
© [2004] IEEE. Reprinted, with permission, from [Longbing Cao, Chengqi Zhang, Dan Luo, Wanli Chen and Neda
Zamani,Integrative Early Requirements Analysis for Agent-Based Systems, Hybrid Intelligent Systems, 2004. HIS '04.
Fourth International Conference on 5-8 Dec. 2004]. This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Technology,
Sydney's products or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it

Integrative Early Requirements Analysis for Agent-Based Systems

Longbing Cao1, Chengqi Zhang1, Dan Luo2, Wanli Chen1, Neda Zamani3

1Faculty of Information Technology, University of Technology, Sydney, Australia
2Science and Technology Exchange Center, Ministry of Science and Technology, China

3Faculty of Informatics, University of Wollongong, Wollongong, Australia
1{lbcao, chengqi, wanli.chen}@it.uts.edu.au, 2dan.luo@mail.ia.ac.cn, 3nz47@uow.edu.au

Abstract

Early requirements analysis (ERA) is quite
significant for building agent-based systems. Goal-
oriented requirements analysis is promising for the
agent-oriented early requirements analysis. In general,
either visual modeling or formal specifications is used
for the ERA. This way cannot capture requirements
precisely and completely. In this paper, we present an
integrative modeling framework for agent-oriented
early requirements analysis; this framework
implements goal-oriented requirement analysis. The
integrative modeling combines visual modeling and
formal modeling together. Extended i* framework is
used for building visual models; formal specifications
complement the visual modeling to define and refine
requirements. Both visual and formal models are
outlined through a practical agent-based system F-
TRADE1. The integrative modelling seems to model
early requirements comprehensively and concretely,
and benefit refinement and conflict management in
building agent systems.

1. Introduction

Early requirements analysis (ERA) plays
significant role in the process of building agent-based
systems. One promising approach is to utilize goal-
oriented requirements analysis (RA) [1, 2] to do this
work. An agent [3] is a goal-driven entity with
autonomy and self-control of capabilities. Goal-
oriented analysis is compatible with the motivation of
agent-oriented methodology, and is becoming involved
in agent-oriented requirement engineering.

Visual modeling with diagrammatic specifications
is widely used in both goal-oriented and agent-oriented

1 F-TRADE (http://datamining.it.uts.edu.au:8080/tsap) gets real

data and industrial requirements in capital markets from Capital
Markets Cooperated Research Center, Australia (www.cmcrc.com).

requirements analysis, for instance, AUML2 and the i*
framework [4]. Nevertheless, this may lead to
subjective models for lacking a formal definition of
their semantics, which can hardly be refined in a
straightforward way into the phase of system design.
Formal specifications can complement some of
weaknesses of visual modeling with precise
representation. However, an integrative model with
both visual and formal representations presents
complete and precise information in early requirement
engineering.

In this paper, we present goal-oriented integrative
modeling for agent-oriented early requirements
analysis. The integrative modeling consists of both
visual modeling and formal modeling. A visual model
and formal specifications are interdependent and
complement each other. Organizational Dependency
model and Organizational Rationale model are
deployed for visual modeling by extending the i*
framework. First-order linear-time temporal logic is
used for formal analysis and refinement. In integrative
modeling, both functional and nonfunctional
requirements can be analyzed.

An agent service-based open infrastructure called
F-TRADE is taken as the case study for the proposed
modeling approach. F-TRADE has been developed for
trading and mining supports in real capital markets.
The success of requirement engineering and system
implementation of F-TRADE shows that the integrative
modeling can make agent-oriented early requirement
engineering effective and efficient.

The sequence of this paper is organized as follows.
Section 2 briefly introduces related work. In Section 3,
a framework of integrative modeling is given for agent-
oriented early RA. Section 4 discusses visual modeling
and formal specifications, respectively in terms of the
case study F-TRADE. Finally, Section 5 summarizes
the contributions of the paper, and presents future work.

2 www.auml.org

2. Related work

Goal-oriented analysis focuses on the description
and evaluation of alternatives and their relationships to
the organizational objectives behind a software project.
Capturing these interdependencies between
organizational objectives and software requirements
can facilitate the tracing of the origins of requirements,
and can help make the requirements process more
thorough, complete and consistent.

