Predicting the bond between concrete and reinforcing steel at elevated temperatures

Farhad Aslani* and Bijan Samali

Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney, Australia

(Received April 20, 2013, Revised October 30, 2013, Accepted November 1, 2013)

Abstract. Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

Keywords: constitutive relationships; concrete; high temperatures; compressive strength; bond strength; bond stress-slip

1. Introduction

The exposure of reinforced concrete (RC) structural elements to high temperatures during an aggressive fire leads to significant losses in its structural capacity due to the reduction in the strength of the concrete, possible plastic deformation of embedded steel and most importantly loss of bond between reinforcing steel and concrete. During the past few decades, many researchers have studied the effect of elevated temperature on the residual bond strength and the bond-slip relationship with respect to various parameters, such as the diameter of the rebars, the type of the rebars, the concrete cover, the heating condition and the heating duration.

Whereas the bond between concrete and steel at room temperature was the subject of early and intensive investigation for the high-temperature range there are limited experimental results available. One of the earliest works have been done by Kasami et al. (1975), tests on large number

*Corresponding author, Ph.D., E-mail: Farhad.Asmani@uts.edu.au

Copyright © 2013 Techno-Press, Ltd.
http://www.techno-press.org/?journal=sem&subpage=8 ISSN: 1225-4568 (Print), 1598-6217 (Online)
Farhad Aslani and Bijan Samali

of specimens (120 specimens comprising four different concrete mixes made with ordinary Portland cement and river gravel) containing embedded plain round steel bars were performed. At an age of 90 days the specimens were slowly heated (at a rate of 10°C/h, to a maximum temperature of 300°C) and then held at this temperature for 90 days. Next, they were slowly cooled (10°C/h) and tested when cool. In each case, the bond stress was determined at which the slip at the non-loaded end was 0.025 mm. A significant decrease of bond strength with increasing temperatures was observed. The residual bond strength after cooling from 300°C was about 50% of its original value before heating.

Another earliest investigation was performed by Milovanov and Salmano (1954). Normal-weight concrete prisms (140 × 140 × 300 mm) made with Portland cement and river gravel was tested. Plain round bars and ribbed bars of 20 mm diameter were embedded in these specimens. The latter were heated to 100, 250, 350 and 450°C and then allowed to cool, after which they were tested. For each of these temperatures, three tests were performed. Testing comprised pull-out tests, in which the slip occurring at the loaded and at the non-loaded end of the specimen was recorded. After drying at 110°C, this specimen was tested at a maximum temperature of 250°C; it was found that the bond of ribbed steels in the hot condition was substantially better than when subsequently cooled. A severe decrease of bond strength of plain round bars was observed at a comparatively small temperature increase. A comparable loss of bond strength of ribbed bars occurs only at temperatures above 400°C. This finding is not in agreement with Kasami et al. (1975)’s results.

Twenty 150 × 150 × 450 mm prisms with stirrup reinforcement were tested by Reichel (1978). These prisms were heated to various temperatures in accordance with the standard time-temperature curve, allowed them to cool, and then performed pull-out tests. The diameter of the bars was 14 mm, the embedment length was 300 mm, and the concrete was of two quality classes (B17 and B33). Portland cement and mixed aggregate comprising 60% river gravel and 40% crushed granite were used. The bond strengths were measured after cooling for 24 h.

Diederichs and Schneider (1981) reported that bond strength depends not only upon the temperature level, but also upon the test procedure and the shape of the bar. In 1982, the work by Hertz (1982) on bond between concrete and plain or deformed bars of different sizes revealed that the diameter of the rebars had little effect on the loss in bond strength due to temperature rise to 500°C. Royles and Morley (1982, 1983) studied the effect of heating to high temperature of up to 720°C on the bond strength of pullout specimens prepared at different concrete covers, and subjected to load cycling. They concluded that pullout specimens prepared at smaller concrete covers showed greater reduction in bond strength, and that the cyclic loading of pre-heated specimens had reduced further their bond strength.

