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Linear SLAM: A Linear Solution to the Feature-based and Pose Graph

SLAM based on Submap Joining

Liang Zhao, Shoudong Huang and Gamini Dissanayake

Abstract— This paper presents a strategy for large-scale
SLAM through solving a sequence of linear least squares prob-
lems. The algorithm is based on submap joining where submaps
are built using any existing SLAM technique. It is demonstrated
that if submaps coordinate frames are judiciously selected,
the least squares objective function for joining two submaps
becomes a quadratic function of the state vector. Therefore,
a linear solution to large-scale SLAM that requires joining
a number of local submaps either sequentially or in a more
efficient Divide and Conquer manner, can be obtained. The
proposed Linear SLAM technique is applicable to both feature-
based and pose graph SLAM, in two and three dimensions,
and does not require any assumption on the character of the
covariance matrices or an initial guess of the state vector.
Although this algorithm is an approximation to the optimal
full nonlinear least squares SLAM, simulations and experiments
using publicly available datasets in 2D and 3D show that Linear
SLAM produces results that are very close to the best solutions
that can be obtained using full nonlinear optimization started
from an accurate initial value. The C/C++ and MATLAB source
codes for the proposed algorithm are available on OpenSLAM.

I. INTRODUCTION

Recently, nonlinear optimization techniques have become

popular for SLAM. Following the seminal work [1], many

efficient SLAM solutions have been obtained [2]–[6] by

exploiting the sparseness of the information matrix and the

different approaches for solving the sparse linear equations.

However, since SLAM is formulated as a high dimensional

nonlinear optimization problem, local minima is an important

issue. Although many SLAM algorithms appear to work

well for most of the practical datasets (e.g. [7]–[9]), there

is no guarantee that the algorithm can converge to the global

optimum and having an accurate initial value is very critical,

especially for large-scale SLAM problems.

Local submap joining has shown to be an efficient way

to build large-scale maps [10]–[16]. The idea of many map

joining algorithms such as Sparse Local Submap Joining

Filter (SLSJF) [13] is to treat each local map as an integrated

observation and use it in the map joining step. However, the

traditional map joining problems are still nonlinear estima-

tion or nonlinear optimization problems solved by EKF/EIF

[10]–[13] or nonlinear least squares [14]–[17].

This paper provides a new map joining algorithm which

only requires solving linear least squares and performing

coordinate transformations. The method can be applied to

both feature-based SLAM and pose graph SLAM, 2D and
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3D. There is no assumption on the covariance matrices of

the local maps.

The paper is organized as follows. Section II explains the

process of using linear least squares to solve the problem

of joining two feature-based maps. Section III explains how

to use the linear method in the sequential and Divide and

Conquer local submap joining. Section IV provides the linear

algorithm for joining two pose graphs. In Section V, some

simulation and experimental results using publicly available

datasets are given to demonstrate the effectiveness of the

proposed algorithm. Section VI discusses the related work

and some insights on the proposed algorithm. Finally, Section

VII concludes the paper.

II. LINEAR SOLUTION TO JOINING TWO

FEATURE-BASED MAPS

A. Traditional Way of Joining Two Maps

Joining two maps is a basic step in traditional map joining

(such as SLSJF [13]). It is shown in Fig. 1(a).

Map 1 is built in the coordinate frame defined by its start

pose P0, it contains a number of features and the robot end

pose P1. Map 2 is built in the coordinate frame defined by

its start pose P1, it contains a number of features and the

robot end pose P2.1

The end pose of Map 1 is the same as the start pose of

Map 2 (both are P1). The global map coordinate frame is

defined by P0, the same as Map 1. Joining these two maps

to get Map 12 can be formulated as a nonlinear optimization

problem [17].

B. The New Way of Joining Two Maps

In this paper, we propose to build and join two maps

differently as shown in Fig. 1(b).

Different from traditional map joining, now Map 1 is built

in the coordinate frame defined by its end pose P1, it contains

a number of features and the robot start pose P0 as its map

estimates. Map 2 is still built in the coordinate frame defined

by its start pose P1, it contains a number of features and the

robot end pose P2.