Many techniques have been proposed for goal-
oriented requirement engineering. Some goal-oriented
approaches link agents and goals together. In KAOS
[1], responsibility links are introduced to relate the goal
and agent sub-models. A goal may be assigned to
alternative agents through responsibility links; this
allows alternative boundaries to be explored between
the software-to-be and its environment. In the i*
framework, agent dependency links are defined to
model situations where an agent depends on another for
a goal to be achieved, a task to be performed, or a
resource to become available.

Most of goal-oriented modeling techniques use
graphical notations; this can be called as Diagrammatic
Modeling or Visual Modeling. Diagrammatic modeling
makes the scenarios more understandable. The i*
framework uses graphical notations to analyze
requirements. i* models will be built for early
requirements analysis, and Strategic Dependency
model as well as Strategic Rationale Model are
deployed for late requirements analysis. However, they
enclose implicit, incomplete and somehow imprecise
information which undermines the understanding of the
problem and blocks later design and implementation.
To this end, some proper formal specifications may
complement them.

A new trend is to integrate visual modeling and
formal specifications. Koning [5] proposed the ATOS
approach; it introduces a textual notation of AUML
that can be translated to an extended finite state
machine to be processed by a model checker. It is
reported that it has been used to perform formal
verification of AUML sequence diagram specification
of interaction protocols of multi-agent systems. Perini
[6] discussed the possibility of inter-mixing formal and
informal specifications in order to guide and support
the conceptual modeling; it described a modeling
language for lightweight usage of formal verification
techniques when performing conceptual modeling in
agent-oriented methodology.

Most of the proposed methodologies in goal-
oriented RA adopt visual modeling as a core process.

Visual modeling absorbs and inherits some best
practices like structured object-oriented software
engineering. For instance, “use case” is used for
discussing requirements with actors; i* framework and
Tropos methodology [7] provide graphical notations
for describing actors, goals, dependencies, rationale,
and so forth. The usage of visual modeling languages
in requirements analysis offers advantages such as that
of providing an effective and concrete interaction for
different stakeholders of the process.

However, visual modeling languages lack a formal
definition of their semantics. This could lead to
subjective models, which can hardly be refined in a
straightforward way into a system design. Another
weakness is when the refinement should be stopped in
building a conceptual model.

Formal specifications overcome some of the
weaknesses of visual modeling. It presents mechanisms
for defining models with precise semantics. The
disadvantages of formal specifications include that (i) it
is hard for understanding and utilizing in modeling
without strong skills in the specifications, and (ii) it is
not effective in visualizing interactions between
stakeholders. However, these can be handled by visual
modeling. So, the integration of visual modeling and
formal modeling can complement each other, and make
the RA as understandable and precise as possible.

3. Integrative modeling framework

Integrative Modeling is a methodology which tries
to integrate formal specifications with informal
diagrammatic notations; it also integrates functional
requirements and nonfunctional requirements in the
process of ERA.

3.1. Integrating requirements of functional and
nonfunctional

3.1.1. Functional requirement analysis. The
functional requirements analysis concerns with the
understanding of goals of a system by studying an
organizational setting. The output of this analysis is an
organizational model which includes relevant actors,
their respective goals and their inter-dependencies.

To this end, we try to adopt concepts offered by i*
framework, such as actor (actors can be agents,
positions or roles), as well as social dependencies
among actors, including goal, soft goal, task and
resource dependencies. Necessary extension will be
discussed in later sections.

3.1.2. Nonfunctional requirement analysis.

Nonfunctional goals (or quality attributes, qualities, or
more colloquially “-ilities”) refer to quality of service,
development objectives or architectural constraints [8].
Most common nonfunctional requirements [9] are
global qualities of a software system, such as flexibility,
maintainability, usability, and so forth. The
characteristics of such requirements include (1) they
are usually stated only informally, (2) they are often
controversial (for example, management wants a secure
system but staff desires user-friendliness), (3) they are
difficult to enforce during design and implementation,
and (4) they are difficult to validate.

3.1.3. Integrative requirements analysis. In a
summary, functional requirements focus more on
functional goals; while nonfunctional requirements
cares about nonfunctional goals. Nevertheless,
functional goals and nonfunctional goals are closely
related or even interleaved in a system. It is to some
degree hard to separate them from each other in a real
system even though we often discuss them in different
situations and for different objectives. For instance, the
system-to-be is described along with relevant functions
and qualities within its operational environment.

