4) dist(X1, X2) = 1−
supp(X2)

supp(X1)

Proof. supp(Xi) is a discrete random variable.
Pr(supp(Xi) = k) =

∑

wj∈PW,supp(X;wj)=k Pr(wj).
According to the definition of probabilistic distance
and Lemma 4.1, we have

Pr(dist(X1, X2) = d) =
∑

wj∈PW,dist(X1,X2;wj)=d

Pr(wj)

=
∑

wj∈PW,1−
supp(X2;wj)

supp(X1;wj)
=d

Pr(wj)

For brevity, le W ′ = {wj |wj ∈ PW , supp(X2;wj) =
k, supp(X1;wj) = (1− d)k}, where k ∈ [0, |D|], then

Pr(dist(X1, X2) = d) =

|D|
∑

k=1

∑

wj∈W ′

Pr(wj)

=

|D|
∑

k=1

Pr(supp(X2) = k, supp(X1) = (1− d)k)

= Pr((1−
supp(X2)

supp(X1)
) = d) !

Lemma 4.3. Given an uncertain database D and two
patterns X1 and X2 s.t. X2 (ε, δ)-covers X1, we have

(4.5) Pr (supp(X2) ≥ (1− ε)supp(X1)) ≥ δ



Proof. Since X2 (ε, δ)-covers X1, according to Lemma
4.2, we have

Pr(dist(X1, X2) ≤ ε) = Pr

(

1−
supp(X2)

supp(X1)
≤ ε

)

= Pr(supp(X2) ≥ (1− ε)supp(X1)) ≥ δ !

Lemma 4.4. Given an uncertain database D, two pat-
terns X1 and X2, a support threshold minsup and a
frequency probability threshold minprob, if X2 (ε, δ)-
covers X1, and X1 is a probabilistic frequent pattern
w.r.t. minsup and minprob, then X2 is a probabilistic
frequent pattern w.r.t. (1−ε)minsup and (δ ·minprob).

Proof. Since X1 is a probabilistic frequent pat-
tern w.r.t. minsup and minprob, we have
Pr (supp(X1) ≥ minsup)≥ minprob, which infers,

Pr((1− ε)supp(X1) ≥ (1− ε)minsup)) ≥ minprob

From Lemma 4.3, we have,

Pr(supp(X2) ≥ (1− ε)supp(X1)) ≥ δ

Hence, Pr (supp(X2) ≥ (1 − ε)minsup) ≥ δ · minprob.
That is, X2 is a probabilistic frequent pattern w.r.t.
((1− ε)minsup) and (δ ·minprob). !

According to Lemma 4.4, to find the representative
patterns to (ε, δ)-cover the complete set of probabilistic
frequent patterns w.r.t. minsup and minprob, denoted
as F , we need to consider the set of pseudo probabilistic
frequent patterns w.r.t (1−ε)minsup and (δ ·minprob),
denoted as F̂ . Given the two sets F and F̂ , our approach
for P-RFP mining consists of the following two steps.

1. Generate the cover set for every pattern in F̂ . For
each pattern X in F̂ , the cover set of X , denoted
as C(X), is a set of probabilistic frequent patterns
in F that can be (ε, δ)-covered by X . That is,
C(X) ⊆ F .

2. Find the minimal pattern set R ⊆F̂ to (ε, δ)-cover
all probabilistic frequent patterns in F .

After finding the cover sets for patterns in F̂ in
the first step, the second step is equivalent to finding a
minimal number of cover sets that cover all patterns in
F . This is known as a set cover problem, which is NP-
hard. Similar to [21], we adopt a well-known greedy
set cover algorithm [22], which achieves polynomial
complexity. Therefore, in the following, we focus on
describing the first step, which generates the cover set
for each pseudo probabilistic frequent pattern in F̂ .

4.2 Cover Set Generation. To generate the cover
set for a pattern X2 in F̂ , for each pattern X1

in F so that X1 ⊆ X2, we need to check if
X2 (ε, δ)-covers X1. That is, we need to exam-
ine whether the ε-cover probability between X1 and
X2 is no less than δ (i.e., Pr(dist(X1, X2) ≤ ε) ≥
δ). According to Lemma 4.3, the ε-cover probability
Prcover(X1, X2; ε)=Pr(dist(X1, X2) ≤ ε) is equivalent
to Pr(supp(X2) ≥ (1− ε)supp(X1)). Let supp(X1) = l,
and supp(X2) = k. Then, the ε-cover probability be-
tween X1 and X2 is equal to,

|D|
∑

l=0

l
∑

k=&(1−ε)l'

Pr(supp(X1) = l, supp(X2) = k))(4.6)

To compute the value of Equation (4.6) to find out
whether it is no less than δ, we introduce the joint
support probability distribution as follows.