Different from traditional map joining, now the coordinate

frame of Map 12 is defined by P2, the robot end pose of Map

2.

1Map 1 and Map 2 can either be small local maps built using the local
odometry and observation information, or be larger maps as the result of
combining a number of small local maps. There can be some other robot
poses in Map 1 and Map 2 (such as a map built from least squares SLAM
without marginalizing any poses), they are not shown in the figure for
simplification.
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(c) Linear way to build Map 12

Fig. 1. The traditional way and the proposed new way of building and joining two maps.

In the following, we will show that although the joining

of Map 1 and Map 2 to get Map 12 in Fig. 1(b) is

still a nonlinear optimization problem, it is equivalent to a

linear least squares optimization problem plus a (nonlinear)

coordinate transformation.

C. Nonlinear Method of Joining ML1 and ML2 to Build

MG12

Suppose Map 1 and Map 2 in Fig. 1(b) are denoted by

ML1 and ML2 and are given by

ML1 = (X̂
L1

, IL1), ML2 = (X̂
L2

, IL2) (1)

where X̂
L1

and X̂
L2

are the estimates of the state vectors XL1

and XL2 of each map, and IL1 and IL2 are the associated

information matrices.

The state vectors XL1 and XL2 are defined as 2

XL1 = [PL1

0
, XL1

F1
, XL1

F12
]

XL2 = [PL2

2
, XL2

F2
, XL2

F12
].

(2)

Note that ML1 is in the coordinate frame of P1, and ML2 is

also in the coordinate frame of P1. Here P1 is the end pose of

ML1 (also the start pose of ML2 ). It defines the coordinate

frame of both ML1 and ML2 and thus is not included in the

state vectors.

In the state vectors XL1 and XL2 in (2), XL1

F1
and XL2

F2

represent the features only appear in ML1 or ML2 , respec-

tively, while XL1

F12
and XL2

F12
represent the common features

appear in both the two maps.

In the state vector XL1 in (2), the start pose P0 of ML1

is presented by

PL1

0
= [tL1

0
, rL1

0
] (3)

where tL1

0
is the translation vector, and rL1

0
is/are the rotation

angle/angles of pose PL1

0
. Similarly, in the state vector XL2

in (2), the end pose P2 of ML2 is presented by

PL2

2
= [tL2

2
, rL2

2
]. (4)

2To simplify the notations, the ‘transpose’s in the state vectors are

sometimes omitted in this paper. For example, XL1 ,P
L1

0
,X

L1

F1
,X

L1

F12

are all column vectors and the rigorous notation should be XL1 =
[(PL1

0
)T , (XL1

F1
)T , (XL1

F12
)T ]T .

Now the state estimates X̂
L1

and X̂
L2

can be written

clearly as

X̂
L1

= [̂t
L1

0
, r̂

L1

0
, X̂

L1

F1
, X̂

L1

F12
]

X̂
L2

= [̂t
L2

2
, r̂

L2

2
, X̂

L2

F2
, X̂

L2

F12
].

(5)

Our goal is to join ML1 and ML2 to get the map MG12 ,

where MG12 is in the coordinate frame of P2.

The state vector of MG12 containing pose P0, pose P1 and

all the features is defined as

XG12 = [PG12

0
, PG12

1
, XG12

F1
, XG12

F2
, XG12

F12
]

= [tG12

0
, rG12

0
, tG12

1
, rG12

1
, XG12

F1
, XG12

F2
, XG12

F12
]

(6)

where all the variables in the state vector XG12 are in the

coordinate frame of P2.

Similar to [17], the map joining problem is to minimize

the following objective function

f(XG12) = ‖e1‖
2

IL1
+ ‖e2‖

2

IL2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

R1 (t
G12

0
− tG12

1
)− t̂

L1

0

r−1(R0R
T

1
)− r̂

L1

0

R1 (X
G12

F1
− tG12

1
)− X̂

L1

F1

R1 (X
G12

F12
− tG12

1
)− X̂

L1

F12

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

IL1

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−R1 tG12

1
− t̂

L2

2

r−1(RT

1
)− r̂

L2

2

R1 (X
G12

F2
− tG12

1
)− X̂

L2

F2

R1 (X
G12

F12
− tG12

1
)− X̂

L2

F12

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

IL2

(7)

where ‖ei‖
2

ILi
= eT

i
ILiei (i = 1, 2) denotes the weighted

norm of vector ei with the given information matrix ILi .