On the other hand, even though we can build
individual models for functional and nonfunctional
requirements respectively, the representation of these
two types of models can be in same or similar
diagrammatic descriptions. In goal-oriented
requirements analysis, both nonfunctional and
functional requirements analyses can be described by
modeling techniques like Strategic Dependency Model
and Strategic Rationale Model in i* modeling.

An Integrative Requirements Analysis, which must
and can enclose both functional and nonfunctional
requirements, is more practical and effective in both
modeling and understanding of the problem. It will
further benefit the later system design and
implementation.

Some weaknesses of integrative modeling include
too many goals will be involved in one model, and the
diagram could be very complicated and comprehensive.
However, as we use decomposition technique to
understand a complex system by dividing it into
multiple subsystems, functions and qualities can be
thought about separately first and then united into an
entity. In order to mark functional and nonfunctional
requirements in the integrated diagrams, different
diagrammatic notations will be used to label them
respectively. This can help to trace and understand the
two-type goals according to different motivations.

3.2. Integrative modeling of visual models and
formal specifications

3.2.1. Visual modeling. Most of the proposed
methodologies in goal-oriented requirements analysis
adopt visual modeling as a core process. Visual
modeling absorbs and inherits some best practices like
structured object-oriented software engineering [10].
For instance, use case [11] is used for discussing
requirements with actors; i* framework and Tropos
methodology provide graphical notations for describing
actors, goals, dependencies, rationale and so forth. The
usage of visual modeling languages in system analysis
and design offers advantages such as that of providing
an effective and concrete interaction for different
stakeholders of the process.

Nevertheless, visual modeling languages lack a
formal definition of their semantics. This could lead to
subjective models, which can hardly be refined in a
straightforward way into a system design. Some other
weaknesses include when the refinement should be
stopped in building a conceptual model, and how to
check the conflict and inconsistencies.

3.2.2. Formal specifications. Formal specifications,
however, complement some of weaknesses of visual
modeling. It presents mechanisms for defining models
with a precise semantics. The disadvantages of formal
specifications include that it is hard for understanding
and utilizing in modeling without strong skills in the
specifications, and it is not good at visualizing
interactions between stakeholders.

3.2.3. Integrative modeling. An Integrated Modeling
is a kind of modeling methodology which tries to
integrate formal specifications and informal
diagrammatic notations systematically. Visual
modeling equipped with formal languages can interpret
the problem and handle requirement engineering in a
concrete and visualized way, which helps to discuss
with stakeholders; it can also support deductive
reasoning which assists with precise and explicit
understanding of the problem and modeling procedures.

In order to build integrative models, we extend i*
framework, and take it as visual modeling technique
for the functional and nonfunctional [9] requirement
analyses in our work [12]. At the same time, the real-
time linear temporal logic [13], also presented in
Formal Tropos [7], will be used to deploy a formal
specification for describing organizational elements
and relationships formally and explicitly. Figure 1
depicts a framework for the integrative modeling

technique. The following sections will discuss the
integrative modeling by analyzing a real case.

Figure 1. Integrative modeling

4. A case study

F-TRADE (Financial Trading Rules Automated
Development and Evaluation) [12, 14] is a web-based
trading and mining support infrastructure. It supports
online plug-in of trading strategies or data mining
algorithms and fully observes privacy. Providers can
iteratively evaluate these algorithms with online
connectivity to real stock data from global markets, and
even find some optimum strategy before going to
markets. Public traders and investors can benefit from
available strategies on F-TRADE by subscription.
Actually, F-TRADE also supports plug in of data
sources, and system functional modules. Moreover,
optimal strategies or optimal combination of input
parameters for a specific trading strategy can be
recommended on F-TRADE.

4.1. Visual OR model

For modeling the F-TRADE, we adopt and extend
the i* framework as visual modeling [12]. The original
Strategic Dependency model is expanded to be
Organizational Dependency (OD) model; the Strategic
Rationale model becomes Organizational Rationale
(OR) model for describing agent systems in
organizational metaphor. For space limitation, we only
discuss about OR model in this paper.