2. Research significance

Although many experiments in this field have been conducted, the results have mostly been reported in forms of the statistical models or the percentages of bond strength reduction without a thorough understanding of the mechanics behind the changing bond-slip behavior of reinforced concrete elements under thermal loads. Moreover, the developed functions for the residual bond strength can accurately predict only the cases similar to the experimental studies. Mechanical models are, therefore, essential to understand the mechanism of bonding as well as to predict the residual bond strength for reinforced concrete under high-temperature conditions.
Table 1 Experimental results database properties

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cement type</th>
<th>Aggregate type</th>
<th>Compressive Specimen type</th>
<th>Heating rate</th>
<th>Bar diameter (mm)</th>
<th>Embedment length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diederichs and Schneider (1981)</td>
<td>Portland</td>
<td>siliceous</td>
<td>Cube (100 mm)</td>
<td>1 °C/min</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Hertz (1982)</td>
<td>Portland</td>
<td>Mixture of quartz, granite and limestone</td>
<td>-</td>
<td>1 °C/min</td>
<td>25, 16, 12, 8</td>
<td>150, 150, 150, 150</td>
</tr>
<tr>
<td>Royles and Morley (1983)</td>
<td>Portland</td>
<td>siliceous</td>
<td>Cylindrical (150 x300 mm)</td>
<td>2 °C/min</td>
<td>16, 16, 16, 16</td>
<td>32, 32, 32, 32</td>
</tr>
<tr>
<td>Ahmed et al. (1992)</td>
<td>Portland</td>
<td>limestone</td>
<td>Cube (150 mm)</td>
<td>1 °C/min</td>
<td>12</td>
<td>150</td>
</tr>
<tr>
<td>Haddad and Shannis (2004)</td>
<td>Portland</td>
<td>crushed coarse limestone and siliceous sand</td>
<td>Cube (100 mm)</td>
<td>20 °C/min</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>Haddad et al. (2008)</td>
<td>Portland</td>
<td>crushed coarse limestone and siliceous sand</td>
<td>-</td>
<td>-</td>
<td>deformed steel rebars of diameters (20 mm)</td>
<td>150</td>
</tr>
<tr>
<td>Bingöl and Gül (2009)</td>
<td>Portland</td>
<td>siliceous</td>
<td>-</td>
<td>12-20 °C/min</td>
<td>8</td>
<td>60, 100 and 160</td>
</tr>
</tbody>
</table>

This study, constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve.

3. Database of experimental results

An experimental results database from various published investigations is an effective tool for studying the applicability of the various high temperature behaviours for SFRC. To apply the
Table 2 Experimental results database properties (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cover / Bar diameter</th>
<th>Maximum exposed temperature (°C)</th>
<th>Compressive strength range (MPa)</th>
<th>Bar type</th>
<th>Pull-out specimen type</th>
<th>Cooling condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diederichs and Schneider (1981)</td>
<td>4.88</td>
<td>500</td>
<td>48.0-60.9</td>
<td>deformed</td>
<td>cylindrical specimens (80 mm diameter and 300 mm length)</td>
<td>Air</td>
</tr>
<tr>
<td>Hertz (1982)</td>
<td>2.50</td>
<td>800</td>
<td>20.0</td>
<td>Danish deformed, Danish Tentor, Plain</td>
<td>cylindrical specimens</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>800</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.75</td>
<td>800</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.875</td>
<td>800</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royles and Morley (1983)</td>
<td>1.56</td>
<td>750</td>
<td>35.0</td>
<td>plain and deformed</td>
<td>cylindrical specimens (with 3.77 MPa pre-stress)</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>750</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.88</td>
<td>750</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.44</td>
<td>750</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.44</td>
<td>750</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed et al. (1992)</td>
<td>5.75</td>
<td>600</td>
<td>-</td>
<td>deformed</td>
<td>square concrete prisms (150m x 150 x 200mm)</td>
<td>Air and water</td>
</tr>
<tr>
<td>Haddad and Shannis (2004)</td>
<td>1.78</td>
<td>800</td>
<td>73.15</td>
<td>deformed</td>
<td>two diameters of 82, and 100 mm and a length of 150 mm</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haddad et al. (2008)</td>
<td>2.00</td>
<td>700</td>
<td>77.30</td>
<td>plain and deformed</td>
<td>square concrete prisms (100m x 100 x 200mm)</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bingöl and Gül (2009)</td>
<td>5.75</td>
<td>700</td>
<td>20 and 35</td>
<td>deformed</td>
<td>100 mm diameter and 200 mm height cylinders</td>
<td>Air and water</td>
</tr>
</tbody>
</table>

