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Abstract

Dealing with spatial and temporal knowledge is an indispensable part of almost all
aspects of human activity. The qualitative approach to spatial and temporal rea-
soning, known as Qualitative Spatial and Temporal Reasoning (QSTR), typically
represents spatial/temporal knowledge in terms of qualitative relations (e.g.,to the
east of, after), and reasons with spatial/temporal knowledge by solving qualitative
constraints.

When formulating qualitative constraint satisfaction problems (CSPs), it is
usually assumed that each variable could be “here, there and everywhere1.” Prac-
tical applications such as urban planning, however, often require a variable to take
its value from a certain finite domain, i.e. it is required to be ‘here or there, but
not everywhere’. Entities in such a finite domain often act as reference objects and
are called “landmarks” in this paper. The paper extends the classical framework
of qualitative CSPs by allowing variables to take values from finite domains. The
computational complexity of the consistency problem in this extended framework
is examined for the five most important qualitative calculi,viz. Point Algebra,
Interval Algebra, Cardinal Relation Algebra, RCC5, and RCC8. We show that
all these consistency problems remain in NP and provide, under practical assump-
tions, efficient algorithms for solving basic constraints involving landmarks for all
these calculi.

✩This is an extended and revised version of two conference papers [29, 27] presented at CP-
2011 and ECAI-2012.
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1. Introduction

Spatial and temporal information is pervasive and forms an increasing part
of our everyday life. Many tasks in the real or virtual world require sophisti-
cated spatial and temporal reasoning abilities. Furthermore, the rapid progress in
science and technology in this century continues to presentnew challenges for
spatial and temporal reasoning. Taking spatial information as an example, on one
hand, people can now easily acquire location information with the help of GPS-
enabled mobile equipment and web GISs such as Google Maps. This has greatly
increased the public’s demand for location-based services. On the other hand, the
development of technologies such as remote sensing, medical imaging, and sensor
networks has generated volumes of spatial data, which makesthe phenomenon of
‘ rich data but poor knowledge’ particularly serious in the area of spatial knowl-
edge management.

The qualitative approach to spatial and temporal reasoning, known as Qual-
itative Spatial and Temporal Reasoning (QSTR), has the potential to resolve the
conflict between data and knowledge. This is because the mainaims of QSTR
research are to design (i) human comprehensible and cognitively plausible spatial
relation models (or query languages), and (ii) efficient algorithms for consistency
checking (or query preprocessing). For intelligent systems, the ability to under-
stand and process qualitative, vague or even inconsistent (textual, graphical or
speech) information collected from human beings or the Web is very important.
This is because ‘the input and the output of spatial processes is often qualitative
rather than quantitative’ [36].

QSTR represents spatial/temporal information in terms of human comprehen-
sible qualitative relations (e.g.partially overlaps, west of, after) and reduces spa-
tial/temporal reasoning to solving constraint satisfaction problems (CSPs). Qual-
itative relations are widely used in temporal and spatial reasoning (see e.g. [1,
38, 24]). This is partially because they are close to the way humans represent and
reason about commonsense knowledge, are easy to specify, and provide a flexible
way to deal with incomplete knowledge. Usually, these relations are taken from a
qualitative calculus, which is a finite set of relations defined on an infinite universe
U of entities [25]. Well-known qualitative calculi include among others Point Al-
gebra (PA) [44], Interval Algebra (IA) [1], Cardinal Relation Algebra (CRA) [24],
RCC5, and RCC8 [38, 24].
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A central reasoning problem of QSTR is theconsistency problem. An in-
stance of the consistency problem is a setΓ of constraints like(xαy), wherex, y
are variables taken from a finite setV , andα is a qualitative relation. Unlike
classical CSPs, the domain of a variable appearing in a qualitative constraint is
usually infinite, and Hirsch [16] has shown that it may be undecidable for deter-
mining consistency for binary CSPs with infinite domains. However, for the five
qualitative calculi that we have mentioned above, the consistency problems are all
in NP and can be solved by using path consistency and backtracking (cf. [7, 41]).

In the past three decades, QSTR has made significant progress, and promi-
nent qualitative calculi such as IA and RCC8 have been applied in areas such
as natural language processing, geographical informationsystems, robotics, and
content-based image retrieval (see e.g. [7]). There is a growing consensus, how-
ever, that breakthroughs are necessary to bring spatial/temporal reasoning theory
closer to practical applications. One reason might be that the current qualitative
reasoning scheme uses a rather restricted constraint language: constraints in a
qualitative CSP are always taken from thesamecalculus and only relate variables
from the sameinfinite domain. This is highly undesirable, as constraints involv-
ing restricted variables and/or multiple aspects of information frequently appear
in practical tasks such as urban planning and spatial query processing.

Consider the following example. Suppose you are recommended a restaurant
in Sydney by a friend who has dined there before. The spatial information about
the restaurant may be similar to “it isin downtown andclose toa MacDonald’s,
and it is to thewest of or southwest ofCentral Station.” In this example, topo-
logical, directional, and distance information appears together. While the position
of the restaurant may be completely unknown, the position ofCentral Station is
fixed as a landmark, and the position of downtown is also fixed somehow, but the
position of “MacDonald’s” is onlyfinitely fixedbecause there are several branches
of MacDonald’s in downtown Sydney.

While some recent works have considered how to reason with qualitative con-
straints from different spatial or temporal calculi [13, 20, 28, 45, 21], the impor-
tance of solving constraints that involve restricted variables has been totally ne-
glected. Cohn and Renz regarded this as a major future challenge, and commented
in their chapter [7, page 578] in “Handbook of Knowledge Representation” that

One problem with this [constraint-based] approach is that spatial enti-
ties are treated as variables which have to be instantiated using values
of an infinite domain. How to integrate this with settings where some
spatial entities are known or can only be from a small domain is still

3
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unknown and is one of the main future challenges of constraint-based
spatial reasoning.

This paper aims to address the above challenge. We say that a variable is
finitely restrictedif it can only take its value from a finite subset of the universe in
a qualitative calculus. We propose to extend the qualitative CSP framework by al-
lowing variables to be finitely restricted. In such a qualitative CSP, the constraints
are taken from a fixed qualitative calculus, and the domain ofeach variable is ei-
ther the universe of the calculus or a (nonempty) finite subset of the universe. The
entities in each finite domain usually act as reference spatial/temporal objects in
the constraint network. In this paper, we address these entities as “landmarks”.

Landmarks (e.g.Sydney Opera Houseor Big Ben) are external, outstand-
ing physical objects that act as reference objects. As foundin many spatial dis-
courses, landmarks play a fundamental role in cognitive spatial representations,
in particular in human navigation and route planning. Thereare many works in
geographical information science that are devoted to characterising or generating
landmarks. Lynch [31] is perhaps the first such attempt, which although informal
is very influential. Grabler et al. [14] developed a system togenerate tourist maps
enriched with landmarks. Duckham, Winter, and Robinson [11] considered how
to incorporate cognitively salient landmarks in computer-generated navigation in-
structions. Landmarks are also used as a metaphor in automatic planning, where
a landmark acts as an auxiliary sub-goal [15, 42].

In this paper, landmarks are used as reference objects for formulating con-
straints. This is related to but different from Allen’s ‘reference intervals’ [1],
which are used to group clusters of intervals, and the intervals in one cluster are
related to intervals outside the cluster only indirectly via the reference intervals.

An important research question is,how does this extension affect the compu-
tational complexity of deciding the consistency of qualitative CSPs? This paper
examines the effect for the five most important qualitative calculi, viz. PA, IA,
CRA, RCC5 and RCC8. We show that in the extended framework theconsistency
problem remains in NP for each calculus. Moreover, we propose practical efficient
algorithms for solving basic constraints involving landmarks for these qualitative
calculi.

The remainder of this paper proceeds as follows. Section 2 introduces basic
notions in qualitative constraint solving as well as the fivequalitative calculi dis-
cussed in this paper. The extended qualitative CSP framework is also presented
there. Section 3 discusses the computational complexity ofreasoning with the
point-based calculi PA, IA, and CRA, and Section 4 considersthe same prob-

4
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lem for the region-based calculi RCC5 and RCC8. The last section concludes the
paper and outlines problems for future study.

2. Preliminaries

In this section, we first recall several well-known qualitative calculi and basic
notions in qualitative constraint solving, and then introduce the extended qualita-
tive CSP framework.

2.1. Qualitative calculi

The qualitative approach to spatial and temporal knowledgerepresentation and
reasoning is mainly based on qualitative calculi. In this paper, we only consider
binary relations, but the extended qualitative CSP framework can be straightfor-
wardly extended to ternary and anyn-ary relations.

SupposeU is the universe of spatial or temporal entities. WriteRel(U) for the
Boolean algebra of binary relations onU . A qualitative calculusonU is defined
as a finite Boolean subalgebra ofRel(U). LetM be a qualitative calculus onU .
A relationα inM is abasicrelation if it is an atom inM. We writeBM for the
set of basic relations inM.

We next recall the well-known Point Algebra (PA) [44, 43], Cardinal Relation
Algebra (CRA) [12, 24], Interval Algebra (IA) [1], and RCC5 and RCC8 [38].

Definition 1 (Point Algebra [44]). LetU be the set of real numbers. The Point Al-
gebra is the Boolean subalgebra generated by the jointly exhaustive and pairwise
disjoint (JEPD) set of relations{<,>,=}, where<,>,= are defined as usual.

PA contains eight relations, viz. the three basic relations<,>,=, the empty
relation, and the four non-basic nonempty relations≤,≥,≠, ?, where? stands for
the universal relation.

Definition 2 (Cardinal Relation Algebra [12, 24]). LetU be the real plane. Define
binary relationsNW,N,NE,W,EQ,E,SW,S,SE as in Table 1. The Cardinal
Relation Algebra (CRA) is generated by these nine JEPD relations.

CRA can be viewed as the Cartesian product of two PAs.

Definition 3 (Interval Algebra [1]). LetU be the set of closed intervals on the real
line. Thirteen binary relations between two intervalsx = [x−, x+] andy = [y−, y+]
are defined by the order of the four endpoints ofx andy, see Table 2. The Interval
Algebra (IA) is generated by these JEPD relations.

5
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Relation Definition
NW x < x′, y > y′

N x = x′, y > y′

NW x > x′, y > y′

W x < x′, y = y′

EQ x = x′, y = y′

E x > x′, y = y′

SW x < x′, y < y′

S x = x′, y < y′

SW x > x′, y < y′

Table 1: Basic relations of CRA. Figure 1: Examples:P1 NW Q andP2 E Q

Relation Symbol Converse Definition
before b bi x− < x+ < y− < y+

meets m mi x− < x+ = y− < y+

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Table 2: Basic IA relations and their converses, wherex = [x−, x+], y = [y−, y+] are two intervals.

6
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Relation Definition Relation Definition
DC a ∩ b = ∅ TPP a ⊂ b, a ⊄ b○

EC a ∩ b ≠ ∅, a○ ∩ b○ = ∅ NTPP a ⊂ b○

PO a ⊈ b, b ⊈ a, a○ ∩ b○ ≠ ∅ EQ a = b

Table 3: Topological interpretation of basic RCC8 relations in the plane, wherea, b are plane
regions, anda○, b○ are the interiors ofa, b, respectively.

Unlike the above qualitative calculi, the RCC algebras haveinterpretations in
arbitrary topological spaces. Since applications in GIS and many other spatial
reasoning tasks mainly consider objects represented in thereal plane, in this pa-
per, we only consider interpretations where regions are interpreted as nonempty
regular closed sets, and two regions are connected if they somehow intersect.2

Definition 4 (RCC5 and RCC8 Algebras). LetU be the set of nonempty regular
closed sets, orregions, in the real plane. The RCC8 algebra is generated by the
eight topological relations

DC,EC,PO,EQ,TPP,NTPP,TPPi,NTPPi,

whereDC,EC,PO,TPP and NTPP are defined in Table 3,EQ is the identity
relation, andTPPi andNTPPi are the converses ofTPP andNTPP respectively.
See Figure 2 for illustration. It is worth mentioning that these eight relations are
all definable by the connectedness relationC, which is the complement ofDC and
two regions are connected if they have nonempty intersection.

The RCC5 algebra is the sub-algebra of RCC8 generated by the five part-
whole relations

DR,PO,EQ,PP,PPi,

whereDR = DC ∪EC, PP = TPP ∪NTPP, andPPi = TPPi ∪NTPPi.

While the RCC algebras defined as above using a ‘weak’ connectedness rela-
tion, we will introduce another interpretation in Section 4.4.3 based on a ‘strong’
connectedness relation.

2.2. Qualitative constraint satisfaction problem
A qualitative calculusM provides a constraint language by using formulas of

the form(viαvj), whereα is a relation inM andvi, vj are variables taking values

2We note that restricting the underlying topological space may drastically change the compu-
tational properties of calculi like RCC8 [4, 39].
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Figure 2: Illustration for basic relations in RCC5 / RCC8

from the universe ofM. Formulas of the form(viαvj) are calledconstraints
(overM). If α is a basic relation inM, (viαvj) is called abasic constraint. The
classical consistency problem overM can then be formulated as below.

Definition 5. [7] Let M be a qualitative calculus on universeU . SupposeS is a
subset ofM. The consistency problemCSPSAT(S) is defined as follows:

Instance: A 2-tuple(V,Γ). HereV is a finite set of variables{v1, v2, . . . , vn},
andΓ = {viγijvj ∶ 1 ≤ i, j ≤ n} is a binary constraint network and eachγij
is in S .

Question: Is there an instantiationν ∶ V → U such that all the constraints
in Γ are satisfied?

If ν satisfies all the constraints inΓ, then we sayν is a solution ofΓ and say
Γ is consistentor satisfiable.

Notation.In this paper, we also represent an instantiationν ∶ V → U as ann-tuple
(ν(v1), ν(v2), . . . , ν(vn)).

We note that each instance(V,Γ) in CSPSAT(S) is completein the sense that
the relationγij between any two variablesvi, vj is taken fromS . Given a binary
constraint workΓ = {viγijvj ∶ 1 ≤ i, j ≤ n}, we sayΓ is abasic constraint network
if γij is either the universal relation or a basic relation for any two variablesvi, vj ;
and sayΓ is acomplete basic constraint networkif γij is a basic relation for any
two variablesvi, vj . In other words, each complete basic constraint network is an
instance ofCSPSAT(BM ), while each basic constraint network is an instance of
CSPSAT(BM ∪ {∗M}), whereBM is the set of basic relations inM, and∗M is the

8
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universal relation ofM. 3

The consistency problem as defined in Definition 5 has been investigated for
many calculi (see e.g. [1, 43, 35, 40, 30, 26]). In particular, the consistency
problemCSPSAT(PA) can be solved inO(n2) time, wheren is the number of
variables [43]. For most other qualitative calculi, including IA, CRA, RCC5, and
RCC8, the consistency problemCSPSAT(M) is NP-complete.

