DESIGNING CRIME PREVENTION – A REVIEW OF METHODS

Rodger Neil WATSON
University of Technology Sydney, Australia

ABSTRACT
The Designing Out Crime research centre (DOC) has now operated for almost 5 years. In this time the centre and its staff and students have worked on real life crime problems, using and developing ways of working within a design process.

DOC is a multi-discipline centre and draws on the tools and methods of these disciplines. Recently DOC undertook a stock-take of the methods it uses within a frame creation process. This stock-take was then used to develop DOC method cards, in reference to the IDEO method cards of 2002.

Situated within the frame creation process this paper explores 20 methods that were used in a case study that has gone from complex problem, to piloted solutions in the lifetime of DOC.

Keywords: design methods, design process, design learning, frame creation, design and crime

Contact:
Rodger Neil Watson
University of Technology Sydney
Designing OUt Crime research centre
Summer Hill
2130
Australia
rodger.watson@uts.edu.au
1 INTRODUCTION

Design has been shifting in to new territory. Not least through the design thinking movement as characterized by Nussbaum (2007) and Brown (2009). This shift is evidenced by the growing number of designers embedding in corporations in ‘customer experience’ teams as well as the increasing market for designers working with government. At the same time as this boon has occurred, there has been a growing call for a paradigm shift in design research with researchers urged to reengage with practitioners to co-create expertise and practices (Dorst 2008).

This paper focuses on one example of how a university has formed a collaboration with a government department to bring a design approach to the problems it has struggled to address. The paper outlines through a case study how design process was used to shift an old problem, and also shares some practices that were created in the process of the project.

The Designing Out Crime research centre (DOC) is a partnership in Australia between the New South Wales Government’s Department of Attorney General and Justice, and the University of Technology, Sydney (UTS). DOC is tasked with bringing design practice in to the crime prevention field in NSW. Academics in the field of criminology have long recognized that design outcomes such as environments, buildings, and products can have elements that attract or enable crime, and have written extensively on the topic (see for example Clarke 2000, Newman 1972, Jeffery 1971, Brantingham & Brantingham 1981, Felson 1987, Ekblom 2005, Cozens et al 2005). However, the academic exploration of design practice has arguably not been taken on board by criminology or crime prevention practice with as much enthusiasm as the reflections on design outcomes.

DOC argues that design can be used as a way of exploring the complexity of crime situations and that designers generate frames through which new solutions are generated (Dorst and Tomkin 2011). The Design Against Crime Research Centre at Central Saint Martins College of Art and Design, University of the Arts London have, since the 1990s, contributed significantly to the understanding of how design and designers can contribute to the crime prevention sector (www.designagainstcrime.com for examples). The work of DOC and the Designing Out Crime research centre at the University of Technology Eindhoven have also added to this canon of work and sought to define their own approaches, methods and strategies, reflecting on practice and the academic literature (see for example, Dorst and Tomkin 2011, Camacho Duarte et al 2012, Lulham et al 2012 and see www.designingoutcrime.com and www.designingoutcrime.nl for project descriptions).

These ‘design for crime prevention’ approaches (Asquith et al 2013) are making headway. A recent conference hosted by DOC – the Design + Crime Conference 2012 – attracted an international audience comprising academics and practitioners from diverse backgrounds to discuss this topic. However, while there are changes occurring in criminology, the word ‘design’ has largely been invoked as an outcome rather than a practice that leads to an outcome and is pigeonholed in to matters to do with products and the built environment. The enquiry and critique of design in crime prevention are largely focused on the outcomes and outputs of these processes, or at the most the components of the outcomes (for example Clarke 2000). This approach is dangerous as it can lead to cookbook-style practice, where only things that have already been shown to ‘work’ are implemented (Ekblom 2012). It ignores the likely differences in context and oversimplifies the process of developing effective ways to achieve the required outcomes.

After nearly five years of operation DOC has carried out numerous projects and built many partnerships. The process of mapping methods and practices used in past projects, and the methods and practices that the current team use was undertaken for two key reasons: to provide a mechanism for better explaining and engaging clients and partners who are not used to working with design processes; and to provide the opportunity for academic reflection and enquiry on the tools and strategies used by DOC designers.