In (7), R0 = r(rG12

0
) and R1 = r(rG12

1
) are the rotation

matrices of pose PG12

0
and PG12

1
in the global state vector

XG12 , respectively. And r(·) and r−1(·) are the angle-

to-matrix and matrix-to-angle functions. For 2D scenarios,

r−1(R0R
T
1
) = rG12

0
− rG12

1
and r−1(RT

1
) = −rG12

1
.

The problem of minimizing (7) is a nonlinear least squares

problem. Solving it we can obtain the estimate of Map 12



together with its information matrix as

MG12 = (X̂
G12

, IG12). (8)

D. Linear Method to Build MG12

If we define new variables as follows (they are actually

the 7 distinct (nonlinear) functions in (7))

t̄
G12

0
= R1 (t

G12

0
− tG12

1
)

r̄G12

0
= r−1(R0R

T

1
)

t̄
G12

2
= −R1 tG12

1

r̄G12

2
= r−1(RT

1
)

X̄
G12

F1
= R1 (X

G12

F1
− tG12

1
)

X̄
G12

F2
= R1 (X

G12

F2
− tG12

1
)

X̄
G12

F12
= R1 (X

G12

F12
− tG12

1
)

(9)

and define a new state vector as

X̄
G12 = [̄t

G12

0
, r̄G12

0
, t̄

G12

2
, r̄G12

2
, X̄

G12

F1
, X̄

G12

F2
, X̄

G12

F12
]

= g(XG12)
(10)

then the nonlinear least squares problem to minimize the

objective function (7) becomes a linear least squares problem

to minimize the following objective function

f̄(X̄
G12) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

t̄
G12

0
− t̂

L1

0

r̄G12

0
− r̂

L1

0

X̄
G12

F1
− X̂

L1

F1

X̄
G12

F12
− X̂

L1

F12

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

IL1

+

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

t̄
G12

2
− t̂

L2

2

r̄G12

2
− r̂

L2

2

X̄
G12

F2
− X̂

L2

F2

X̄
G12

F12
− X̂

L2

F12

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

IL2

.

(11)

This linear least squares problem can be written in a

compact form as

minimize f̄(X̄
G12) = ‖A X̄

G12 − Z‖2IZ (12)

where Z is the constant vector combining the state estimates

of the two maps

Z = [X̂
L1

, X̂
L2

]. (13)

IZ is the corresponding information matrix given by

IZ =

[

IL1 0
0 IL2

]

. (14)

X̄
G12

is the state vector represents the global map defined in

(10). The coefficient matrix A is sparse and is given by

A =

























I

I

I

I

I

I

I

I

























(15)

where I is the identity matrix with the size corresponding to

the different variables in the state vector X̄
G12

.

The optimal solution ˆ̄XG12 to the linear least squares

problem (12) can be obtained by solving the sparse linear

equation

AT IZA X̄
G12 = AT IZZ. (16)

And the corresponding information matrix can be computed

as

ĪG12 = AT IZA. (17)

From (10), we have XG12 = g−1(X̄
G12). Note that the

function g−1(·) has a closed-form as follows:

XG12 = g−1(X̄
G12)

⇒



























































tG12

0
= R̄2 (̄t

G12

0
− t̄

G12

2
)

rG12

0
= r−1(R̄0R̄

T

2
)

tG12

1
= −R̄2 t̄

G12

2

rG12

1
= r−1(R̄T

2
)

XG12

F1
= R̄2 (X̄

G12

F1
− t̄

G12

2
)

XG12

F2
= R̄2 (X̄

G12

F2
− t̄

G12

2
)

XG12

F12
= R̄2 (X̄

G12

F12
− t̄

G12

2
)

(18)

where R̄2 = r(r̄G12

2
), R̄0 = r(r̄G12

0
) are the rotation matrices

of pose P2 and pose P0 in the state vector X̄
G12

.