When only basic constraint networks are considered, however, the consistency
problem over each of these four calculi becomes tractable. In fact, it can be de-
cided by checking whether the network ispath-consistent. For binary relationsα
andβ, we writeα∼ for the converse ofα, andα ○ β for the usual composition of
α andβ. We say a complete basic constraint networkΓ = {viαijvj ∶ 1 ≤ i, j ≤ n}
is path-consistent, if for any three variablesvi, vj , vk, we have4

αij = α
∼
ji and αij ∩ (αik ○ αkj) ≠ ∅ for any 1 ≤ i, j, k ≤ n.

Note that for complete basic constraint networks, path-consistency is equiva-
lent to saying that every subnetwork with three variables isconsistent. As a local
property, path-consistency can be enforced in cubic time.

We summarise the computational complexity results of thesecalculi in the
following theorem.

Theorem 1. [35, 24, 40] The consistency problemCSPSAT(PA) is in P. LetM be
one of IA, CRA, RCC5, and RCC8. ThenCSPSAT(BM) is in P andCSPSAT(M)
is NP-complete.

A complete basic network isglobally consistentif any partial solution can be
extended to a global solution. The following theorem can be directly proven by
exploiting the density of real numbers.

Theorem 2. LetM be one of PA, IA, and CRA. Then a complete basic network is
globally consistent if it is path-consistent.

We note that RCC5 and RCC8 do not have this property.

3The consistency problemsCSPSAT(BM) andCSPSAT(BM ∪ {∗M}) may have different com-
plexities. For example, there exists a cubic algorithm for solving complete basic CDC (cardinal
direction calculus) networks [30], but it is NP-hard to solve basic CDC networks [26].

4This definition of path-consistency is different from the same notion for finite CSPs [33, 32].
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2.3. Extended qualitative CSP

By Definition 5, in the classical consistency problem, each variable can in
principle take any value in the universe. In many practical applications, however,
it is very common to have additional knowledge about some variables (cf. the
restaurant and MacDonald’s example in the Introduction), which will affect the
consistency of qualitative CSPs. It is therefore necessaryto extend the qualitative
CSP framework to allow restricted domains of variables.

Definition 6. LetM be a qualitative calculus on universeU . SupposeS is a
subset ofM. The consistency problemCSPSATf(S) is defined as follows, where
the subscript ‘f ’ stands for ‘finite’:

Instance: A 3-tuple(V,Γ,D). HereV is a finite set of variables{v1, v2,
. . . , vn}, D is ann-tuple (D1,D2, . . . ,Dn), where eachDi is eitherU or
a nonempty finite subset ofU , andΓ = {viγijvj ∶ 1 ≤ i, j ≤ n} is a binary
constraint network and eachγij is in S .

Question: Is there an instantiationν ∶ V → U such thatν(vi) ∈Di for each
i and all the constraints inΓ are satisfied?

We say that a variablevi appearing in the instance(V,Γ,D) is finitely restricted
if its domainDi is finite. Ifν satisfies all the constraints inΓ andν(vi) ∈ Di for
eachi, then we sayν is a solution of(V,Γ,D) and say(V,Γ,D) is consistentor
satisfiable. We call elements of each finite domainDi landmarksof (V,Γ,D).

As a special case, if each finite domainDi is required to be a singleton, we
write the corresponding consistency problemCSPSATs(S), where the subscript
‘s’ denotes ‘singleton’.

An instance ofCSPSAT(S) is clearly an instance of bothCSPSATs(S) and
CSPSATf(S): we only need to let eachDi be the universe.

Proposition 1. SupposeBM is the set of basic relations in a qualitative calculus
M, andS is a subclass ofM. Then we have

i) CSPSAT(S) ⊂ CSPSATs(S) ⊂ CSPSATf(S);

ii) CSPSATf(M) is in NP if CSPSATf(BM) is in NP;

iii) CSPSATf(S) is in NP if CSPSATs(S) is in NP;

iv) CSPSATf(M) is in NP if CSPSATs(BM) is in NP.

10
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Proof. i) follows directly from the definition. As for ii), suppose we already have
a nondeterministic Turing machineT0 which solvesCSPSATf(BM) in polynomial
time. Given a non-basic constraint network(V,Γ,D), it is consistent iff there is
a consistent basic constraint networkΓ′ that refinesΓ in the sense that for each
constraint(xαy) in Γ there exists a constraint(xα′y) in Γ′ such thatα′ ⊆ α.
A basic constraint network that refinesΓ is often called ascenarioof Γ. We
devise a nondeterministic Turing machineT as follows.T first guesses a scenario
(V,Γ′,D) of (V,Γ,D), and then callsT0 to decide the consistency of(V,Γ′,D).
T ′ asserts the instance to be consistent ifT returns consistent in any branch. It
is clear that the nondeterministic Turing machineT decides the consistency of
(V,Γ,D) in polynomial time. Similar argument applies to iii), and iv) follows
from ii) and iii) directly.

By the above proposition, the computational complexity ofCSPSATf is in gen-
eral higher than that ofCSPSATs andCSPSAT, as far as the same subsetS of the
same calculus is considered. In particular, recall that theclassical consistency
problems for CRA, IA, RCC5 and RCC8 are all NP-complete. We have the fol-
lowing corollary.

Corollary 1. The consistency problemCSPSATs(M) and CSPSATf(M) are all
NP-hard forM being any one of IA, CRA, RCC5, and RCC8.

To determine the computational complexity of reasoning with a qualitative
calculusM, we will begin withCSPSATs(BM).

Our computational complexity results are summarised in Table 4, where qual-
itative calculusM is PA, IA, CRA, RCC5 or RCC8, andS is eitherBM orM
itself (i.e., we consider either complete basic networks orthe most general case).

M PA CRA IA RCC5 RCC8
S BPA PA BCRA CRA BIA IA BRCC5 RCC5 BRCC8 RCC8

CSPSAT(S) P P P NP-C P NP-C P NP-C P NP-C
CSPSATs(S) P P P NP-C P NP-C P NP-C NP-C NP-C
CSPSATf(S) P NP-C NP-C NP-C NP-C NP-C NP-C NP-C NP-C NP-C

Table 4: Computational complexity results summary

In the following sections, we first consider point-based calculi PA, CRA, and
IA, and then consider region-based calculi RCC5 and RCC8. Unlike point-based
calculi, thegeometrical representation(in particular, shape and location) of the
landmarks may affect the existence of solutions in the plane. To make the analysis
more meaningful, we assume that all the landmarks in RCC5 andRCC8 constraint
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networks are represented as polygons which may have different connected com-
ponents and holes. This assumption is practical because polygons are the most
widely used approximations of regions in spatial databases.

The NP-hardness results in Table 4 obtained in this paper aremainly achieved
by designing polynomial reductions from the Graph 3-Colouring problem, which
is a well-known NP-complete problem. Recall that a graphG = (V,E) is 3-
colourableif there is a functionf ∶ V → {0,1,2} such thatf(v) ≠ f(v′) for each
edge(v, v′) ∈ E. TheGraph 3-Colouring problemis to decide whether a graph is
3-colourable.

3. Point-based Qualitative Calculi

This section discusses the consistency problems in the extended framework
for the three point-based qualitative calculi, viz. Point Algebra, Interval Algebra,
and Cardinal Relation Algebra.

3.1. Some simple results
To prove the computational complexity results, we will needthe following

notion of a finitely restricted sub-instance.

Definition 7. LetM be a qualitative calculus with universeU , and letS be a
subclass ofM. Suppose(V,Γ,D) is an instance ofCSPSATf(S), whereV =
{v1, . . . , vn}, D = (D1, . . . ,Dn) andΓ = {viαijvj}1≤i,j≤n. LetV ′ = {vi ∶ Di ≠ U}
be the set of finitely restricted variables inV . SupposeV ′ = {vi1, vi2 , . . . , vik}.
Let Γ′ = {virαirisvis}1≤r,s≤k and D′ = (Di1 ,Di2 , . . . ,Dik). We call(V ′,Γ′,D′),
which is also an instance ofCSPSATf(S), the finitely restricted sub-instanceof
(V,Γ,D).

For complete basic constraint networks, we have the following general result.

Lemma 1. LetM be one of PA, IA, and CRA. Suppose(V,Γ,D) is an instance
of CSPSATf(BM). Then(V,Γ,D) is consistent iffΓ is path-consistent and the
finitely restricted sub-instance of(V,Γ,D) is consistent.

Proof. The necessity is clear. We prove the sufficiency, which uses the property
that any consistent basic PA (IA or CRA) network is also globally consistent.

Because the finitely restricted sub-instance(V ′,Γ′,D′) is consistent, it has a
solution, sayb = (b1, . . . , bk). Note thatb is a partial solution of theCSPSAT(BPA)
instance(V,Γ), and thus, by Theorem 2, can be extended to a solutionb′ of (V,Γ).
It is clear thatb′ is also a solution of(V,Γ,D). Therefore(V,Γ,D) is consistent.

The cases for IA and CRA can be proven in the same way.
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Using Lemma 1, we are able to show the following computational complexity
results.

Theorem 3. For PA, we haveCSPSATs(BPA) and CSPSATs(PA) are in P and
CSPSATf(PA) is in NP. LetM be IA or CRA. ThenCSPSATs(BM) is in P, and
CSPSATs(M) andCSPSATf(M) are NP-complete.

Proof. For PA, we recall thatCSPSAT(PA) can be solved inO(n2) time [43].
Suppose(V,Γ,D) is an instance ofCSPSATs(PA). We show that the consistency
of (V,Γ,D) can be determined in polynomial time. For a pair of variablesvi and
vj such thatDi = {di} andDj = {dj} are both singletons, suppose(viαvj) is
in Γ, andβ is the basic PA relation betweendi anddj. It is clear that(V,Γ,D)
is inconsistent ifβ is not included inα. Without loss of generality, we assume
α is a basic relation andα = β. Under this assumption, we show that(V,Γ,D)
is consistent iff theCSPSAT(PA) instance(V,Γ′) is consistent. The necessity
is clear. For the sufficiency, suppose(V,Γ) is consistent and has a consistent
scenario(V,Γ0). Note that the finitely restricted sub-instance of(V,Γ0,D) is
consistent, as the constraint between any two variables with a singleton domain
is the actual relation between the corresponding landmarks. By Lemma 1, we
have(V,Γ,D) is consistent. Because the consistency of(V,Γ) can be decided
in polynomial time [43], we know thatCSPSATs(PA) is in P and consequently
CSPSATs(BPA) is in P andCSPSATf(PA) is in NP.5

ForM being IA or CRA, suppose(V,Γ,D) is an instance ofCSPSATs(BM),
and(V ′,Γ′,D′) is its finitely restricted sub-instance. Assume thatV hasn vari-
ables andV ′ hasm ≤ n variables. The path-consistency ofΓ can be checked in
O(n3) time. Moreover, the consistency of(V ′,Γ′,D′) can be decided inO(m2)
time, as we only need to check for each pair of variablesvi andvj in V ′ whether
the unique landmarks specified for them satisfy the constraint between them.
By Lemma 1, the consistency of(V,Γ,D) can be determined inO(n3) time.
Therefore,CSPSATs(BM) is in P. By Proposition 1, we knowCSPSATs(M) and
CSPSATf(M) are all in NP. Meanwhile, the NP-completeness ofCSPSAT(M)
implies thatCSPSATs(M) andCSPSATf(M) are all NP-complete.

The following subsections will respectively show that (i)CSPSATf(BPA) is in
P butCSPSATf(PA) is NP-complete, and (ii)CSPSATf(BM) is NP-complete for
M being IA or CRA.

5SupposeM is one of PA, IA, or CRA. Then this result can be generalised toany tractable
subclassS ofM that contains all basic relations.
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3.2. Point Algebra

We first propose a polynomial algorithm that solvesCSPSATf(BPA) and then
provide a polynomial reduction from Graph 3-Colouring toCSPSATf(PA).

Let (V,Γ,D) be an instance ofCSPSATf(BPA). By Lemma 1 we know that
(V,Γ,D) is consistent iffΓ is path-consistent and the finitely restricted sub-instance
(V ′,Γ′,D′) of (V,Γ,D) is consistent. Because path-consistency can be deter-
mined in cubic time, we only need to devise a polynomial algorithm for checking
whether(V ′,Γ′,D′) is consistent. To this end, we show that such a consistent
instance ofCSPSATf(BPA) has aminimalsolution in a sense.

Proposition 2. Suppose(V,Γ,D) is an instance ofCSPSATf(BPA) such that
D = {D1,D2, . . . ,Dn} and eachDi is a finite set of real numbers. If(V,Γ,D) is
consistent, then there is a unique solution(a1, . . . , an) such thatai ≤ a′i (1 ≤ i ≤ n)
for any other solution(a′

1
, a′

2
, . . . , a′n). Furthermore, ifΓ = {vi < vj}1≤i<j≤n, then

- a1 = minD1;

- ak =min{x ∈Dk ∶ x > ak−1} for k = 2,3, . . . , n.

Proof. AssumeΓ = {vi < vj}1≤i<j≤n. This does not lose generality because we can
combine variables related by the ‘=’ constraint and then sort the variables by the
‘<’ and ‘>’ constraints. EveryDi is a finite set, so(V,Γ,D) has at most finitely
many, sayk, solutions. Suppose(ai

1
, ai

2
, . . . , ain) (i = 1,2, . . . , k) enumerate all

solutions. Letaj = min{aij}1≤i≤k. We claim that(a1, a2, . . . , an) is the minimal
solution. We only need to prove that it is a solution of(V,Γ,D), i.e. to show
(i) eachaj is in Dj ; and (ii) a1 < a2 < . . . < an. Becauseaij ∈ Dj , we know

aj = min{aij}1≤i≤k is in Dj. We next provea1 < a2. Supposea2 = a
j
2

for somej

by definition. Thena1 =min{ai
1
}1≤i≤k ≤ a

j
1
< a

j
2
= a2. By using induction, we can

also provea2 < a3 < . . . < an. Therefore,(a1, a2, . . . , an) is the minimal solution
of (V,Γ,D).

