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Abstract-In this paper, the Takagi-8ugeno (T-8) fuzzy model of 
a multivariable nonlinear system in state space form is obtained 
using the developed fuzzy modelling algorithm. In this fuzzy 
model, the system sate space equation is expressed as the fuzzy 
summation of the state variables, disturbance and control input. 
To obtain this model with high accuracy, the genetic algorithm 
(GA) with a new encoding method is applied to search for the 
optimal model parameters. The proposed hybrid intelligence 
technique can evolve the fuzzy rule structure (number of rules 
and selection of rules, number of premise inputs and selection of 
premise inputs) so that the obtained fuzzy model has the simplest 
structures without decreasing the modelling accuracy. To 
validate the proposed approach, the algorithm is applied to 
model a building structure with a magneto-rheological (MR) 
damper, which is a multivariable nonlinear system. The 
modelling errors between the system outputs and the 
corresponding fuzzy model outputs are compared with the 
automatically selected rules. It is confirmed by the validation 
results that the proposed hybrid intelligence technique can find 
the optimal T-8 fuzzy model for the nonlinear system. 

Keywords- Takagi-Sugeno !UZ7JI modelling ; multivariable 
nonlinear system,. genetic algoritms 

r. INTRODUCTION 

Nowadays, the T-S fuzzy modeling technique is becoming 
powerful engineering tools for modelling and control of 
complex nonlinear dynamic systems, The T-S fuzzy model is a 
system described by fuzzy if-then rules which can give local 
linear representation of the nonlinear system, For the reason 
that it employs linear model in the consequent part, 
conventional linear system theory can be applied for the system 
analysis and synthesis easily, The methods for learning T-S 
fuzzy models from data are based on the idea of consecutive 
structure and parameter identification [1], To accommodate 
new input data, adaptive online learning of T-S fuzzy model 
has been developed [2]. On the other hand, design of a fuzzy 
model can be formulated as a search problem in 
multidimensional space where each point represents a possible 
fuzzy model with different rule structure, membership 
functions (MFs), and related parameters, Due to the search 
capability, evolutionary algorithms (EAs), such as genetic 
algorithms (GAs) and evolution strategies (ESs), have been 
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utilised greatly in evolutionary fuzzy modelling, In some of 
EA-based fuzzy models, only parameters of fuzzy models are 
optimised using EAs while the structure itself is fixed [3]. 
Since parameters and rule structure of fuzzy models are 
codependent, they should be designed or evolved 
simultaneously, Thus, methodologies that try to change the rule 
structure by encoding all the information into the chromosome 
have been developed [4]. In this paper, the GA-based fuzzy 
modelling algorithm is developed, Especially, an encoding 
scheme that consists of three kinds of genes in one 
chromosome, which allows simultaneous optimisation of 
parameters of antecedent MFs, rule structure (number of rules 
and selection of rules), and input structure (number of premise 
inputs and selection of premise inputs) is proposed, For 
simplicity in the specified application, the fitness function only 
considers one evaluation criterion (accuracy) in terms of the 
mean square error (MSE), and the other aspect, compactness 
(number of rules) is constrained with the maximal number. 

To demonstrate the effectiveness of the obtained T-S fuzzy 
model, the presented approach is applied to approximate the 
dynamic behaviour of a building structure with a magneto­
rheological (MR) damper, which is a nonlinear structural 
system, in the form of the T-S fuzzy model. The use of the T-S 
model to emulate the dynamic behaviour of the nonlinear 
building-MR damper system is validated by numerical values, 
The obtained T-S fuzzy model could be used for designing a 
nonlinear fuzzy controller for the nonlinear system in a 
systematic way. 