Definition 4.1. (joint support probability) Given an
uncertain database D and patterns X1 and X2, the joint
support probability mass function is

Pr(supp(X1) = l, supp(X2) = k)(4.7)

=
∑

wi∈PW,supp(X1 ;wi)=l,supp(X2;wi)=k

Pr(wi)

To split the computation of the joint support prob-
ability of X1 and X2 into smaller sub-problems, we de-
fine the partial joint support probability distribution as
follows.

Definition 4.2. (partial joint support probability)
Given an uncertain database D and patterns X1 and
X2, the j-partial joint support probability is the joint
support probability of X1 and X2 in the first j transac-
tions of D. The j-partial joint support mass function
is

Pr
j
(supp(X1) = l, supp(X2) = k)(4.8)

=
∑

wi∈PW,suppj(X1;wi)=l,suppj(X2;wi)=k

Pr(wi)

It can be proved that the partial joint support
probability can be computed in a recursive strategy.

Lemma 4.5. Given an uncertain database D and pat-
terns X1 and X2, X1 ⊆ X2, j, k, l ∈ Z and 0 ≤ k ≤ l ≤



Situation Probability
X1 ⊆ tj , X2 ⊆ tj pX2

j

X1 ⊆ tj , X2 ! tj pX1
j − pX2

j

X1 ! tj , X2 ! tj 1− pX1
j

Table 3: Probability of different situations in the jth
transaction

j ≤ |D|, then:

Pr
j
(supp(X1) = l, supp(X2) = k)

(4.9)

= Pr
j−1

(supp(X1) = l, supp(X2) = k)(1− pX1
j )

+ Pr
j−1

(supp(X1) = l− 1, supp(X2) = k)(pX1
j − pX2

j )

+ Pr
j−1

(supp(X1) = l− 1, supp(X2) = k − 1)pX2
j

where pXi

j is the probability that Xi occurs in the jth
transaction. The boundary case is: Prj(supp(X1) =

0, supp(X2) = 0) =
∏j

m=1(1− pX1
m ).

Proof. In jth-transaction tj ∈ D, there are only three
existence possibilities of X1 and X2, since X1 ⊆ X2.
Table 3 lists the three situations and their respective
existential probabilities. Therefore, we can split the
computation of Prj(supp(X1) = l, supp(X2) = k)
into the three situations with corresponding probability.
The equation of the boundary case is intuitive. !

Lemma 4.5 enables us to compute the cover probability
iteratively using a dynamic programming scheme. This
equation is the foundation of our approach. Although
it is feasible and effective, we can accelerate it through
certain optimization techniques, which are stated in the
next sub-section.

4.3 Optimization Strategies. While Lemma 4.5
approves the cover probability between two patterns can
be updated transaction by transaction, the transactions
which support neither of the two patterns can actually
be skipped.

Lemma 4.6. Given an uncertain database D, two pat-
terns X1 and X2 s.t. X1 ⊆ X2, and a probabilistic
distance threshold ε, Prcover(X1, X2; ε) computed on D
is equal to that computed on D(X1), where D(X1) is
{t|P (X1 ⊆ t) > 0, t ∈ D} ⊆ D.

Lemma 4.6 is intuitive. According to Definition 3.3
and Definition 3.4, only the transactions supporting at
least the sub-pattern X1 will contribute to the value of
probabilistic distance, which in turn affects the ε-cover

probability. This lemma allows us to compute the ε-
cover probability on a projected sub-database, which
significantly reduces the runtime of computation.

Lemma 4.7. Given an uncertain database D and two
patterns X1 and X2 s.t. X1 ⊆ X2, if X2 (ε, δ)-covers
X1, then ∀X s.t. X1 ⊆ X ⊆ X2, we have X2 (ε, δ)-
covers X.

Proof. Since X2 (ε, δ)-covers X1, according to
Lemma 4.3 we have

Pr(supp(X2) ≥ (1 − ε)supp(X1)) ≥ δ

∀X that X1 ⊆ X ⊆ X2, we have supp(X1;wj) ≥
supp(X ;wj) ≥ supp(X2;wj) in every possible world wj .
Therefore, Pr(supp(X2) ≥ (1− ε)supp(X1)) ≥ δ ⇒

Pr(supp(X2) ≥ (1 − ε)supp(X1) ≥ (1− ε)supp(X)) ≥ δ

Hence, X2 (ε, δ)-covers X . !

According to Lemma 4.7, we have the following
corollary.

Corollary 4.1. Given an uncertain database D and
two patterns X1 and X2, X1 ⊆ X2, if X2 cannot (ε, δ)-
cover X1, then ∀X ⊆ X1, X2 cannot (ε, δ)-cover X.

