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Abstract

Dealing with spatial and temporal knowledge is an indispblespart of almost all
aspects of human activity. The qualitative approach toiapand temporal rea-
soning, known as Qualitative Spatial and Temporal Reago{@$TR), typically
represents spatial/temporal knowledge in terms of quiaigaelations (e.gto the
east of after), and reasons with spatial/temporal knowledge by solvingitptive
constraints.

When formulating qualitative constraint satisfaction lgeans (CSPs), it is
usually assumed that each variable could theré, there and everywh@t’éPrac-
tical applications such as urban planning, however, okeguire a variable to take
its value from a certain finite domain, i.e. it is required ®‘bere or there, but
not everywhere Entities in such a finite domain often act as referenceabjand
are called “landmarks” in this paper. The paper extends ldmsical framework
of qualitative CSPs by allowing variables to take valuesfifmite domains. The
computational complexity of the consistency problem is thitended framework
is examined for the five most important qualitative calcuig. Point Algebra,
Interval Algebra, Cardinal Relation Algebra, RCC5, and BC@Ve show that
all these consistency problems remain in NP and providegiyméhctical assump-
tions, efficient algorithms for solving basic constraimalving landmarks for all
these calculi.
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1. Introduction

Spatial and temporal information is pervasive and formsramneasing part
of our everyday life. Many tasks in the real or virtual workluire sophisti-
cated spatial and temporal reasoning abilities. Furthegntbe rapid progress in
science and technology in this century continues to presenwtchallenges for
spatial and temporal reasoning. Taking spatial infornmedi® an example, on one
hand, people can now easily acquire location informatioth wie help of GPS-
enabled mobile equipment and web GISs such as Google Mapshad$ greatly
increased the public's demand for location-based servi@aghe other hand, the
development of technologies such as remote sensing, nhedeging, and sensor
networks has generated volumes of spatial data, which nitakgshenomenon of
‘rich data but poor knowledgearticularly serious in the area of spatial knowl-
edge management.

The qualitative approach to spatial and temporal reasohimgwn as Qual-
itative Spatial and Temporal Reasoning (QSTR), has thenpiatdo resolve the
conflict between data and knowledge. This is because the amais of QSTR
research are to design (i) human comprehensible and cagjgiplausible spatial
relation models (or query languages), and (ii) efficienbatyms for consistency
checking (or query preprocessing). For intelligent systetime ability to under-
stand and process qualitative, vague or even inconsidxtuél, graphical or
speech) information collected from human beings or the \Wekery important.
This is because ‘the input and the output of spatial proseisseften qualitative
rather than quantitativ 6].

QSTR represents spatial/temporal information in termsuoh&n comprehen-
sible qualitative relations (e.gartially overlaps west of after) and reduces spa-
tial/temporal reasoning to solving constraint satistatfproblems (CSPs). Qual-
itative relations are widely used in temporal and spatiakoming (see e.g. |[1,
@,]). This is partially because they are close to the wagdns represent and
reason about commonsense knowledge, are easy to spedifyr@rnde a flexible
way to deal with incomplete knowledge. Usually, these refet are taken from a
gualitative calculus, which is a finite set of relations defimn an infinite universe
U of entities ]. Well-known qualitative calculi includeng others Point Al-
gebra (PA) [47 ], Interval Algebra (IAﬂl], Cardinal Relati Algebra (CRA)],
RCCS5, and RCCE8 [38, 24].
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A central reasoning problem of QSTR is thensistency problemAn in-
stance of the consistency problem is alseff constraints likg zay), wherex, y
are variables taken from a finite s&t and« is a qualitative relation. Unlike
classical CSPs, the domain of a variable appearing in atgtieéi constraint is
usually infinite, and HirscHﬂ.G] has shown that it may be widigble for deter-
mining consistency for binary CSPs with infinite domainswdwer, for the five
qualitative calculi that we have mentioned above, the c@scy problems are all
in NP and can be solved by using path consistency and bakktep(cf. ﬁ,Lé_Li]).

In the past three decades, QSTR has made significant progwesgpromi-
nent qualitative calculi such as IA and RCC8 have been apphieareas such
as natural language processing, geographical informaiietems, robotics, and
content-based image retrieval (see e.g. [7]). There iswaiggoconsensus, how-
ever, that breakthroughs are necessary to bring spatmddeal reasoning theory
closer to practical applications. One reason might be ti@ttrrrent qualitative
reasoning scheme uses a rather restricted constraintdgaglconstraints in a
gualitative CSP are always taken from #@mecalculus and only relate variables
from the samenfinite domain. This is highly undesirable, as constraints involv-
ing restricted variables and/or multiple aspects of infation frequently appear
in practical tasks such as urban planning and spatial queepsing.

Consider the following example. Suppose you are recomnteadestaurant
in Sydney by a friend who has dined there before. The spafiatmation about
the restaurant may be similar to “it is downtown ancclose toa MacDonald’s,
and it is to thewest of or southwest ofCentral Station.” In this example, topo-
logical, directional, and distance information appeagether. While the position
of the restaurant may be completely unknown, the positioGeritral Station is
fixed as a landmark, and the position of downtown is also fixedehow, but the
position of “MacDonald’s” is onlyfinitely fixedbecause there are several branches
of MacDonald’s in downtown Sydney.

While some recent works have considered how to reason wélitgtive con-
straints from different spatial or temporal caIcM[EL @Ell] the impor-
tance of solving constraints that involve restricted Malga has been totally ne-
glected. Cohn and Renz regarded this as a major future ogalland commented
in their chapter|__[J7, page 578] irHandbook of Knowledge Representatitmat

One problem with this [constraint-based] approach is tpatial enti-
ties are treated as variables which have to be instantiaiad ualues
of an infinite domain. How to integrate this with settings wehsome
spatial entities are known or can only be from a small donaastill
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unknown and is one of the main future challenges of congttzred
spatial reasoning.

This paper aims to address the above challenge. We say traiadble is
finitely restrictedf it can only take its value from a finite subset of the unieirs
a qualitative calculus. We propose to extend the qualga@i8P framework by al-
lowing variables to be finitely restricted. In such a quak&CSP, the constraints
are taken from a fixed qualitative calculus, and the domaigach variable is ei-
ther the universe of the calculus or a (nonempty) finite sudise universe. The
entities in each finite domain usually act as reference aiff@tinporal objects in
the constraint network. In this paper, we address thestesrdis fandmarks.

Landmarks (e.g.Sydney Opera Houser Big Ben are external, outstand-
ing physical objects that act as reference objects. As faumdany spatial dis-
courses, landmarks play a fundamental role in cognitivéiapapresentations,
in particular in human navigation and route planning. Themee many works in
geographical information science that are devoted to cheniaing or generating
landmarks. LyncHEl] is perhaps the first such attempt, walthough informal
is very influential. Grabler et al. [14] developed a systergdnerate tourist maps
enriched with landmarks. Duckham, Winter, and Robin@h ¢bhsidered how
to incorporate cognitively salient landmarks in compigenerated navigation in-
structions. Landmarks are also used as a metaphor in autopheatning, where
a landmark acts as an auxiliary sub-g [E 42].

In this paper, landmarks are used as reference objects rimufating con-
straints. This is related to but different from Allen’s ‘ezénce intervals’[[l],
which are used to group clusters of intervals, and the iatemn one cluster are
related to intervals outside the cluster only indirectlg the reference intervals.

An important research question l®w does this extension affect the compu-
tational complexity of deciding the consistency of quéire CSP8 This paper
examines the effect for the five most important qualitatiakeali, viz. PA, IA,
CRA, RCC5 and RCC8. We show that in the extended frameworkdhsistency
problem remains in NP for each calculus. Moreover, we prejpoactical efficient
algorithms for solving basic constraints involving landksafor these qualitative
calculi.

The remainder of this paper proceeds as follows. Sectionr@daces basic
notions in qualitative constraint solving as well as the fualitative calculi dis-
cussed in this paper. The extended qualitative CSP frankelw@lso presented
there. Section 3 discusses the computational complexitgadoning with the
point-based calculi PA, IA, and CRA, and Section 4 considieessame prob-

4
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lem for the region-based calculi RCC5 and RCC8. The lastwecbncludes the
paper and outlines problems for future study.

2. Preliminaries

In this section, we first recall several well-known qualitatcalculi and basic
notions in qualitative constraint solving, and then introd the extended qualita-
tive CSP framework.

2.1. Qualitative calculi

The qualitative approach to spatial and temporal knowledgeesentation and
reasoning is mainly based on qualitative calculi. In thipgrawe only consider
binary relations, but the extended qualitative CSP framkwan be straightfor-
wardly extended to ternary and anyary relations.

Supposé/ is the universe of spatial or temporal entities. WRegl(U') for the
Boolean algebra of binary relations é6h A qualitative calculuon U is defined
as a finite Boolean subalgebraRél(U). Let M be a qualitative calculus afi.
A relationa in M is abasicrelation if it is an atom inM. We write B4 for the
set of basic relations iM.

We next recall the well-known Point Algebra (Pﬂ@ 43],r@aal Relation
Algebra (CRA) [12] 24], Interval Algebra (IA) [1], and RCCB@RCCS[[35].

Definition 1 (Point Algebra@]) LetU be the set of real numbers. The Point Al-
gebra is the Boolean subalgebra generated by the jointlpestive and pairwise
disjoint (JEPD) set of relation$<, >, =}, where<, >, = are defined as usual.

PA contains eight relations, viz. the three basic relations =, the empty
relation, and the four non-basic nonempty relatigns, #, 7, where? stands for
the universal relation.

Definition 2 (Cardinal Relation AIgebr@[ﬂ]).etU be the real plane. Define
binary relationsNW, N, NE. W, EQ, E,SW, S, SE as in Tabld L. The Cardinal
Relation Algebra (CRA) is generated by these nine JEPDioglat

CRA can be viewed as the Cartesian product of two PAs.

Definition 3 (Interval Algebraml]) LetU be the set of closed intervals on the real
line. Thirteen binary relations between two intervals [z, z* ] andy = [y, y*]
are defined by the order of the four endpoints @indy, see Tablg]2. The Interval
Algebra (lA) is generated by these JEPD relations.

5
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Relation| Definition
NW r<x' y>y
N x=xy>y
NW x>x' y >y
W r<x',y=vy
EQ r=xy=y
E r>x' y=1vy"
SW r<ax' y<y
S r=xy<y
SW x>z, y<y’

Table 1: Basic relations of CRA.

Table 2: Basic IA relations and their converses, wheeg[a™, 2" |,y = [y, y*] are two intervals.

NE

B SR

o)

Figure 1: ExamplesP; NW @ andP; E Q

Relation| Symbol | Converse Definition
before b bi rT<rt <y <y*
meets m mi xrT<xt =y <y*

overlaps o] oi xT<y <xt <yt
starts S Si xrT =y <xt <yt
during d di y <z <xt<y*

finishes f fi y <z~ <xt=y*
equals eq eq xT=y <xt=y*
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Relation | Definition | Relation| Definition
DC anb=g TPP achb,ad¢b
EC anb+g,a°nNb®> =g NTPP acb®
PO atbbda,a°nb + EQ a=b

Table 3: Topological interpretation of basic RCC8 relasion the plane, where, b are plane
regions, and.’, b° are the interiors ofi, b, respectively.

Unlike the above qualitative calculi, the RCC algebras haterpretations in
arbitrary topological spaces. Since applications in GI8 arany other spatial
reasoning tasks mainly consider objects represented iretiglane, in this pa-
per, we only consider interpretations where regions aexpnéted as nonempty
regular closed sets, and two regions are connected if thraglsow intersed.

Definition 4 (RCC5 and RCC8 Algebras).et U be the set of nonempty regular
closed sets, oregions in the real plane. The RCC8 algebra is generated by the
eight topological relations

DC,EC,PO,EQ, TPP,NTPP, TPPi, NTPPi,

whereDC,EC, PO, TPP and NTPP are defined in TableE]3Q is the identity
relation, andTPPi andNTPPi are the converses GiPP andNTPP respectively.
See Figuré R for illustration. It is worth mentioning thaefe eight relations are
all definable by the connectedness relati@rwhich is the complement BIC and
two regions are connected if they have nonempty intergectio

The RCCS5 algebra is the sub-algebra of RCC8 generated by vbeoért-
whole relations

DR,PO,EQ,PP,PPi,

whereDR = DC U EC, PP = TPP uNTPP, andPPi = TPPi U NTPPi.
While the RCC algebras defined as above using a ‘weak’ coedeess rela-

tion, we will introduce another interpretation in Sectiad.8 based on a ‘strong’
connectedness relation.

2.2. Qualitative constraint satisfaction problem
A qualitative calculusM provides a constraint language by using formulas of
the form(v;av;), wherea is a relation inM andv;, v; are variables taking values

2We note that restricting the underlying topological spaeg mirastically change the compu-
tational properties of calculi like RCCEy[EQBQ].