II, TAKAGI-SUGENO Fuzzy MODELLING OF NONLINEAR 

SYSTEM 

The T-S fuzzy model is a system described by fuzzy IF­
THEN rules which can give local linear representation of the 
nonlinear system by decomposing the whole input space into 
several partial fuzzy spaces and representing each output space 
with a linear equation, Such a model is capable of 
approximating a wide class of nonlinear systems. For the 
reason that it employs linear model in the consequent part, 
conventional linear system theory can be applied for the system 
analysis and synthesis accordingly. And hence, the T-S fuzzy 
models are becoming powerful engineering tools for modelling 
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and control of complex dynamic systems. To obtain the T-S 
fuzzy model of a multivariable nonlinear system, we need 
using the fuzzy modelling technique as following: 

IF 01(t) is Mland 02(t) is M1 and ... and Op(t) is M1, 

THEN x(t) = A;x(t) + Bliw(t) + B2;u(t) , 

IF OJ (t) is M{ and O2(t) is M1 and ... and Bp (t) is M;, 

THEN x(t) = Arx(t) + B1r wet) + B2r u(t) , 

where Mj is a fuzzy set on the jth premise variable defined by 

the MF, B(t) = [B1(t),B2(t), ... ,Bp(t)f are the premise variables, 

p is the number of premise variables, 

x(t) = [Xj (t), ... ,Xn (t)y are the state variables, wet) is the 

disturbance input, u(t) is the control input. Scalar r is the 

number of IF-THEN rules, and A;, Bli , and B2i are constant 

matrices. 

Then, the overall fuzzy model is inferred as follows: 

r 

x(t) = Lhi(B(t))[AiX(t) + B1i w(t) + B2;u(t)] , (I) 

where 

hi (B(t» = 1/ (B(t»

L~=l/ (B(t)) , (2) 

P 

j.J.i (B(t» = 11M) (B(t», (3) 
j=1 

Mj(B(t» is the grade of the MF of Bj(t) in Mj(B(t». When 

a Gaussian function is used, then 

(O}_C;)2 
p p --­

j.J.' (B(t» = TI Mj (B(t» = TIe (b;)2 (4) 
j=l j=l 

where cj and hj represent the centres and widths of the MFs, 

respectively. It is obvious that 

r 

hi(B(t»'?O, Lh;(B(t» = 1 (5) 
;=1 

For system (I), it is easy to derive the stability conditions of 
system (I) by using Lyapunov function and condition (5) as: 

AT P+ PAi < 0, i = 1,2, ... ,r , (6) 

AT + AT : [A + A. ], J P+P' J < 0, 1'5, i '5, j '5, r . (7)
[ 2 2 

Most of the studies on T-S fuzzy models consider that all 
inputs used in the premise variables are used in the 
consequents. However, in general, the premises of the rules 
describe different operating regions which depend on some 
antecedent inputs, while the consequents are linear (or affine) 
descriptions of the behaviour of the system in each of the 
operating regions that do not necessarily depend on the same 
inputs. So, in many applications, the approximation of a 
nonlinear system by local linear models requires many 
antecedent inputs to characterise the regions where the 
dynamics of the system can be considered as linear. Hence, we 
consider that the antecedent vector B(t) is not necessary the 
same as the vector [x(t), w(t), u(t)] which was used in the 
consequent affine models. 

Therefore, to represent a nonlinear system with the T-S 
fuzzy model accurately, the premise variable B(t) and the 
number of premise variable p , the membership function 

parameters cj , hj , and the number of fuzzy rules r , the 

constant matrices Ai, Bli , and B2i are needed to be determined. 
Generally, the selections of fuzzy rules and premise inputs are 
made by trial and error method or using some clustering 
methods. In this paper, the selections will be made by GAs 
with a new encoding scheme so that they can be automatically 
selected in the modelling process. 

III. ENCODING SCHEME 

Using GAs to design the T-S fuzzy model, one of the first 
important things is to encode the T-S fuzzy model parameters 
into the chromosome with an efficient method. When the rule 
structure (number of rules and selection of rules), the input 
structure (number of premise inputs and selection of premise 
inputs), and the parameters of MFs associated are specified, 
the T-S fuzzy model will be specified. In order to realise the 
automatic selection of rules and inputs, a new encoding 
scheme is presented. The proposed encoding scheme uses a 
chromosome that consists three parts as shown in Fig. I. The 
first part deals with the rule selection and the optimisation of 
number of rules, the second part deals with the input selection 
and the optimisation of number of inputs, and the third part 
deals with the optimisation of parameters of MFs. Here, we 
adopt the binary-coded GAs and every gene in the 
chromosome is represented by a binary value 'I' or '0'. 