Now the optimal solution to the nonlinear least squares

problem (7) can be obtained by

X̂
G12

= g−1( ˆ̄XG12). (19)

The corresponding information matrix IG12 can also be

obtained by

IG12 = ∇T ĪG12 ∇ (20)

where ∇ is the Jacobian of X̄
G12

with respect to XG12 ,

evaluated at X̂
G12

∇ =
∂g(XG12)

∂XG12

|
X̂

G12 (21)

The result (X̂
G12

, IG12) obtained this way is exactly the

same as the one in (8) in Section II-C by using nonlinear least

squares. We have used a number of numerical examples to

confirm the equivalence of the two solutions.

Remark 1. For an intuitive explanation, in fact, X̄
G12 =

g(XG12) in (9) and (10) is the coordinate transformation

function, transforming pose P0, P1 and feature F in the

coordinate frame of P2, into P0, P2 and F in the coordinate

frame of P1. Thus XG12 = g−1(X̄
G12) in (18) has the closed-

form formula which is another coordinate transformation,

from P0, P2 and F in the coordinate frame of P1, back to

P0, P1 and F in the coordinate frame of P2. The linear way

to solve the map joining problem presented in Section II-

D is equivalent to solving a linear least squares problem

plus a coordinate transformation, which can be illustrated in

Fig. 1(c). The fact that the two maps are built in the same

coordinate frame is the key to make this linear map joining

approach possible.
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Fig. 2. The proposed Divide and Conquer map joining.

III. JOINING A SEQUENCE OF LOCAL MAPS

Based on the linear solution to joining two maps as shown

in Fig. 1(b) and Section II-D, we can use either sequential

map joining or Divide and Conquer map joining to solve

large-scale SLAM problems.

A. Proposed Divide and Conquer Map Joining

The new Divide and Conquer map joining process we

proposed is illustrated in Fig. 2. Please note: (1) local map

1 and local map 2 are built in the same coordinate frame,

local map 3 and local map 4 are built in the same coordinate

frame; (2) The global map 12 obtained by joining local map

1 and local map 2 is in the coordinate frame of the end pose

of local map 2, while the global map 34 obtained by joining

local map 3 and local map 4 is in the coordinate frame of

the start pose of local map 3. Thus the global map 12 and

global map 34 are in the same coordinate frame and can be

joined together using the linear method in Section II-D.

B. Proposed New Sequential Map Joining

The new sequential map joining process we proposed can

be illustrated by changing local map 3 built in the coordinate

frame of its starting pose in Fig. 2 and sequentially joining

every local map. Please note: (1) the first local map is built

in the coordinate frame of its end pose instead of its starting

pose; (2) the global map 12 after joining local map 1 and

local map 2 is in the coordinate frame of the end pose of

local map 2. Thus the result can be fused with local map 3

using the linear method in Section II-D.

Remark 2. Local map 1 in Fig. 2 can be simply built by

performing a nonlinear least squares using all the observation

and odometry data with state vector defined as the robot

poses and feature positions in the coordinate frame of robot

pose P1. Alternatively, we can first build the local map in

the coordinate frame of P0, and then apply a coordinate

transformation.

IV. LINEAR SOLUTION TO JOINING TWO POSE

GRAPHS

The approaches proposed in Section II and Section III can

also be applied to the pose graph SLAM. In this section, we

explain the process of joining two pose graphs using linear

least squares. The process can also be illustrated using Fig.

1(b) (by simply replacing all the features by poses).

A. Local Pose Graphs

Suppose there are two pose graphs

ML1 = (X̂
L1

, IL1), ML2 = (X̂
L2

, IL2) (22)

where X̂
L1

and X̂
L2

are the estimates of the state vectors

XL1 and XL2 of each pose graph defined as

XL1 = (XL1

PL1
, XL1

PL12
)

XL2 = (XL2

PL2
, XL2

PL12
)

(23)

and IL1 and IL2 are the associated information matrices.