7
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Figure 2: lllustration for basic relations in RCC5 / RCC8

from the universe ofM. Formulas of the form(v;,av;) are calledconstraints
(overM). If a is a basic relation io\, (v;av;) is called abasic constraintThe
classical consistency problem ovet can then be formulated as below.

Definition 5. [lﬂ] Let M be a qualitative calculus on univergé Suppose is a
subset ofM. The consistency probleaspPsATS) is defined as follows:

Instance: A 2-tuple(V,T"). HereV is afinite set of variable§v, , v, . . . , v, },
andI' = {v;y;;v, : 1 <1i,j <n} is a binary constraint network and eachy
isinS.

Question: Is there an instantiation : V' — U such that all the constraints
in I" are satisfied?

If v satisfies all the constraints i, then we say is a solution ofl" and say
I' is consistenbr satisfiable

Notation.In this paper, we also represent an instantiatio - U as am-tuple

(v(vy),v(v2), ..., v(v,)).

We note that each instan¢®, I") in csSPSATS) is completan the sense that
the relationy,; between any two variables, v; is taken fromS. Given a binary
constraint work™ = {v;v;;u; : 1 <14,7 <n}, we sayl" is abasic constraint network
if 7,5 is either the universal relation or a basic relation for amy variables;, v;;
and sayl" is acomplete basic constraint netwoifky;; is a basic relation for any
two variablesy;, v;. In other words, each complete basic constraint network is a
instance ofcsSPSATB), While each basic constraint network is an instance of
CSPSATBa U {*r}), WhereB, is the set of basic relations i, and= . is the
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universal relation of\1.

The consistency problem as defined in Definifibn 5 has beearstigated for
many calculi (see e.g.D[mEﬁ@ 30] 26]). In particuthe consistency
problemcspPsaiPA) can be solved irD(n?) time, wheren is the number of
variables@b]. For most other qualitative calculi, indhglIA, CRA, RCC5, and
RCCS8, the consistency problensPsATM) is NP-complete.

When only basic constraint networks are considered, howheeconsistency
problem over each of these four calculi becomes tractabléadt, it can be de-
cided by checking whether the networkpath-consistentFor binary relations
and /s, we write o~ for the converse ofy, anda o 5 for the usual composition of
a andf. We say a complete basic constraint netwbrk {v,a;;v; : 1 <i,j <n}
is path-consistenif for any three variables;, v;, v, we hav

Q5 = (0¥

% and Q5 N (Oéik o Ozkj) +g for any 1< i,j, k <n.

Note that for complete basic constraint networks, pathssbancy is equiva-
lent to saying that every subnetwork with three variableissistent. As a local
property, path-consistency can be enforced in cubic time.

We summarise the computational complexity results of tleegeuli in the
following theorem.

Theorem 1. [,@,@] The consistency problersPsAT PA) isin P. LetM be
one of IA, CRA, RCC5, and RCC8. ThesPsSAT(B,,) is in P andCSPSAT(M)
is NP-complete.

A complete basic network iglobally consistenif any partial solution can be
extended to a global solution. The following theorem can ipectly proven by
exploiting the density of real numbers.

Theorem 2. Let M be one of PA, IA, and CRA. Then a complete basic network is

globally consistent if it is path-consistent.

We note that RCC5 and RCC8 do not have this property.

3The consistency problentssPSAT B ) andCsPSATBaq U {* 0 }) may have different com-
plexities. For example, there exists a cubic algorithm fdvieg complete basic CDC (cardinal
direction calculus) networks [B0], but it is NP-hard to sphasic CDC networks [26].

4This definition of path-consistency is different from thenganotion for finite CSP@EBZ].
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2.3. Extended qualitative CSP

By Definition[3, in the classical consistency problem, eaahable can in
principle take any value in the universe. In many practiggli@ations, however,
it is very common to have additional knowledge about soméelbes (cf. the
restaurant and MacDonald’s example in the Introductiorjictv will affect the
consistency of qualitative CSPs. It is therefore necedseextend the qualitative
CSP framework to allow restricted domains of variables.

Definition 6. Let M be a qualitative calculus on univergé. SupposeS is a
subset ofM. The consistency probleasPsAT;(S) is defined as follows, where
the subscript f’ stands for ‘finite’:

Instance: A 3-tuple (V,T",D). HereV is a finite set of variablegv;, vy,
...,u,}, Dis ann-tuple (Dy, Ds, ..., D,), where eachD; is eitherU or
a nonempty finite subset of, andT’ = {v;y;;v; : 1 < 4,7 < n} is a binary
constraint network and each); isin S.

Question: Is there an instantiation : V' — U such that/(v;) € D, for each
1 and all the constraints i’ are satisfied?

We say that a variable; appearing in the instanc@/,I", D) is finitely restricted
if its domainD; is finite. If v satisfies all the constraints ifi andv(v;) € D; for
eachi, then we say is a solution of(V,T", D) and say(V,I",D) is consistenbr
satisfiable We call elements of each finite doma@mlandmarkf (V,T',D).

As a special case, if each finite domdin is required to be a singleton, we
write the corresponding consistency problesrsaT,(S), where the subscript
‘s’ denotes ‘singleton’.

An instance ofcspPsSAT(S) is clearly an instance of botbspsAT,(S) and
CSPSAT;(S): we only need to let each; be the universe.

Proposition 1. Supposes,, is the set of basic relations in a qualitative calculus
M, andS is a subclass oM. Then we have

i) CSPSAT(S) c CSPSAT,(S) c CSPSAT/(S);
ii) csPsSAT/(M) isin NP ifcSPSAT;(By,) isin NP;
iii) csPSAT;(S) isin NP ifcsPSAT,(S) isin NP;

iv) CSPSAT;(M) isin NP if CSPSAT, (B ) is in NP.

10
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Proof. i) follows directly from the definition. As for ii), supposeenalready have
a nondeterministic Turing machifig which solvescsPsAT:(B,) in polynomial
time. Given a non-basic constraint netwdik I", D), it is consistent iff there is
a consistent basic constraint netwarkthat refined” in the sense that for each
constraint(zay) in T' there exists a constrairftca’y) in I such thate’ ¢ «.

A basic constraint network that refinésis often called ascenarioof I'. We
devise a nondeterministic Turing machifi@as follows.T’ first guesses a scenario
(V,T7,D) of (V,T',D), and then call§} to decide the consistency ¢¥,1",D).

T' asserts the instance to be consistent ffieturns consistent in any branch. It
is clear that the nondeterministic Turing machifiedecides the consistency of
(V,T',D) in polynomial time. Similar argument applies to iii), angd follows
from ii) and iii) directly. 0J

By the above proposition, the computational complexitg 8PSAT; is in gen-
eral higher than that afSPSAT, andCSPSAT, as far as the same subsebf the
same calculus is considered. In particular, recall thatctassical consistency
problems for CRA, IA, RCC5 and RCCS8 are all NP-complete. Weelthe fol-
lowing corollary.

Corollary 1. The consistency proble@spPsAT,(M) and CsPSAT;(M) are all
NP-hard for M being any one of IA, CRA, RCC5, and RCC8.

To determine the computational complexity of reasoninghvaitqualitative
calculusM, we will begin withCSPSAT,(B4).

Our computational complexity results are summarised ineldbwhere qual-
itative calculusM is PA, IA, CRA, RCC5 or RCC8, and is eitherB,, or M
itself (i.e., we consider either complete basic networkihermost general case).

M PA CRA IA RCC5 RCCS8

S Bpa| PA | Bega | CRA | Bra IA" | Breos | RCC5 | Brees | RCC8
CSPSAT(S) P P P |NP-C| P |NP-C P NP-C P NP-C
CSPSAT,(S) P P P NP-C| P NP-C P NP-C | NP-C | NP-C
CSPSAT;(S) P | NP-C| NP-C| NP-C | NP-C | NP-C| NP-C | NP-C | NP-C | NP-C

Table 4: Computational complexity results summary

In the following sections, we first consider point-baseag&lPA, CRA, and
IA, and then consider region-based calculi RCC5 and RCC&ké&point-based
calculi, thegeometrical representatiofin particular, shape and location) of the
landmarks may affect the existence of solutions in the plaoenake the analysis
more meaningful, we assume that all the landmarks in RCCR&@S constraint

11
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networks are represented as polygons which may have ditfeceinected com-
ponents and holes. This assumption is practical becauyg@w are the most
widely used approximations of regions in spatial datahases

The NP-hardness results in Table 4 obtained in this papenangly achieved
by designing polynomial reductions from the Graph 3-Calogiproblem, which
is a well-known NP-complete problem. Recall that a grédph- (V. F) is 3-
colourableif there is a functionf : V' — {0, 1,2} such thatf(v) # f(v") for each
edge(v,v’) € E. TheGraph 3-Colouring problenis to decide whether a graph is
3-colourable.

3. Point-based Qualitative Calculi

This section discusses the consistency problems in thedadeframework
for the three point-based qualitative calculi, viz. Poitg@bra, Interval Algebra,
and Cardinal Relation Algebra.

3.1. Some simple results
To prove the computational complexity results, we will nekd following
notion of a finitely restricted sub-instance.

Definition 7. Let M be a qualitative calculus with univerde, and letS be a
subclass ofM. SupposgV,I',D) is an instance oCsPsAT:(S), whereV =
{Ul, .. ,’Un}, D= (Dl, S ,Dn) andI = {Uiaijvj}lsi,jsrz- LetV’' = {Ui : D # U}
be the set of finitely restricted variables in Supposé’’ = {v;,,vi,,...,v;, }.
LetI” = {v;, i, vi, }1<rse @aNAD" = (Dyy, Dy, ..., Dy, ). We call(V', IV, D),
which is also an instance @fspPsAT;(S), thefinitely restricted sub-instanaaf
(V.T',D).

For complete basic constraint networks, we have the fotigugeneral result.

Lemma 1. Let M be one of PA, IA, and CRA. Suppg3él’,D) is an instance
of csPsAT;(Br). Then(V,I',D) is consistent iffi" is path-consistent and the
finitely restricted sub-instance ¢¥,I", D) is consistent.

Proof. The necessity is clear. We prove the sufficiency, which useptoperty

that any consistent basic PA (IA or CRA) network is also glhbeonsistent.
Because the finitely restricted sub-instaif¢g, ", D’) is consistent, it has a

solution, say = (by,...,b:). Note that is a partial solution of the SPSAT(Bp4)

instancgV, T"), and thus, by Theoreni 2, can be extended to a solttioh(V, T").

It is clear thatv’ is also a solution ofV,I",D). Therefore(V,I", D) is consistent.
The cases for IA and CRA can be proven in the same way. O

12
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Using LemmallL, we are able to show the following computatioomplexity
results.

Theorem 3. For PA, we havecspPsAT,(Bp4) and CSPSAT,(PA) are in P and
CSPSAT;(PA) is in NP. LetM be IA or CRA. ThertspPsAT,(Br) is in P, and
CSPSAT,(M) andcsPsAT;(M) are NP-complete.

Proof. For PA, we recall thatspsAT(PA) can be solved irO(n?) time [43].
Suppos€V,I",D) is an instance of SPSAT,(PA). We show that the consistency
of (V,I',D) can be determined in polynomial time. For a pair of variablesnd

v; such thatD; = {d;} andD; = {d;} are both singletons, suppoéeav;) is

in I', and$ is the basic PA relation betweef andd;. It is clear that(V.T',D)

is inconsistent ifg is not included ino. Without loss of generality, we assume
a is a basic relation and = 5. Under this assumption, we show tHat I",D)

is consistent iff thecsPSAT(PA) instance(V,[") is consistent. The necessity
is clear. For the sufficiency, suppo§€,T") is consistent and has a consistent
scenario(V,I'y). Note that the finitely restricted sub-instance(®fI'y,D) is
consistent, as the constraint between any two variablds avitingleton domain
is the actual relation between the corresponding landmaBysLemmall, we
have(V,I',D) is consistent. Because the consistency14fl') can be decided
in polynomial time l[ZB], we know thatspsaT,(PA) is in P and consequently
CSPSAT,(Bpa) isin P andcsPsAT(PA) is in NP.

For M being IA or CRA, supposéV,I",D) is an instance o SPSAT,(B ),
and (V' 1V, D") is its finitely restricted sub-instance. Assume thahasn vari-
ables and/’ hasm < n variables. The path-consistencyloftan be checked in
O(n?®) time. Moreover, the consistency F’, I, D) can be decided i®(m?)
time, as we only need to check for each pair of variabjemndv; in vV’ whether
the unique landmarks specified for them satisfy the comgtiz@tween them.
By Lemmall, the consistency ¢#/,I",D) can be determined i®(n?) time.
Therefore,csPSAT,(Br) is in P. By Propositiofill, we knowspPsAT,(M) and
CSPsAT;(M) are all in NP. Meanwhile, the NP-completenesscsPSAT(M)
implies thatcspsAT, (M) andcspsAT; (M) are all NP-complete. O

The following subsections will respectively show that{§PsAT; (Bp.) is in
P butcspsAT;(PA) is NP-complete, and (iigSPSAT;(B,) is NP-complete for
M being IA or CRA.