In the first and second parts, each gene represents one rule 
or one input. The position of one gene in the first part will 
denote the corresponding sequence of one rule in all the rule 
sets, and the position of one gene in the second part denotes the 
corresponding sequence of one input in all the input sets. The 
selection of rules or inputs is made by checking the binary 
value of the gene. If a specified gene in the first part is zero, 
then the corresponding rule is not valid and vice versa. If a 
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Fig, I, Encoding scheme 

specified gene in the second part is one, then the corresponding 
input is valid and vice versa. So, the information of genes in the 
first and second parts represents whether a certain rule or input 
is used or not for the current rule structure or input structure of 
an individual. 

IV. MODELLING ALGORlTHM 

Using the standard GAs together with the presented 
encoding scheme, the T-S fuzzy model can be obtained by the 
following steps: 

Step I: Generate training and validation data from a nonlinear 
system to be modelled. 

Step 2: Set parameters for the T-S fuzzy models. The 
maximum numbers of fuzzy rules and premise inputs, the 
premise variable candidates, the consequent part variables, etc., 
are needed to be given. 

Step 3: Encode some of the T-S model parameters, such 

as rmax , Pmax , c~ , and bi ' into chromosome using the 

presented encoding scheme. 

Step 4: Generate initial population for chromosomes. 

Step 5: Calculate objective functions. 

5.1, after the centres (ci ), widths (bi ), and the numbers of 

rules (r ) and inputs ( P ) are generated, the weights for every 
state variable are calculated using the pseUdo-inverse 
algorithm. The weights form the row of matrices Ai , ,B li 

and B2i corresponding to every state variable, I.e., 

xk (I) = Qikx(/) + qik w(/) + b2iku(t), where Qik, blik , and b2ik 

are weights, k = 1,2, ... ,n, n is the number of state variable. 

5.2, calculate the objective function for every state 
variable xk(t). The mean square error (MSE) for the training 

data or the testing data is regarded as the objective function of 
each chromosome. If necessary, the evolved number of rules 
and number of inputs can be added into the objective function 
to obtain the reasonable sizes of the rules and inputs. The 
summation of MSE for every state variable will be the overall 

n 

objection function, i.e., MSE(x(t» = L MSE(Xk (t». It is noted 
k=! 

that the system stability is important for designing a controller 
for the obtained T-S fuzzy system. Therefore, the check of the 
stability of the obtained system will be made using the 

stability conditions (6) and (7). If the obtained T-S fuzzy 
system is not stable, then its objective function will be 
assigned a large value instead of using the MSE value in order 
to reduce its opportunity to survive in the next generation. 

5.3, record every objective function that corresponds to every 
set of parameters to a suitable fitness value according to the 
rank-based fitness assignment approach. 

Step 6: Apply evolutionary operators: selection, crossover, 
and mutation. 

Step 7: Use the elitist reinsertion approach. 

Step 8: Evaluate the fitness of each individual. 

Steps 5 to 8 correspond to one generation. The evolution 
process will repeat for a fixed number of generations or will 
end when the search process converges with a given accuracy. 
The best chromosome will be used to determine the optimal 
numbers of rules and inputs, centres and widths. At last, the T­
S fuzzy model (1) will be constructed using the obtained fuzzy 
rules, premise variables, centres, widths, and matrices Ai, B Ii , 

andB2i · 

V. APPLICATTON EXAMPLE 

In this section, a three-storey building model with a single 
magneto-rheological (MR) damper as shown in Fig. 2 is 
considered. This model has been used by many researchers, e.g. 
[6], to study the control problem of MR damper. The MR 
damper is a semi-active control device that employs a special 
type of controllable fluids, the magneto-rheological fluids, 
which typically consist of micron-sized, magnetically 
polarisable particles dispersed in a carrier medium such as 
mineral or silicone oil. When a magnetic field is applied to the 
fluid, the particles are lined up in chains so that the fluid 
becomes semisolid within a few milliseconds, exhibiting a 
plastic behaviour. However, the practical use of MR dampers 
for control is still hindered by their inherently hysteretic and 
highly nonlinear dynamics. This makes the modelling of MR 
dampers more important for their applications. The integrated 
structure and nonlinear damping device behave nonlinearly 
although the structure itself is usually assumed to remain linear. 
Because the building-MR damper system is intrinsically 
nonlinear, development of an appropriate model of the system 
that includes interaction between the structural system and 
nonlinear device plays a key role in control system design. In 
this paper, the nonlinear system will be modelled as T-S fuzzy 
model so that nonlinear fuzzy controller could be designed to 
reduce the vibration of the system. 
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Fig. 2. Three-storey building structure with a single MR damper 