The OR model introduces instantiated
organizational actors, relationships and rules. Goals
and tasks in high granularity in an OD model will be
decomposed and refined into grain sub-goals and sub-
tasks. Correspondingly, more concrete and detailed
responsibilities, specific relationships, and causalities
will be discovered and exhibited in the model. Task
decomposition can further be expressed by Sister
Relationships between subtasks (or sub-goals) and
Parent-Child Relationships between super-task (or

super-goal) and subtask (or sub-goal) [12]. We
introduce how to build the OR model through the case
study as follows.

Figure 2. Excerpt of OR model for algorithm Provider

Figure 2 shows an excerpt of the OR model for
org

m v
le is

als

anizational actor Algorithm Provider and its
environment in F-TRADE. The main work for an
algorithm provider is to code her/his algorithm, register
it into F-TRADE, and evaluate it as s/he likes. In the
center of the figure, one basic task Algo Coding is
refined into Implement Algo API, Implement Algo
Logic, Stock Fields Accessing, Algo Ontology Define,
and Set Data Source concurrently. After programming
of an algorithm, the provider can log onto F-TRADE
and Call Algo Plugin Interfaces to Register Algo.
Register Algo will be further decomposed into Fillin
Algo Register Ontologies and Upload Algo Component
in parallel. After Check Algo Validity by Administrator,
Algo Provider goes to Evaluate Algo. This includes
subtasks as Call Algo, Parameter Value Setting,
Execute Algo. The Algo Output Interface will be
generated automatically, and shows outputs and reports
in Visual Outputs, Detailed Outputs, Simulated
Transactions, and Sum ary Report, respecti ely.

Partially nonfunctional organizational rationa
o shown on the figure. Softgoal contributions are

also presented to model sufficient/partial positive (++
and + respectively) or negative (-- or - respectively)

support to softgoals Flexible, Available, Secure, Easy
and Adaptable. For instance, to provide sufficient
support to the soft-goal Flexible, some functional tasks
are specified to deal with registering algorithm, calling
algorithm plugin interfaces, and iteratively setting
parameter values.

The OR model does help us examine the rationale
of

4.2. Formal analysis of OR model

Formal specifications for agent-oriented
req

ine an
ea

 model as

A n

Figure 3. An excerpt of formal specifications for

 As shown in the above case study, formal modeling

5. Conclusions and future work

We have presented the integrative modeling
app

odeling framework
by

pra

4.2. Formal analysis of OR model

Formal specifications for agent-oriented
req

ine an
ea

 model as

A n

Figure 3. An excerpt of formal specifications for

 As shown in the above case study, formal modeling

5. Conclusions and future work

We have presented the integrative modeling
app

odeling framework
by

pra

the system itself more explicitly and precisely. With
the cooperative deployment of the OD and the OR
models, functional and nonfunctional requirements can
be analyzed and refined up to relevantly detailed and
complete understanding of the system. However, a
more precise elaboration can only be acquired by
developing formal specifications.

ore precise elaboration can only be acquired by
developing formal specifications.

uirements analysis are described by formal grammar.
Formal grammar can be defined by the first-order
linear-time temporal logic. In the following, the main
operators from the first-order linear-time temporal
logic are presented. Part of the temporal formulae used
in this work is also described. More information about
formal specifications can be obtained from [12].

 A formal analysis can be performed to ref

uirements analysis are described by formal grammar.
Formal grammar can be defined by the first-order
linear-time temporal logic. In the following, the main
operators from the first-order linear-time temporal
logic are presented. Part of the temporal formulae used
in this work is also described. More information about
formal specifications can be obtained from [12].