models to a particular concrete mixture accurately, it is necessary to use only investigations that are sufficiently consistent with the applied testing methodology. The SFRC experimental results included in the database were gathered mainly from papers presented at various published articles. The database includes information regarding the composition of the mixtures, fresh properties of SFRC, testing methodology, and conditions. Thermal characteristics have not been investigated as much as the other aspects of SFRC.

Tables 1-2 include general information about the experimental tests, such as cement type, aggregate type, compressive specimen type, heating rate, bar diameter, embedment length, cover / bar diameter, maximum exposed temperature, compressive strength range, bar type, pull-out specimen type, and cooling condition. Table 1 shows that general type of cement that is used in the most of researches is Ordinary Portland Cement. Also, common aggregates that were used in the database are siliceous and crushed limestone. Moreover, the cube specimen is used for measuring of compressive strength, heating rate range is between 1°C/min to 20°C/min, and embedment length (ld) is varied between 30 mm to 160 mm. Table 2 indicates compressive strength of used concrete in the tests are between 20 to 78 MPa, deformed rebar is common used type, common pull-out specimen type is cylindrical, and air and water are the common cooling procedure. The temperature range that is considered in this study is between 100°C to 800°C.
4. Compressive strength of NSC and HSC at elevated temperatures

The residual compressive behavior of NSC has been under investigation since the early 1960s (see the contributions by Zoldners, Dougill, Harmathy, Crook, Kasami et al., Schneider and Diederiches, all quoted in Schneider, 1985). Attention has been focused mostly on the compressive strength (the strength at room temperature after a specimen has been heated to a test temperature and subsequently cooled) as such, on the residual strain and on strength recovery with time (Fib Bulletin 46 2008). In this study, the relationships proposed for the compressive strength of normal, high-strength (siliceous aggregate), calcareous and lightweight aggregate concrete at elevated temperature are based on regression analyses on existing experimental data with the results expressed as Eqs. (1)-(5) (Aslani and Samali 2013a, b, c).

The main aim of regression analyses is considering the changeable experimental compressive strength of normal strength concrete (NSC), high strength concrete (HSC), calcareous aggregate concrete (CAC), and lightweight aggregate concrete (LAC) behaviors at different elevated temperatures and developing the rational and simple relationships that can fit well with experimental data. These proposed relationships are compared separately with test results, as shown in Figs. 1-5.

Normal strength concrete

\[f'_{ct} = f'_c \begin{cases}
1.012 - 0.0005 T & \text{if } T \leq 1.0 \\
0.985 + 0.0002 T - 2.235 \times 10^{-6} T^2 + 8 \times 10^{-10} T^3 & \text{if } 20 \degree C \leq T \leq 100 \degree C \\
4.4 - 0.0004 T & \text{if } 100 \degree C < T \leq 800 \degree C \\
0 & \text{if } 900 \degree C \leq T \leq 1000 \degree C \\
0 & \text{if } T > 1000 \degree C
\end{cases} \]

(1)

High strength concrete (Siliceous aggregate)

\[f'_{ct} = f'_c \begin{cases}
1.01 - 0.00068 T & \text{if } T \leq 1.0 \\
0.935 + 0.00026 T - 2.13 \times 10^{-6} T^2 + 8 \times 10^{-10} T^3 & \text{if } 20 \degree C \leq T \leq 200 \degree C \\
0.90 + 0.00022 T - 2.13 \times 10^{-6} T^2 + 8 \times 10^{-10} T^3 & \text{if } 200 \degree C < T \leq 400 \degree C \\
0.44 - 0.0004 T & \text{if } 400 \degree C < T \leq 800 \degree C \\
0 & \text{if } 900 \degree C \leq T \leq 1000 \degree C \\
0 & \text{if } T > 1000 \degree C
\end{cases} \]