We next propose a polynomial algorithm that solvesCSPSATf(BPA) based
on Proposition 2. For any instance(V,Γ,D) of CSPSATf(BPA), we first check
whetherΓ is consistent. If it is inconsistent, then so is(V,Γ,D). Otherwise,
we check whether the finitely restricted sub-instance(V ′,Γ′,D′) of (V,Γ,D) is
consistent. To this end, we attempt to compute the minimal solution (a1, . . . , an)
by procedures described in Proposition 2. If in thek-th step{x ∈ Dk ∶ x > ak−1}
is empty, then we conclude that the sub-instance, and thus the original instance,
is inconsistent. If we succeed in computing(a1, a2, . . . , an), then it is a solution
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of the sub-instance and can be extended to a solution of the original instance. The
soundness of the algorithm is clear by the above argument.

Input : CSPSATf(BPA) instance(V,Γ,D)
Output : The consistency of(V,Γ,D)
if Γ is not consistentthen1

return ‘Inconsistent’;2

(V ′,Γ′,D′)← finitely restricted sub-instance of(V,Γ,D);3

SortV ′ to v′
1
< . . . < v′n′ by Γ

′, modify D′ correspondingly;4

a1 ←minD′
1
;5

for 2 ≤ k ≤ n′ do6

if ak−1 ≥maxD′k then7

return ‘Inconsistent’;8

ak ←min{x ∈ D′k ∶ x > ak−1};9

end10

return ‘Consistent’.11

Algorithm 1 : SOLVING CSPSATf(BPA)

Theorem 4. Algorithm 1 solvesCSPSATf(BPA).

We next analyse the computational complexity of the algorithm. Suppose there
aren variables inV , and the sum of the cardinalities of all finiteDi isL. Then the
input size isO(n2 + L) (n2 constraints andL points). The following proposition
shows the optimality of the algorithm.

Proposition 3. The computational complexity of Algorithm 1 isO(n2 +L).

Proof. Let (V,Γ,D) be an instance ofCSPSATf(BPA). The consistency ofΓ can
be computed inO(n2) time by AlgorithmCSPAN proposed in [43]. SortingV ′

takesO(n logn) time. Let li be the cardinality ofD′i. Then step ‘a1 ← minD′
1
’

takesO(l1) time, and thei-th loop body takesO(li+1) time (i = 1,2, . . . , n′ − 1).
Therefore, the computational complexity of the algorithm isO(n2 + n logn + l1 +

l2 + . . . + ln′) = O(n2 +L).

Despite the fact that bothCSPSAT(PA) andCSPSATf(BPA) are in P, the next
theorem shows thatCSPSATf(PA) is NP-hard. We prove this by using a polyno-
mial reduction from the Graph 3-Colouring problem toCSPSATf(PA).

Theorem 5. The consistency problemCSPSATf(PA) is NP-complete.
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Proof. LetG = (V,E) be a graph, whereV = {v0, . . . , vn}. Define aCSPSATf(PA)
instance(UG,ΓG,DG) as follows:6

UG = {u0, . . . , un},

DG = {Du0
, . . . ,Dun

}, whereDui
= {0,1,2},

ΓG = {ui ≠ ui′ ∶ (vi, vi′) ∈ E}.

That is, we construct for each vertexvi ∈ V a corresponding temporal variableui

which takes value from{0,1,2}; and we specify for each edge(vi, vi′) ∈ E a con-
straint(ui ≠ ui′). It is clear thatG = (V,E) can be 3-colourable iff(UG,ΓG,DG)
is satisfiable. Therefore the consistency problemCSPSATf(PA) is NP-hard, and
hence NP-complete as its NP-membership has been identified in Theorem 3.

Remark 1. The NP-hardness ofCSPSATf(PA) is due to the uncertainty of the
non-equal (≠) constraints and the finiteness of the domains. It can be proven that
CSPSATf(S) is in P for S = {<,=,>,≤,≥, ?} (i.e., with≠ removed fromPA). A
polynomial algorithm can be devised based on the observation that the concept of
a minimal solution still applies. The algorithm first mergesthe variables which are
required to be equal by the constraints (see [43]). Note the domains of the merged
variables should also be revised as the intersection of their original domains. The
algorithm then adopts a topological sort, during which eachfinitely restricted
variable is assigned a value in its domain as small as possible.

3.3. Cardinal Relation Algebra
To show thatCSPSATf(BCRA) is NP-hard, we design a polynomial reduction

from Graph 3-Colouring toCSPSATf(BCRA). SupposeG = (V,E) is a graph
with vertex setV = {v0, . . . , vn}. We construct an instance(UG,ΓG,DG) of
CSPSATf(BCRA) such that(UG,ΓG,DG) is satisfiable iffG is 3-colourable.7

First, for each vertexvi ∈ V , we introduce a spatial variableui with domain

Dui
= {(3i,3i), (3i + 1,3i + 1), (3i + 2,3i + 2)}.

We sayui is at positionp (wherep ∈ {0,1,2}), if it takes the point(3i + p,3i + p)
in Dui

. Second, for each edgeej = (vi, vi′) ∈ E (assumingi < i′), we introduce a
spatial variablewj with domain

Dwj
= {(3i + p,3i′ + q) ∶ p, q ∈ {0,1,2}, p ≠ q},

6We assume that the constraint between two variables is the universal constraint if it is not
specified inΓG.

7We here specially thank the reviewer who suggested this elegant reduction to us.
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and add two constraints(wj E ui) and(wj S ui′) toΓG. That is to say,wj should
be to the east ofui and to the south ofui′. The domain ofwj is used to rule out the
cases whenui andui′ are at the same position (with respect to their own domains),
which correspond to the requirement that verticesvi andvi′ cannot be coloured
the same as they are connected by edgeej .

Note that eachCSPSATf(BCRA) instance is a complete network. This means
that we should specify for each pair of variables inUG a basic CRA constraint. In
above we have specified such a constraint for two spatial variablesui andwj when
vi is a vertex incident to edgeej in G. There are three other cases unspecified:

• The constraint betweenui andui′;

• The constraint betweenui andwj, wherevi is not incident to edgeej in G;

• The constraint betweenwj andwj′.

In each case it is straightforward to specify a basic constraint between the two
spatial variables.

Example 1. SupposeG = (V,E) is a graph, whereV = {v0, v1, v2} andE =

{(v0, v1), (v1, v2)}. Let(UG,ΓG,DG) be theCSPSATf(BCRA) instance constructed
as above forG. ThenUG = {u0, u1, u2,w0,w1}, with their domains shown in Fig-
ure 3. The constraints inΓG are given in Table 5, where constraints in black are
those corresponding to edges inE.

Figure 3: Domains of(UG,ΓG,DG)

u0 u1 u2 w0 w1

u0 EQ SW SW W SW
u1 EQ SW N W
u2 EQ NE N
w0 EQ SW
w2 EQ

Table 5: Constraints of(UG,ΓG,DG)

Proposition 4. GraphG = (V,E) is 3-colourable iff(UG,ΓG,DG) is satisfiable.

Proof. Straightforward.

As a consequence, we have:
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αij NW N NE W EQ E SW S SE
βij di si oi fi eq f o s d

Table 6: Translation of the constraints

Theorem 6. The problemCSPSATf(BCRA) is NP-complete.

Proof. Since the reduction above is polynomial, we know thatCSPSATf(BCRA)
is NP-hard. Meanwhile, the NP-membership ofCSPSATf(BCRA) follows from
Theorem 3. Therefore,CSPSATf(BCRA) is an NP-complete problem.

3.4. Interval Algebra
To show thatCSPSATf(BIA) is NP-hard, we design a polynomial reduction

from CSPSATf(BCRA). Note that an interval[x, y] corresponds to the point(x, y)
on the half-plane{(x, y) ∶ x < y}. Suppose(V,Γ,D) is a CSPSATf(BCRA) in-
stance, whereV = {u1, . . . , un}, Γ = {uiαijuj ∶ 1 ≤ i, j ≤ n}, D = (D1, . . . ,Dn).
Note thatDi is either the universe of CRAUCRA (viz. the real plane), or a fi-
nite subset ofUCRA. We now translate(V,Γ,D) into a CSPSATf(BIA) instance
(V ′,Γ′,D′), whereΓ′ is a complete basic IA network. The translation maps

- each variableui in V to variableu′i in V ′;
- each basic CRA relationαij to a basic IA relationβij as specified in Table 6;
- eachDi to D′i, such that ifDi = UCRA thenD′i is the universe of IAUIA;

if Di is finite, thenD′i = {[x, y +∆] ∶ (x, y) ∈ Di}. Here∆ is a fixed large
number such thatx < y+∆ for any point(x, y) in any restricted domainDi.

We show that the translation preserves consistency.

Proposition 5. An instance(V,Γ,D) in CSPSATf(BCRA) is consistent iff the cor-
responding instance(V ′,Γ′,D′) in CSPSATf(BIA) as constructed above is con-
sistent.

Proof. Suppose(a1, . . . , an) is a solution of(V,Γ,D), whereai = (xi, yi) ∈ Di.
Define intervala′i = [xi, yi +∆] ∈ D′i. We prove that(a′

1
, . . . , a′i) is a solution of

(V ′,Γ′,D′). It is clear thata′i ∈ D
′
i by the translation fromDi to D′i. We only

need to verify that all the constraints inΓ′ are satisfied by(a′
1
, . . . , a′i). This can

be done by discussing each of the nine kinds of basic IA constraints inΓ′.
Suppose(u′i di u′j) is a constraint inΓ′. We need to prove[xi, yi+∆] di [xj , yj+

∆], i.e.,xi < xj < yj+∆ < yi+∆. By the translation we know that(ui NW uj) is in
Γ. Therefore(xi, yi)NW (xj , yj), i.e.,xi < xj andyi > yj. Meanwhilexj < yj+∆

is guaranteed by the selection of∆, so the constraint(u′i di u′j) is satisfied by
(a′

1
, . . . , a′n). The remaining eight cases can be proven analogously.

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Therefore we obtain the following result.

Theorem 7. The consistency problemCSPSATf(BIA) is NP-complete.

Proof. Since the reduction fromCSPSATf(BCRA) to CSPSATf(BIA) is polyno-
mial, we know thatCSPSATf(BIA) is NP-hard. Moreover, by Theorem 3, we have
CSPSATf(BIA) is in NP. This shows thatCSPSATf(BIA) is NP-complete.

So far, we have completed the discussion for the three point-based qualitative
calculi. The next section will address region-based qualitative calculi.

4. Region-based Qualitative Calculi RCC5 and RCC8

This section discusses the consistency problems over RCC5 and RCC8 in the
extended qualitative CSP framework. Note that although theuniverse of RCC5
(or RCC8) is the set of all regions in the plane, it is reasonable to assume that all
landmarks are represented as polygons. This is because landmarks, as inputs of in-
stances, are required to be representable in computers. In other words, they should
be finitely representable. Meanwhile, general polygons (which may have holes or
multiple components) are the most widely used approximations of regions: they
are simple, intuitive, and expressive.8

Under the assumption that all landmarks are represented by general polygons,
we show in this section that all these consistency problems are in NP. In par-
ticular, we show thatCSPSATs(BRCC5) is in P, but thatCSPSATf(BRCC5) and
CSPSATs(BRCC8) are all NP-complete. It is not surprising thatCSPSATf(BRCC5)
is NP-complete if we regard the finitely restricted sub-instance of each instance
of CSPSATf(BRCC5) as a classical CSP, but the NP-hardness ofCSPSATs(BRCC8)
is quite undesirable. One way to circumvent this obstacle isto use a stronger
connectedness instead of the one used in Definition 4.

The remainder of this section is organised as follows. We first introduce a sim-
ple computational complexity result in Section 4.1 showingthatCSPSATf(BRCC5)
is NP-hard. Several of our results are related to computing the intersection of land-
marks (represented as polygons), so we analyse its computational complexity in
Section 4.2. The tractability ofCSPSATs(BRCC5) is then proven in Section 4.3.
Section 4.4 shows thatCSPSATs(BRCC8) is NP-complete if the RCC8 relations
are interpreted as in Definition 4, and proves that the same problem is in P (i.e.
tractable) if we adopt another interpretation that uses a stronger connectedness.

8Another way to represent regions is to use semi-algebraic sets, which are more expressive
than polygons but the set operations are much more complicated.
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4.1. The NP-hardness ofCSPSATf(BRCC5)

We prove the NP-hardness ofCSPSATf(BRCC5) by designing a polynomial
reduction from the Graph 3-Colouring problem.

Proposition 6. The consistency problemCSPSATf(BRCC5) is NP-hard.

Proof. Let G = (V,E) be a graph, whereV = {v0, . . . , vn} andE = {e0, . . . , em}.
For each vertexv ∈ V , we introduce three regions (represented by rectangles)
r0v, r

1
v andr2v; for each edgee ∈ E, we introduce three regions (represented by

rectangles)s0e, s1e ands2e. These rectangles are required to be pairwise disjoint.
For any1 ≤ i ≤ n and0 ≤ p ≤ 2, we define a landmarklpi as

l
p
i = r

p
vi
∪⋃{spe ∶ edgee is incident to vertexvi}.

Because rectanglesrpv, s
p
e are pairwise disjoint forv ∈ V, e ∈ E andp ∈ {0,1,2},

it is clear thatlpi ∩ l
q
j = ∅ if p ≠ q. For i ≠ j andp = q, it is also straightforward to

see thatlpi ∩ l
q
j = s

p
e is a rectangle ife = (vi, vj) ∈ E andlpi ∩ l

q
j = ∅ otherwise.

TheCSPSATs(BRCC5) instance(VG,ΓG,DG) is constructed as follows.

VG = {u0, u1, . . . , un},

DG = {Du0
,Du1

, . . . ,Dun
}, whereDui

= {l0i , l
1

i , l
2

i },

ΓG = {uiDRuj}.

Note that spatial variableui corresponds to vertexvi, and “vertexvi is coloured
with colourp” corresponds to that “variableui takes valuelpi .” It is routine to show
thatG is 3-colourable iff(VG,ΓG,DG) is consistent. Because the reduction is
polynomial, we know the consistency problemCSPSATf(BRCC5) is NP-hard.