Both ML1 and ML2 are in the same coordinate frame of

P1.

In the state vector XL1 and XL2 in (23), XL1

PL12
and XL2

PL12

are the common poses between ML1 and ML2 , while XL1

PL1

and XL1

PL2
are the poses that appear in only one of the pose

graphs. All the relative poses can be defined similarly as (3)

in Section II-C.

B. Joining Two Pose Graphs by Linear Optimization

Joining these two pose graphs ML1 and ML2 to build the

global graph M̄G12 = (ˆ̄XG12 , ĪG12) can be solved the same

as the linear method of joining two feature-based maps in

Section II-D.

Suppose the global state vector X̄
G12

is defined as

X̄
G12 = (X̄

G12

PL1
, X̄

G12

PL2
, X̄

G12

PL12
) (24)

where X̄
G12

PL12
are the common poses, X̄

G12

PL1
and X̄

G12

PL2
are the

poses that appear in each pose graph, respectively. All the

variables in the global state vector X̄
G12

are in the coordinate

frame of P1. Let Z be the constant vector combining the state

estimates of the two pose graphs ML1 and ML2 as in (13),

IZ is the corresponding information matrix of Z obtained

from the information matrices of each pose graph as in (14).

Also because all these two pose graphs and the global pose

graph are in the same coordinate frame of P1, joining the two

pose graphs can be solved as a linear least squares problem

with the same form as (12). And the coefficient matrix A is

A =









I

I

I

I









. (25)



Then the estimate of the state vector ˆ̄XG12 and the corre-

sponding information matrix ĪG12 of the global graph M̄G12

can be solved by using (16) and (17).

Remark 3. The transformation of the global pose graph from

M̄G12 to MG12 in the coordinate frame of P2 can be done

the same way as described in Section II-D, thus the process

is not detailed here.

Remark 4. It should be mentioned that, for the feature-

based SLAM problem, the only common pose between two

local maps defines the coordinates of both two local maps

as shown in Fig. 1(b), thus this pose is not in the state

vectors of the two local maps. So there is no common pose

in the observations Z in (13) in Section II-D. When doing

linear local map joining, there is no need to care about

wraparound of the rotation angles. However, for the pose

graph map joining problem, there can be many common

poses between two local graphs, and wraparound must be

considered. In this paper, because it is a linear least squares,

we only wraparound the angle on one of the two observations

of a common pose in Z to make the difference between the

two angles in the observations fall into (−π, π].

V. EXPERIMENTAL RESULTS

In the experiments, publicly available 2D and 3D sim-

ulation and real datasets of feature-based and pose graph

SLAM have been used to check the validity and accuracy

of the proposed Linear SLAM algorithm. Both sequential

and Divide and Conquer map joining are implemented us-

ing this linear approach (please refer to the source code

on OpenSLAM under the project “Linear SLAM”). While

the results presented below are all from the Divide and

Conquer implementation which is computationally less ex-

pensive [10]. The computational costs for the Linear SLAM

algorithm using different datasets are listed in Table I.

A. 2D and 3D Feature-based SLAM Datasets

For 2D feature-based SLAM, the Victoria Park dataset [18]

and the DLR dataset [19] are used. Here we used the local

map datasets available on OpenSLAM under project 2D-I-

SLSJF. In Table I, VicPark200 means the 200 local maps

built from the Victoria Park dataset; DLR200 means the 200

local maps built from the DLR dataset, VicPark6898 means

the 6898 local maps built from the Victoria Park dataset and

DLR3298 means the 3298 local maps built from the DLR

dataset. The results of Linear SLAM algorithm using the four

datasets are shown in Fig. 3(a) to Fig. 3(d), respectively. As

comparison, the results from both SLSJF [13] and I-SLSJF

[17] are also shown in the figures.

The result of I-SLSJF is equivalent to that of performing

nonlinear least squares optimization using the local maps as

observations [17]. Since each local map in the VicPark6898

and DLR3298 datasets were built using the observations of

features from one pose together with the odometry to the

next pose, the I-SLSJF results using these two datasets are

equivalent to those using full least squares optimization with

all the observations and odometry information.