2 CONTEXT

The Designing Out Crime research centre at UTS is a multidisciplinary team comprising 12 staff and a growing number of postgraduate research students. After nearly five years of operation, DOC took stock of the methods and tools that it uses and in reference to the IDEO method cards (IDEO 2003), developed a set of DOC method cards.
The DOC designers work within a practice framework of six key activities:

Research > Initiation > Frame Creation > Design Exploration > Handover > Evaluation

(Dorst, Tomkin, 2011)

Each of these activities is made up of processes, tools and methods. The key stage in this framework is frame creation (for a more detailed exploration of frame creation see Dorst, 2013). The DOC designers have found that a fruitful frame can only really be generated after the completion of several steps, or stages of understanding.

Good frames are not easily achieved, but when they are they provide a platform for design exploration (Lawson 2009). At DOC the designers and researchers often complete the first four stages over a period of 3-6 months. This work is then used as the starting point for two distinct practice methods ‘theme analysis’ and then ‘frame creation’. The resultant frame(s) are then used as the briefing for undergraduate students to conduct design explorations through visualization and prototyping. Partners or client organisations then receive the results of this process in a formal handover with evaluation taking place upon implementation. For more information on projects see www.designingoutcrime.com and www.designingoutcrime.nl.

This practice framework is made up of distinct methods. Each DOC method card fits within one or more steps of the practice framework. Each step is achieved through the application of one or more of the methods. The stock-take elicited a final list of 36 distinct methods that are commonly used by the DOC team. The method cards are used by DOC when formulating and planning a project with a partner organization, and are designed to be playful and flexible. In some ways the cards fulfill the role of educating the client about the sometimes abstract and bewildering methods used by designers.

Using the cards is also a way of engaging the client in the design process and setting up the designer/client relationship as a collaborative affair, as distinct from that of the ‘designer-as-technician’ arrangement (Paton & Dorst, 2010).

The method name, a brief description and a precedent project where the tool has been used are on the cards. Guidance on when (in the project) to use the method, and one or more in-house experts who have either brought the tool to DOC, or who have used the tool in DOC projects are also listed. The names of past projects in which the tool has been successfully used are also displayed on the card, so that DOC designers can quickly find examples to guide them.

3 THE RESEARCH PROJECT

The DOC method cards were exhibited at DAB LAB, a public gallery attached to UTS, in an exhibition coinciding with the Design + Crime Conference hosted by DOC in December 2012. Applied to a case study the exhibition illustrated how the methods fit within the DOC design practice framework. The exhibition also asked for attendees to record their name, occupation, and their favorite design/research method. The results of this research are included in this paper.

The What, Why, How, When exhibition ran at DAB LAB in December 2012. A case study was illustrated by placing the cards on the walls with contextual notes and images providing a narrative. Attendees were invited to build their own design project with the method cards, and to nominate their own favorite tool by writing on a research wall. A selection of DOC method cards were arranged in a linear fashion around the walls of the exhibition space. The case study illustrated a project that DOC
has been involved in since 2009, with the City of Sydney Council. This case study outlined the design tools and methods used by DOC and the City of Sydney who have subsequently implemented new policy and projects.

4.1 Method cards exhibition – case study
The table below outlines the method cards that were used to illustrate the case study. This table also identifies roughly where in the frame creation process these tools were being used.