The equation of motion for the linear structure model with 
external disturbance and control input can be written as 

MX(t) + Cx(t) + Kx(t) = HJ(t) + Ew(t) , (8) 

where x(t) = [xI (t) X2 (I) x2(t)] is the floor displacement 
vector; J(t) is the control force generated by MR damper; H 

gives the location of the control forces; w(t) is the ground 
excitation disturbance; E is an vector denoting the influence of 
disturbance; M , C, and K are the mass, damping, and 
stiffness matrices of the structure, respectively. The MR 
damper is installed between the ground and the first floor. The 
system matrices are 

[983 0 0JM= 0 98.3 0 kg, 

o 0 98.3 

[175 -SO 0]C= -50 100 -50 Nslm, 

o -50 50 

12.0 -6.84 
-6~84-Nlm,13.7K = 6.~4 

[ -6.84 6.84 

H~[:']' E~[J 
A phenomenological model has been proposed by Spencer 

et al [5] to portray the behaviour of a prototype MR damper. 
This model is governed by the following seven simultaneous 
equations: 

f =CUi + k1(x - xo) 

y=_l_[az + COX + ko(x - y)] 
Co +Cl 

i =-rlx - ylzlzln-l - f3(x - y)lzln + A(x - y) 
a =aa + ab u (9) 
Cl =CIa + Clb U 

Co =COa + COb U 

it = -77(U - v) 

where J is the force generated by the MR damper; x is the 
displacement of the damper; y is an internal pseudo­
displacement of the MR damper; u is the output of a first­
order filter; v is the command voltage sent to the current 
driver. In this model, k) is the accumulator stiffness; Co and C

1 

are the viscous damping coefficients observed at large and low 
velocities, respectively; ko is the gain to control the stiffness at 

large velocities, and Xo is the initial displacement of spring k) 

associated with the nominal damper force due to the 
accumulator; r, fJ, A are hysteresis parameters for the yield 
element, and a is the evolutionary coefficient. In this model, 
there are a total of 14 model parameters to characterize the MR 
damper. The obtained values for the 14 parameters can be 
determined by fitting the model to the experimental data 
obtained in the experiments. As an example, a set of parameters 
which was obtained by Spencer at al [5] was listed in that 
paper. 

A block diagram of the integrated nonlinear structural 
system to be modelled is shown in Fig. 3. There are two 
external inputs to the nonlinear system, including the ground 
excitation xg(t) acted at the ground floor of the structure and 

the applied command voltage vet) sent to the MR damper. The 
measured outputs are the system state variables, i.e., 

x(t)=[x)(t),X2(t),X3(t),Xt(t),X2(t),X3(t)f . The aim of the 

modelling process is to build a T-S fuzzy model as shown in 
Eq. (1) according to the measured state variables, ground 
excitation, and command voltage. 

In this paper, the phenomenological model of the MR 
damper is used to simulate the MR damper. The parameters 
used for MR damper are same to those given in reference [6]. 
To get the T-S fuzzy model, data for training and testing of the 
T-S fuzzy model are generated firstly. In order to obtain a high 
quality trained model, a high quality training and testing data 
must be obtained. To make the identified model fully represent 
the underlying system, the training samples should cover all 
possible combinations and ranges of input variation in which 
the system will operate. This is to ensure that the T-S fuzzy 
models trained using these samples can accurately represent 
the dynamic behaviour of the integrated nonlinear system. 
Normally, the limits of these input signals are dependent upon 
the characteristics and specific applications of the system. 
Advanced knowledge of the input signals enables the creation 
of more useful training data. Given this idea, note that the 
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Fig. 3. System identification block diagram 