SSupposeM is one of PA, IA, or CRA. Then this result can be generalisedrty tractable
subclassS of M that contains all basic relations.

13
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3.2. Point Algebra

We first propose a polynomial algorithm that solwePsAT:(Bp4) and then
provide a polynomial reduction from Graph 3-ColouringtePsAT: (P A).

Let (V.T',D) be an instance afsPsSAT;(Bp4). By Lemmall we know that
(V,T',D) is consistentiff is path-consistent and the finitely restricted sub-inganc
(V. T",D") of (V,T,D) is consistent. Because path-consistency can be deter-
mined in cubic time, we only need to devise a polynomial atbar for checking
whether(V’, 1", D) is consistent. To this end, we show that such a consistent
instance oCsSPSAT;(Bp4) has aminimalsolution in a sense.

Proposition 2. SupposgV,I',D) is an instance ofcsPsSAT;(Bp4) such that
D ={Dy,D,,...,D,} and eachD; is a finite set of real numbers. (¥,T',D) is
consistent, then there is a unique solut{en, ... ., a,,) such that; < a} (1 <i <n)
for any other solutior{a], a}, ..., al,). Furthermore, ifl" = {v; < v} }1<icj<n, then

r'n
- a1 =min Dy,
-ap=min{reDy:x>a 4} fork=23,... n.

Proof. Assumel’ = {v; < v; }1<i<j<,. This does notlose generality because we can
combine variables related by the€ ‘constraint and then sort the variables by the
‘<’ and ‘>’ constraints. EvenyD; is a finite set, sqV,I",D) has at most finitely
many, sayk, solutions. Supposé},as,...,a}) (i = 1,2,... k) enumerate all
solutions. Leta; = min{a;'.}lggk. We claim that(a,,as, ..., a,) is the minimal
solution. We only need to prove that it is a solution(®fI",D), i.e. to show

(i) eacha; isin D;; and (i) a1 < az < ... < ay. Becausen;l e D;, we know

aj = min{aj.}lggk is in D;. We next prover; < a;. Supposer, = aé for somej

by definition. Theru; = min{a‘ 1k < a] < a = ay. By using induction, we can
also proven, < as < ... < a,. Therefore (ay,as,...,a,) is the minimal solution
of (V.T',D). O

We next propose a polynomial algorithm that solesPsAT;(Bp4) based
on Propositio 2. For any instan¢®,I",D) of CSPSAT;(Bp4), We first check
whetherT" is consistent. If it is inconsistent, then so(ig,I',D). Otherwise,
we check whether the finitely restricted sub-instatigg I'",D’) of (V,I',D) is
consistent. To this end, we attempt to compute the minimatisa (a,, ..., a,)
by procedures described in Proposition 2. If in thtéh step{z € Dy : = > a1}
is empty, then we conclude that the sub-instance, and tleusrtginal instance,
is inconsistent. If we succeed in computitig, as, ... ,a,), then it is a solution

14
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of the sub-instance and can be extended to a solution of ifj@alrinstance. The
soundness of the algorithm is clear by the above argument.

Input: CSPSAT;(Bp,) instance(V,I',D)
Output: The consistency ofV,T", D)
1 if T is not consistenthen
2 return ‘Inconsistent’;
3 (V',I7,D") <« finitely restricted sub-instance ¢¥,T,D);
4 SortV'tov] < ... <v!, by I, modify D' correspondingly;
aj; < min Df;
for2<k<n’do
if ax—1 > max D; then
return ‘Inconsistent’;
ap < min{z € D : x> ag_1};

© 0 N o O

10 end
11 return ‘Consistent’.

Algorithm 1: SOLVING CSPSAT;(Bpa4)

Theorem 4. Algorithm[1 solve€spPSAT;(Bpa).

We next analyse the computational complexity of the alparitSuppose there
aren variables inl/, and the sum of the cardinalities of all finif¢ is L. Then the
input size isO(n? + L) (n? constraints and. points). The following proposition
shows the optimality of the algorithm.

Proposition 3. The computational complexity of Algorittiin 10¢n? + L).

Proof. Let (V,I',D) be an instance aSPSAT;(Bp4). The consistency df can
be computed irO(n?) time by AlgorithmcspPAN proposed in@ls]. Sorting”’
takesO(nlogn) time. Let/; be the cardinality o). Then stepd; < min Dy’
takesO(/;) time, and the-th loop body take®)(/;,;) time (¢ = 1,2,...,n/ - 1).
Therefore, the computational complexity of the algorits®{n? + nlogn + 1, +
lo+...+1ly)=0(n?+L). O

Despite the fact that bothspPSAT(PA) andCSPSAT;(Bp4) are in P, the next
theorem shows thatspsAT;(PA) is NP-hard. We prove this by using a polyno-
mial reduction from the Graph 3-Colouring problemaspsAT; (P A).

Theorem 5. The consistency probleaspsAT; (P A) is NP-complete.

15
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Proof. LetG = (V, E') be agraph, wher®¥ = {vy, ... ,v,}. Define acSPSAT;(PA)
instance(Ug, ', D) as follows

UG = {UQ, e ,un},
Do ={Duy,---,Du,}, whereD, ={0,1,2},
I'c= {Ul F Ujr : (UZ',’UZ‘/) € E}

That is, we construct for each vertexe V' a corresponding temporal variahle
which takes value fronf0, 1,2}; and we specify for each edge;, v ) € E a con-
straint(u; + uy). Itis clear thatG = (V, E') can be 3-colourable iffUq, ¢, D¢)
is satisfiable. Therefore the consistency probtesesaT;(PA) is NP-hard, and
hence NP-complete as its NP-membership has been identifietgoreni B. [

Remark 1. The NP-hardness afspsAT;(PA) is due to the uncertainty of the
non-equal ¢) constraints and the finiteness of the domains. It can begproivat
CSPSAT;(S) isin P for S = {<,=,>,<,>,7} (i.e., with+ removed fromPA). A
polynomial algorithm can be devised based on the obsenvéhtiat the concept of
a minimal solution still applies. The algorithm first mergles variables which are
required to be equal by the constraints (s [43]). Note tmdins of the merged
variables should also be revised as the intersection of tirgginal domains. The
algorithm then adopts a topological sort, during which edutitely restricted
variable is assigned a value in its domain as small as possibl

3.3. Cardinal Relation Algebra

To show thaitcsPsAT:(Bcra) is NP-hard, we design a polynomial reduction
from Graph 3-Colouring taspPSAT;(Bcra). SupposeG = (V, E) is a graph
with vertex setV = {vg,...,v,}. We construct an instandd/q,I'¢,D¢) of
CSPSAT;(Bcra) such thalUg, ', D¢ ) is satisfiable iffG is 3-co|0urab|§

First, for each vertex; € V', we introduce a spatial variable with domain

D, ={(3i,3i), (3i + 1,3i + 1), (3i + 2,3i + 2)}.

We sayu; is at positionp (wherep € {0, 1,2}), if it takes the poin{(3i + p, 3i + p)
in D,,. Second, for each edge = (v;,v) € E (assuming < '), we introduce a
spatial variablev; with domain

Dy, ={(3i+p,3i" +q) :p.qe{0,1,2},p # q},

5We assume that the constraint between two variables is tiversal constraint if it is not
specified inl'¢.
"We here specially thank the reviewer who suggested thisetegduction to us.
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and add two constrain{sv; £ u;) and(w; S u;) toI'¢. Thatis to sayw; should
be to the east of; and to the south af;,. The domain ofuv, is used to rule out the
cases when; andu; are at the same position (with respect to their own domains),
which correspond to the requirement that verticeandv;; cannot be coloured
the same as they are connected by edge

Note that eacltsPSAT;(Bcra) instance is a complete network. This means
that we should specify for each pair of variable$/in a basic CRA constraint. In
above we have specified such a constraint for two spatiaivi@su, andw; when
v; Is a vertex incident to edgg in G. There are three other cases unspecified:

* The constraint betweeny andu;/;
* The constraint betweeny andw;, wherev; is not incident to edge; in G;
 The constraint between; andw;.

In each case it is straightforward to specify a basic comdtisetween the two
spatial variables.

Example 1. Supposez = (V, E) is a graph, wherd/” = {vg,v,v,} and E =
{(vo,v1), (v1,v2)}. Let(Ug, ', D) be thecsPSAT:(Bora ) instance constructed
as above folG. ThenUg = {ug, uq,us, wp, w; }, With their domains shown in Fig-
ure[3. The constraints il are given in Tabl€l5, where constraints in black are
those corresponding to edgesin

Du« .

Lt up  up Uy Wy Wy

5 5 F— uw | EQ SW SW W SW

(3»3)\*. u o, . D_m : U EQ SW N W

) S I i Ug EQ NE N
= Do wy EQ SW
0.0) Wo EQ
Figure 3: Domains ofUq,T'¢,Dg) Table 5: Constraints dfUs,T'¢,Dg)

Proposition 4. GraphG = (V, E) is 3-colourable iff(Uq, ', D) is satisfiable.
Proof. Straightforward. 0J

As a consequence, we have:

17
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ozij‘NWN NE W EQ E SW S SE
Bij| di si oi fi eq f o s d

Table 6: Translation of the constraints

Theorem 6. The problentspPsAT:(Bcra) is NP-complete.

Proof. Since the reduction above is polynomial, we know thabSAT;(Bcra)
is NP-hard. Meanwhile, the NP-membershipasPsAT;(Bcra) follows from
Theorem B. Therefore;spsAT:(Bcra) is an NP-complete problem. O

3.4. Interval Algebra
To show thatcspPsAT:(B;4) is NP-hard, we design a polynomial reduction

from csPsAT;(Bcra). Note that an intervdle, y] corresponds to the poigt, v)

on the half-plan€g{(z,y) : =z < y}. SupposgV,I',D) is a CSPSAT;(Bcga) in-
stance, wher&” = {uy,...,u,}, I' = {u;au; : 1 <i,5 <n}, D= (Dy,...,D,).
Note thatD; is either the universe of CRA-r4 (viz. the real plane), or a fi-
nite subset ol/cz4. We now translat¢V,I", D) into a CSPSAT;(B;4) instance
(V'.1",D"), wherel” is a complete basic IA network. The translation maps

- each variable,; in V' to variableu; in V;
- each basic CRA relatiom,; to a basic IA relatiors;; as specified in Tablé 6;
- eachD, to D}, such that ifD; = Ucra then D] is the universe of I1AU; 4;
if D; is finite, thenD! = {[z,y + A] : (x,y) € D;}. HereA is a fixed large
number such that < y + A for any point(x, y) in any restricted domaip,.

We show that the translation preserves consistency.

Proposition 5. An instancgV, ', D) in CSPSAT;(Bcra) is consistent iff the cor-
responding instancéV’, I, D") in cSPSAT;(B;4) as constructed above is con-
sistent.

Proof. Suppos€ay,...,a,) is a solution of(V,T", D), wherea; = (x;,vy;) € D;.
Define intervak = [z;,y; + A] € D). We prove thata], ..., a}) is a solution of
(V7,I7,D"). Itis clear thata € D! by the translation fronD; to D.. We only
need to verify that all the constraints it are satisfied bya/, ..., a}). This can
be done by discussing each of the nine kinds of basic IA caims&rinl™.
Supposéu; diu}) is a constraintin”. We need to prover;, y;+A] di [z, y;+
Al ie.,x; <z; <y;+A < y;+A. By the translation we know thét;; NW ;) isin
I'. Thereforg(z;,y;) NW (z;,y;), i.e.,z; < x; andy; > y;. Meanwhilez; < y;+A
is guaranteed by the selection Af so the constraintu; di }) is satisfied by
(al,...,al). The remaining eight cases can be proven analogously. O
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Therefore we obtain the following result.
Theorem 7. The consistency probleaspPsAT;(B;.4) is NP-complete.

Proof. Since the reduction froncSPSAT;(Bcra) t0 CSPSAT;(B4) is polyno-
mial, we know that sPsAT;(5;4) is NP-hard. Moreover, by Theordr 3, we have
CSPSAT;(B;4) is in NP. This shows thatspsAT;(B;.4) is NP-complete. O

So far, we have completed the discussion for the three fpais¢d qualitative
calculi. The next section will address region-based qaialie calculi.

4. Region-based Qualitative Calculi RCC5 and RCC8

This section discusses the consistency problems over RBERECS in the
extended qualitative CSP framework. Note that althoughutiieerse of RCC5
(or RCCB8) is the set of all regions in the plane, it is reastmaibassume that all
landmarks are represented as polygons. This is becausedaks] as inputs of in-
stances, are required to be representable in computerthdnwords, they should
be finitely representable. Meanwhile, general polygonsclwmay have holes or
multiple components) are the most widely used approximataf regions: they
are simple, intuitive, and express@e.