Lemma 4.7 and Corollary 4.1 reduce the number of
pattern pairs, for which the cover probability needs to
be computed.

Lemma 4.8. Given an uncertain database D, two pat-
terns X1 and X2 s.t. X1 ⊆ X2, a distance threshold ε,
and a cover probability threshold δ, if ∃j, 1 ≤ j ≤ |D|
such that

∏j
m=1(1 − pX1

m + pX2
m ) ≥ δ, then X2 (ε, δ)-

covers X1, where pXi
m is the probability that Xi occurs

in the m-th transaction.

Proof. Recall that, according to Equation (4.6), the ε-
cover probability Pr(dist(X1, X2) ≤ ε) is equivalent to,

|D|
∑

l=0

l
∑

k=&(1−ε)l'

Pr(supp(X1) = l, supp(X2) = k))

which is greater than Q(|D|) =
∑|D|

l=0 Pr(supp(X1) =
supp(X2) = l). Therefore, if Q(|D|) ≥ δ, then
Pr(dist(X1, X2) ≤ ε) ≥ δ. The computation of
Q(|D|) can be similarly split into smaller problems by
introducing the partialQ in the first j transactions ofD,
Q(j) =

∑j
l=0 Pr(supp(X1) = supp(X2) = l). Q(j) can



then be iteratively updated as follows (the details of the
inference are provided in the supplementary document),

Q(j) = Q(j − 1)(1− pX1
j + pX2

j )

= Q(j − 2)(1− pX1
j−1 + pX2

j−1)(1− pX1
j + pX2

j )

· · ·

=
j
∏

m=1

(1− pX1
m + pX2

m )

Hence, if
∏j

m=1(1−p
X1
m +pX2

m ) ≥ δ, thenX2 (ε, δ)-covers
X1. !

Lemma 4.8 defines a lower bound of ε-cover probabil-
ity, which can be computed efficiently using continued
multiplication. If the lower bound is less than the cover
probability threshold δ, we can immediately decide X2

cannot (ε, δ)-cover X1 without computing their real ε-
cover probability.

4.4 P-RFP Mining Algorithm. The overall frame-
work of our P-RFP mining algorithm is shown in Algo-
rithm 1. From lines 3− 9, we find the cover set for each
pattern X2 in the pseudo probabilistic frequent patterns
F̂ . The most important step is to check whetherX2 cov-
ers X1 ∈ F (line 6). The details of the function isCover
is illustrated in Algorithm 2, where lines 1 − 3 imple-
ment the optimization stated by Lemma 4.7, and lines
4−6 apply the Corollary 4.1. Lines 7−9 in the function
isCover use Lemma 4.8 to efficiently discover the lower
bound of ε-cover probability. Note that, according to
Lemma 4.6, the lower bound, as well as the real ε-cover
probability, can be computed on a sub-database D(X1).
Finally, from lines 10−14, we use the dynamic program-
ming based scheme to compute the ε-cover probability.
As mentioned before, the function setCover in Algo-
rithm 1 is solved using the greedy algorithm in [22].

Algorithm 1 P-RFP-Mining Framework

Input: D, F , F̂ , ε and δ
Output: Minimal P-RFP Set R
1: R← Φ
2: CoverSets← Φ
3: for all X2 ∈ F̂ do
4: NoCoverSet← Φ
5: for all X1 ∈ F such that X1 ⊆ X2 do

6: if isCover(X1, X2) = True then
7: CoverSets[X2].add(X1)
8: else
9: NoCoverSet.add(X1)

10: R = setCover(CoverSets, F )
11: return R

Algorithm 2 Function isCover
Input: X1, X2,
Output: If X2 (ε, δ)-covers X1, then return True, else

False
1: for all X ∈ CoverSets[X2] do
2: if X ⊆ X1 then
3: return True
4: for all X ∈ NoCoverSet[X2] do
5: if X ⊇ X1 then

6: return False
7: Q(|D(X1)|)←

∏|D(X1)|
m=1 (1− pX1

m + pX2
m )

8: if Q(|D(X1)|) ≥ δ then

9: return True
10: for l = 0 to |D(X1)| do
11: for k = .(1− ε)l/ to l − 1 do

12: Pcover+ = Pr(supp(X1) = l, supp(X2) = k)
13: if Pcover ≥ δ then

14: return True
15: return False

5 Performance Study

This section evaluates the effectiveness of P-RFPs, the
performance of our approach for P-RFP mining, and
the optimization strategies.

5.1 Data sets. Two datasets have been used in our
experiments. The first is the Retail dataset from the
Frequent Itemset Mining(FIMI) Dataset Repository 1.
This is one of the standard datasets used in frequent
pattern mining in deterministic databases. In order
to bring uncertainty into the dataset, we synthesize an
existential probability for each item based on a Gaussian
distribution with the mean of 0.9 and the variance
of 0.125. This dataset is an uncertain database that
associates uncertainty to attributes.