4.2. Planar subdivision and overlay computation

In the following subsections we will see that computing the intersection of
landmarks (represented as polygons) is critically important when solving the con-
sistency problems for RCC5 and RCC8 in the extended qualitative CSP frame-
work. To facilitate the discussion, this subsection analyses the computational
complexity of computing the intersection of multiple polygons. Our discussion
is based on thedoubly-connected edge list(DCEL) structure for representing pla-
nar subdivisions (cf. e.g. [9]).

A planar subdivisionis an embedding of a planar graph in the plane such that
its edges are mapped into straight line segments. It consists of vertices, edges, and
faces.Verticesare endpoints of line segments,edgesare interiors of line segments,
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andfacesare maximally connected subsets of the plane with all edges and vertices
removed. In particular, each face is a connected open set, which may have holes.
The outer face is unbounded, but every other face is bounded and its boundary
consists of vertices and edges. Thecomplexityof a planar subdivision is defined
as the sum of the number of its vertices, the number of its edges, and the number
of its faces. For example, the planar subdivision of the rectangle in Figure 4 (a)
has two faces (Figure 4 (a)), four vertices (Figure 4 (b)) andfour edges (Figure 4
(c)), and thus has a complexity of ten.9

In what follows, we write FACE, EDGE, and VTX respectively for the set of
faces, the set of edges, and the set of vertices in a planar subdivision, and use
lower Fraktur symbolsf, e,v (possibly with indices) to denote, respectively, faces,
edges, and vertices in the subdivision.

The following lemma shows that the complexity of a planar subdivision is of
the same order as the number of its vertices.

Lemma 2. LetS be a planar subdivision withk vertices. Then the complexity of
S is O(k).

Proof. Recall that each planar subdivision is an embedding of a planar graph in
the plane. By Euler’s formula (cf.[10]), ifS hasC connected components then

∣VTX ∣ − ∣EDGE∣ + ∣FACE∣ = C + 1.

Furthermore, since each face is bounded by at least three edges, and each edge
touches at most two faces, it is straightforward to prove that

∣EDGE∣ < 3∣VTX ∣ and ∣FACE∣ < 2∣VTX ∣.

Therefore the complexity ofS is O(k).

In Computational Geometry, a planar subdivision is usuallyrepresented by
the doubly-connected edge list (DCEL), where each edge is considered as two di-
rected half-edges with opposite directions. The DCEL of a subdivision maintains
a table for each vertex, each half-edge, and each face. The table allows the re-
trieve from an object (viz. vertex, half-edge, or faced) to its incident (or adjacent)
objects efficiently. For a planar subdivisionS with complexityk, the DCEL ofS
takesO(k) space.

9To avoid potential confusion, when discussing the time resource it takes for computing an
overlay, we always explicitly use the termcomputational complexity.
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(a) (b) (c)

(d) (e) (f)

Figure 4: An example of subdivision

Theoverlayof two planar subdivisionsS1 andS2 is the planar subdivisionS
induced by all edges fromS1 andS2. Each vertex ofS is either a vertex ofS1 or
S2, or the intersection point of two edges fromS1 andS2. Each edge is either an
edge ofS1 or S2, or a part of an edge ofS1 cut by an edge ofS2, or vice versa.
Similarly, each face ofS is either a face ofS1 or S2, or the intersection of two
faces fromS1 andS2. Figures 4 (e) and (f) illustrate the overlay of the rectangle
in Figure 4 (a) and the triangle in Figure 4 (d), which has fourfaces, eleven edges
and nine vertices, and hence has a complexity of 24.

We have the following result about the complexity of the overlay.

Lemma 3. Let S1 and S2 be two planar subdivisions of complexityk1 and k2
respectively. Then the overlay ofS1 andS2 has complexityO(k1k2).

Proof. Note that each vertex in the overlay is either a vertex ofS1, or a vertex
of S2, or the intersection point of two edges from different subdivisions. As the
numbers of vertices and edges ofSi are less thanki, the overlay hasO(k1k2)
vertices. The complexity of the overlay then follows from Lemma 2.

The computational complexity of the overlay computation isas follows.
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Proposition 7. [9, Theorem 2.6] LetS1 andS2 be two planar subdivisions of com-
plexityk1 andk2 respectively. Then the overlay ofS1 andS2 can be constructed
in O((k1 + k2 + k) log(k1 + k2)) time, wherek is the complexity of the overlay.

Proposition 7 only considers the overlay of two subdivisions. For the con-
sistency problemsCSPSATs(BRCC5) andCSPSATs(BRCC8), we need to compute
the overlayO of the subdivisions induced by landmarksl1, . . . , lm (m ≥ 3). At
first glance, the computational complexity seems to be very high. Suppose each
landmark is represented by a polygon withk vertices. If we use Lemma 2 suc-
cessively then the overlay will have complexityO(km). As a consequence, the
computational complexity of computing the overlay will be exponential if we use
Proposition 7 successively.The following result shows that, however,O can be
computed in polynomial time. The key idea is that the complexity of the overlay
of them subdivisions is, instead ofO(km), polynomial inm andk (if we assume
each landmark hask vertices).

Lemma 4. Supposeli is a polygon withki vertices for each1 ≤ i ≤ m. Let
K = ∑m

i=1 ki andO be the overlay of the subdivisions induced by these polygons.
ThenO has complexityO(K2) and can be computed inO(mK2 logK) time.

Proof. It is clear that there are in totalO(K) vertices and, by Lemma 2,O(K)
edges in the subdivisions induced by these polygons. As eachvertex in the overlay
O is either a vertex of a subdivision, or the intersection point of two edges from
different subdivisions, we know thatO hasO(K2) vertices. By Lemma 2, the
complexity ofO is alsoO(K2).

Write Oi for the overlay of the subdivisions induced by the firsti polygons
l1, . . . , li. The complexity of eachOi is no more than that ofO = Om. By Propo-
sition 7 we knowOi+1 can be computed inO((K2 +K +K2) log(K2 +K)) =
O(K2 logK) time fromOi+1 andli+1. Therefore, the overlayO can be computed
in O(mK2 logK) time from l1, ..., lm.

We note that the DCEL ofO contains incidence and adjacency information
between two elements in FACE, EDGE, and VTX . The relationship between such
an element and a polygon inL, however, is not provided. For example, the DCEL
does not tell us whether an edge lies inside, outside, or on the boundary of a poly-
gon li. To represent the complete topological information of the polygon system
L, we introduce the following functions, which can be computed by supplying a
number of attributes to each object in the DCEL of the overlay.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

For each polygonli ∈ L, we writeIFACE(li) (EFACE(li), resp.) for the set of
faces inO that lie in the interior (exterior, resp.) ofli:

IFACE(li) = {f ∈ FACE ∶ f ⊆ l○i }, (1)

EFACE(li) = {f ∈ FACE ∶ f ∩ li = ∅}. (2)

It is clear thatIFACE(li) ∪ EFACE(li) = FACE andIFACE(li) ∩ EFACE(li) = ∅.
For each polygonli, we define

IEDGE(li) = {e ∈ EDGE ∶ e ⊆ l○i }, (3)

EEDGE(li) = {e ∈ EDGE ∶ e ∩ li = ∅}, (4)

BEDGE(li) = {e ∈ EDGE ∶ e ⊆ ∂li}, (5)

and similarly,

IVTX(li) = {v ∈ VTX ∶ v ∈ l○i }, (6)

EVTX(li) = {v ∈ VTX ∶ v ∉ li}, (7)

BVTX(li) = {v ∈ VTX ∶ v ∈ ∂li}. (8)

Because each edge and each vertex is either in the interior ofli, or in the exterior
of li, or on the boundary ofli, we know that{IEDGE(li),EEDGE(li),BEDGE(li)} is a
partition of EDGE, and{IVTX(li),EVTX(li),BVTX(li)} is a partition of VTX .

We provide an example to illustrate these functions.

Example 2. SupposeL = {l1, l2, l3} consists of the three polygons illustrated
in Figure 5(a). Then we haveFACE = {f0, . . . , f4}, VTX = {v1, . . . ,v11} and
EDGE = {e1, . . . , e14}, as shown in Figure 5(b-d). In particular, for landmarkl1,
we have

IFACE(l1) = {f1, f2}, IVTX(l1) = {v6,v11}, IEDGE(l1) = {e6, e10, e11},

EFACE(l1) = {f0, f3, f4}, EVTX(l1) = {v3,v8,v9}, EEDGE(l1) = {e2, e3, e7, e8, e9},

BVTX(l1) = {v1,v2,v7,v10,v4,v5}, BEDGE(l1) = {e1, e12, e13, e14, e4, e5}.

Together with the functions defined in (1)-(8), the DCEL of the overlay of
polygons inL completely describes the topological information of polygons in
L. The following lemma shows that these functions can also be computed in
polynomial time.

Lemma 5. Supposeli is a polygon withki > 2 vertices for each1 ≤ i ≤ m. LetO
be the overlay of all these polygons, andK be the sum of allki. Then the functions
defined in (1)-(8) for all1 ≤ i ≤m can be computed inO(m2K2) time in total.
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(a) (b)

(c) (d)

Figure 5: Example of the overlay ofL = {l1, l2, l3}.

Proof. As in the proof of Lemma 4, supposeOk is the overlay of the firstk poly-
gonsl1, . . . , lk andO = Om. For each element (i.e., a face, edge or vertex)c in
overlayOi, we introduce an additional vector to represent the relation between
c and polygonsl1, l2, . . . , li. When updating the overlayOi to Oi+1, we need to
update these vectors correspondingly. Note that eachOi hasO(K2) elements.
There areO(K2) vectors, each of which hasi ≤ m indices. Therefore we need
O(mK2) time to update all vectors for each overlayOi, and thusO(m2K2) time
in total forO. The functions in (1)-(8) can be computed from the vectors for O
directly inO(mK2) time. In summary, it takes an additionalO(m2K2) time to
compute all the functions.

Combined with Lemma 4, this shows that the overlay and the functions can be
computed inO(m2K2 logK) time.

4.3. Solving basic RCC5 constraints involving polygonal landmarks

This subsection shows thatCSPSATs(BRCC5) is in P, provided that all land-
marks are represented as polygons. We obtain this by giving anecessary and
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sufficient condition for deciding the consistency ofCSPSATs(BRCC5) instances,
which can be checked in polynomial time.

In what follows, we write an instance ofCSPSATs(BRCC5) or CSPSATs(BRCC8)
explicitly as(V ⊎L,Γ), whereV = {v1, v2, . . . , vn} is the set of unrestricted vari-
ables,L = {l1, l2, . . . , lm} is the set of uniquely restricted variables. We write, for
simplicity, li for the only value (viz. a polygonal landmark) it takes and assume
that the constraint between two landmarks is the actual relation between them.

4.3.1. A necessary and sufficient condition
Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), whereV = {v1, v2,

. . . , vn} andL = {l1, l2, . . . , lm}. Let O be the overlay of polygons inL. Recall
that for eachlj and each facef in O, f is either inIFACE(lj) (the set of faces
contained inlj) or in EFACE(lj) (the set of faces that lie outsidelj). Constraints inΓ
may impose similar relationships betweenf and the variables inV . For a variable
vi, the constraints aboutvi may forcef to be part ofvi, or outsidevi. Precisely,f is
required to be part ofvi if there is a landmarklj such thatf ∈ IFACE(lj) andljPPvi,
andf is required to lie outsidevi if either viDRlj andf ∈ IFACE(lj), or viPPlj and
f ∈ EFACE(lj). For each variablevi ∈ V , we thus defineIFACE(vi) andEFACE(vi) as
follows:

IFACE(vi) =⋃{IFACE(lj) ∶ ljPPvi}, (9)

EFACE(vi) =⋃{IFACE(lj) ∶ viDRlj} ∪⋃{EFACE(lj) ∶ viPPlj}. (10)

Example 3. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), whereV =
{v1} andL = {l1, l2, l3}. Landmarksl1, l2, l3 are shown in Figure 5(a). The con-
straints related tov1 are specified asl1PPv1, l2PPv1, v1POl3. Then we have

IFACE(v1) = IFACE(l1) ∪ IFACE(l2) = {f1, f2, f3, f4}, EFACE(v1) = ∅.

The following proposition asserts that no face belongs to both IFACE(vi) and
EFACE(vi), given that the constraint network is path-consistent.

Proposition 8. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), where
V = {v1, v2, . . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. IfΓ is path-
consistent, thenIFACE(vi) ∩ EFACE(vi) = ∅.

Proof. Assumef ∈ IFACE(vi) ∩ EFACE(vi). By definition there existlj andlk such
thatljPPvi andf ∈ IFACE(lj), and either (i)viDRlk andf ∈ IFACE(lk) or (ii) viPPlk
andf ∈ EFACE(lk). We show that both cases lead to a contradiction. For the first
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Constraint Conditions

viPOlj

EFACE(vi) ∪ EFACE(lj) ≠ FACE,
EFACE(vi) ∪ IFACE(lj) ≠ FACE,
IFACE(vi) ∪ EFACE(lj) ≠ FACE

viPPlj IFACE(vi) ≠ IFACE(lj)
ljPPvi EFACE(vi) ≠ EFACE(lj)

viPOvj

EFACE(vi) ∪ EFACE(vj) ≠ FACE,
EFACE(vi) ∪ IFACE(vj) ≠ FACE,
IFACE(vi) ∪ EFACE(vj) ≠ FACE

viPPvj IFACE(vi) ∪ EFACE(vj) ≠ FACE

Table 7: Conditions for extended RCC5 constraint network

case, we knowf ⊆ lj∩lk, while the path-consistency ofΓ implies thatljDRlk since
ljPPvi andviDRlk. For the second case, we havef ⊆ lj andf ∩ lk = ∅, but the
path-consistency ofΓ impliesljPPlk sinceljPPvi andviPPlk.

The following theorem provides a necessary and sufficient condition that de-
cidesCSPSATs(BRCC5). Note that the condition only involves

FACE,IFACE(lj),EFACE(lj),IFACE(vi),EFACE(vi),

and constraints in the network, hence it can be checked afterconstructing the
overlay of all landmarks and computingIFACE(vi) andEFACE(vi) for eachvi.

Theorem 8. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), whereV =
{v1, v2, . . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. Then(V ⊎L,Γ) is
consistent, if and only if

• Γ is path-consistent.

• For anyvi ∈ V , EFACE(vi) ≠ FACE.

• All the conditions in Table 7 hold.