(2)

\[f'_{ct} = f'_c \{1 + 0.00014 T - 1.6 \times 10^{-4} T^2\} \quad \text{if } 20 \degree C \leq T \leq 800 \degree C \]

80 MPa < \(f'_{ct} \) \leq 110 MPa

(3)

Calcareous aggregate concrete

\[f'_{ct} = f'_c \begin{cases}
1.01 - 0.0006 T & \text{if } T \leq 1.0 \\
1.0565 + 0.0017 T + 5 \times 10^{-6} T^2 - 5 \times 10^{-9} T^3 & \text{if } 20 \degree C \leq T \leq 900 \degree C \\
0 & \text{if } 900 \degree C < T
\end{cases} \]

(4)

Lightweight aggregate concrete

\[f'_{ct} = f'_c \begin{cases}
1.01 - 0.00037 T & \text{if } T \leq 1.0 \\
1.0491 - 0.00036 T + 10^{-6} T^2 - 2 \times 10^{-9} T^3 & \text{if } 20 \degree C \leq T \leq 300 \degree C \\
0 & \text{if } 300 \degree C < T \leq 900 \degree C \\
0 & \text{if } T \geq 1000 \degree C
\end{cases} \]

(5)

Figs. 1-3 show the variation of compressive strength test results with temperature for NSC and
HSC. Fig. 1 makes comparison the proposed relationship for NSC at different temperatures against published unstressed experimental test results (unstressed tests: the specimen is heated, without preload, at a constant rate to the target temperature, which is maintained until a thermal steady state is achieved) (Diederichs et al. 1988, Castillo and Durani 1990, Furumura et al. 1995, Chang et al. 2006, Sancak et al. 2008). NSC typically loses 10-20\% of its original compressive strength when heated to 300°C, and 60-75\% at 600°C. Figs. 2-3 show comparisons the proposed relationship for high strength siliceous aggregate concrete, i.e., 55.2-80 MPa and 80-110 MPa, at
different temperatures against published unstressed experimental results (Diederichs et al. 1988, Castillo and Durrani 1990, Furumura et al. 1995, Sancak et al. 2008, Poon et al. 2003). Higher rates of original strength loss, as much as 40%, were observed for HSC at temperatures up to 450°C. Fig. 4 shows a comparison the proposed relationship for normal-strength calcareous aggregate concrete against the unstressed experimental results reported by Abrams (1971) and Savva et al. (2005). The proposed relationship agrees with the test results fairly well. Fig. 5 shows a comparison the relationship proposed here for normal-strength lightweight aggregate concrete and the unstressed experimental results reported by Abrams (1971), Savva et al. (2005). The
proposed relationships fit the experimental results well in comparison with others. These relationships are calibrated with the experimental results in another author paper (Aslani and Bastami 2011).

5. Bond strength at ambient temperature

Many researchers have examined relationships between pull-out load and compressive strength. All studies in this area have shown that the bond strength (stress) increases with the compressive strength of concrete (Malhotra 1975, Richards 1977, Skramtajew 1983, Stone and Carino 1983, Stone and Giza 1985). In this regard, ACI 318 (2008) proposes that the bond strength is linearly proportional to. It can be easily concluded from the earlier literature that the average bond stress reduces as the embedment length increases due to the nonlinear stress distribution that exists between the rebar and the concrete. Another conclusion is that average bond stress decreases with larger rebar diameters. Different explanations exist for the decrease in bond stress due to the larger rebar diameters (Ichinose et al. 2004). In this study, the relationships proposed for the conventional concrete are based on regression analyses using existing experimental data (proposed by Aslani and Nejaid 2012), with the results expressed as Eqs. (6)-(7).