TABLE I

COMPUTATIONAL COSTS* OF LINEAR SLAM ALGORITHM (IN

SECONDS)

Feature-based Pose Graph

Dataset time Dataset time

VicPark200 1.49 Intel943 1.77
DLR200 0.77 Manhattan3500 6.87
VicPark6898 18.01 City10000 31.37
DLR3298 6.44 Sphere2500 23.48
3D Simu870 7.94 ParkingGarage1661 16.47

*Implemented in Matlab, run on an Intel E8400@3.0GHz CPU, code is
not optimized. Time for building local maps in VicPark200 and DLR200
datasets are not included.

TABLE II

COMPARISON OF χ
2 OF MAP JOINING RESULTS FOR DIFFERENT

ALGORITHMS

Dataset Nonlinear Least Squares SLSJF Linear SLAM

VicPark200 3643 3644 3645
DLR200 11164 14603 12577
VicPark6898 9012 9013 9020
DLR3298 27689 28316 28373

As shown in Fig. 3(a) to Fig. 3(d), the results of Linear

SLAM look better than those of SLSJF, while nearly the

same as the optimal I-SLSJF results. As shown in Table I,

the computational cost of Linear SLAM is very cheap. This

is mainly because no iteration is needed in the algorithm.

The final χ2 errors are also compared in Table II. The χ2

of Linear SLAM results are similar to those from the SLSJF

results, both of which are very close to the globally optimal

nonlinear least squares solutions.

For the 3D feature-based SLAM, a simulation is done with

871 poses trajectory and uniformly distributed features in the

environment. The Linear SLAM algorithm is applied with

870 local maps and the result is shown in Fig. 3(e).

B. 2D and 3D Pose Graph SLAM Datasets

For 2D pose graph SLAM, experimental dataset Intel,

simulation datasets Manhattan and City10000 are used to

test the proposed Linear SLAM algorithm. The results are

shown in Fig. 4(a) to Fig. 4(c). For 3D pose graph SLAM,

simulation dataset Sphere and experimental dataset Parking

Garage are used. The results of Linear SLAM are shown in

Fig. 4(d) to Fig. 4(e). As comparison, G2O [4] are also used

to get the full nonlinear least squares SLAM results for these

five pose graph datasets. As shown in Fig. 4, the results of

Linear SLAM using the five pose graph datasets are all very

close to the G2O results.

VI. RELATED WORK AND DISCUSSION

The Linear SLAM algorithm proposed in this paper is

based on the idea of map joining, which has been a strategy

applied by many research works [10]–[16]. Map joining has

shown to be able to improve the efficiency of SLAM as

well as reduce the linearization errors. In this paper, we

demonstrate that map joining can actually be implemented

in a way such that only linear least squares and nonlinear
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Fig. 4. 2D and 3D pose graph results of Linear SLAM (LSLAM). Fig. 4(a) to Fig. 4(c) are the results of Intel, Manhattan and City10000 2D pose graph
datasets. Fig. 4(d) and Fig. 4(e) are the results of Sphere and Parking garage 3D pose graph datasets. All results are compared with those of G2O.

coordinate transformations are needed. Thus there is no need

to compute initial value and there is no local minima issue.

The key to make the map joining problem a linear problem

is due to the fact that the two maps to be fused are in

the same coordinate frame. Basically, when joining two

local maps built at different coordinate frames, the estima-

tion/optimization problem is nonlinear, which has been used

in most of the existing map joining algorithms. But when

joining two local maps with the same coordinate frames, the

problem can be linear, which is used in this paper.

Different from traditional local submap joining, the final

global map obtained from this Linear SLAM algorithm is not

in the coordinate frame of the first local map. For Divide and

Conquer map joining, the coordinate frame of the final global

map is the same as the coordinate frame of the last two maps

that were fused. For sequential map joining, the coordinate

frame of the final global map is the last robot pose in the

last local map. In order to compare the result with traditional

local submap joining, a coordinate transformation is needed.