Conditions in Table 7 are very natural. For instance, the three conditions for
constraint(viPOlj) guarantee, respectively, that (i)vi is not a proper subset oflj ,
(ii) vi is not a proper superset oflj , and (iii) vi may overlap withlj , i.e., not every
face inIFACE(lj) is excluded fromvi. Consider Example 3 again.

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Example 3 (continued)
In this example, we haveIFACE(v1) = {f1, f2, f3, f4} and EFACE(v1) = ∅. Since
EFACE(l3) = {f0, f1, f4}, we knowIFACE(v1) ∪ EFACE(l3) = {f0, f1, f2, f3, f4} = FACE.
Because(v1POl3) ∈ Γ, Row 3 of Table 7 is violated. By Theorem 8 we know this
instance is inconsistent.

We prove the necessity part here and leave the sufficiency part to Appendix A.

Proof of Theorem 8 (Necessity).Suppose(a1, . . . , an) is a solution ofΓ, whereai
is assigned tovi. Because eachai has a nonempty interior, there exists at least one
facef such thatf ∩ ai is nonempty. Clearly,f ∉ EFACE(vi) since faces inEFACE(vi)
are all disjoint fromai (otherwise aDR or PP constraint is violated). Therefore,
EFACE(vi) ≠ FACE.

If (viPOlj) ∈ Γ, then by assumption we haveaiPOlj . By definition ofPO
(see Table 3), we know thatai andlj have a common interior point. This implies
that there exists a facef that contains an interior point ofai ∩ lj . Facef is neither
in EFACE(vi) nor inEFACE(lj). That is,EFACE(vi) ∪ EFACE(lj) ≠ FACE. Similarly, we
know that neitherEFACE(vi) ∪ IFACE(lj) = FACE norIFACE(vi) ∪ EFACE(lj) = FACE.

If (viPPlj) ∈ Γ, thenaiPPlj . Becauselj is the regularised union of all faces
it contains, i.e.lj = ⋃{f ∶ f ∈ IFACE(lj)}, we know there exists at least one face in
IFACE(lj) that is not inIFACE(vi). This showsIFACE(vi) ≠ IFACE(lj).

The remaining cases are either straightforward or similar to the above two
cases.

Using Theorem 8, we are able to determine the consistency of any instance of
CSPSATs(BRCC5) in the following procedure:

- ComputeIFACE(lj) and EFACE(lj) for each landmarklj (this relies on the
computation of the overlay planar subdivisionO).

- ComputeIFACE(vi) andEFACE(vi) for each variablevi.

- Check the conditions in Theorem 8.

Therefore the computational complexity of solvingCSPSATs(BRCC5) consists of
three parts, corresponding to (i) computingIFACE(lj) andEFACE(lj), (ii) computing
IFACE(vi) andEFACE(vi), and (iii) checking the conditions in Theorem 8. Putting
them together, we come to the following theorem.
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Theorem 9. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), whereV =
{v1, v2, . . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. Letki be the com-
plexity of the planar subdivision induced byli, and letK = Σm

i=1ki. Then the
consistency of(V ⊎L,Γ) can be decided inO(n3 + n2K2 +m2K2 logK) time.

Proof. Lemmas 4 and 5 show thatO, the overlay of all landmarks inL, together
with IFACE(lj) andEFACE(lj), can be computed inO(m2K2 logK) time. More-
over, allIFACE(vi) andEFACE(vi) can be computed inO(nmK2) time by definition.
For the conditions in Theorem 8, it takesO((n +m)3) time to check the path-
consistency ofΓ, andO(K2) time to check each of the remainingO(n(n +m))
conditions. Therefore, it takesO((n + m)3 + n(n + m)K2) time to check all
the conditions in Theorem 8. Summing these up, the consistency of (V ⊎ L,Γ)
can be determined inO((n + m)3 + n(n + m)K2 + m2K2 logK) time. Note
thatm ≤ Σm

i=1ki = K. If m ≤ n, thenO((m + n)3) = O(n3); if n ≤ m, then
O((m + n)3) = O(m3). In both cases we haveO((m + n)3) = O(m3 + n3).
Similarly we haveO(mnK2) = O(m2K2 + n2K2). Therefore,

O((n +m)3 + n(n +m)K2 +m2K2 logK)

= O((m3 + n3) + (n2K2 +m2K2) +m2K2 logK)

= O(n3 + n2K2 +m2K2 logK)

and the consistency of(V ⊎L,Γ) can be decided inO(n3 +n2K2 +m2K2 logK)
time.

As a direct consequence, we have

Theorem 10. Assuming that all landmarks are represented by polygons, then
the consistency problemCSPSATs(BRCC5) is in P, and the consistency problems
CSPSATf(BRCC5), CSPSATs(RCC5), andCSPSATf(RCC5) are all NP-complete.

Proof. It follows directly from Theorem 9 thatCSPSATs(BRCC5) is in P. More-
over, by Proposition 1 we know thatCSPSATf(BRCC5), CSPSATs(RCC5), and
CSPSATf(RCC5) are all in NP. The NP-hardness ofCSPSATf(BRCC5) is proven
in Proposition 6, and the NP-hardness ofCSPSATs(RCC5) andCSPSATf(RCC5)
follows from the NP-hardness ofCSPSAT(RCC5).

Although CSPSATs(BRCC5) is in P, we show in the next subsection that the
consistency problemCSPSATs(BRCC8) is NP-hard.
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4.4. Solving basic RCC8 constraints involving landmarks

This subsection investigates the consistency problemCSPSATs(BRCC8). First,
we show that the problem is NP-hard by exploiting the fact that two polygons may
have multiple ‘meeting’ points. Second, we show that the problem is still in NP
by providing a polynomial nondeterministic algorithm. We then consider another
interpretation of the RCC8 model by using a stronger connectedness. Under this
interpretation, we show thatCSPSATs(BRCC8) is still tractable.

4.4.1. The NP-hardness ofCSPSATs(BRCC8)

We reduce the Graph 3-Colouring problem to theCSPSATs(BRCC8) problem.

Proposition 9. Assuming that all landmarks are represented by polygons, the
consistency problemCSPSATs(BRCC8) is NP-hard.

Proof. SupposeG = (V,E) is a graph andV = {v0, . . . , vn}. We construct a
CSPSATs(BRCC8) instance(VG ⊎ L,ΓG) as follows. The landmark setL is in-
dependent of the choice ofG and contains the two polygonsl andl′ in Figure 6
(a). Note thatl and l′ are externally connected and have exactly three meeting
pointsQ0,Q1 andQ2, which are used to mimic the three colours in the Graph
3-Colouring problem.

(a) landmarksl andl′ (b) candidate regionsrpi (p = 0,1, ..., n)

Figure 6: Illustration for the reduction forCSPSATs(BRCC8)

The spatial variable setVG is defined as{u0, u1, ..., un}, where spatial variable
ui corresponds to vertexvi in V . The constraint networkΓG is defined as follows.

ΓG = {uiTPPl} ∪ {uiECl′} ∪ {uiDCuj ∶ (vi, vj) ∈ E} ∪ {uiECuj ∶ (vi, vj) ∉ E}.

We have finished the construction of the instance. The idea behind this reduc-
tion is as follows. Becausel and l′ have only three meeting points (viz.Q0,Q1

andQ2), eachui can be connected tol′ only via (one or more of) the three points
Q0,Q1,Q2. Determining which pointui should occupy is essentially equivalent to
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choosing a colour for vertexvi. Forvi andvj, if (vi, vj) is an edge inE, then they
cannot be coloured the same. Correspondingly, in such a casethere is a constraint
uiDCuj, which forbids thatui anduj occupy the same point in{Q0,Q1,Q2}.

We now prove thatG is 3-colourable iff(VG ⊎ L,ΓG) is consistent. Suppose
π ∶ V → {0,1,2} is a valid 3-colouring ofG. We choose three candidate regions
r0i , r

1

i andr2i for each variableui, whererpi is a triangle contained inl with a vertex
beingQp. The candidate regionsrp

0
, r

p
1
, . . . , r

p
n are externally connected atQp, as

illustrated in Figure 6 (b). If we assignrπ(vi)i to ui, then all theDC constraints are

satisfied. This is because,rπ(vi)i andrπ(vj)j are connected iffπ(vi) = π(vj). This
assignment, however, cannot fulfil all theEC constraints. For each unsatisfied
EC constraint(uiECuj), we introduce a pair of rectanglesrij andr′ij , which are
external connected and contained inl. We require that these rectangles are small
enough and disjoint from any other rectanglesri′j′, r′i′j′ and any trianglerp

k
. We

then addrij andr′ij into, respectively, the candidate regions we have selectedfor ui

anduj. It is routine to verify that the modified assignment satisfies all constraints
in ΓG and hence is a solution of(VG ⊎L,ΓG).

For the other direction, suppose(a0, . . . , an) is a solution of(VG⊎L,ΓG). Note
that eachai occupies at least one point in{Q0,Q1,Q2}. Defineπ ∶ V → {0,1,2}
by assigningvi the smallest indexq such thatai occupiesQq. The assignmentπ
is a valid 3-colouring for graphG. In fact, supposeπ(vi) = π(vj) = p. Then by
definition bothai andaj occupiesQp. Hence(uiDCuj) is not a constraint inΓG,
which happens only when(vi, vj) ∉ E.

The reduction given above is polynomial because there are only two landmarks
and ∣V ∣ spatial variables in(VG ⊎ L,ΓG). Therefore, the consistency problem
CSPSATs(BRCC8) is NP-hard.

In the next subsection we show thatCSPSATs(BRCC8) is still in NP by design-
ing a nondeterministic algorithm.

4.4.2. A nondeterministic algorithm forCSPSATs(BRCC8)

Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC8), whereV = {v1, v2,
. . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. We writeO for the overlay
of all landmarks inL, and define

IFACE(li),EFACE(li),IEDGE(li),EEDGE(li),BEDGE(li),IVTX(li),EVTX(li),BVTX(li)

as in (1)-(8) for representing the topological relations between faces, edges, ver-
tices inO and landmarks inL. As in the case ofCSPSATs(BRCC5), we extend
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these definitions from landmarks to variables. In the following, we say an edgee
or a vertexv in O is incidentto a facef in O if e or v is contained in the boundary
of f, and write

SFACE(v) ={f ∈ FACE ∶ v is incident tof}, (11)

SFACE(e) ={f ∈ FACE ∶ e is incident tof}. (12)

Note thatSFACE(e) has exactly two faces andSFACE(v) may have more than
two faces. These two functions can be directly obtained fromthe DCEL of the
overlay.

Similarly as in the RCC5 case, we defineIFACE(vi) as the set of faces that
should be part ofvi and defineEFACE(vi) as the set of faces that should be excluded
from vi.

IFACE(vi) =⋃{IFACE(lj) ∶ ljTPPvi or ljNTPPvi}, (13)

EFACE(vi) =⋃{IFACE(lj) ∶ viDClj or viEClj}∪

⋃{EFACE(lj) ∶ viTPPlj or viNTPPlj}. (14)

Moreover, we defineIEDGE(vi) as the set of edges that should lie in the inte-
rior of vi, EEDGE(vi) as the set of edges that should lie in the exterior ofvi, and
BEDGE(vi) as the set of edges that are required to be parts of the boundary of vi.

IEDGE(vi) ={e ∈ EDGE ∶ SFACE(e) ⊆ IFACE(vi)} ∪⋃{BEDGE(lj) ∶ ljNTPPvi},
(15)

EEDGE(vi) ={e ∈ EDGE ∶ SFACE(e) ⊆ EFACE(vi)} ∪⋃{BEDGE(lj) ∶ viDClj or viNTPPlj},
(16)

BEDGE(vi) ={e ∈ EDGE ∶ SFACE(e) ∩ IFACE(vi) ≠ ∅, SFACE(e) ∩ EFACE(vi) ≠ ∅}.
(17)

A brief explanation for the above notions follows. For an edgee, if its two incident
faces (i.e., faces inSFACE(e)) are both inIFACE(vi) (EFACE(vi), resp.), thene itself
should be in the interior (exterior, resp.) ofvi. If one incident face ofe is in
IFACE(vi)while the other is inEFACE(vi), we know thate should be on the boundary
of vi (i.e. e ∈ BEDGE(vi)). Moreover, supposee is a boundary edge oflj (i.e. e ∈
BEDGE(lj)). If ljNTPPvi, thene should lie in the interior ofvi (i.e. e ∈ IEDGE(vi));
if viDClj or viNTPPlj , thene should lie in the exterior ofvi (i.e. e ∈ EEDGE(vi)).
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In the same way, we defineIVTX(vi), EVTX(vi) andBVTX(vi):

IVTX(vi) ={v ∈ VTX ∶ SFACE(v) ⊆ IFACE(vi)} ∪⋃{BVTX(lj) ∶ ljNTPPvi}, (18)

EVTX(vi) ={v ∈ VTX ∶ SFACE(v) ⊆ EFACE(vi)} ∪⋃{BVTX(lj) ∶ viDC ljor viNTPPlj},
(19)

BVTX(vi) ={v ∈ VTX ∶ SFACE(v) ∩ IFACE(vi) ≠ ∅, SFACE(v) ∩ EFACE(vi) ≠ ∅}. (20)

Note thatSFACE(v)may contain multiple faces whileSFACE(e) contains exactly
two faces.

Proposition 10. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC8), where
V = {v1, v2, . . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. IfΓ is path-
consistent, then for each variablevi we have

(1) IFACE(vi) ∩ EFACE(vi) = ∅.

(2) IVTX(vi), EVTX(vi), andBVTX(vi) are pairwise disjoint.

(3) IEDGE(vi), EEDGE(vi), andBEDGE(vi) are pairwise disjoint.

Proof. (1) can be proven in the same way as Proposition 8. The remaining two can
be similarly proven. Here we only showIVTX(vi) ∩ BVTX(vi) = ∅ as an example.

Suppose otherwise that there exists a vertexv ∈ VTX such thatv ∈ IVTX(vi)
andv ∈ BVTX(vi). Becausev ∈ BVTX(vi)we know there existf1, f2 that are incident
to v andf1 ∈ IFACE(vi), f2 ∈ EFACE(vi). This implies that not all incident faces ofv
are inIFACE(vi). Therefore, byv ∈ IVTX(vi), we know there exists a landmarklj
such thatljNTPPvi andv ∈ BVTX(lj).