 A formal analysis can be performed to ref
rly requirements specification with the above formal

grammar. In general, formal analysis will be an
iterative process. In formal analysis, the OD model and
OR model will be built and refined gradually by
mapping actors and intentional elements into
corresponding formal entities and by adding non-
intentional entities of the domain, if any.
 Here we just take the above excerpt of OR

rly requirements specification with the above formal
grammar. In general, formal analysis will be an
iterative process. In formal analysis, the OD model and
OR model will be built and refined gradually by
mapping actors and intentional elements into
corresponding formal entities and by adding non-
intentional entities of the domain, if any.
 Here we just take the above excerpt of OR
an example for the formal analysis. The goal
RegisterAlgo for registering an algorithm by Algorithm
Provider into F-TRADE will be taken as an example
for introducing formal modeling. With the goal- and
scenario-based [15, 12] modeling techniques, we can
get a refinement of goal RegisterAlgo. The Creation
condition for an instance of goal RegisterAlgo is that its
predecessor goal CodeAlgo has already been fulfilled.
The invariant shows constraints on the lifetime of class
instances. For goal RegisterAlgo, the invariant binds a
RegisterAlgo object with its predecessor object. To
fulfill goal RegisterAlgo, for each algorithm, there
exists only one AlgorithmComponent instance that has
been coded and will be uploaded at sometime t2 in the
future through calling CallPluginInterfaces at future
time t1 (t1 ≤ t2); one legal instance of
Fillin lgoRegisterO tologies is filled at t2. The
FillinAlgoRegisterOntologies are allowed for multiple
instances by following rules in the class Ontology for

each AlgorithmComponent. The excerpt of the refined
formal specification for goal RegisterAlgo is shown in
Figure 3, where both informal and formal definitions
are given.

an example for the formal analysis. The goal
RegisterAlgo for registering an algorithm by Algorithm
Provider into F-TRADE will be taken as an example
for introducing formal modeling. With the goal- and
scenario-based [15, 12] modeling techniques, we can
get a refinement of goal RegisterAlgo. The Creation
condition for an instance of goal RegisterAlgo is that its
predecessor goal CodeAlgo has already been fulfilled.
The invariant shows constraints on the lifetime of class
instances. For goal RegisterAlgo, the invariant binds a
RegisterAlgo object with its predecessor object. To
fulfill goal RegisterAlgo, for each algorithm, there
exists only one AlgorithmComponent instance that has
been coded and will be uploaded at sometime t2 in the
future through calling CallPluginInterfaces at future
time t1 (t1 ≤ t2); one legal instance of
Fillin lgoRegisterO tologies is filled at t2. The
FillinAlgoRegisterOntologies are allowed for multiple
instances by following rules in the class Ontology for

each AlgorithmComponent. The excerpt of the refined
formal specification for goal RegisterAlgo is shown in
Figure 3, where both informal and formal definitions
are given.

Goal RegisterAlgo
n an algorithm component has been

 Fo
vider

nt ca: CodeAlgo

 omponent (ac.algo = algo →

gies

adAlgoComponent
) ∧

 InformalDef Whe
coded and the algorithm isn’t available from the
system at the moment, this algorithm component can
be registered into the system by calling plug-in
interfaces, filling in algorithm registration ontologies,
and upload the algorithm module.
rmalDef
Actor Pro
Mode achieve
Attribute consta
Attribute constant algo: Algorithm
 registered: boolean
Creation condition
 ● Fulfilled(ca) ∧ ¬ Existed(algo)
Invariant ca.actor = actor
Fulfillment condition
 ∀ ac: AlgorithmC

◊≤ t1 ∃ cpi: CallPluginInterfaces (cpi.actor=
actor ∧ Fulfilled(cpi) ∧ pi.Called) ∧
◊≤t2(∃faro: FillinAlgoRegisterOntolo

(faro.depender = actor ∧ Fulfilled(faro) ∧
aro.Filled)
∧∃ uac: Uplo
(uac.depender = actor ∧ Fulfilled(uac
ac.uploaded)))

provider to register algorithm provider to register algorithm

can benefit responsibility refinement and conflicts
management [16], for instance, various kinds of
inconsistency resulting from the acquisition,
specification, and evolution of goals/requirements from
multiple sources, in requirement engineering.

can benefit responsibility refinement and conflicts
management [16], for instance, various kinds of
inconsistency resulting from the acquisition,
specification, and evolution of goals/requirements from
multiple sources, in requirement engineering.

roach for agent-oriented ERA. The main
contributions of this paper include:

(1) Introducing the integrative m

roach for agent-oriented ERA. The main
contributions of this paper include:

(1) Introducing the integrative m
combining visual modeling and formal modeling in

terms of goal-based functional and nonfunctional RA.
(2) Outlining the integrative modeling through a

combining visual modeling and formal modeling in
terms of goal-based functional and nonfunctional RA.