Under the assumption that all landmarks are representedrsrgl polygons,
we show in this section that all these consistency problemsraNP. In par-
ticular, we show thatspPSAT,(Brccs) is in P, but thatcsSPSAT:(Brocs) and
CSPSAT,(Bgrces) are all NP-complete. It is not surprising thegPSAT: (Brccs)
is NP-complete if we regard the finitely restricted sub-anse of each instance
of CSPSAT;(Brces) as a classical CSP, but the NP-hardnessssfsAT, (Brces)
is quite undesirable. One way to circumvent this obstacke igse a stronger
connectedness instead of the one used in Defirlilion 4.

The remainder of this section is organised as follows. Weifiteoduce a sim-
ple computational complexity result in Section 4.1 showhaCSPSAT: (Brccs)
is NP-hard. Several of our results are related to computiaegntersection of land-
marks (represented as polygons), so we analyse its congnabtomplexity in
Section 4.2. The tractability afSPSAT,(Brccs) is then proven in Section 4.3.
Section 4.4 shows thatspPsAT,(Brcces) is NP-complete if the RCC8 relations
are interpreted as in Definitidd 4, and proves that the samielgm is in P (i.e.
tractable) if we adopt another interpretation that usesomger connectedness.

8Another way to represent regions is to use semi-algebras; wdich are more expressive
than polygons but the set operations are much more comgdicat
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4.1. The NP-hardness GBPSAT;(Brccs)

We prove the NP-hardness oE8PSAT:(Brccs) by designing a polynomial
reduction from the Graph 3-Colouring problem.

Proposition 6. The consistency probleasPsAT;(Brccs) is NP-hard.

Proof. LetG = (V, E) be a graph, wher& = {v,...,v,} andE = {eyg, ..., emn}-
For each vertex ¢ V, we introduce three regions (represented by rectangles)
r9 rl andr?; for each edge ¢ F, we introduce three regions (represented by

rectangles)?, s! ands?. These rectangles are required to be pairwise disjoint.

e) e €

For anyl <i <n and0 < p < 2, we define a landmark as
17 =rb ul J{st : edgee is incident to vertex; }.

Because rectangle$, s? are pairwise disjointfor € V e € Eandp € {0,1,2},
it is clear that? n l;? =gif p+q. Fori # j andp = ¢, itis also straightforward to
see that] n ] = s¢ is a rectangle it = (v;,v;) € E'andlf nl] = @ otherwise.

TheCcsPSAT,(Brocs) instancg(Vg, ', Dg) is constructed as follows.

VG = {u(]uub cee 7un}7
Dg = {Duy, Duys- -, Dy, }, WhereD,, = {19,1},1%},
FG = {UZDRUJ}

Note that spatial variable; corresponds to vertex, and “vertexv; is coloured
with colourp” corresponds to that “variable takes valué!.” It is routine to show
that G is 3-colourable iff(V,I'¢,Dg) is consistent. Because the reduction is
polynomial, we know the consistency probl@®pPsAT; (Brccs) is NP-hard. [

4.2. Planar subdivision and overlay computation

In the following subsections we will see that computing theeisection of
landmarks (represented as polygons) is critically impuntehen solving the con-
sistency problems for RCC5 and RCC8 in the extended qua#t&@SP frame-
work. To facilitate the discussion, this subsection aredyghe computational
complexity of computing the intersection of multiple pobygs. Our discussion
is based on thdoubly-connected edge lI@CEL) structure for representing pla-
nar subdivisions (cf. e.gD[Q]).

A planar subdivisions an embedding of a planar graph in the plane such that
its edges are mapped into straight line segments. It ceredisertices, edges, and
faces.Verticesare endpoints of line segmengsigesare interiors of line segments,
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andfacesare maximally connected subsets of the plane with all edggsertices
removed. In particular, each face is a connected open sethwiay have holes.
The outer face is unbounded, but every other face is boundedts boundary
consists of vertices and edges. Tdmmplexityof a planar subdivision is defined
as the sum of the number of its vertices, the number of itsgedgel the number
of its faces. For example, the planar subdivision of thearagie in Figuré ¥4 (a)
has two faces (Figuid 4 (a)), four vertices (Figure 4 (b)) fannl edges (Figurgel4
(c)), and thus has a complexity of tén.

In what follows, we write RCE, EDGE, and VrX respectively for the set of
faces, the set of edges, and the set of vertices in a plandiviibn, and use
lower Fraktur symbol$, ¢, v (possibly with indices) to denote, respectively, faces,
edges, and vertices in the subdivision.

The following lemma shows that the complexity of a planardsuision is of
the same order as the number of its vertices.

Lemma 2. Let S be a planar subdivision withk vertices. Then the complexity of
Sis O(k).

Proof. Recall that each planar subdivision is an embedding of aaplgraph in
the plane. By Euler’s formula (cﬁiLO]), i$ hasC' connected components then

|[VTX| - |EDGE| + |FACE| = C' + 1.

Furthermore, since each face is bounded by at least thressedgd each edge
touches at most two faces, it is straightforward to prove tha

|[EDGE| < 3|]VTX| and |FACE| < 2|VTX].
Therefore the complexity of is O(k). O

In Computational Geometry, a planar subdivision is usuadjyresented by
the doubly-connected edge list (DCEL), where each edgensidered as two di-
rected half-edges with opposite directions. The DCEL oflzdsusion maintains
a table for each vertex, each half-edge, and each face. bledHhows the re-
trieve from an object (viz. vertex, half-edge, or faced)tsamcident (or adjacent)
objects efficiently. For a planar subdivisiéSnwith complexityk, the DCEL ofS
takesO (k) space.

9To avoid potential confusion, when discussing the time wes® it takes for computing an
overlay, we always explicitly use the temomputational complexity
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S €1

€3

(@)

(d)

Figure 4: An example of subdivision

The overlayof two planar subdivisions; and S, is the planar subdivisioR
induced by all edges frorf; and.S;. Each vertex of5 is either a vertex ob; or
S,, or the intersection point of two edges frash and.S,. Each edge is either an
edge ofS; or S,, or a part of an edge df;, cut by an edge ofs, or vice versa.
Similarly, each face of is either a face of; or S,, or the intersection of two
faces fromS; andS,. Figured (e) and (f) illustrate the overlay of the rectangl
in Figure[4 (a) and the triangle in Figurk 4 (d), which has fawes, eleven edges
and nine vertices, and hence has a complexity of 24.

We have the following result about the complexity of the tser

Lemma 3. Let S; and S; be two planar subdivisions of complexity and k-
respectively. Then the overlay 8f and .S, has complexity) (k1 k-).

Proof. Note that each vertex in the overlay is either a vertex¥gfor a vertex
of S5, or the intersection point of two edges from different swixions. As the
numbers of vertices and edges $f are less thark;, the overlay ha®) (k1 k;)
vertices. The complexity of the overlay then follows frormumal 2. O

The computational complexity of the overlay computatioaggollows.
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Proposition 7. [, Theorem 2.6] Lef; and.S; be two planar subdivisions of com-
plexity £, and k, respectively. Then the overlay 8f and S, can be constructed
in O((ky + ko + k) log(ky + ko)) time, wherek is the complexity of the overlay.

Propositior( 7 only considers the overlay of two subdivisioff-or the con-
sistency problemsspPSAT,(Brccs) and CSPSAT,(Brccs), we heed to compute
the overlayO of the subdivisions induced by landmarks. ...l (m > 3). At
first glance, the computational complexity seems to be vaglg.h'Suppose each
landmark is represented by a polygon witlvertices. If we use Lemnld 2 suc-
cessively then the overlay will have complexi@y k™). As a consequence, the
computational complexity of computing the overlay will bgpenential if we use
Propositiorl ¥V successively.The following result showd,thawever,© can be
computed in polynomial time. The key idea is that the comipjexf the overlay
of them subdivisions is, instead @?(%£™), polynomial inm andk (if we assume
each landmark hasvertices).

Lemma 4. Suppos€; is a polygon withk; vertices for eachl < i < m. Let
K =% k; andO be the overlay of the subdivisions induced by these polygons
ThenO has complexity) (K2) and can be computed i0(mK?log K) time.

Proof. It is clear that there are in toté)(K) vertices and, by Lemnid 2)(K)
edges in the subdivisions induced by these polygons. Asweatéx in the overlay
O is either a vertex of a subdivision, or the intersection poirtwo edges from
different subdivisions, we know th& hasO(K?) vertices. By Lemmal2, the
complexity of O is alsoO( K?).

Write O; for the overlay of the subdivisions induced by the firgtolygons
ly,...,l;. The complexity of eackd; is no more than that a® = O,,,. By Propo-
sition[1 we knowQ,,; can be computed iO((K? + K + K?)log(K? + K)) =
O(K?log K) time from©;,; andl;,;. Therefore, the overla§) can be computed
in O(mK?log K) time fromly, ..., 1,,. O

We note that the DCEL o® contains incidence and adjacency information
between two elements imEE, EDGE, and VTx. The relationship between such
an element and a polygon inn however, is not provided. For example, the DCEL
does not tell us whether an edge lies inside, outside, or@hdhndary of a poly-
gon/;. To represent the complete topological information of th/gon system
L, we introduce the following functions, which can be complutg supplying a
number of attributes to each object in the DCEL of the overlay
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For each polygori; € L, we write Zeace(l;) (Erace(li), resp.) for the set of
faces inO that lie in the interior (exterior, resp.) of
Zrnce(li) = {f e FACE : f C [T}, (1)
Ernce(l;) ={f e FACE: fn; = @}. (2)

It is clear thatZpace(l;) U Epace(l;) = FACE andZeace(l;) N Epace(li) = @.
For each polygom;, we define

Tepce(l;) = {¢e ¢ EDGE: e}, (3)
gEDGE(li) = {e € EDGE- enN ZZ = @}, (4)
BEDGE(li) = {e c EDGE: ¢ C 8@}, (5)
and similarly,
Zyrx(l;)) ={veVTX:0el}, (6)
Evix(l;) ={peVTX 0 ¢}, (7)
BVTx(li) = {U eVTX:pe 6[1} (8)

Because each edge and each vertex is either in the interigrasfin the exterior
of /;, or on the boundary df, we know that{ Zepce(l:), Eepce(li ), Beoee(li) } is @
partition of EDGE, and{Zy+x(1;), Evix(1;), Bvrx (1;) } is a partition of \rx.

We provide an example to illustrate these functions.

Example 2. Supposel. = {l,l»,l3} consists of the three polygons illustrated
in Figure[8(a). Then we havBACE = {fo,...,fs}, VTX = {vy,...,01;} and
EDGE = {e¢1,...,¢14}, as shown in Figur€l5(b-d). In particular, for landmartk
we have

Trnce(l1) = {F1.F2} Tvex(l) = {06,011}, Teoce(ly) = {eg, e10, €11},
Erace(l1) = {Jo, T3, 4} Evrx(l1) = {v3,05,09}, Eevoe(l1) = {ea, 03, ¢7,e8, 9},
BVTX(ll) = {Ulu 027 077 t)107 U47 U5}7 BEDGE(ll) = {91, €12, €13, €14, €4, e5}'

Together with the functions defined il (1)-(8), the DCEL o¢ thverlay of
polygons inL completely describes the topological information of pagg in

L. The following lemma shows that these functions can alsodwepetited in
polynomial time.

Lemma 5. Supposé; is a polygon withk; > 2 vertices for each <i < m. LetO
be the overlay of all these polygons, akidoe the sum of alt;. Then the functions
defined in[(IL){(B) for alll < i < m can be computed i®(m?K?) time in total.
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Figure 5: Example of the overlay @f = {l;,l2,13}.

Proof. As in the proof of Lemmal4, supposg, is the overlay of the first poly-
gonsly,...,ly andO = O,,. For each element (i.e., a face, edge or vertex)
overlay O;, we introduce an additional vector to represent the relabetween
c and polygond, ls,...,l;. When updating the overla§; to O,,;, we need to
update these vectors correspondingly. Note that €chasO(K?) elements.
There areD(K?) vectors, each of which has< m indices. Therefore we need
O(mK?) time to update all vectors for each overi@y, and thusD(m?K?) time
in total for ©. The functions in[(f1)E(8) can be computed from the vectorgdo
directly in O(mK?) time. In summary, it takes an additionalm?K?2) time to
compute all the functions. O

Combined with Lemm@l4, this shows that the overlay and thetfons can be
computed inD(m?K?log K') time.

4.3. Solving basic RCC5 constraints involving polygonatiaarks

This subsection shows thasPSAT,(Brccs) is in P, provided that all land-
marks are represented as polygons. We obtain this by givingcassary and
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sufficient condition for deciding the consistency @§PSAT,(Brccs) instances,
which can be checked in polynomial time.