As f2 ∈ EFACE(vi), by definition, we know that there exists a landmarklk such
that either (i)f2 ∈ IFACE(lk) and viDClk or viEClk; or (ii) f2 ∈ EFACE(lk) and
viNTPPlk or viTPPlk. Note thatΓ is path-consistent. Case (i) implies thatf2 ⊂ lk
andljDClk. Becausev is incident tof2, this shows thatv is in lk. By v ∈ BVTX(lj)
we also havev ∈ lj. This contradicts the conclusionljDClk. In Case (ii), we have
ljNTPPlk andf2 ∩ lk = ∅. This also leads to a contradiction, becauseljNTPPlk
impliesv is in the interior oflk, andf2 ∩ lk = ∅ implies thatv is not in the interior
of lk.

Therefore, we haveIVTX(vi) ∩ BVTX(vi) = ∅.

For convenience, we define

PFACE(vi) = FACE − IFACE(vi) − EFACE(vi), (21)

PEDGE(vi) = EDGE− IEDGE(vi) − EEDGE(vi), (22)

PVTX(vi) = VTX − IVTX(vi) − EVTX(vi), (23)
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Constraint Conditions
viEClj (25)

viPOlj

EFACE(vi) ∪ EFACE(lj) ≠ FACE,
EFACE(vi) ∪ IFACE(lj) ≠ FACE,
IFACE(vi) ∪ EFACE(lj) ≠ FACE

viTPPlj IFACE(vi) ≠ IFACE(lj) and (25)
ljTPPvi EFACE(vi) ≠ EFACE(lj) and (25)
viDCvj Si ∩ Sj = ∅
viECvj (26)

viPOvj

EFACE(vi) ∪ EFACE(vj) ≠ FACE,
EFACE(vi) ∪ IFACE(vj) ≠ FACE,
IFACE(vi) ∪ EFACE(vj) ≠ FACE

viTPPvj PFACE(vj) ≠ ∅ or IFACE(vi) ≠ IFACE(vj), and (26)

Table 8: Conditions for extended RCC5 constraint network

whereP denotes ‘pending’. We note that whileBVTX(vi) is the set of vertices that
mustlie on the boundary ofvi, PVTX(vi) contains all the vertices thatmaylie on
the boundary ofvi. The pairwise disjointness ofIVTX(vi),EVTX(vi) andBVTX(vi)
impliesBVTX(vi) ⊆ PVTX(vi).

SupposeΓ is consistent and has a solutionv̄1, v̄2, . . . , v̄n. Write S̄i for the
set of vertices on the boundary ofv̄i, i.e., S̄i = {v ∈ VTX ∶ v ∈ ∂v̄i. Then it is
straightforward to show that

S̄i ∩ IVTX(vi) = ∅, S̄i ∩ EVTX(vi) = ∅, andBVTX(vi) ⊆ S̄i ⊆ PVTX(vi). (24)

As we have seen in the reduction, determiningS̄i could be intractable. If all
S̄i are given in advance as a constraint for spatial variablevi (i.e., we explicitly
specify whether vertexe in the overlay is on the boundary ofvi for all e andvi),
then the existence of such a solution can be determined in polynomial time.

Lemma 6. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC8), whereV =
{v1, v2, . . . , vn},L = {l1, l2, . . . , lm}, and eachli is a polygon. Assume furthermore
thatSi is a subset ofVTX for i = 1,2, . . . , n. If Γ is path-consistent, then(V ⊎L,Γ)
has a solution{v̄1, v̄2, . . . , v̄n} such that∂v̄i ∩ VTX = Si if and only if

(a) EFACE(vi) ≠ FACE andBVTX(vi) ⊆ Si ⊆ PVTX(vi) for eachvi.
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(b) All the conditions in Table 8 hold, where

PEDGE(vi) ∩ BEDGE(lj) ≠ ∅ or Si ∩ BVTX(lj) ≠ ∅, (25)

PFACE(vi) ∩PFACE(vj) ≠ ∅ or PEDGE(vi) ∩PEDGE(vj) ≠ ∅ or Si ∩ Sj ≠ ∅.
(26)

Proof. See Appendix B.

Based on this result, we have the following theorem.

Theorem 11. Suppose all landmarks are represented by polygons. Then the
consistency problemCSPSATs(BRCC8) is NP-complete. Moreover, the consis-
tency problemsCSPSATf(BRCC8), CSPSATs(RCC8), andCSPSATf(RCC8) are
all NP-complete.

Proof. We propose a nondeterministic algorithm which solvesCSPSATs(BRCC8).
The algorithm first guesses a configuration ofSi and uses it as an additional
constraint, then determines the consistency by Lemma 11. Note that eachSi

hasO(K2) points, which are polynomial in the input size. Thus guessing a
configuration ofSi takes polynomial time. Meanwhile, checking all the condi-
tions also takes polynomial time. Therefore, the extended consistency problem
CSPSATs(BRCC8) is in NP, and hence NP-complete as its NP-hardness has been
confirmed in Proposition 9.

By Proposition 1 (ii) and (iii) we knowCSPSATf(BRCC8), CSPSATs(RCC8),
andCSPSATf(RCC8) are all in NP. Meanwhile, they are also NP-hard because
they all contain the NP-hard problemCSPSATs(BRCC8) as a sub-problem. There-
fore, they are all NP-complete.

Remark 2. Recall that in the reduction from the Graph 3-Colouring problem to
CSPSATs(BRCC8) the landmarkl is a concave polygon which has three meeting
points with landmarkl′ (see Figure 6(a)). This property of landmarks plays a
critical role in designing the reduction. Another reduction from the 3-SAT problem
to CSPSATs(BRCC8), given in [29], also uses concave landmarks. Note that two
convex polygons cannot have multiple isolated meeting points (i.e. they either
have only one meeting point or share a line segment). One may conjecture that
the consistency problemCSPSATs(BRCC8) becomes tractable if all landmarks are
represented asconvexpolygons. This, however, is not true.

In fact, a polynomial reduction from 3-SAT toCSPSATs(BRCC8) exists even if
all landmarks are represented by rectangles with edges parallel to the coordinate
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axes. The reduction is more complicated than the reduction provided in the proof
of Proposition 9. The main idea is, although landmarks are all convex regions,
spatial variables can be interpreted as arbitrary regions,and we can constrain a
spatial variable by using these rectangular landmarks in a way such that it may
have multiple meeting points with some landmark. For example, supposel0, l1, l2
are three rectangles as shown in Figure 7, wherel1TPPl0, l0ECl2 and l1ECl2.
Assume thatv is a spatial variable andvTPPl0, vECl1 and vECl2. These con-
straints requirev to contain (at least) one of the two pointsQ+ andQ−, which may
be used to simulate a propositional variable. Based on this obversion, a reduction
from 3-SAT can be devised. Therefore, the consistency problemCSPSATs(BRCC8)
remains NP-hard even for rectangular landmarks.

Figure 7: Illustration for simulating a propositional variable using rectangular landmarks

Remark 3. In practice, we may reduce the problemCSPSATs(BRCC8) to SAT (i.e.
deciding the satisfiability of propositional formulas in conjunctive normal form).
As stated in the proof of Theorem 11,CSPSATs(BRCC8) is equivalent to deciding
whether there existSi ⊆ VTX for eachi such that all the conditions in Lemma 6
are satisfied. Note that, once the instance is given, the conditions in the lemma
can be simplified (in polynomial time) into a set of conditions concerningSi of the
following forms:R ⊆ Si ⊆ R′, Si∩R ≠ ∅, Si∩Sj = ∅, andSi∩Sj ≠ ∅, whereR and
R′ are subsets ofVTX determined by the instance. For eachSi and each vertexv ∈
VTX , we introduce a propositional variable which is assignedtrue iff v is inSi. In
this way, each condition in one of the above forms is transformed into a disjunction
clause or a number of disjunction clauses, and thus aCSPSATs(BRCC8) instance
is transformed into an equivalent SAT instance. Therefore,CSPSATs(BRCC8) can
be reduced to SAT, which enables us to solve the problem by thewell-developed
SAT solvers.

The NP-hardness ofCSPSATs(BRCC8) is quite undesirable, as it is the simplest
and most fundamental case of introducing landmarks to reasoning with RCC8. In
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the following subsection, we show that the same problem becomes tractable if we
interpret RCC8 relations by using a stronger connectednessrelation.

4.4.3. RCC8 model based on strong connectedness
In the standard RCC8 model, two regions are considered to be connected if

they have a common point. Consequently, two externally connected (EC) regions
may share one or more isolated boundary points (see Figure 6(a)). In this sub-
section, we turn to another interpretation of RCC8, which uses a stronger version
of connectedness: two regions are considered as connected if they share a com-
mon curve, where acurve is defined as a topological embedding of the closed
interval [0,1] in the plane. As a result, two non-overlapping regions are externally
connected iff their boundaries share at least a curve. Formally, we have

Definition 8 (RCC8 algebra based on strong connectedness). Let U be the set
of nonempty regular closed sets, orregions, in the real plane. The RCC8 algebra
based on strong connectedness, written RCC8′, is generated by the following eight
topological relations

DC,EC,PO,EQ,TPP,NTPP,TPPi,NTPPi,

whereTPPi and NTPPi are the converses ofTPP andNTPP respectively, and
EQ is the identity relation, and for two regionsa, b,

• aDCb iff a ∩ b does not contain any curve;

• aECb iff a○ ∩ b○ = ∅ anda ∩ b contains at least one curve;

• aNTPPb iff a ⊂ b and∂a ∩ ∂b does not contain any curve;

• aTPPb iff a ⊂ b and∂a ∩ ∂b contains at least one curve;

• aPOb iff a○ ∩ b○ ≠ ∅ anda ⊈ b, b ⊈ a.

It is easy to see that this connectedness relation (i.e. the complement ofDC) is
stronger than (i.e. contained in) the connectedness relation given in Definition 4.

Intuitively, the NP-hardness ofCSPSATs(BRCC8) (for weak connectedness) is
due to that there are exponentially many possibilities ofSi (the intersection of
VTX and the boundary ofvi), since points inSi may be evidences ofEC con-
straints (cf. the reduction in Section 4.4.1). In the strongconnectedness inter-
pretation, however, isolated meeting points have no effects on RCC8 relations.
ThereforeSi may be ignored safely and the problemCSPSATs(BRCC8′) becomes
tractable, as shown in the following theorem.

37



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Theorem 12.The consistency problemCSPSATs(BRCC8′) can be decided in poly-
nomial time.

The computational complexity ofCSPSATs(BRCC8′) is the same as that of
CSPSATs(BRCC5) (see Theorem 9), as the argument for RCC5 still applies here.
Precisely, the consistency of an instance ofCSPSATs(BRCC8′) can be decided by
checking the conditions in Lemma 6 and neglecting all conditions involvingSi.
That is, we discard the following conditions:

• the conditionBVTX(vi) ⊆ Si ⊆ PVTX(vi) in condition (a);

• the conditionSi ∩ Sj = ∅ whenever(viDCvj) ∈ Γ in Row 4 of Table 8;

• the disjunctSi ∩ BVTX(lj) ≠ ∅ in (25);

• the disjunctSi ∩ Sj ≠ ∅ in (26).

The above theorem can be proven by modifying the proof of Lemma 6 with a
slightly different construction. The proof sketch is provided in Appendix C.

Remark 4. The strong connectedness introduced above has been considered in
[3, 8]. In particular, in [3], Borgo, Guarino, and Masolo argued that the classical
Whiteheadian connectedness may be considered too weak in many cases. For
example, “a worm cannot pass from the interior of one apple toanother, which
touch just at a point, without becoming visible to the exterior – so from the worm’s
point of view we might as well say that the apples are not ‘sufficiently’ connected.”

As far as consistency and realisations are concerned, Li [19] has shown that
any consistent RCC8 network has a solution in any RCC model. The cubic re-
alisation algorithm described there can be easily adapted to construct a solution
in the RCC8 model based on strong connectedness. This implies in particular
that an RCC8 network (without landmarks) has a solution in the RCC8 model
with ‘weak’ connectedness iff it has a solution in the RCC8 model with ‘strong’
connectedness.

5. Conclusion and future work

One major difference between qualitative CSPs and classical CSPs is that the
domain of a qualitative CSP is always infinite, while that of aclassical CSP is usu-
ally finite. In this paper we proposed an extended framework for qualitative CSPs
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that supports finite domains. In the extended framework, a spatial/temporal vari-
able could take values from a finite domain or even a singleton. This reflects de-
mands in applications such as urban planning and spatial query processing where
additional knowledge about variables may be available. We believe this extension
is necessary to bring QSTR closer to real-world applications.

We then investigated the computational complexity of solving the extended
consistency problem for five very important qualitative calculi, viz. PA, IA, CRA,
RCC5 and RCC8. The results were summarised in Table 4, where for each calcu-
lus, we determined whether each of the four variants of the consistency problem is
in P or NP-complete. Recall that the classical consistency problem is NP-complete
for IA, CRA, RCC5 and RCC8. This shows that, in general, the expressiveness
of the extended framework of qualitative CSP does not incur additional cost in
computational complexity for these calculi. Under practical assumptions, we also
provided efficient algorithms for solving basic constraints involving landmarks for
all these calculi.

While this paper introduces landmarks in qualitative CSPs,there is a related
work in classical CSPs. Recently, Bulatov [5] has given a full classification of
computational complexity for conservative constraint satisfaction problems with
finite values, in which the set of values for each individual variable can be re-
stricted arbitrarily. The solving algorithm and the proofsgiven there heavily use
the algebraic approach to (classical) CSP developed in [17,6]. One interesting
future research direction will be investigating the possibility of applying the solv-
ing algorithm given in [5], and, more generally, the algebraic approach, to solving
qualitative CSPs involving landmarks. We refer the reader to [2] for recent pro-
gresses of applying the algebraic approach for attacking qualitative CSPs.