(2) Outlining the integrative modeling through a
ctical agent system F-TRADE by extended i*

framework and first-order linear-time temporal logic.
ctical agent system F-TRADE by extended i*

framework and first-order linear-time temporal logic.

More work is currently being performed on
res

Acknowledgments

Thanks are due to CMCRC3 and AC34 Australia
wh

References

[1] A. Dardenne, A. van Lamsweerde, and S. Fickas,

[2] ents

[3] ooldridge, An introduction to multiagent

[4] elling Organizations for

[5] , “Generating

[6] ini, M. Pistore, M. Roveri, A. Susi, “Agent-

[7]

[8]

[9] “From Object-

[10 ruchten. The Rational Unified Process: An

[11] e

ponsibility refinement and model checking. We are
also using the integrative modeling strategy on late RA
in building agent systems.

o donate a large amount of real data for our
experiments.

“Goal-directed requirements acquisition”, Science
of Computer Programming, 20:3–50, 1993.

 A.V. Lamsweerde, “Goal-Oriented Requirem
Engineering: A Guided Tour”, Proceedings RE’01,
5th IEEE International Symposium on
Requirements Engineering, Toronto, pp. 249-263,
2001.

 M. W
system, Wiley, 2001.

 E.S.K. Yu, "Mod
Information Systems Requirements Engineering",
Proc. RE'93 - 1st Intl Symp. on Requirements
Engineering, IEEE, 34-41, 1993.

 J.L. Koning, I. Romero-Hernandez
Machine Processable Representations of Textual
Representations of AUML”, Proceeding of AOSE,
2002.

 A. Per
oriented modeling by interleaving formal and
informal specification”, Proceeding of AOSE, 2003.

 A.V. Lamsweerde, “Formal Specification: a
Roadmap”, In The Future of Software Engineering,
A. Finkelstein (ed.), ACM Press, pp. 147-160, 2000.

 A.V. Lamsweerde. From System Goals to Software
Architecture. In Formal Methods for Software
Architectures, M. Bernardo & P. Inverardi (eds),
LNCS 2804, Springer-Verlag, 2003.
J. Mylopoulos, L. Chung, and E. Yu,
Oriented to Goal-Oriented requirements analysis”,
COMMUNICATIONS OF THE ACM, 42(1): 31-37,
1999.
] P. K
Introduction. Addison-Wesley, 2nd edition, 2000.
 D. Leffingwell, D. Widrig, Managing Softwar
Requirements: A Use Case Approach, Second

[12 s oriented

[13 of

[14 Cao, J.Q. Wang, L. Lin, and C.Q. Zhang

[15 Requirements

[16 . Darimont and E. Letier,

3 www.cmcrc.com
4 www.ac3.com

Edition, Addison-Wesley Pub Co, 2003.
] L.B. Cao, “Organization and service
analysis and design”, PhD thesis. University of
Technology Sydney, Ausrtalia, 2005 (to appear).
] Z. Manna and A. Pnueli, The Temporal Logic
Reactive and Concurrent Systems, Springer-Verlag,
1992.
] L.B.
(2004), “Agent Services-Based Infrastructure for
Online Assessment of Trading Strategies”,
Proceedings of IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IEEE
Computer Society Press, pp345-349.
] A. Sutcliffe, “Scenario-Based
Analysis”, Requirements Engineering Journal, 3 (1):
48-65, 1998.
] A.V. Lamsweerde, R
“Managing Conflicts in Goal-Driven Rquirements
Engineering”, IEEE Transactions on Software
Engineering, Special Issue on Managing
Inconsistency in Software Development, Vol. 24 No.
11, pp. 908 – 926, 1998.

	1. Introduction
	Related work
	3. Integrative modeling framework
	3.1. Integrating requirements of functional and nonfunctional
	Integrative modeling of visual models and formal specifications
	3.2.3. Integrative modeling. An Integrated Modeling is a kind of modeling methodology which tries to integrate formal specifications and informal diagrammatic notations systematically. Visual modeling equipped with formal languages can interpret the prob

	4. A case study
	4.1. Visual OR model
	Formal analysis of OR model

	Conclusions and future work
	References