Eq. (6) considers plain rebar bond strength, whereas Eq. (7) considers deformed rebar bond strength, respectively. In these equations the influences of concrete cover, bar diameter, embedment length, and compressive strength (at the curing age) parameters are considered.

\[
\tau_{\text{max,}20} = 0.7 \left(\frac{c}{d_e} \right)^{0.66} + 4 \left(\frac{d_k}{l_e} \right) \left(f'_c \right)^{0.23} \tag{6}
\]

\[
\tau_{\text{max,}20} = 0.679 \left(\frac{c}{d_e} \right)^{0.66} + 3.88 \left(\frac{d_k}{l_e} \right) \left(f'_c \right)^{0.55} \tag{7}
\]
Predicting the bond between concrete and reinforcing steel at elevated temperatures

where \(d_b \) is the diameter of the steel bar, \(l_d \) is the embedded length of the steel bar, \(f'c \) is the compressive strength of the concrete, and \(c \) is the concrete cover. Proposed bond strength models are related to compressive strength. Further, because the compressive strength test types of specimens in the database are different, the \(f'c \) values should be corrected. In this study, the most used type of compressive strength test in the database (i.e., 100 mm × 200 mm cylindrical) is considered as main and other types of test results (i.e., 150 mm × 300 mm cylindrical and 150 mm cube) must convert to it. Yi et al. (2006) reported that the relationship between 100 mm × 200 mm cylindrical with 150 mm cube was:

\[
\frac{f'_{cy}(100 \times 200)}{f'_{cu}(150)} = (f'_{cu}(150) - 8.86) / 0.85.
\]

Also, Carrasquillo et al. (1981) stated that the average ratio of compressive strength of 150 mm × 300 mm to 100 mm × 200 mm cylinders was 0.9, regardless of strength and test age.

6. Bond strength at elevated temperature

Investigations into the bond strength between the concrete and reinforcing steel at room temperature have been carried out over many years. Comparatively few experiments have, however, been carried out to investigate the effects of high temperatures on the bond characteristics. Bazant and Kaplan (1996) summarized some tested results and some broad conclusions were drawn as:

- Bond strength is reduced as temperature increases and the reduction rate is greater compared to concrete strengths.
- The percentage reduction of bond strength for ribbed bars at elevated temperatures is generally less than for plain round steel bars.
- Differences in the diameters of plain bars and deformed bars had little effect on the strength reduction of the bond.
- The experimental procedure used affects the results of bond tests at high temperatures.
- The type of aggregate in the concrete affects the bond strength at elevated temperatures.
- The smaller the concrete cover, the greater is the reduction in bond strength.

Due to the complexity of bond characterization at elevated temperatures, as first order approximation, simplified models are proposed here to calculate the bond strengths of deformed bars at elevated temperatures. For ribbed bars, the bond strength reduction at high temperatures can be represented as Eqs. (8)-(9), for air and water cooling procedures and embedment length between 30 mm to 160 mm. In the Eqs. (8)-(9), \(\tau_{max,20} \) parameter can be calculated by using Eqs. (6)-(7) that is covered plain and deformed rebar.

Air

\[
\frac{\tau_{max,20}}{\tau_{max,20}} = \begin{cases}
1 - 0.00033 \times T - 1 \times 10^{-6} \times T^2 & 30 \text{ mm} < l_d \leq 100 \text{ mm} \\
1 - 0.00082 \times T - 2 \times 10^{-7} \times T^2 & 100 \text{ mm} < l_d \leq 160 \text{ mm} \\
1 - 0.00060 \times T - 7 \times 10^{-7} \times T^2 & 30 \text{ mm} \leq l_d \leq 160 \text{ mm}
\end{cases}
\quad 20^\circ C \leq T \leq 800^\circ C \tag{8}
\]

Water

\[
\frac{\tau_{max,20}}{\tau_{max,20}} = \begin{cases}
1 - 0.00015 \times T - 1 \times 10^{-6} \times T^2 & 30 \text{ mm} < l_d \leq 100 \text{ mm} \\
1 - 0.00090 \times T - 2 \times 10^{-7} \times T^2 & 100 \text{ mm} < l_d \leq 160 \text{ mm} \\
1 - 0.00047 \times T - 7 \times 10^{-7} \times T^2 & 30 \text{ mm} \leq l_d \leq 160 \text{ mm}
\end{cases}
\quad 20^\circ C \leq T \leq 800^\circ C \tag{9}
\]
Fig. 6 Comparison between the air cooling condition proposed relationship for bond strength at different temperatures against experimental results database with (a) $30 \text{ mm} < l_d \leq 100 \text{ mm}$, (b) $100 \text{ mm} < l_d \leq 160 \text{ mm}$, and (c) $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$.