In this paper, we have confined ourselves to the five most important qualitative
calculi, which are all binary calculi. The framework can be straightforwardly ex-
tended to any other qualitative calculus, binary or ternary, but the computational
complexity has to be examined case by case. Take the ternary calculus LR [23] as
an example. It has been shown that reasoning with complete basic and landmark-
free LR networks is already at least NP-hard and its NP-membership is still open
[46]. As a consequence, reasoning with complete basic LR networks involving
landmarks is also NP-hard. Another direction of future research will be inves-
tigating the computation complexity for other well-known calculi, individually
or combined together. Because most of these consistency problems are at least
NP-hard, it is also necessary to develop either approximatemethods or practical
methods (e.g. those in [37, 18]) for solving qualitative (binary or ternary) CSPs
involving landmarks.
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Appendix A. Proof of Theorem 8 (Sufficiency)

The sufficiency part is proven by a realisation algorithm which generates a
solution of the constraint network. The algorithm is similar to the classical real-
isation algorithm introduced in [19, 22]. We first constructfor each variablevi
a regionai such that{a1, a2, . . . , an} satisfies all except thePP constraints, and
then construct regions{c1, c2, . . . , cn} which is a solution ofΓ.

For each variablevi, we define

PFACE(vi) = FACE − IFACE(vi) − EFACE(vi). (A.1)

A number of ‘base regions’ are necessary in the constructionof {a1, a2, . . . , an}.
Base regions are arbitrarily selected, as long as they are pairwise disjoint polygons
and are so small that their union does not contain any face. WeuseXi to denote
the set of base regions being selected for variablevi. The construction is as fol-
lows, where eachXi is initialised as the empty set.

1. For each facef ∈ PFACE(vi), select a base region contained inf and put it
intoXi.

2. For anyi < j such that(viPOvj) ∈ Γ andPFACE(vi) ∩ PFACE(vj) ≠ ∅, select
a facef in PFACE(vi) ∩ PFACE(vj) and a base region contained inf. Put the
base region into bothXi andXj .

3. For eachi, let ai = ⋃Xi.

4. For eachi, let bi = ai ∪⋃{aj ∶ (vjPPvi) ∈ Γ}.

5. For eachi, let ci = bi ∪⋃{lj ∶ (ljPPvi) ∈ Γ}.
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Lemma 7. Suppose(V ⊎ L,Γ) is an instance ofCSPSATs(BRCC5), whereV =
{v1, v2, . . . , vn}, L = {l1, l2, . . . , lm}, and eachli is a polygon. SupposeΓ is path-
consistent. Assume thatai, bi, ci (1 ≤ i ≤ n) are as in the construction given above.
Then for each facef ∈ FACE we have

• f ∈ IFACE(vi) iff f ⊆ ci.

• f ∈ EFACE(vi) iff f ∩ ci = ∅.

• f ∈ PFACE(vi) iff f ⊈ ci andf ∩ ci ≠ ∅.

Proof. We first prove the necessity part.
Supposef ∈ IFACE(vi). There exists a landmarkl such thatf ∈ IFACE(l) and

lPPvi. Becausel ⊆ ci, the first statement holds directly.
Assumef ∈ EFACE(vi). Because each base region inXi is contained in a face

in PFACE(vi), we know thatf ∩ ai = ∅. Suppose(vjPPvi) ∈ Γ. By the definition
of EFACE(vj) and the path-consistency ofΓ, it is direct to prove thatf is also in
EFACE(vj). Therefore we havef∩aj = ∅, and thusf∩ bi = ∅ by the construction of
bi. Similarly, for any landmarkl such that(lPPvi) ∈ Γ, we can prove thatf∩l = ∅.
Therefore, we havef ∩ ci = ∅.

Now assumef ∈ PFACE(vi). Clearly we havef ∩ ai ≠ ∅ becauseXi has a
base region contained inf. We only need to provef ⊈ ci. By the selection of
base regions,f is not contained in the union of all base regions, and hence itis
not contained inbi. Moreover, for any landmarklj , if (ljPPvi) ∈ Γ, then f ∈
EFACE(lj) (otherwise,f ∈ IFACE(lj) ⊆ IFACE(vi)). That is to say,f is disjoint withlj .
Therefore,f ⊈ ci.

The sufficiency part follows fromIFACE(vi)∪EFACE(vi)∪PFACE(vi) = FACE.

Corollary 2. Let (V ⊎ L,Γ) and ci be as in Lemma 7. Furthermore, suppose
(V ⊎L,Γ) satisfies all the conditions in Theorem 8. Then{c1, c2, . . . , cn} satisfies
all the constraints inΓ of the formviαlj.

Proof. Because(V ⊎ L,Γ) satisfies the conditions in Theorem 8, we know in
particular thatEFACE(vi) ≠ FACE for each1 ≤ i ≤ n. That is, there exists a facef in
IFACE(vi) ∪PFACE(vi). By Lemma 7, this implies that eachci is nonempty.

(1) If (viPPlj) ∈ Γ, then we haveEFACE(lj) ⊆ EFACE(vi) by (10). Lemma 7
directly implies thatci ⊆ lj . BecauseIFACE(vi) ≠ IFACE(lj) (Row 2 in Table 7),
there exists a facef which is inIFACE(lj) but not inIFACE(vi). By Lemma 7,f is
not contained inci. Therefore,ci ⊂ lj, i.e. ciPPlj.
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(2) If (ljPPvi) ∈ Γ, clearly we havelj ⊆ ci. BecauseEFACE(vi) ≠ EFACE(lj)
(Row 3 in Table 7) andEFACE(vi) ⊆ FACE − IFACE(vi) ⊆ FACE − IFACE(lj) =
EFACE(lj), we know thatEFACE(vi) ⊂ EFACE(lj), i.e. there exists a facef in EFACE(lj)
but not inEFACE(vi). Thereforef∩ lj = ∅ andf∩ci ≠ ∅. That is,lj ⊂ ci, i.e. ljPPci.

(3) If (viDR lj) ∈ Γ, then we haveIFACE(lj) ⊆ EFACE(vi). Lemma 7 directly
implies thatci ∩ l○j = ∅, i.e. ciDR lj.

(4) If (viPOlj) ∈ Γ, then by Row 1 in Table 7, we know thatEFACE(vi) ∪
EFACE(lj) ≠ FACE. That is, there exists a facef such thatf ∉ EFACE(vi) and f ∉
EFACE(lj) (hencef ∈ IFACE(lj)). Thereforef ⊆ lj andf ∩ ci ≠ ∅ by Lemma 7, and
henceci overlapslj , i.e. they have a common interior point. It can be proven that
ci ⊈ lj andlj ⊈ ci as in the first two cases above. Therefore,ciPOlj holds.

We next prove that{c1, . . . , cn} is a solution ofΓ.

Lemma 8. Let (V ⊎ L,Γ) and ci be as in Corollary 2. Then{c1, . . . , cn} is a
solution of(V ⊎L,Γ).

Proof. We only need to prove that constraints of the form(viαvj) are satisfied.
(1) If (viPPvj) ∈ Γ, it can be proven thatbi ⊆ bj and ci ⊆ cj by the path-

consistency ofΓ. We next proveci ≠ cj. By IFACE(vi) ∪ EFACE(vj) ≠ FACE (last
row in Table 7), there exists a facef that is in neitherIFACE(vi) nor EFACE(vj).
Thereforef is either inEFACE(vi) orPFACE(vi). If f ∈ EFACE(vi), thenf ∩ ci = ∅. By
Lemma 7 andf ∉ EFACE(vj), we also knowf∩cj ≠ ∅, and thusci ≠ cj. Now suppose
f ∈ PFACE(vi). By Lemma 7 we havef ⊈ ci. Note thatf is in eitherIFACE(vj) or
PFACE(vj). In the first case, we havef ⊆ cj and thusci ≠ cj . In the second case,
by the construction ofXj we know that there exists some base regionr contained
in f that belongs toXj only. Thereforer is disjoint with ai and hence disjoint
with bi. Moreover,r cannot be contained inci. Otherwise, there must exist some
landmarkl such thatlPPvi andr ⊆ l. This implies thatf ∈ IFACE(l), which further
implies f ∈ IFACE(vi), a contradiction. Therefore, we haver ⊈ ci andr ⊆ cj and
thusci ≠ cj . In conclusion, we knowci ⊂ cj , i.e. ciPPcj .

(2) If (viDRvj) ∈ Γ, we showci∩c○j = ∅. By construction we haveai∩aj = ∅,
becauseXi ∩ Xj = ∅ unless(viPOvj) ∈ Γ. Note that(vkPPvi) ∈ Γ implies
(vkDRvj) ∈ Γ by path-consistency. Therefore, we also haveak ∩ aj = ∅. By the
construction ofbi we knowbi ∩aj = ∅. Similarly we can prove thatbi ∩ bj = ∅. In
the same way, it can be further proven thatci ∩ c○j = ∅, i.e. ciDRcj.

(3) If (viPOvj) ∈ Γ, we first show thatci overlapscj . By EFACE(vi)∪EFACE(vj) ≠
FACE (Row 6 in Table 7), there exists a facef such thatf ∉ EFACE(vi) and f ∉

EFACE(vj). In other words, we havef ∈ IFACE(vi) ∪ PFACE(vi) andf ∈ IFACE(vj) ∪
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PFACE(vj). If f ∈ PFACE(vi) ∩ PFACE(vj), then by the construction ofai andaj
there exists a base regionr selected from a face inPFACE(vi) ∩ PFACE(vj) (not
necessarilyf) such thatr ∈ Xi ∩ Xj. Therefore,r ⊆ ai ∩ aj and hencer ⊆
ci ∩ cj. If f ∈ IFACE(vi) ∩ IFACE(vj), then f is contained in bothci and cj . If
f ∈ IFACE(vi)∩PFACE(vj), then we knowf ⊆ ci andf∩cj ≠ ∅. Thusci also overlaps
cj. The last case can be proven similarly. Thereforeci overlapscj . It remains to
show thatci andcj are incomparable (i.e., one is not contained in the other). This
can be proven in the same way as in the case of(viPOlj) ∈ Γ. In conclusion, we
know ciPOcj.

In summary, all the constraints are satisfied and{c1, . . . , cn} is a solution of
Γ.

Appendix B. Proof of Lemma 6

Appendix B.1. Necessity

Suppose{v̄1, v̄2, . . . , v̄n} is a solution ofΓ andv̄i∩VTX = Si for eachi. By the
definitions ofBVTX(vi) andPVTX(vi), it is straightforward to show thatBVTX(vi) ⊆
Si ⊆ PVTX(vi). Similarly to the RCC5 case, we can prove thatEFACE(vi) ≠ FACE

for anyvi ∈ V . We first prove the following lemmas.

Lemma 9. Suppose{v̄1, v̄2, . . . , v̄n} is a solution ofΓ, then for anȳv1 we have

(i) f ⊆ (v̄i)○ for any facef ∈ IFACE(vi);

(ii) f ∩ v̄i = ∅ for any facef ∈ EFACE(vi);

(iii) e ⊆ (v̄i)○ for any edgee in IEDGE(vi);

(iv) e′ ∩ v̄i = ∅ for any edgee′ in EEDGE(vi);

(v) v ∈ (v̄i)○ for any vertexv in IVTX(vi);

(vi) v ∉ v̄i for any vertexv in EVTX(vi).

Proof. For (i), by the definition ofIFACE(vi) (see (9)), there exists a landmarklk
such thatf ∈ IFACE(lk) andlkTPPvi or lkNTPPvi. Thus we havef ⊆ l○k andlk ⊆ v̄i,
and, therefore,f ⊆ (v̄i)○. Similarly we havef ∩ v̄i = ∅ for anyf in EFACE(vi).

For (iii), by the definition ofIEDGE(vi) (see (15)), we have eitherSFACE(e) ⊆
IFACE(vi), or e ∈ BEDGE(lk) for some landmarklk with lkNTPPvi. In the first case,
because the two incident faces ofe are both inIFACE(vi), they are contained in
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the interior ofv̄i. Becausee is the common boundary of its two incident faces,
we knowe is also contained in(v̄i)○. In the second case, we havee ⊆ lk ⊆ (v̄i)○.
Thereforee ⊆ (v̄i)○ holds in both cases. Similarly we havee′∩ v̄i = ∅ for any edge
e′ in EEDGE(vi).

(v) and (vi) can be proven in the same way.

Lemma 10. Suppose{v̄1, v̄2, . . . , v̄n} is a solution ofΓ, andSi = v̄i∩VTX for each
i. Then for anyvi and lj , if (viEClj), (viTPPlj) or (viTPPilj) is a constraint in
Γ, then (25) holds; for anyvi andvj, if (viECvj) or (viTPPvj) ∈ Γ is a constraint
in Γ, then (26) holds.

Proof. Suppose one of(viEClj), (viTPPlj), and(viTPPilj) is a constraint inΓ.
We show (25) holds. Because{v̄1, v̄2, . . . , v̄n} is a solution, we know that̄vi and
lj have a common boundary point, sayP . It is clear thatP is either a vertex in
BVTX(lj), or on an edgee ∈ BEDGE(lj). In the first case, we haveP ∈ ∂v̄i∩VTX = Si.
ThereforeP ∈ Si ∩BVTX(lj) and thus (25) is satisfied. In the second case, because
P ∈ e andP ∈ ∂v̄i, we know edgee cannot be in the interior of̄vi or in the exterior
of v̄i. By Lemma 9,e is in neitherIEDGE(vi) nor EEDGE(vi), hencee ∈ PEDGE(vi).
Therefore we havePEDGE(vi) ∩ BEDGE(lj) ≠ ∅ and thus (25) is also satisfied.

The other part of the lemma can be proven similarly.

The necessity of conditions in Table 8 can then be proven straightforwardly.

Appendix B.2. Sufficiency

Suppose(V ⊎L,Γ) andSi (i = 1, . . . , n) satisfy the conditions in Lemma 6, we
construct a solution{v̄1, . . . , v̄n} of Γ such thatSi = ∂v̄i ∩ VTX . The construction
procedure is similar to that in [19, 22]. For each spatial variablevi, we select a set
of small triangles, denoted byXi, in the following way.

• For each facef ∈ PFACE(vi), select a small triangle inf and put it inXi, see
Figure B.8(a).