<table>
<thead>
<tr>
<th>Practice Stage</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>Hot spots</td>
<td>Explore patterns in recorded crime statistics. Identify spatial and temporal trends.</td>
</tr>
<tr>
<td>Initiation</td>
<td>Power and the passion</td>
<td>Find a champion and creating an ongoing relationship based on common goals and values.</td>
</tr>
<tr>
<td></td>
<td>Tried and tested</td>
<td>Gather a record of past issues and how they have been approached.</td>
</tr>
<tr>
<td></td>
<td>Conflicts and differences</td>
<td>Identify the problem everyone has trying to solve. Then set it aside. The solution does not lie there.</td>
</tr>
<tr>
<td></td>
<td>Who’s who in the zoo</td>
<td>List all stakeholders and consider the broader context of what their interest is in the topic.</td>
</tr>
<tr>
<td></td>
<td>Take Photos</td>
<td>Plan ahead and produce a storyboard of shots.</td>
</tr>
<tr>
<td></td>
<td>Invite an expert</td>
<td>Identify experts from each stakeholder, go on-site with them to get their perspective.</td>
</tr>
<tr>
<td></td>
<td>Hot or not</td>
<td>Scan social media to see what people are saying.</td>
</tr>
<tr>
<td></td>
<td>Theme analysis</td>
<td>Analyze the results of the previous research and apply themed analysis tools to draw out themes.</td>
</tr>
<tr>
<td></td>
<td>Frame creation</td>
<td>Drawing out the themes create a new frame through which to view the problem</td>
</tr>
<tr>
<td>Design Exploration</td>
<td>Get real</td>
<td>Scope out how new frame could be put in to place.</td>
</tr>
<tr>
<td></td>
<td>Design exploration</td>
<td>With the stakeholders and content experts, explore specific designs to make show how the frame would be put in place.</td>
</tr>
<tr>
<td>Handover</td>
<td>Visualize the concept</td>
<td>Sketch up the designs that make the frame to illustrate it.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Flag ship model</td>
<td>Implement trials or pilots of individual elements of the frame to test them.</td>
</tr>
</tbody>
</table>

Table 1. DOC method cards – Kings Cross case study

The case study which illustrates the use of the DOC method cards is a project that started in the early days of DOC. Kings Cross is geographically small, densely populated, and is the most popular nightspot for Sydney-siders and visitors alike. Kings Cross is also the densest crime hotspot in Sydney with high levels of assault occurring on Friday and Saturday nights. The problem of violence had a deep history, and the City of Sydney had been working with various government and non-government stakeholders in an attempt to reduce crime in the area.

For reasons of brevity only a few of the method cards will be profiled. Hot Spots - The Crime Hotspot Map for Kings Cross shows a concentration of assaults along Darlinghurst road, and identifies the location of a recent murder. Temporal data allows DOC to identify the periods of the week where assaults occur more frequently. A rich understanding is through the combination of statistical analysis and experiencing the location first hand.
Tried and Tested – It became evident that a paradox was halting progress in Kings Cross. The law-and-order problem they were trying to solve was virtually unsolvable without reverting to harsh countermeasures like shutting down the neighborhood. Efforts to reduce the problem had tended to focus on stricter conditions for businesses, greater police presence, and was accompanied by a general outcry from the public. It was evident that the solution didn’t lie within trying to do better policing.

Who’s Who in the Zoo – Main stakeholders were the City of Sydney and Police who deal with the problems at a policy and operational level week after week. The broader context was a group of agencies and groups like transport providers, hospitals and other emergency services, businesses, residents and partygoers.

Theme analysis - The dominant themes drawn out of the exploration were that the experience that partygoers were looking for an exciting night out, with live music, dancing, and other entertainment. They weren’t out looking for trouble.

Frame Creation – DOC realized that if Kings Cross were treated as an event space the problems associated with large alcohol intake, and absence of infrastructure would be addressed. An event for 30,000 people does not come without effort after all.

Design Exploration - Initially developed by DOC students, and later adopted by the City of Sydney, the exploration generated concepts for guides/street wardens, portable urinals, free water, integrated transport, chill-out zones, and more.
Flag Ship Model – Trials have been implemented through the pilot of ‘Precinct Ambassadors’, pissoirs, and in a general approach to ‘treat Kings Cross like an event’ (OPEN Sydney Policy 2012).

The key aspect of this case study, and an aspect which has been adopted whole-heartedly by the City of Sydney, is to find new ways of looking at the difficult problems they are facing (Matthews, 2012). The initial DOC and City of Sydney Project occurred at the beginning of what transpired to be a process led by City of Sydney that would reshape the way they, and their partners deal with the late night economy. Matthews (2012) states that:

Before – We asked how do we fix alcohol related violence?
Now – We ask how can we transform our city at night?

(Mathews 2012)

A comprehensive research and policy design process has now been conducted by the City of Sydney, to explore in precise detail the workings of the late night economy. The OPEN Sydney policy (2012) aims to place nighttime-Sydney on par with other international cities of renown to night-owls and party-goers.

4.2 Research wall

Attendees of the DAB LAB exhibition launch, and the Design + Crime Conference 2012 were invited to record their favorite design/research methods on a research wall in the exhibition. The DAB LAB exhibition launch was a public event with about 30 attendees, while the Design + Crime Conference was an academic conference with more than 100 attendees.