Figs. 6-7 show the variation of bond strength test results with temperature for air and water cooling procedures and embedment length between 30 mm to 160 mm. Fig. 6 makes comparison the proposed relationship for bond strength with $30 \text{ mm} < l_d \leq 100 \text{ mm}$, $100 \text{ mm} < l_d \leq 160 \text{ mm}$, and $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$ and air cooling condition at different temperatures against published experimental test. The bond strength with $30 \text{ mm} < l_d \leq 100 \text{ mm}$ condition typically loses 26% of its original compressive strength when heated to 300˚C, 56% at 600˚C, and 78% at 800˚C. For bond strength with $100 \text{ mm} < l_d \leq 160 \text{ mm}$ condition typically loses 19% of its original compressive strength when heated to 300˚C, 56% at 600˚C, and 90% at 800˚C, and finally for whole range $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$ the bond strength loses 24% of its original compressive strength when heated to 300˚C, 61% at 600˚C, and 92% at 800˚C.

Moreover, Fig. 7 makes comparison the proposed relationship for bond strength with $30 \text{ mm} < l_d \leq 100 \text{ mm}$, $100 \text{ mm} < l_d \leq 160 \text{ mm}$, and $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$ and water cooling condition at
Fig. 7 Comparison between the water cooling condition proposed relationship for bond strength at different temperatures against experimental results database with (a) $30 \text{ mm} < l_d \leq 100 \text{ mm}$, (b) $100 \text{ mm} < l_d \leq 160 \text{ mm}$, and (c) $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$

different temperatures against published experimental test. The bond strength with $30 \text{ mm} < l_d \leq 100 \text{ mm}$ condition typically loses 29% of its original compressive strength when heated to 300°C, 61% at 600°C, and 85% at 800°C. For bond strength with $100 \text{ mm} < l_d \leq 160 \text{ mm}$ condition typically loses 13% of its original compressive strength when heated to 300°C, 45% at 600°C, and 76% at 800°C, and finally for whole range $30 \text{ mm} \leq l_d \leq 160 \text{ mm}$ the bond strength loses 20% of its original compressive strength when heated to 300°C, 53% at 600°C, and 82% at 800°C.

7. Bond strength- compressive strength relationship at elevated temperature

With the increase of temperature residual compressive strength and residual bond strength losses were observed. As it can be seen briefly from the graphics (Fig. 8), the bond strengths of
specimens increase with the increase of compressive strength, for both concrete type and for all embedment lengths. So it can be concluded that there is a linear relationship between compressive strength and bond strength of concrete–steel bars. In this study, the relationship proposed for the conventional concrete are based on regression analyses using existing experimental database expressed as Eq. (10). In the Eq. (10), \(\tau_{\text{max,20}} \) parameter can be calculated by using Eqs. (6)-(7) that is covered plain and deformed rebar and \(f'_{cT} / f'_c \) can be calculated by using Eqs. (1)-(5) that is covered NSC, HSC, CAC, and LAC.

\[
\tau_{\text{max,20}} = \begin{cases}
1.0538 \left(f'_{cT} / f'_c \right) - 0.0255 & \text{30 mm} < d_e \leq 100 \text{ mm} \\
0.5273 \left(f'_{cT} / f'_c \right) + 0.4169 & \text{100 mm} < d_e \leq 160 \text{ mm} \\
0.7905 \left(f'_{cT} / f'_c \right) + 0.1862 & \text{30 mm} \leq d_e \leq 160 \text{ mm}
\end{cases}
100^\circ C \leq T \leq 800^\circ C
\]

Fig. 8 makes comparison the proposed bond strength-compressive strength relationship with 30 mm < \(l_d \) ≤ 100 mm, 100 mm < \(l_d \) ≤ 160 mm, and 30 mm ≤ \(l_d \) ≤ 160 mm at different temperatures against experimental results database.