This is somewhat similar to the robocentric mapping [20]

where the map is transformed into the current robot pose

frame in order to reduce the linearization error in the EKF

framework.

Using Divide and Conquer strategy makes the algorithm

more efficient as compared with the sequential map joining,

which is the major improvement of [21] over [13]. The

main reason is that the size of the current global map to

be combined with the next local map keeps increasing in the

sequential map joining.

In the proposed Linear SLAM framework, the pose graph

SLAM can be solved in the same way as feature-based

SLAM. The only difference is the following. In feature-

based SLAM, there is no common pose in the two maps to

be fused apart from the one which serves as the (common)

coordinate frame, so there is no wraparound problem for the

robot orientations. But in pose graph SLAM, there might be a

number of common poses in the two pose graphs to be fused.

Thus the wraparound of robot orientation angles need to be

considered. Because we only fuse two local maps at a time,

the wraparound issue can be dealt with very easily which

is different from that in the linear approximation approach

proposed in [22] [23]. Some other limitations of the linear

approximation method in [23] are: (1) it can only be applied

to 2D pose graph SLAM; (2) it requires special structure on

the covariance matrices.

Similar to SLSJF, the sparseness of the information matrix

is maintained in the proposed linear map joining algorithm as

the coefficient matrix A in (15)(25) are always sparse. Also

similar to SLSJF, there is no information loss or informa-

tion reuse in the Linear SLAM algorithm. The differences

between the results in our Linear SLAM and the results

of globally optimal solution to the nonlinear least squares

SLAM come from two reasons: (i) we summarized the

local map information as the local map estimate together

with its uncertainty (information matrix), instead of using

the original odometry and observation information, which

is the same as many map joining algorithms; (ii) we fuse

two maps at a time instead of fusing all the local maps

together in one go using optimization, thus the quality is not

as good as that of I-SLSJF. In general, the more accurate

the local maps are, the closer the Linear SLAM results from

the globally optimal solution. Thus we recommend to use

nonlinear optimization techniques (and robust back-end if

necessary) to build high quality small local maps and then

apply our linear map joining algorithm. It is clear that fusing

local maps in different coordinate frames optimally using



linear approach is impossible. Thus if we want to apply

smoothing after we join all the local maps together, just like

in I-SLSJF, the problem becomes nonlinear.

Data association is not considered in the experimental

results presented in this paper. However, since our Linear

SLAM approach is using linear least squares and the asso-

ciated information matrices are always available, many of

the data association methods suggested for EIF based or

optimization based SLAM algorithms (such as SLSJF [13],

ESEIF [24] and iSAM [5]), including covariance submatrix

recovery, can be applied with the proposed Linear SLAM

algorithm.

VII. CONCLUSION

This paper demonstrated that submap joining can be

implemented in a way such that only linear least squares

and coordinate transformations are needed. There is no

assumption on the local map covariance matrices and the

approach can be applied to both feature-based and pose graph

SLAM, 2D and 3D. This new approach avoids the issues

of local minima and inaccurate initial value which exist in

almost all the existing nonlinear optimization based SLAM

algorithms.

Simulation and experimental results using publicly avail-

able datasets demonstrated the accuracy and efficiency of

the algorithms. Although the results look very promising,

they are still not equivalent to the optimal solution to SLAM

based on nonlinear least squares starting from accurate initial

values. Like other submap joining algorithms, how different

the results are from the optimal solution depends on many

factors such as the quality of the original sensor data as well

as the quality of local maps.

The results in this paper again show that SLAM is not

very far from a linear problem. We are in the process of

revisiting some other SLAM problems, such as SLAM with

line features, range-only SLAM, and monocular SLAM to

work out how the proposed Linear SLAM algorithm can be

applied to these different SLAM problems to improve the

reliability and efficiency of the SLAM algorithms. We are

also planning to apply this Linear SLAM algorithm in active

SLAM and investigate the possibility of using this Linear

SLAM algorithm to help in the SLAM front-end to solve

the robust back-end problem.
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