• For each vertexv ∈ Si −BVTX(vi) ⊆ PVTX(vi) −BVTX(vi), by Proposition 10
we know thatv is not in BVTX(vi) ∪ IVTX(vi) ∪ EVTX(vi). We have that
SFACE(v) ∩ PFACE(vi) ≠ ∅. Otherwise,SFACE(v) is contained inIFACE(vi) ∪
EFACE(vi), which implies thatv is either inIVTX(vi), or in EVTX(vi), or in
BVTX(vi). We select a facef from SFACE(v) ∩ PFACE(vi), and select a small
triangle inf that containsv. Put the triangle inXi, see Figure B.8(b).
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• If viEClj is inΓ, then by Table 8 we have eitherPEDGE(vi)∩BEDGE(lj) ≠ ∅ or
Si∩BVTX(lj) ≠ ∅ (i.e. (25)). IfSi∩BVTX(lj) ≠ ∅, do nothing. Otherwise, we
select an edgee fromPEDGE(vi)∩BEDGE(lj). Let f andf′ be the two incident
faces ofe such thatf ∈ IFACE(lj) andf′ ∈ EFACE(lj). By definition, we know
f ∈ EFACE(vi). We note thatf′ cannot be inEFACE(vi). This is because,
otherwise, we haveSFACE(e) = {f, f′} ⊆ EFACE(vi) and hencee ∈ EEDGE(vi),
which contradicts the assumption thate ∈ PEDGE(vi). If f′ ∈ IFACE(vi), do
nothing. If f′ ∈ PFACE(vi), select a triangle in facef′ with one edge one and
put it in Xi, see Figure B.8(c).

• If viTPPlj is in Γ, then by Table 8 we also havePEDGE(vi) ∩ BEDGE(lj) ≠ ∅
orSi∩BVTX(lj) ≠ ∅ (i.e. (25)). IfSi∩BVTX(lj) ≠ ∅, do nothing. Otherwise,
select an edgee fromPEDGE(vi)∩BEDGE(lj). Let f andf′ be the two incident
faces ofe such thatf ∈ IFACE(lj) andf′ ∈ EFACE(lj). By definition, we know
f′ ∈ EFACE(vi). Similar to the case ofviEClj, f cannot be inEFACE(vi). If
f ∈ IFACE(vi), do nothing. Iff ∈ PFACE(vi), select a triangle in facef with one
edge one and put it inXi.

• If viECvj is in Γ, then by Table 8 we havePFACE(vi) ∩ PFACE(vj) ≠ ∅, or
PEDGE(vi)∩PEDGE(vj) ≠ ∅, orSi∩Sj ≠ ∅. If Si∩Sj ≠ ∅, do nothing. IfSi∩
Sj = ∅ andPFACE(vi)∩PFACE(vj) ≠ ∅, select a facef ∈ PFACE(vi)∩PFACE(vj)
and two externally connected triangles inf. Put one triangle inXi and put
the other inXj, see Figure B.8(d). IfSi∩Sj = ∅, PFACE(vi)∩PFACE(vj) = ∅,
andPEDGE(vi) ∩PEDGE(vj) ≠ ∅, then select edgee ∈ PEDGE(vi) ∩PEDGE(vj).
Supposef and f′ are the two incident faces ofe. We have four subcases
depending on whethere is in BEDGE(vi) andBEDGE(vj).

– If e ∈ BEDGE(vi) ande ∈ BEDGE(vj), then do nothing.

– If e ∈ BEDGE(vi) and e ∉ BEDGE(vj), supposef ∈ IFACE(vi) and f′ ∈

EFACE(vi). Select a triangle inf′ with one edge one and put it inXj.

– If e ∉ BEDGE(vi) and e ∈ BEDGE(vj), supposef ∈ IFACE(vj) and f′ ∈

EFACE(vj). Select a triangle inf′ with one edge one and put it inXi.

– If e ∉ BEDGE(vi) ande ∉ BEDGE(vj), then select two triangles inf and
f′ respectively such that the triangles have a common edge one, see
Figure B.8(e).

• If viTPPvj is inΓ, then by Table 8 we also havePFACE(vi)∩PFACE(vj) ≠ ∅,
or PEDGE(vi) ∩ PEDGE(vj) ≠ ∅, or Si ∩ Sj ≠ ∅. If Si ∩ Sj ≠ ∅, then do
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(a) (b) (c)

(d) (e)

Figure B.8: Illustration of the selection of triangles

nothing. IfSi ∩ Sj = ∅ andPFACE(vi) ∩ PFACE(vj) ≠ ∅, then select a face
f ∈ PFACE(vi)∩PFACE(vj) and one triangle inf. Put the triangle in bothXi and
Xj. If Si∩Sj = ∅,PFACE(vi)∩PFACE(vj) = ∅, andPEDGE(vi)∩PEDGE(vj) ≠ ∅,
then select an edgee ∈ PEDGE(vi) ∩PEDGE(vj). Supposef andf′ are the two
incident faces ofe. At least one off andf′ is not inEFACE(vi) (otherwisee
is in EEDGE(vi)). W.l.o.g., supposef ∉ EFACE(vi). If f ∈ IFACE(vi), then do
nothing. Iff ∈ PFACE(vi), we select a triangle inf with one edge one and put
it in Xi.

• If viPOvj is in Γ, then by Table 8 we haveEFACE(vi) ∪ EFACE(vj) ≠ FACE.
There exists a facef in (IFACE(vi)∪PFACE(vi))∩ (IFACE(vj)∪PFACE(vj)). If
f is inPFACE(vi)∩PFACE(vj), then select a triangle in facef and put it in both
Xi andXj . Otherwise, we do nothing.

We assume that all the triangles are pairwise disjoint and are sufficiently small
such that the union of all the triangles does not entirely occupy any face or any
edge. NowXi contains all the triangles we need for spatial variablevi. For clarity,
we now consider each face as its closure, and we use(vjPPvi) ∈ Γ to denote that
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(a)x ∈ FACE (b) x inside facef (c) x on vertexv (d) x on edgee

Figure B.9: Illustration of functionexpand(x,1)

vjTPPvi or vjNTPPvi is a constraint inΓ. Defineai andbi as follows:

ai =⋃Xi, (B.1)

bi = ai ∪⋃IFACE(vi) ∪⋃{aj ∶ (vjPPvi) ∈ Γ}. (B.2)

We assert that{b1, b2 . . . , bn} satisfies all the constraints inΓ except that some
NTPP constraints may be realised asTPP. This assertion can be proven in the
same way as in the proof of Lemma 8.

Let X be the union of allXi, i.e. X is the set of all the triangles selected for
spatial variables. To cope with theNTPP constraints, we introduce theexpand
function from(X ∪FACE)×{1,2, . . . , n} to regions in the plane such that for any
x,x′ ∈X ∪ FACE,

• expand(x,1) = x.

• expand(x, i) NTPP expand(x, i + 1) for i = 1,2, . . . , n − 1.

• expand(x, i) DC expand(x′, i′) if xDCx′, for i, i′ = 1,2, . . . , n.

• expand(x, i) PO expand(x′, i′) if xECx′, for i, i′ = 1,2, . . . , n.

That is to say,expand(x, i) (i = 1,2, . . . , n) is a series of nested regions among
whichx is the innermost core. Meanwhile,expand(x, i) should be small enough
to not touch or overlap any other regions or any otherexpand(x′, i′) whenever
possible. Figure B.9 provides illustrations forexpand(x,1).

We can extend the domain of the functionexpand to include allbi defined
above and all landmarks by

expand(y, i) =⋃{expand(x, i) ∶ x ⊆ y, x ∈ X ∪ FACE}, (B.3)

wherey ∈ {b1, . . . , bn, l1, . . . , lm} andi = 1,2, . . . , n.
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Define a functiondNTPP ∶ V × (V ∪ L) → N, such thatdNTPP(vi,w) is the
length of the longestNTPPi chain fromvi to w, wherew is either variablevj or
landmarklj . Furthermore, define

ci = bi ∪⋃{expand(bj , dNTPP(vi, vj)) ∶ vjNTPPvi}

∪⋃{expand(lj , dNTPP(vi, lj)) ∶ ljNTPPvi}.
(B.4)

It can be proven that{c1, . . . , cn} is a solution ofΓ such thatSi = ∂ci ∩ VTX

for i = 1,2, . . . , n in the same way as in [19, 22]. We omit the details here.

Appendix C. Proof sketch of Theorem 12

We need to adjust the construction given in the sufficiency part to cope with the
strong connectedness. The only differences from the standard RCC8 interpreta-
tion are: (i) we assumeSi = ∅ for each variablevi; (ii) although the requirements
for expand(⋅, ⋅) still apply, we need to modify the construction of this function
to cater for the change in the interpretations of RCC8 relations. If x is a face
in FACE, or a triangle inX on some vertexv, expand(x,1) should be modified
as shown in Figures C.10 (a) and (c) respectively, which can be contrasted with
Figures B.9 (a) and (c). Note that in Figure C.10 (c), it holdsthatxDCf1 because
their intersection is a point (not a curve). Therefore,expand(x,1) is supposed to
be disjoint withf1 (under the strong connectedness interpretation of RCC8) due
to the requirement ofexpand(⋅, ⋅). The case in Figure C.10 (a) is similar: the
boundary of the expanded face does not intersect with any face which is disjoint
with the original face.

All the remaining parts of the construction, including the selection of triangles
(note thatSi = ∅ here), definitions ofai, bi, and verification ofbi as a solution of
Γ, are completely the same as in the standard interpretation of RCC8 relations.
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ÖGAI, pages 157–167, 1991.

[13] Alfonso Gerevini and Jochen Renz. Combining topological and size infor-
mation for spatial reasoning.Artif. Intell., 137(1-2):1–42, 2002.

[14] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner,and Mark Pauly.
Automatic generation of tourist maps.ACM Trans. Graph., 27(3):100:1–
100:11, 2008.

[15] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In Alfonso Gerevini, Adele E.
Howe, Amedeo Cesta, and Ioannis Refanidis, editors,ICAPS. AAAI, 2009.

[16] Robin Hirsch. A finite relation algebra with undecidable network satisfaction
problem.Logic Journal of the IGPL, 7(4):547–554, 1999.

[17] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of con-
straints.J. ACM, 44(4):527–548, 1997.

[18] Jason Jingshi Li, Jinbo Huang, and Jochen Renz. A divide-and-conquer
approach for solving interval algebra networks. In Craig Boutilier, editor,
IJCAI, pages 572–577, 2009.

[19] Sanjiang Li. On topological consistency and realization. Constraints,
11(1):31–51, 2006.

[20] Sanjiang Li. Combining topological and directional information for spatial
reasoning. In Manuela M. Veloso, editor,IJCAI, pages 435–440, 2007.

[21] Sanjiang Li and Anthony G. Cohn. Reasoning with topological and di-
rectional spatial information.Computational Intelligence, 28(4):579–616,
2012.

[22] Sanjiang Li and Huaiqing Wang. RCC8 binary constraint network can be
consistently extended.Artif. Intell., 170(1):1–18, 2006.

50



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[23] Gérard Ligozat. Qualitative triangulation for spatial reasoning. InSpatial
Information Theory: A Theoretical Basis for GIS (COSIT’93), pages 54–68,
1993.

[24] Gérard Ligozat. Reasoning about cardinal directions. J. Vis. Lang. Comput.,
9(1):23–44, 1998.

[25] Gérard Ligozat and Jochen Renz. What is a qualitative calculus? A general
framework. In Chengqi Zhang, Hans W. Guesgen, and Wai-KiangYeap,
editors,PRICAI, pages 53–64. Springer, 2004.

[26] Weiming Liu and Sanjiang Li. Reasoning about cardinal directions between
extended objects: The NP-hardness result.Artif. Intell., 175(18):2155–2169,
2011.

[27] Weiming Liu and Sanjiang Li. Here, there, but not everywhere: An extended
framework for qualitative constraint satisfaction. In LucDe Raedt et al.,
editors,ECAI, pages 552–557, 2012.

[28] Weiming Liu, Sanjiang Li, and Jochen Renz. Combining RCC-8 with qual-
itative direction calculi: Algorithms and complexity. In Craig Boutilier, edi-
tor, IJCAI, pages 854–859, 2009.

[29] Weiming Liu, Shengsheng Wang, Sanjiang Li, and Dayou Liu. Solving qual-
itative constraints involving landmarks. In Jimmy Ho-Man Lee, editor,CP,
pages 523–537, 2011.

[30] Weiming Liu, Xiaotong Zhang, Sanjiang Li, and Mingsheng Ying. Rea-
soning about cardinal directions between extended objects. Artif. Intell.,
174(12-13):951–983, 2010.

[31] Kevin Lynch. The Image of the City. MIT, 1960.

[32] Alan K. Mackworth. Constraint satisfaction, in S.C. Shapiro editor,Ency-
clopedia of AI, Vol. 1, 2nd edition, Wiley, 1992, pp. 285–293.

[33] Ugo Montanari. Networks of constraints: Fundamental properties and appli-
cation to picture processing,Information Science7:95–132, 1974.

[34] Bernhard Nebel. Computational properties of qualitative spatial reason-
ing: First results. In Ipke Wachsmuth, Claus-Rainer Rollinger, and Wilfried
Brauer, editors,KI, pages 233–244. Springer, 1995.

51



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[35] Bernhard Nebel and Hans-Jürgen Bürckert. Reasoningabout temporal re-
lations: A maximal tractable subclass of Allen’s interval algebra. J. ACM,
42(1):43–66, 1995.

[36] Dimitris Papadias and Timos Sellis. Qualitative representation of spatial
knowledge in two-dimensional space.The VLDB Journal, 3(4):479–516,
1994.

[37] Duc Nghia Pham, John Thornton, and Abdul Sattar. Modelling and
solving temporal reasoning as propositional satisfiability. Artif. Intell.,
172(15):1752–1782, 2008.

[38] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based
on regions and connection. InKR’92, pages 165–176, 1992.

[39] Jochen Renz. A canonical model of the region connectioncalculus.Journal
of Applied Non-Classical Logics, 12(3-4):469–494, 2002.

[40] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial
reasoning: A maximal tractable fragment of the region connection calculus.
Artif. Intell., 108(1-2):69–123, 1999.

[41] Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using con-
straint calculi. In Marco Aiello, Ian Pratt-Hartmann, and Johan van Ben-
them, editors,Handbook of Spatial Logics, pages 161–215. Springer, 2007.

[42] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-
based anytime planning with landmarks.J. Artif. Intell. Res. (JAIR), 39:127–
177, 2010.

[43] Peter van Beek. Reasoning about qualitative temporal information. Artif.
Intell., 58(1-3):297–326, 1992.

[44] Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for
temporal reasoning. InAAAI, pages 377–382, 1986.

[45] Stefan Wölfl and Matthias Westphal. On combinations ofbinary qualitative
constraint calculi. In Craig Boutilier, editor,IJCAI, pages 967–973, 2009.

[46] Diedrich Wolter and J. H. Lee. Qualitative reasoning with directional rela-
tions. Artif. Intell., 174(18):1498–1507, 2010.

52