The second one is the iceberg sighting record from
1993 to 1997 on the North Atlantic from the Interna-
tional Ice Patrol (IIP) Iceberg Sightings Database 2.
The IIP Iceberg Sighting Database collects information
of iceberg activities in the North Atlantic. Each trans-
action in the database contains the information of date,
location, size, shape, reporting source and a confidence
level. The confidence level has six possible attributes,
R/V(Radar and visual), R(Radar only), V(Visual),
MEA(Measured), EST(Estimated) and GBL(Garbled),
which indicate different reliabilities of that tuple. We
translate confidence levels to probabilities 0.8, 0.7, 0.6,
0.5, 0.4 and 0.3, respectively. This dataset is an uncer-
tain database that associates uncertainty to tuples.

1http://fimi.cs.helsinki.fi/data/
2http://nsidc.org/data/g00807.html



5.2 Result analysis. We first evaluate the compres-
sion rate of the P-RFPs, with respect to the variation
of parameters. We randomly select 1000 transactions
from the two datasets respectively to conduct the ex-
periment. The sizes of R - the set of P-RFPs, and F -
the set of probabilistic frequent patterns, with respect to
the variations of minsup, minprob, ε, and δ, on the two
datasets are shown in Figures 1 and 2 respectively. The
default values of the four parameters are set to 0.5%,
0.8, 0.2 and 0.2 respectively. It can be observed from
the results on both datasets, whenminsup andminprob
are low, the compression rate of P-RFPs is high because
there are more probabilistic frequent patterns. For the
variations of ε and δ, obviously, the high compression
rate can be achieved if the probabilistic distance thresh-
old ε is high and/or the cover probability threshold δ is
low.

We then examine the runtime of the proposed
algorithm for P-RFP mining. Figures 3 and 4 show the
runtime vs. minsup, minprob, ε, and δ curves on 1000
transactions randomly selected from the two datasets,
respectively. The default values of the four parameters
are same as in the first experiment. It is intuitive
that, when ε is increasing or minsup, minprob and δ
are decreasing, the runtime will increase because more
pattern pairs are engaged in cover probability checking.
We find that the growth of both ε and δ lead to a
tradeoff between the number of P-RFPs and runtime.

Figure 1: The Number of P-RFP on Retail

We also evaluate the effectiveness of the optimiza-
tion strategies proposed in sub-section 4.3. We ran-
domly select 500 transactions from the two datasets,
respectively, to carry out this experiment. The default
values for the experiments on the Retail dataset are:
minsup = 4%, minprob = 0.8, ε = 0.1 and δ = 0.2.
On the IIP dataset, the four parameters are set to 10%,
0.8, 0.1 and 0.2 by default, respectively. Figure 5 shows
the runtime of the basic version of our algorithm, and

Figure 2: The Number of P-RFP on IIP

Figure 3: Runtime on Retail

Figure 4: Runtime on IIP

the runtime of the algorithm integrated with optimiza-
tion strategies, with respect to the variation of ε and δ
on the two datasets, respectively. The results clearly
reveal the effectiveness of the optimization strategies
by demonstrating that the optimized algorithm signifi-
cantly reduces the runtime.



Figure 5: Effect of Optimization

6 Conclusions

Due to the downward closure property, the number
of probabilistic frequent patterns mined over uncertain
data can be so large that they hinder further analy-
sis and exploitation. This paper proposes the P-RFP
mining, which aims to find a small set of patterns to
represent the complete set of probabilistic frequent pat-
terns. To address the data uncertainty issue, we define
the concept of probabilistic distance, as well as a (ε, δ)-
cover relationship between two patterns. P-RFPs are
the minimal set of patterns that (ε, δ)-cover the com-
plete set of probabilistic frequent patterns. We develop
a P-RFP mining algorithm that uses a dynamic pro-
gramming based scheme to efficiently check whether one
pattern (ε, δ)-covers another. We also exploit effective
optimization strategies to further improve the compu-
tation efficiency. Our experimental results demonstrate
that the devised data mining algorithm effectively and
efficiently discovers the set of P-RFPs, which can sub-
stantially reduce the size of probabilistic frequent pat-
terns.

This work extends the measure defined in deter-
ministic databases to quantify the distance between two
patterns in terms of their supporting transactions. Since
the supports of patterns are random variables in the
context of uncertain data, other distance measures, such
as Kullback-Leibler divergence, might be applicable. As
ongoing work, we will study the effectiveness of proba-
bilistic representative frequent patterns defined on dif-
ferent distance measures.
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