In what follows, we write an instance 08PSAT, (Brccs) Of CSPSAT, (Brecs)
explicitly as(V w L,T"), whereV = {vy,v,,...,v,} is the set of unrestricted vari-
ables,L = {ly,1s,...,l,,} is the set of uniquely restricted variables. We write, for
simplicity, /; for the only value (viz. a polygonal landmark) it takes ansguese
that the constraint between two landmarks is the actuaioalaetween them.

4.3.1. A necessary and sufficient condition

SupposgV v L, I") is an instance 0€ESPSAT,(Brccs), whereV = {vq,vs,
.oy andL = {l,ls,...,l,}. Let O be the overlay of polygons ifh. Recall
that for each/, and each facg in O, § is either inZg\ce(l;) (the set of faces
contained iri;) or in Eeace(l;) (the set of faces that lie outsidg. Constraints i’
may impose similar relationships betweeand the variables ifv. For a variable
v;, the constraints abowt may forcef to be part ofv;, or outsidey;. Preciselyj is
required to be part af; if there is a landmark; such thaf € Zg,cc(/;) andl;PPuv;,
andf is required to lie outside; if either v;DRI; andf € Zgace(l;), or v;PPI; and
f € Erace(l;). For each variable; € V, we thus defin€gace(v;) and&pace(v;) as
follows:

IFACE(Uz‘) = U{IFACE(lj) : leP'Ui}v (9)
gFACE(U’i) = U{IFACE(lj) . 'UZDRZJ} @] U{gFACE(lj) . UZPPZJ} (10)
Example 3. SupposdV w L,I") is an instance o€ESPSAT,(Brccs), wherel =

{1} and L = {ly,1,,l3}. Landmarkd,, 5,3 are shown in Figurél5(a). The con-
straints related ta), are specified ag PPv,,[,PPv,v;POl5. Then we have

IFACE(Ul) = IFACE(ll) UIFACE(ZZ) = {f17f2,f37f4}, 5FACE(U1) =d.

The following proposition asserts that no face belongs tih Be..:(v;) and
Erace(v;), given that the constraint network is path-consistent.

Proposition 8. SupposgV w L,T") is an instance ot SPSAT,(Brccs), Where
V = A{v,va,... 0.}, L ={ly,l2,...,1,,}, and each; is a polygon. Ifl" is path-
consistent, thefgace(v;) N Epace(vi) = 2.

Proof. Assumef € Zeace(v;) N Erace(vi). By definition there exist; andl;, such
that!;PPv; andf € Zeace(;), and either (i; DRI, andf € Zeace(lx) or (i) v;PPI

andf € Erace(lx). We show that both cases lead to a contradiction. For the first
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Constraint Conditions
Ernce(vi) U Erace(l;) # FACE,
v;POL; Ernce(Vi) U Zpace(l;) # FACE,
IFACE(UZ') @] gFACE(lj) + FACE
Uz'PPlj IFACE(Ui) * IFACE(lj)
lePUz‘ gFACE(Ui) # gFACE(lj)
Ernce(v;) U Epnce(v;) # FACE,
v;POv; Erace(Vi) U Zeace(v;) # FACE,
IFACE(Ui) U gFACE(Uj) + FACE
’UiPPUj IFACE(UZ‘) @] gFACE(Uj) + FACE

Table 7: Conditions for extended RCC5 constraint network

case, we know c [, nl;, while the path-consistency dfimplies that ;DRI since
[;PPv; andv;DRI;. For the second case, we hgve [; andfnl; = &, but the
path-consistency df impliesi;PPI; sincel;PPv; andv;PPI. O

The following theorem provides a necessary and sufficientliton that de-
cidesCsPSAT,(Brccs). Note that the condition only involves

FACEazFACE(lj)a gFACE(lj)azFACE('Ui)a gFACE('Ui)a

and constraints in the network, hence it can be checked edtestructing the
overlay of all landmarks and computifig.ce(v;) and&eace(v;) for eachu;.

Theorem 8. SupposéV  L,I') is an instance o€ESPSAT,(Brccs), whereV =
{v1,v9,... 0.}, L ={l1,ls,...,l,n}, and eacH, is a polygon. ThefdV w L,T") is
consistent, if and only if

» I'is path-consistent.

e Foranyw; € V, Epace(v;) # FACE.

« All the conditions in TablE]7 hold.

Conditions in Tabl&]7 are very natural. For instance, thegtomonditions for
constraint(v;POl;) guarantee, respectively, that (j)is not a proper subset &f,

(i) v; is not a proper superset bf and (iii) v; may overlap with;, i.e., not every
face inZgace(l;) is excluded fromy;. Consider Examplil 3 again.
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Example[3 (continued)

In this example, we hav&r,ce(v1) = {f1,f2,f3,fa} and Eace(v1) = @. Since
Eence(l3) = {Fo,f1.a}, we KNOWZeace(v1) U Epace(ls) = {fo. 1, f2. f3. f4} = FACE.
Becausdv;POIl3) € I', Row 3 of Tabl€T is violated. By Theordrh 8 we know this
instance is inconsistent.

We prove the necessity part here and leave the sufficientyghapp

Proof of Theorerhl8 (Necessitypuppos€as, . .. ,a, ) is a solution ofl’, wherea;
is assigned to;. Because eachy has a nonempty interior, there exists at least one
facef such thaf n a; is nonempty. Clearly ¢ Erace(v;) since faces i€eace(v;)
are all disjoint froma; (otherwise @R or PP constraint is violated). Therefore,
Erace(v;) # FACE.

If (v;POLl;) e I, then by assumption we havgPOl;. By definition of PO
(see Tablél3), we know that andi; have a common interior point. This implies
that there exists a fagethat contains an interior point @f n/;. Facef is neither
iN Epace(v;) NOr inEeace(l;). That is,Eeace(vi) U Erace(l;) # FACE. Similarly, we
know that neithe€eace(v;) U Zeace(l;) = FACE NOr Zeace(v;) U Erace(l;) = FACE.

If (v;PPLl;) € I, thena,PPl;. Becausé; is the regularised union of all faces
it contains, i.e.l; = U{f: f € Zeace(l;) }, We know there exists at least one face in
Trace(l;) that is not inZpace(v; ). This ShOWSTeace(v;) # Zeace(l;)-

The remaining cases are either straightforward or simdathe above two
cases. ]

Using TheorenI8, we are able to determine the consistenayyahatance of
CSPSAT,(Bgrces) in the following procedure:

- ComputeZeace(l;) and Exace(l;) for each landmark; (this relies on the
computation of the overlay planar subdivision.

- ComputeZeace(v;) andEeace(v;) for each variabley;.
- Check the conditions in Theordm 8.

Therefore the computational complexity of solviagPSAT,(Brccs) consists of
three parts, corresponding to (i) computifigee(l;) and&eace(l;), (i) computing
Trnce(v;) andEgace(v;), and (iii) checking the conditions in Theorér 8. Putting
them together, we come to the following theorem.
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Theorem 9. SupposéV w L,I') is an instance o€ESPSAT,(Brccs ), whereV =
{v1,v9,... 0.}, L ={l,ls,...,l,,}, and each; is a polygon. Lek; be the com-
plexity of the planar subdivision induced by and let K = X7 k;. Then the
consistency ofV v L, ") can be decided i@ (n3 + n? K2 + m?2K?log K) time.

Proof. Lemmag# anfll5 show thé, the overlay of all landmarks if, together
With Zeace(l;) and Eeace(l;), can be computed i (m?K?2log K') time. More-
over, allZgace(v; ) andEeace(v; ) can be computed i@ (nm K?) time by definition.
For the conditions in Theorefd 8, it takéx (n + m)?3) time to check the path-
consistency of’, andO(K?2) time to check each of the remainiGgn(n +m))
conditions. Therefore, it take@((n + m)3 + n(n + m)K?) time to check all
the conditions in Theoreim 8. Summing these up, the consigteh(V v L,T")
can be determined i®((n + m)? + n(n + m)K? + m?K?log K') time. Note
thatm < X7k = K. If m < n, thenO((m +n)3) = O(n?); if n < m, then
O((m +n)?) = O(m3). In both cases we hav@((m + n)3) = O(m? + n?).
Similarly we haveO(mnKk?) = O(m2K? + n2K?). Therefore,

O((n+m)®>+n(n+m)K?+m?K?log K)
=0((m?+n®) + (NPK*+m?K?) + m?K?log K)
=0(n®+n’K? + m?*K?log K)

and the consistency ¢ w L, T") can be decided iV(n? + n? K2 + m? K?log K')
time. O

As a direct consequence, we have

Theorem 10. Assuming that all landmarks are represented by polygors) th
the consistency proble@sPsAT,(Brccs) is in P, and the consistency problems
CSPSAT;(Bgrces ), CSPSAT,(RCCS), andcsPsAT;(RCCH) are all NP-complete.

Proof. It follows directly from Theoreni 19 thatSPSAT,(Brccs) is in P. More-
over, by Propositiof]1l we know thatsPsSAT;(Brces), CSPSAT,(RCCH), and
CSPSAT;(RCC5) are all in NP. The NP-hardness ©$PSAT; (Brccs) is proven
in Propositio 6, and the NP-hardnesssPsAT,(RCC5) andcspPsAT (RCC5)
follows from the NP-hardness afsPSAT(RCC5). O

Although csSPSAT,(Brces) is in P, we show in the next subsection that the
consistency probleraspPsAT, (Brccs) is NP-hard.
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4.4. Solving basic RCC8 constraints involving landmarks

This subsection investigates the consistency prolidersAT, (Brccs). First,
we show that the problem is NP-hard by exploiting the fact tilva polygons may
have multiple ‘meeting’ points. Second, we show that théofam is still in NP
by providing a polynomial nondeterministic algorithm. Weh consider another
interpretation of the RCC8 model by using a stronger cormugrss. Under this
interpretation, we show th&tsPSAT, (Brccs) is still tractable.

4.4.1. The NP-hardness 06PSAT,(Brcocs)
We reduce the Graph 3-Colouring problem to t8®SAT, (Brccs) problem.

Proposition 9. Assuming that all landmarks are represented by polygorss, th
consistency problemsPsAT, (Brccs) is NP-hard.

Proof. Supposez = (V, F) is a graph and” = {vy,...,v,}. We construct a
CSPSAT,(Bgrces) instance(Vg w L, T';) as follows. The landmark sét is in-
dependent of the choice ¢f and contains the two polygonsand!’ in Figure[6
(a). Note thatl and!’ are externally connected and have exactly three meeting
points @y, 1 and -, which are used to mimic the three colours in the Graph
3-Colouring problem.

I 0

=Zp

(a) landmarkg and!’ (b) candidate regiong’ (p=0,1,...,n)

Figure 6: lllustration for the reduction fa@sPSAT,(Brccs)

The spatial variable séf; is defined agug, u1, ..., u, }, where spatial variable
u; corresponds to vertex in V. The constraint networK, is defined as follows.

FG = {UZTPPZ} U {UZECl’} U {UZDCUJ S (Ui,’l}j) € E} U {UZECUJ : (Ui,’l}j) ¢ E}

We have finished the construction of the instance. The idembehis reduc-
tion is as follows. Becauskand!’ have only three meeting points (Vi£), Q1
and(),), eachu,; can be connected t6only via (one or more of) the three points
Qo, Q1,Q-. Determining which point; should occupy is essentially equivalent to
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choosing a colour for vertex. Forv; andv;, if (v;,v,) is an edge irE, then they
cannot be coloured the same. Correspondingly, in such aloaseis a constraint
u;DCu;, which forbids that:; andu; occupy the same point i)y, Q1, Q2 }.

We now prove that- is 3-colourable iff(V; w L, ') is consistent. Suppose
m:V - {0,1,2} is a valid 3-colouring of5. We choose three candidate regions
r?, r1 andr? for each variable:;, wherer? is a triangle contained ihwith a vertex
being@,. The candidate regiong, Y, ..., are externally connected &,, as
illustrated in Figuré6 (b). If we assigrﬁ(”i) to u;, then all theDC constraints are
satisfied. This is becausé;,"" andr;r(”") are connected iffr(v;) = w(v;). This
assignment, however, cannot fulfil all t&& constraints. For each unsatisfied
EC constraint(w;ECu;), we introduce a pair of rectangleg andr;;, which are
external connected and contained.iWWe require that these rectangles are small
enough and disjoint from any other rectangtes, r;,;, and any triangle’. We
then add-;; andr;; into, respectively, the candidate regions we have seléoted
andu;. Itis routine to verify that the modified assignment satss# constraints
in I and hence is a solution ¢f/; w L, T'¢).

For the other direction, suppoé®, . .. ,a, ) isa solution o VowL,I';). Note
that eachu; occupies at least one point {1y, Q1, Q- }. Definer : V - {0, 1,2}
by assigning; the smallest indey such thai:; occupies),. The assignment
is a valid 3-colouring for graplé:. In fact, suppose (v;) = 7(v;) = p. Then by
definition botha; anda; occupiesy,. Hence(u;DCu;) is not a constraint ift';,
which happens only whefu;, v;) ¢ E.