![Fig. 8](image-url)
Table 3 Analytical bond stress-slip models

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bond stress-slip equation</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbosa (2001)</td>
<td>(\tau = 19.36 s^{0.31} (f'_c < 50 \text{MPa}))</td>
<td>SI units</td>
</tr>
</tbody>
</table>
| CEB-FIP (1999), Huang et al. (1996) and Harajli et al. (1995) | \(\begin{align*}
\tau &= \begin{cases}
\tau_{\text{max}} \left(s / s_1 \right) & 0 \leq s \leq s_1 \\
\tau_{\text{max}} - \left(\tau_{\text{max}} - \tau_u \right) \left(s - s_2 / s_3 - s_2 \right) & s_1 < s \leq s_2 \\
\tau_u & s_2 < s < s_3
\end{cases} \\
\end{align*} \) | SI units |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEB-FIP (1999)</td>
<td>1.0</td>
<td>0.6</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>s₁ (mm)</td>
<td>Distance between ribs</td>
<td>1.0</td>
<td>Distance between ribs</td>
<td>1.0</td>
<td>Distance between ribs</td>
<td>1.0</td>
<td>0.35</td>
</tr>
<tr>
<td>s₂ (mm)</td>
<td>3.0</td>
<td>0.6</td>
<td>1.5</td>
<td>3</td>
<td>1</td>
<td>2.57 (\sqrt{f'_c})</td>
<td></td>
</tr>
<tr>
<td>s₃ (mm)</td>
<td>Distance between ribs</td>
<td>0.4</td>
<td>Distance between ribs</td>
<td>0.3</td>
<td>Distance between ribs</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(\tau_{\text{max}})</td>
<td>2.5 (\sqrt{f'_c})</td>
<td>2.0 (\sqrt{f'_c})</td>
<td>0.4 (f'_c)</td>
<td>0.4 (f'_c)</td>
<td>2.57 (\sqrt{f'_c})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_u)</td>
<td>0.4 (\tau_{\text{max}})</td>
<td>0.15 (\tau_{\text{max}})</td>
<td>(\tau_u)</td>
<td>0.4 (\tau_{\text{max}})</td>
<td>0.4 (\tau_{\text{max}})</td>
<td>(\tau_u)</td>
<td>0.9 (\sqrt{f'_c})</td>
</tr>
</tbody>
</table>

8. Bond stress-slip prediction relationship at elevated temperature

In the analysis of reinforced concrete structures, the bond action between steel bars and concrete is often viewed as a bond-slip relationship. This relationship expresses the local bond stress at any location along a bar as a function of the local slip. Numerous bond-slip relationships have been proposed and formulated. However, given that bond-slip relationships are impacted by various factors (CEB 1982) that vary across bond tests, these proposed models are different (Morita and Fujii 1985). For example, in pullout tests, bond-slip relationships obtained from extremely short specimens are different from those obtained from longer ones (Yamao et al. 1984). Even in the same specimen, the bond-slip relationship varies with the location along the bar if the free end slip exists (Chou et al. 1983). Table 3 shows several bond stress-slip prediction models (Barbosa 2001, CEB-FIP 1999, Huang et al. 1996, Harajli et al. 1995) described in the literature. According to Table 3, three of these models are based on and similar to the main curve of bond stress-slip, although the influencing parameters are different. In this study, the main curve is similar to the CEB-FIP (1999), Huang et al. (1996), and Harajli et al. (1995) models but the \(\tau_{\text{max},T} \) parameter for different types of concrete and cooling condition are different. The proposed bond stress-slip prediction relationship at elevated temperature in this study is shown in Eqs. (11)-(15).
Fig. 9 Comparison between bond stress-slip proposed relationship with experimental results of Diederichs and Schneider (1981)

\[
\tau_{b,T} = \begin{cases}
\tau_{\text{max}} \left(\frac{s}{s_1} \right)^p & 0 \leq s \leq s_1 \\
\tau_{\text{max}} - \left(\tau_{\text{max}} - \tau_{u,T} \right) \left(\frac{s-s_2}{s_3-s_2} \right) & s_1 < s \leq s_2 \\
\tau_{u,T} = 0.4 \tau_{\text{max}} & s_2 < s \leq s_3 \\
\end{cases}
\]