maximum operational voltage of the MR damper is 2.25 V, 
which is defined as the saturation voltage of the damper and is 
obtained experimentally, and the situation of zero voltage will 
also be common during operation of the MR damper. 
Therefore, ranges of the voltage signal and its frequency are 
set as 0-2.25 V and 0-6 Hz, respectively, in this study. The 
ground excitation is used as a random signal (0-50 Hz) with 
peak amplitude around 0.6 g. Signals of displacement and 
voltage used for training are produced using band-limited 
Gaussian white noise and some specified filters are used to 
obtain such random signals in indicated frequency ranges. Fig. 
4 shows the histories of ground acceleration and command 
voltage signals. Once the ground excitation and command 
voltage signals are sent to the integrated nonlinear system, the 
responded state variables are measured. Then, using these 
obtained signals and the training algorithm presented in 
Section IV, the T-S fuzzy model of the nonlinear system can 
be obtained. 

For brevity, in this study, we assume all the signals used can 
be obtained, and we define the fixed premise variables as the 
previous floor displacements, floor absolute accelerations, and 
command voltage. We define the consequent variables as the 
current state variables, ground excitation, and command 
voltage. The objective is to predict the next state variables. The 
maximum fuzzy rule number is set as 50. After finishing the 
training process, the automatically selected fuzzy rule number 
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Fig. 4. Training data 
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Fig. 5. Modelling results for the first floor displacement 

by the presented algorithm is given as 31. The modeling result 
is shown in Fig. 5. For brevity, only the displacement of the 
first floor is plotted in this figure. The error between the 
prediction (output of the T-S fuzzy model) and the target 
(output of the integrated building-MR damper nonlinear 
system) is shown in the figure as well. It can be seen from this 
figure that the modeling error is very small. It validates that the 
T-S fuzzy model can represent the nonlinear system well. The 
velocity of the first floor is plotted in Fig. 6, where the 
prediction and target velocities and the error between the 
prediction and the target are plotted, respectively. It is also 
shown that the prediction error is very small. The root mean 
square error (RMSE) values for the all the state variables are 
listed in Table I. 

To further validate the obtained T-S fuzzy model, the scaled 
El Centro 1940 earthquake data is applied to both the integrated 
structure and the obtained T-S fuzzy model. The command 
voltage signal is also a random signal with amplitude 0-2 V and 
frequency 0-3 Hz. The earthquake data and the command 
voltage signal are shown in Fig. 7. The modeling results for the 
first floor displacement and first floor velocity are shown 
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Fig. 6. Modelling result for the first floor velocity 
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in Figs. 8-9, respectively. The RMSE values for all the state 
variables are listed in Table II. It can be seen from Figs. 8-9 
and Table I that the prediction errors are very small even when 
the ground excitation and command voltage signals are 
different from those given in the training process, the obtained 
T-S fuzzy model can still approximate the nonlinear system 
dynamic outputs very well. It validates that the obtained T-S 
fuzzy model can represent the nonlinear system reasonably. 

VI. CONCLUSIONS 

In this paper, a T-S fuzzy model is developed to 
approximate the dynamic behaviour of a nonlinear system. The 
rule structure, input structure, and the MF parameters are 
simultaneously obtained by GA with the objective to reduce the 
MSE between the predicted output and the true output. 
Numerical simulation on a three-storey building structure with 
a single MR damper is used to testify the presented training 
algorithm. It is certified by the training and validation data that 
the presented T-S fuzzy model can emulate the dynamic 
behaviour of the nonlinear system. 

TABLE I. RMSE VALUE FOR TRAINING AND VALIDATION DATA 

RMSE Training data Validation data 

Xl (I) 5.0767xlO-5 1.9539x 10-5 

X2(1) 7.7847xlO-; 3.6912xlO-5 

x3 (I) 9.2097x 10-5 5.1182x 10-5 

XI (I) l.7658x lO-J l.5040x lO-J 

x2 (I) 2,4340x 10-3 2.0126xlO-3 

x3 (I) 2.9467xI0-J 2.5005 x I0-3 
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