The reduction given above is polynomial because there dygwo landmarks
and |V| spatial variables ifV; w L,I'¢). Therefore, the consistency problem
CSPSAT,(Brces) is NP-hard. O

In the next subsection we show tlegPSAT, (Brocs ) is stillin NP by design-
ing a nondeterministic algorithm.

4.4.2. A nondeterministic algorithm fasPSAT, (Brcocs)

SupposgV v L, I") is an instance 0€ESPSAT,(Brccs), whereV = {vq, v,
ooty L={ly, 1y, ..., 1}, and eachi; is a polygon. We write) for the overlay
of all landmarks inZ,, and define

z'.FACE(li)a gFACE(li)azEDGE(li)v gEDGE(li)v BEDGE(li)szTX (li)7 gVTX (l’i)7 BVTX(li)

as in [1)4(8) for representing the topological relationsneen faces, edges, ver-
tices inO and landmarks in.. As in the case oESPSAT,(Brccs), we extend
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these definitions from landmarks to variables. In the follmyywe say an edge
or a vertex in O isincidentto a facef in O if e or v is contained in the boundary
of f, and write

Seace(b) ={f € FACE : v is incident tof}, (11)
Skace(e) ={f € FACE : ¢ is incident tof}. (12)

Note thatSr.ce(e) has exactly two faces angk..:(v) may have more than
two faces. These two functions can be directly obtained ftoenDCEL of the
overlay.

Similarly as in the RCC5 case, we defiig,cc(v;) as the set of faces that
should be part of; and define€r.ce(v;) as the set of faces that should be excluded
fromv;.

gFACE(Ui) :U{IFACE(lj) i’UiDClj or ’UiEClj}U
U{gFACE(lj) ZUZ'TPPlj or UZNTPPZJ} (14)

Moreover, we defin€gyce(v;) as the set of edges that should lie in the inte-
rior of v;, Eepce(v;) as the set of edges that should lie in the exterios;pfnd
Beoee(v;) as the set of edges that are required to be parts of the bguoidar

IEDGE(Ui) :{e € EDGE SFACE(e) g IFACE(Ui)} U U{BEDGE(lj) . ZJNTPPUZ},

(15)
gEDGE(Ui) :{e € EDGE SFACE(e) g gFACE(,Ui)} @] U{BEDGE(lj) : UZDCZJ OI"UZNTPPZJ},

(16)
BEDGE(Uz‘) :{e € EDGE: SFACE(Q) mIFACE(Ui) *+J, SFACE(Q) N gFACE(Ui) # Q}-

(17)

A brief explanation for the above notions follows. For aneddf its two incident
faces (i.e., faces i8kace(¢)) are both iNZeace(v;) (Erace(vs), resp.), ther itself
should be in the interior (exterior, resp.) of If one incident face ot is in
Zeace(v;) while the other is i€eace(v; ), we know that should be on the boundary
of v; (i.e. ¢ € Bepee(v;)). Moreover, supposeis a boundary edge df (i.e. ¢ €
Beoce(l)))- If I;NTPPu;, thene should lie in the interior of; (i.e. ¢ € Zgpee(v;));

if v,DCI; or v;NTPPI;, thene should lie in the exterior of; (i.e. ¢ € Eepce(vi)).
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In the same way, we defirg) rx (v;), Evix(v;) and By« (v;):

IVTX (Ui) :{U € VTX . SFACE(U) g IFACE(U’i)} @] U{BVTX(l]) . ZJNTPP'UZ}, (18)

gVTX (Ui) :{U € VTX . SFACE(U) g gFACE(,Ui)} U U{BVTX(ZJ) . UZ'DC leI’ UZNTPPZJ},
(19)

Byrx(v;) ={0 € VTX : Space(v) N Zeace(vi) # &, Seace(v) N Epace(vs) # @} (20)

Note thatSe.ce(v) may contain multiple faces whilg:.c:(¢) contains exactly
two faces.

Proposition 10. Suppos€V v L,I") is an instance o€SPSAT,(Brccs), Where
V = A{v,va,...,0.}, L ={ly,la,...,1l,}, and each; is a polygon. IfT" is path-
consistent, then for each variablewe have

(1) Zrace(vi) N Epace(vi) = @.
(2) Zy+x(v;), Evrx(v;), andBy+x(v;) are pairwise disjoint.

(3) Zepee(vs), Eepee(vi), andBepee(v;) are pairwise disjoint.

Proof. (1) can be proven in the same way as Proposifion 8. The renggtiwb can
be similarly proven. Here we only shdlyx (v;) n By1x(v;) = @ as an example.

Suppose otherwise that there exists a vettexVTx such that € Zyx(v;)
andv € By« (v;). Because € By« (v;) we know there exist, f, that are incident
to v andfy € Zrace(v:), f2 € Erace(v;). This implies that not all incident faces of
are inZeace(v;). Therefore, by € Zy . (v;), we know there exists a landmaik
such that;NTPPwv; andv € By ((;).

As f5 € Erace(v;), by definition, we know that there exists a landmégrkuch
that either (i)fo € Zrace(lx) andv;DCIly or v;ECly; or (i) f» € Erace(lr) and
v;NTPPI, or v;TPPI,. Note thatl" is path-consistent. Case (i) implies that [,
andl;DCI,,. Because is incident tof,, this shows that is in /.. By v € Byx(l;)
we also have € [;. This contradicts the conclusidfDCI;. In Case (ii), we have
[;NTPPI;, andf, nl; = @. This also leads to a contradiction, becal$eTPPI,,
impliesv is in the interior ofl;, andf, n [, = @ implies thatv is not in the interior
of ;.

Therefore, we hav@y , (v;) N Byrx(v;) = @. O

For convenience, we define

PFACE(Ui) = FACE - IFACE(Ui) - gFACE(Ui)u (21)

PEDGE(Ui) = EDGE - IEDGE(Uz') - SEDGE(Ui)a (22)

PVTX(Ui) =VTX —IVTx(Ui) - Evrx (%‘)y (23)
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Constraint Conditions
v ECI; (25)
Erace(vi) U Erace(l;) # FACE,
v;POL; Ernce(v;) U Zpace(l;) # FACE,
IFACE(UZ') U gFACE(lj) + FACE
UiTPPlj IFACE(Ui) * IFACE(lj) and [235)
lePPUi gFACE(Ui) * gFACE(lj) and 125)
v;DCu; SinS; =2
v;ECu; (26)
Erace(vi) U SFACE(Uj) # FACE,
v;POv; Ernce(v;) U Zpace(v;) # FACE,
Trace(vi) U Epace(v;) # FACE
v;TPPv; | Prace(v)) # @ OF Zeace(vi) # Zrace(v;), and [26)

Table 8: Conditions for extended RCC5 constraint network

whereP denotes ‘pending’. We note that whi 4 (v;) is the set of vertices that
mustlie on the boundary of;, Py« (v;) contains all the vertices thataylie on
the boundary of;. The pairwise disjointness @ (v;), Evix (v;) andByx (v;)
implies By x (v;) € Pyrx(v;)-

Supposd is consistent and has a solutiopn vs, ..., 7,. Write S; for the
set of vertices on the boundary of i.e., S; = {v € VTX : v € 03;. Thenitis
straightforward to show that

gz' mIVTx(Ui) =, g@ N gVTx (UZ) =, andBVTx(vi) c g@ c PVTX (Uz) (24)

As we have seen in the reduction, determinfigcould be intractable. If all
S; are given in advance as a constraint for spatial variaplee., we explicitly
specify whether vertex in the overlay is on the boundary of for all ¢ andv;),
then the existence of such a solution can be determined ympuolial time.

Lemma 6. Suppos€V w L,T") is an instance 0ESPSAT,(Brccs), WhereV =
{v1,v9,... 0.}, L ={l1,ls,...,l,,}, and each; is a polygon. Assume furthermore
thatS; isasubseto¥ Tx fori = 1,2,... n. If " is path-consistent, thefV w L, ")
has a solution(©y, vs, ..., v, } such thav; n VTx = S; if and only if

(@) Erace(v;) + FACE and By (v;) € S; € Pyrx(v;) for eachu;.
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(b) All the conditions in Tablel8 hold, where

PEDGE(Uz‘) n BEDGE(lj) +*g Oor Si N BVTX(lj) * @, (25)
PFACE(/Ui) n PFACE(Uj) Qg Oor PEDGE(Ui) N PEDGE(Uj) +g or SZ n S_] * J.

(26)

Proof. See[ Appendix B. O

Based on this result, we have the following theorem.

Theorem 11. Suppose all landmarks are represented by polygons. Then the
consistency problencsPsAT,(Brccos) is NP-complete. Moreover, the consis-
tency problemEspPsAT;(Brccs), CSPSAT,(RCCS), andCSPSAT;(RCCS8) are

all NP-complete.

Proof. We propose a nondeterministic algorithm which soleessAT, (Brccs)-

The algorithm first guesses a configuration$fand uses it as an additional
constraint, then determines the consistency by Lernnha 11lte Nat eachs;

has O(K?) points, which are polynomial in the input size. Thus guessn
configuration ofS; takes polynomial time. Meanwhile, checking all the condi-
tions also takes polynomial time. Therefore, the extendetsistency problem
CSPSAT,(Brces) is in NP, and hence NP-complete as its NP-hardness has been
confirmed in Proposition] 9.

By PropositioriL 1L (i) and (i) we knoweSPSAT;(Brccs), CSPSAT,(RCCS),
andcspsAT(RCC8) are all in NP. Meanwhile, they are also NP-hard because
they all contain the NP-hard probleosPsAT,(Brccs) as a sub-problem. There-
fore, they are all NP-complete. O

Remark 2. Recall that in the reduction from the Graph 3-Colouring perh to
CSPSAT,(Brces) the landmarkl is a concave polygon which has three meeting
points with landmark’ (see Figurd b(a)). This property of landmarks plays a
critical role in designing the reduction. Another reductiftom the 3-SAT problem
to CSPSAT,(Brcocs ), given in ], also uses concave landmarks. Note that two
convex polygons cannot have multiple isolated meetingtpdire. they either
have only one meeting point or share a line segment). One m@gature that
the consistency probleogsPSAT,(Brccs) becomes tractable if all landmarks are
represented asonvexpolygons. This, however, is not true.

In fact, a polynomial reduction from 3-SAT ¢t®PSAT,(Brccs) exists even if
all landmarks are represented by rectangles with edgeslfeta the coordinate
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axes. The reduction is more complicated than the reductiovigeed in the proof
of Propositior®. The main idea is, although landmarks atecahvex regions,
spatial variables can be interpreted as arbitrary regioaad we can constrain a
spatial variable by using these rectangular landmarks inaywuch that it may
have multiple meeting points with some landmark. For examglpposé,, (1, (>
are three rectangles as shown in Figlie 7, wharePPl,, [,ECI, and [,EClI,.
Assume that is a spatial variable and TPP/y, vECI; and vECI,. These con-
straints requirev to contain (at least) one of the two poirips and)-, which may
be used to simulate a propositional variable. Based on thigesion, a reduction
from 3-SAT can be devised. Therefore, the consistencygsPsSAT, (Brccs)
remains NP-hard even for rectangular landmarks.

l()

h

Figure 7: lllustration for simulating a propositional vaple using rectangular landmarks

Remark 3. In practice, we may reduce the probleaPsAT,(Brccs) to SAT (i.e.
deciding the satisfiability of propositional formulas inrgonctive normal form).
As stated in the proof of Theoréml dSPSAT,(Brccs) is equivalent to deciding
whether there exis§; ¢ VTx for each: such that all the conditions in Lemrha 6
are satisfied. Note that, once the instance is given, theitond in the lemma
can be simplified (in polynomial time) into a set of condi@oncernings; of the
following forms:R c S; ¢ R', S;nR + @, S;nS; = @, andS;nS; # @, whereRk and
R’ are subsets of Tx determined by the instance. For eaghand each vertex €
VTX, we introduce a propositional variable which is assigtes iff v isin .S;. In
this way, each condition in one of the above forms is tramséat into a disjunction
clause or a number of disjunction clauses, and thessasAT, (Brccs) instance
is transformed into an equivalent SAT instance. Therefos@sAT, (Brccs) can
be reduced to SAT, which enables us to solve the problem hyefhieleveloped
SAT solvers.

The NP-hardness afsPSAT, (Brccs) is quite undesirable, as it is the simplest
and most fundamental case of introducing landmarks to réagavith RCC8. In
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the following subsection, we show that the same problemresdractable if we
interpret RCC8 relations by using a stronger connectedesson.