(11)

\[
s_1 (\text{mm}) = \begin{cases}
0.5 \text{ mm} & \text{HSC} \\
1.0 \text{ mm} & \text{NSC} \\
1.0 \text{ mm} & \text{Confined concrete} \\
0.6 \text{ mm} & \text{Unconfined concrete} \\
\end{cases}
\]

(12)

\[
s_2 (\text{mm}) = \begin{cases}
2.0 \text{ mm} & \text{HSC} \\
3.0 \text{ mm} & \text{NSC} \\
3.0 \text{ mm} & \text{Confined concrete} \\
0.6 \text{ mm} & \text{Unconfined concrete} \\
\end{cases}
\]

(13)

\[
s_3 (\text{mm}) = \begin{cases}
\text{Distance between ribs} & \text{HSC} \\
\text{Distance between ribs} & \text{NSC} \\
\text{Distance between ribs} & \text{Confined concrete} \\
1.0 \text{ mm} & \text{Unconfined concrete} \\
\end{cases}
\]

(14)
Predicting the bond between concrete and reinforcing steel at elevated temperatures

Fig. 10 Comparison between bond stress-slip proposed relationship with experimental results of Morley and Royles (1983)

Fig. 11 Comparison between bond stress-slip proposed relationship with experimental results of Haddad and Shannis (2004)

\[
\tau_{\text{max}, T} = \begin{cases}
\text{Equation (8)} & \text{Air cooling} \\
\text{Equation (9)} & \text{Water cooling} \\
\text{Equations (10 and 1)} & \text{related to } f'_{cT} \text{ - for NSC} \\
\text{Equations (10 and 2 - 3)} & \text{related to } f'_{cT} \text{ - for HSC} \\
\text{Equations (10 and 4)} & \text{related to } f'_{cT} \text{ - for CAC} \\
\text{Equations (10 and 5)} & \text{related to } f'_{cT} \text{ - for LAC}
\end{cases}
\]
Fig. 12 Comparison between bond stress-slip proposed relationship with experimental results of Haddad et al. (2008)

Figs. 9-12 illustrate the capability of proposed bond stress-slip prediction relationship at elevated temperature compared with the findings of Diederichs and Schneider (1981), Morley and Royles (1983), Haddad and Shannis (2004), Haddad et al. (2008). The proposed relationships fit the experimental results at elevated temperature well.

8. Conclusions

The major conclusions reached on the basis of the present work are:
1. The proposed compressive strength relationships at elevated temperatures are useful for prediction of NSC, HSC, CAC, and LAC’s compressive strength.
2. In this study the proposed bond strength relationships at elevated temperatures are related to compressive strength of NSC, HSC, CAC, and LAC at elevated temperatures.
3. The proposed bond strength relationships at elevated temperatures (between 100°C to 800°C) are useful for air and water cooling procedures.
4. The proposed bond strength relationships at elevated temperatures are related to the following parameters: the diameter of the steel bar, embedded length of the steel bar, compressive strength of the concrete, and concrete cover by using bond strength relationships at ambient temperature.
5. The proposed relationships for the compressive and bond strength of different types of concrete at elevated temperature are in good reasonable agreement with the experimental results.
6. The proposed compressive and bond strength relationships are simple and reliable for modeling the compressive and bond behavior of NSC and HSC at elevated temperatures. Also, using these relationships in the finite element method (FEM) is more simple and suitable.
7. The predicted values of the proposed bond stress-slip model using proposed bond strength models verified that this model can predict good the bond stress-slip curve of NSC and HSC in the
Predicting the bond between concrete and reinforcing steel at elevated temperatures

various conditions (such as different bar pullout positions, different ages of concrete, different compressive strength, and different bar diameters).

References

Abrams, M.S. (1971), “Compressive strength of concrete at temperatures to 1600˚F”, Temperature and Concrete, Detroit (MI), American Concrete Institute, Special Publication, SP-25.

ACI 318 (2008), “Building code requirements for structural concrete and commentary”, American Concrete Institute.