4.4.3. RCC8 model based on strong connectedness

In the standard RCC8 model, two regions are considered tmiveected if
they have a common point. Consequently, two externally eotad EC) regions
may share one or more isolated boundary points (see Higaj® @6 this sub-
section, we turn to another interpretation of RCC8, whioksus stronger version
of connectedness: two regions are considered as connéc¢tey ishare a com-
mon curve where acurveis defined as a topological embedding of the closed
interval [0,1] in the plane. As a result, two non-overlaggpiagions are externally
connected iff their boundaries share at least a curve. Ay;me have

Definition 8 (RCC8 algebra based on strong connectednéss)lU be the set
of nonempty regular closed sets, @gions in the real plane. The RCC8 algebra
based on strong connectedness, written RCiS§enerated by the following eight
topological relations

DC,EC,PO,EQ, TPP,NTPP, TPPi, NTPPi,

whereTPPi and NTPPi are the converses aGfPP and NTPP respectively, and
EQ is the identity relation, and for two regionsb,

» aDCb iff a n'b does not contain any curve;

* aECbiff a° nb° = g anda n b contains at least one curve;
* aNTPPY iff a c b andda n 9b does not contain any curve;
* aTPPb iff a c b andda n 0b contains at least one curve;

* aPObiff a°nb°> +@anda ¢ b, b ¢ a.

It is easy to see that this connectedness relation (i.e.aimplement oDC) is
stronger than (i.e. contained in) the connectednessaglgiven in Definitiod 4.

Intuitively, the NP-hardness afSPSAT, (Brccs) (for weak connectedness) is
due to that there are exponentially many possibilitiesofthe intersection of
VTx and the boundary of;), since points inS; may be evidences &C con-
straints (cf. the reduction in Sectibn 4}4.1). In the strapgnectedness inter-
pretation, however, isolated meeting points have no effent RCC8 relations.
ThereforeS; may be ignored safely and the proble®pPsAT, (Brccs ) becomes
tractable, as shown in the following theorem.
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Theorem 12. The consistency probleasPsAT,(Brccs ) can be decided in poly-
nomial time.

The computational complexity ocfSPSAT,(Brccs) is the same as that of

CSPSAT,(Brces) (see Theorermn]9), as the argument for RCC5 still applies here.

Precisely, the consistency of an instanceepPsAT,(Brccs ) can be decided by
checking the conditions in Lemni& 6 and neglecting all coonist involving S;.
That is, we discard the following conditions:

« the conditionByx(v;) € S; € Py« (v;) in condition (a);

« the conditionS; n S; = @ whenever(v;DCu;) € I" in Row 4 of Tabld8;
« the disjunctS; n By (1;) # @ in (25);

* the disjunctS; n S; # @ in (26).

The above theorem can be proven by modifying the proof of Laffrwith a
slightly different construction. The proof sketch is pred iffAppendix C.

Remark 4. The strong connectedness introduced above has been catside
[, ]. In particular, in [3], Borgo, Guarino, and Masolo anged that the classical
Whiteheadian connectedness may be considered too weakny cases. For
example, “a worm cannot pass from the interior of one applanother, which
touch just at a point, without becoming visible to the exteri so from the worm’s
point of view we might as well say that the apples are not ©efitly’ connected.”

As far as consistency and realisations are concernedﬂ] hE% shown that
any consistent RCC8 network has a solution in any RCC modw. clibic re-
alisation algorithm described there can be easily adapteddnstruct a solution
in the RCC8 model based on strong connectedness. This gmpligarticular
that an RCC8 network (without landmarks) has a solution im RCC8 model
with ‘weak’ connectedness iff it has a solution in the RCC&lehavith ‘strong’
connectedness.

5. Conclusion and future work

One major difference between qualitative CSPs and cldsS&8s is that the
domain of a qualitative CSP is always infinite, while that afassical CSP is usu-
ally finite. In this paper we proposed an extended framewarkjfialitative CSPs
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that supports finite domains. In the extended framework atiaftemporal vari-
able could take values from a finite domain or even a singlettis reflects de-
mands in applications such as urban planning and spatiay guecessing where
additional knowledge about variables may be available. @ete this extension
is necessary to bring QSTR closer to real-world application

We then investigated the computational complexity of swvihe extended
consistency problem for five very important qualitativeccdi] viz. PA, 1A, CRA,
RCC5 and RCC8. The results were summarised in Tdble 4, wbheeath calcu-
lus, we determined whether each of the four variants of tingistency problem is
in P or NP-complete. Recall that the classical consistermyipm is NP-complete
for IA, CRA, RCC5 and RCC8. This shows that, in general, theressiveness
of the extended framework of qualitative CSP does not inddliteonal cost in
computational complexity for these calculi. Under praaiteessumptions, we also
provided efficient algorithms for solving basic constraiimvolving landmarks for
all these calculi.

While this paper introduces landmarks in qualitative CSPRere is a related
work in classical CSPs. Recently, BulatoV [5] has given adlassification of
computational complexity for conservative constraintsfattion problems with
finite values, in which the set of values for each individuatiable can be re-
stricted arbitrarily. The solving algorithm and the progfgen there heavily use
the algebraic approach to (classical) CSP develop Hﬂ]l?One interesting
future research direction will be investigating the posisytof applying the solv-
ing algorithm given inﬁb], and, more generally, the algebegpproach, to solving
gualitative CSPs involving landmarks. We refer the readd@} for recent pro-
gresses of applying the algebraic approach for attackiadjtgtive CSPs.

In this paper, we have confined ourselves to the five most itapbgualitative
calculi, which are all binary calculi. The framework can beghtforwardly ex-
tended to any other qualitative calculus, binary or ternlany the computational
complexity has to be examined case by case. Take the teralanjes LR EB] as
an example. It has been shown that reasoning with complste &iad landmark-
free LR networks is already at least NP-hard and its NP-meshigeis still open
[@]. As a consequence, reasoning with complete basic LRar&s involving
landmarks is also NP-hard. Another direction of future aesle will be inves-
tigating the computation complexity for other well-knowaleuli, individually
or combined together. Because most of these consistenbjepre are at least
NP-hard, it is also necessary to develop either approximatods or practical
methods (e.g. those iE[lS 18]) for solving qualitativengoly or ternary) CSPs
involving landmarks.
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Appendix A. Proof of Theorem[8 (Sufficiency)

The sufficiency part is proven by a realisation algorithm ekhgenerates a
solution of the constraint network. The algorithm is simii@athe classical real-
isation algorithm introduced irﬂh@ZZ]. We first constrimt each variable);
a regiona; such that{a,,as, ..., a,} satisfies all except theP constraints, and
then construct region§:, s, ..., ¢, } which is a solution of".

For each variable;, we define

PFACE('Ui) = FACE - IFACE(Uz') - gFACE(Ui)- (A-l)

A number of ‘base regions’ are necessary in the construofi¢a, , as, . .. ,a, }.
Base regions are arbitrarily selected, as long as they argipa disjoint polygons
and are so small that their union does not contain any faceus#&’; to denote
the set of base regions being selected for variapld he construction is as fol-
lows, where eaclX; is initialised as the empty set.

1. For each facé € Price(v;), select a base region containedfiand put it
into .X;.

2. For anyi < j such that(v;POwv;) € I" andPrace(v;) N Prace(v;) * @, select
a facef in Peace(vi) N Prace(v;) and a base region containedfinPut the
base region into botl; and.X;.

3. Foreach, leta; = U X,.
4. For each, letb; = a;, uU{a; : (v;PPv;) e T'}.
5. For each, letc; = b; uU{l; : (I;PPv;) e T'}.
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Lemma 7. Suppos€V w L,I") is an instance 0ESPSAT,(Brccs), whereV =
{v1,v9,... 0.}, L ={l1,ls,...,l,,}, @and each; is a polygon. Suppodeis path-
consistent. Assume that b;, ¢; (1 < i < n) are as in the construction given above.
Then for each facge FACE we have

o fE gFACE(,Ui) |ff fﬂ C; = .
. fEPFACE(Ui) Ifff%cl andfﬂci¢®.

Proof. We first prove the necessity part.

Supposeg € Zeace(v;). There exists a landmarksuch thatf € Zgace(1) and
IPPv;. Becauseé c ¢;, the first statement holds directly.

Assumef € Erace(v;). Because each base region¥nis contained in a face
iN Peace(v;), we know thatf na; = @. Suppos€v;PPuv;) € I'. By the definition
of &eace(v;) and the path-consistency of it is direct to prove thag is also in
Erace(v;). Therefore we havgna; = @, and thug nb; = & by the construction of
b;. Similarly, for any landmark such tha{/PPv;) € ", we can prove thgtin/ = @.
Therefore, we havgn¢; = @.

Now assumg € Prace(v;). Clearly we havef na; + @ becauseX; has a
base region contained iin We only need to prové ¢ ¢;. By the selection of
base regionsj is not contained in the union of all base regions, and henise it
not contained irb;. Moreover, for any landmark;, if ({;PPv;) € I', thenf «
Erace(l;) (otherwisef € Teace(l;) € Zrace(vi)). That is to sayf is disjoint withi;.
Thereforef ¢ ¢;.

The sufficiency part follows frorfiace(v; ) UErace (Vi )UPrace(vi) = FACE. [

Corollary 2. Let (V w L,T') and¢; be as in Lemmal7. Furthermore, suppose
(Vw L, T) satisfies all the conditions in Theoréin 8. THen ¢, . .., ¢, } satisfies
all the constraints il" of the formu;a;.

Proof. Because(V w L,T") satisfies the conditions in Theordrh 8, we know in
particular thate.ce(v;) # FACE for eachl <i < n. That s, there exists a fageén
Tence(v;) U Prace(v;). By LemmdY, this implies that eachis nonempty.

(1) If (v;PPl;) € T, then we have€eace(l;) S Erace(vi) by (Q). Lemmdlr
directly implies thate; ¢ I;. Becaus€leace(v;) # Zrace(l;) (Row 2 in Table¥),
there exists a facgwhich is inZeace(1;) but not inZgace(v;). By LemmaY f is
not contained irr;. Thereforeg; c [;, i.e. ¢;PP;.
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(2) If (I;PPv;) € I, clearly we have; c ¢;. Becaus&race(v;) # Epace(l;)
(Row 3 in Tablel V) anteace(vi) S FACE — Zpace(vi) S FACE — Zpace(l;) =
Erace(l;), we know thateace(v;) € Erace(l;), i.€. there exists a fagan Eeace(l;)
but not inEeace(v;). Thereforgnl; = g andfne; # @. Thatis,l; c ¢;, i.e.[;PPc;.

(3) If (v;DR 1;) € I', then we hav&eace(l;) S Epace(v;). LemmalY directly
implies thatc; n lj. =g, l.e.¢;DR ;.

(4) If (v;POL;) € T, then by Row 1 in Tablél7, we know th&tace(v;) U
Erace(lj) # FACE. That is, there exists a fagesuch thatf ¢ Eeace(v;) andf ¢
Erace(l;) (hencef € Zeace(l;)). Thereforef ¢ I; andfn¢; # @ by LemmédYy, and
hencec; overlapd;, i.e. they have a common interior point. It can be proven that
¢; ¢ 1; andl; ¢ ¢; as in the first two cases above. TherefefPOl; holds. O

We next prove thafc,, ..., c,} is a solution ofl".

Lemma 8. Let (V v L,T") and ¢; be as in Corollany{(R. Therecy,...,c,} is a
solution of(V w L, T).

Proof. We only need to prove that constraints of the fdmmnyv;) are satisfied.

(1) If (v;PPuv;) €I, it can be proven thal; ¢ b; and¢; ¢ ¢; by the path-
consistency of’. We next prove; # ¢j. BY Zpace(vi) U Epace(vj) # FACE (last
row in Table[T), there exists a fagehat is in neithetZgace(v;) NOr Eeace(v;).
Thereforef is either iNEpace(v;) OF Prace(v;). If f € Epace(v;), thenfn¢; = @. By
LemmdT and ¢ Erace(v;), we also knowne; # @, and thus; # ¢;. Now suppose
f € Peace(vi). By Lemma¥ we havé ¢ ¢;. Note thatf is in eitherZeace(v,) or
Prace(v). In the first case, we haviec ¢; and thus; # ¢;. In the second case,
by the construction ak; we know that there exists some base regi@ontained
in § that belongs taX; only. Thereforer is disjoint with a; and hence disjoint
with b;. Moreover,r cannot be contained i). Otherwise, there must exist some
landmarkl such thatPPv; andr c [. This implies thaf € Zeace(1), which further
implies§ € Zgace(v;), @ contradiction. Therefore, we havet ¢; andr ¢ ¢; and
thusc; # ¢;. In conclusion, we know; c ¢;, i.e. ¢;PPc;.

(2) If (v;DRv;) € T', we show; nc; =g@. By construction we have, na; = &,
becauseX; n X, = @ unless(v;POuv;) € I'. Note that(v,PPv;) € I' implies
(viDRw;) € I' by path-consistency. Therefore, we also haye a; = @. By the
construction ob, we knowb; na; = @. Similarly we can prove thdt nb; = @. In
the same way, it can be further proven that =g, l.e. ¢;DRc;.

(3) If (v;POv;) e I', we first show that; overlaps:;. By Epace(vi )UEeace(v)) #
FACE (Row 6 in TabldT), there exists a fagesuch thatf ¢ Erace(v;) andf ¢
Erace(vj). In other words, we havie Trace(vi) U Prace(vi) andf € Zeace(vy) U
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Prace(vj). If § € Prace(vi) N Prace(v;), then by the construction of; and a;
there exists a base regionselected from a face i®Peace(vi) N Peace(v;) (nOt
necessarilyf) such thatr € X; n X;. Therefore,r ¢ a; n a; and hencer ¢
cincj. It f e Zeace(vi) N Irace(v;), thenf is contained in both; andc;. If
f € Zeace(vi) N Prace(v;), then we knowf ¢ ¢; andfne; # @. Thusc; also overlaps
c¢;. The last case can be proven similarly. Therefgreverlapsc;. It remains to
show that; andc; are incomparable (i.e., one is not contained in the othdrs T
can be proven in the same way as in the cas@#fOl;) < I'. In conclusion, we
know ¢;POc;.

In summary, all the constraints are satisfied &nd. .., c,} is a solution of
I ]

Appendix B. Proof of Lemmal8

Appendix B.1. Necessity

Suppos€ vy, Us, . . ., U, } is @ solution of” andy; nVTX = S; for eachi. By the
definitions of By« (v;) andPyx (v;), it is straightforward to show thdy 1 (v;) ¢
S; € Pyrx(v;). Similarly to the RCC5 case, we can prove that.:(v;) # FACE
for anywv; € V. We first prove the following lemmas.

Lemma 9. Suppos€ v, vs,...,0,} is asolution of’, then for anys; we have
(i) < (v;)° for any facef € Zeace(vs);
(i) fn; = o forany facef € Epace(vs);
(iii) e c (7;)° for any edge in Zgpee(v;);
(iv) ¢’ n7; = @ for any edge’ in Egpce(v:);
(V) v e (v;)° for any vertexo in Zyx (v;);
(Vi) v ¢ 7; for any vertexo in Eyry(v;).

Proof. For (i), by the definition ofZg.ce(v;) (see(®)), there exists a landmdgk
such thaf € Zeace(li) andl, TPPv; or [,NTPPwv;. Thus we havé c [ andl;, c ;,
and, thereforej, c (v;)°. Similarly we havef n o; = @ for anyf in Egace(v;).

For (iii), by the definition ofZgyce(v;) (see (1)), we have eithéfce(e)
Teace(vi), Or e € Bepce(lx) for some landmark, with [, NTPPuv;,. In the first case,
because the two incident faces wére both inZg,ce(v;), they are contained in
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the interior ofy;. Because: is the common boundary of its two incident faces,
we knowe is also contained iy, )°. In the second case, we have [ < (v;)°.
Thereforee < (7;)° holds in both cases. Similarly we hayen v; = @ for any edge
¢’ In Eepee(v;).

(v) and (vi) can be proven in the same way. O

Lemma 10. Suppos€ oy, v, . .., U, } is asolution ofl’, andS; = v;nVTx for each
i. Then for any; andl;, if (v;ECI;), (v;TPPI;) or (v, TPPil;) is a constraint in
I', then [Z5) holds; for any; anduv;, if (v;ECv;) or (v;TPPwv;) € I' is a constraint
in T, then [26) holds.

Proof. Suppose one ofv;ECI;), (v;TPPI;), and(v, TPPil;) is a constraint ir".
We show [(25) holds. Becauge;, vs,...,7,} is a solution, we know that; and
l; have a common boundary point, sy It is clear thatP is either a vertex in
Byx(l;), oronan edgee Bepce(l;). Inthe first case, we have e 0u,nVTX = S;.

ThereforeP € S; n By« (l;) and thus[(Z5) is satisfied. In the second case, because

P e e andP € 0v;, we know edge cannot be in the interior af; or in the exterior

of 7;. By Lemmd9.¢ is in neitherZegpce(v;) nor Eepce(v;), hencee € Pepce(v;).

Therefore we hav@eyce(v;) N Beoee(l;) # @ and thus[(2b) is also satisfied.
The other part of the lemma can be proven similarly. O

The necessity of conditions in Taljle 8 can then be proveigstfarwardly.

Appendix B.2. Sufficiency

SupposéVwL,T') andS; (i = 1,...,n) satisfy the conditions in Lemni& 6, we
construct a solutiooy, . .., v, } of I" such thatS; = 0v; n VTX. The construction
procedure is similar to that i 22]. For each spatialaldev;, we select a set
of small triangles, denoted hy;, in the following way.

 For each facg € Prace(v;), Select a small triangle ihand put it inX;, see
Figure[B.8(a).

 For each vertex € S; — Byrx(v;) € Pyrx(v;) — By:x(v;), by Proposition 10
we know thatv is not in Byx(v;) U Zyrx(v;) U Evix(v;). We have that
Stace(0) N Prace(v;) # @. Otherwise,Seace(v) is contained ipace(v;) U
Erace(v;), Which implies that is either inZyx(v;), or in Ey1x(v;), Or in
Byrx(v;). We select a facg@from Seace(v) N Prace(v;), and select a small
triangle inf that contain®. Put the triangle inX;, see Figuré Bi8(b).
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« If »,ECL; isinT, then by Tabl€I8 we have eithBEpce(v; ) NBepee(l;) # @ OF
SinByx(1;) + @ (i.e. (28)). IfS;nBy+x(l;) # @, do nothing. Otherwise, we
select an edgefrom Pepee(v;) N Beoee(l;). Let§ andf’ be the two incident
faces ofe such thaf € Zeace(l;) andf’ € Eeace(l;). By definition, we know
f € Erace(v;). We note thatf’ cannot be infr.ce(v;). This is because,
otherwise, we havér.ce(e) = {f,§} S Erace(v:) and hence € Egpee(v;),
which contradicts the assumption tha¢ Pepce(v;). If § € Zrace(v;), do
nothing. If§" € Prace(vs), select a triangle in facg with one edge or and
putitin X;, see FiguréBI8(c).

* If v, TPPI; isinT, then by Tablé&I8 we also hatee(v;) N Bepee(l;) + @
or S;nByrx(1;) # @ (i.e. (28)). I S;n By (1;) # @, do nothing. Otherwise,
select an edgefrom Pepee(v;) N Beoee(l;). Let§ andf’ be the two incident
faces ofe such that € Zeace(1;) andf’ € Epace(l;). By definition, we know
§' € Erace(v;). Similar to the case of,EC/;, § cannot be infeace(v;). If
f € Zrace(v; ), do nothing. Iff € Peace(v;), select a triangle in facewith one
edge ore and put it in.X;.

* If v;ECuv; isinT, then by TabléI8 we havBeace(vi) N Prace(v;) # &, Or
Peoce(vi) NPeoce(v;) # @, 0r S;nS; # @. If S;nS; # @, do nothing. IfS;n
S; = @ andPeace(v;) N Peace(v;) # @, Select a fac@ e Prace(v;) N Prace(v))
and two externally connected trianglesfinPut one triangle inX; and put
the other inX;, see Figure BI8(d). I6;nS; = @, Prace(vi) N Prace(v;) = 2,
andPepce(vi) N Peose(v;) # @, then select edgee Pepce(vi) N Peoce(v;)-
Suppose and§f’ are the two incident faces ef We have four subcases
depending on whetheris in Bepge(v;) andBepce(v;).

- If (S BEDGE(Ui) ande € BEDGE(Uj)l then dO nOthIng

— If ¢ € Bepee(vi) ande ¢ Bepee(v;), SUPPOSE € Tpace(v;) andf’ e
Erace(v;). Select a triangle iff with one edge om and put it in.X;.

— If ¢ ¢ Bepee(vi) ande € Bepee(vj), SUPPOSE € Zpace(v;) andf’ e
Erace(v;). Select a triangle iff with one edge om and put it in.X;,.

— If ¢ ¢ Beoee(vi) ande ¢ Bepee(v;), then select two triangles hand
f' respectively such that the triangles have a common edge see

Figure[B.8(e).

* If v; TPPv; isinT, then by Tabl&I8 we also ha®ce(v;) N Prace(v;) # 2,
Or Pepee(vi) N Peoce(v;) # @, or S;nS; # @. If S;nS; # @, then do
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(d) (e)

Figure B.8: lllustration of the selection of triangles

nothing. IfS; n.S; = @ andPrace(v;) N Prace(v;) # @, then select a face
f € Peace(vi)nPeace(v;) and one triangle ifi Put the triangle in botX; and
Xj. If SiﬂSj =, PFACE(Ui)mPFACE(Uj) =, andPEDGE(Ui)ﬂPEDGE(’Uj) * J,
then select an edgec Pepee(vi) N Peoce(v;). Supposg andf” are the two
incident faces ot. At least one off andjf’ is not in Exace(v;) (Otherwisee
iS in Eepee(v;)). W.L0.9., sUpposE ¢ Epace(v;i). If f € Zrace(v;), then do
nothing. Iff € Prace(v;), We select a triangle ifiwith one edge om and put

If v;POv; isinT, then by Tablé8 we hav€ace(v;) U Erace(v;) # FACE.
There exists a facgin (Zeace(vi) U Peace(vi)) N (Zeace(vj) U Peace(v;)). If
§ 1S IN Peace(v;) N Peace(v;), then select a triangle in fagand put it in both
X, and.X;. Otherwise, we do nothing.

We assume that all the triangles are pairwise disjoint aadaificiently small
such that the union of all the triangles does not entirelyupgcany face or any
edge. NowX; contains all the triangles we need for spatial variablé-or clarity,
we now consider each face as its closure, and wgu$tPv; ) € I' to denote that
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(&) x € FACE (b) z inside facef  (c) z on vertexv (d) = on edge:

Figure B.9: lllustration of functioexpand(x, 1)

v; TPPv; or v;NTPPu; is a constraint if’. Definea; andb; as follows:

ai =X, (B.1)
bi = a; U|JZrace(vi) uU{a; : (v;PPv;) €T} (B.2)

We assert thafb,, b, . .., b, } satisfies all the constraints ihexcept that some
NTPP constraints may be realised @BP. This assertion can be proven in the
same way as in the proof of Leminha 8.

Let X be the union of allX;, i.e. X is the set of all the triangles selected for
spatial variables. To cope with tiTPP constraints, we introduce thexpand
function from(X uFACE) x {1, 2,...,n} to regions in the plane such that for any
x,x" € X UFACE,

e expand(z,1) = x.

o expand(x,i) NTPP expand(z,i+1)fori=1,2,... n—1.

» expand(zx,i) DC expand(z’,i') if xDCa’, fori, i’ =1,2,... n.
» expand(z,i) PO expand(z’,i') if xECa/, fori,i’ =1,2,... n.

That is to sayexpand(z,i) (i = 1,2,...,n) is a series of nested regions among
which z is the innermost core. Meanwhilexpand(x,:) should be small enough
to not touch or overlap any other regions or any otlgrand(z’, ') whenever
possible. Figurge Bl9 provides illustrations ®pand(z, 1).

We can extend the domain of the functierpand to include allb; defined
above and all landmarks by

expand(y,i) = J{expand(z,i) : x Cy,z € X UFACE}, (B.3)

wherey € {by,...,b,,l1,.... I, andi=1,2 ... n.
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Define a functiondyrep : V x (V U L) — N, such thatdyrpp(v;, w) is the
length of the longedNTPPi chain fromv; to w, wherew is either variabley; or
landmarkl,. Furthermore, define

¢ =bju U{expand(bj, dNTpp(’Ui, ’Uj)) : UjNTPP’Ui} (B 4)

@] U{expand(l], dNTPP(Uia l])) : ZJNTPP'UZ} '

It can be proven thafc,, ..., ¢,} is a solution ofl” such thatS; = dc; n VTX
fori=1,2,...,ninthe same way as iELIl@ZZ]. We omit the details here.

Appendix C. Proof sketch of Theoren{ 1P

We need to adjust the construction given in the sufficiencytpaope with the
strong connectedness. The only differences from the stdriRI@C8 interpreta-
tion are: (i) we assumg; = @ for each variable;; (ii) although the requirements
for expand(,-) still apply, we need to modify the construction of this funat
to cater for the change in the interpretations of RCC8 mateati If x is a face
in FACE, or a triangle inX on some vertex, expand(x, 1) should be modified
as shown in Figurds C.110 (a) and (c) respectively, which eandmtrasted with
FiguredB.9 (a) and (c). Note that in Figlire G.10 (c), it hdligt *DCf, because
their intersection is a point (not a curve). Theref@aepand(z, 1) is supposed to

be disjoint withf, (under the strong connectedness interpretation of RCC8) du

to the requirement oéxpand(-,-). The case in Figure_C.10 (a) is similar: the
boundary of the expanded face does not intersect with amyviduich is disjoint
with the original face.

All the remaining parts of the construction, including tleéestion of triangles
(note thatS; = @ here), definitions of;, b;, and verification ob, as a solution of
I, are completely the same as in the standard interpretatiBCE8 relations.
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