The gallery was also open to the public between 5 December and 20 December 2012. In this time 28 attendees recorded their name, occupation, and their own favorite design/research method. The results are listed below with names omitted. The nominated favorite methods provide a rich and interesting collection. The author has categorized loosely to a loose framework of problem analysis, synthesis, and solution generation (Reitman, 1965, Simon, 1973). Problem analysis tools such as desktop research; Google, Wikipedia, online journals and surveys are listed. As well as in the context of fieldwork; taking pictures, participant observation, interviews, and immersion. Analysis methods such as PESTELO and situational crime prevention also add to a rich mix of analytical approaches. The notion of the reflective practitioner (Schon, 1983) is present; imagination, ‘my senses’, and synthesizing information. Solution generation is referenced through; prototyping and user profiling, scenario experiments and pressure-cookers, while the Concreter shows the importance of not taking things too seriously.

The data collected on the research wall gives a superficial glance in to the methods favored by a multi-disciplinary group, albeit a group attracted to the exhibition by the crime angle. While the author does not seek to represent the data as definitive, or anything other than a snapshot, it does perhaps provide an interesting insight in to the methods used in the crime prevention field.
Table 2. DAB LAB research wall

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Favorite method</th>
<th>Analysis/Synthesis/Generative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assorted</td>
<td>My senses</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Concreter</td>
<td>Ice Cream</td>
<td>Synthesis (taking time to reflect)</td>
</tr>
<tr>
<td>Editor</td>
<td>Interviews</td>
<td>Analysis</td>
</tr>
<tr>
<td>Criminologist</td>
<td>Qualitative methods and offender perspectives</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Designer</td>
<td>Pressure cooker</td>
<td>Generative</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Participant observation</td>
<td>Analysis</td>
</tr>
<tr>
<td>Intelligence</td>
<td>PESTELO</td>
<td>Analysis</td>
</tr>
<tr>
<td>Crime prevention</td>
<td>Situational crime prevention</td>
<td>Analysis</td>
</tr>
<tr>
<td>Director</td>
<td>Internet</td>
<td>Analysis</td>
</tr>
<tr>
<td>Student</td>
<td>Taking pictures</td>
<td>Analysis</td>
</tr>
<tr>
<td>Designer</td>
<td>User testing</td>
<td>Analysis</td>
</tr>
<tr>
<td>Professor</td>
<td>Experimental study</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Research fellow</td>
<td>Animation</td>
<td>Generative</td>
</tr>
<tr>
<td>Professor</td>
<td>Immersion, oral history, interviews, pictures</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Research officer</td>
<td>Googling hypotheses</td>
<td>Analysis</td>
</tr>
<tr>
<td>Designer</td>
<td>Info graphics</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Professor</td>
<td>Synthesizing information</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Contractor</td>
<td>Wikipedia</td>
<td>Analysis</td>
</tr>
<tr>
<td>Designer</td>
<td>Experimental scenario and user profiling</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Experimental scenarios</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Postdoctoral fellow</td>
<td>Interviews</td>
<td>Analysis</td>
</tr>
<tr>
<td>Criminologist</td>
<td>Interviews and juicy quotes</td>
<td>Analysis/Synthesis</td>
</tr>
<tr>
<td>Interactive product</td>
<td>Rough prototyping</td>
<td>Generative</td>
</tr>
<tr>
<td>designer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadie & Podcast editor</td>
<td>Imagination</td>
<td>Synthesis/Generative</td>
</tr>
<tr>
<td>CPTED</td>
<td>Web-based surveys</td>
<td>Analysis</td>
</tr>
<tr>
<td>Production manager</td>
<td>Word of mouth and personal experience</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Researcher</td>
<td>Pressure cooker</td>
<td>Generative</td>
</tr>
<tr>
<td>Criminologist</td>
<td>Online journals</td>
<td>Analysis</td>
</tr>
</tbody>
</table>

5 DISCUSSION AND CONCLUSION

This paper seeks to add to the current conversation that is occurring in design research about the practices and methods that are used in design. The paper has presented a brief overview of the DOC Method Cards, illustrated them in a case study, and presented data collected from the public at a design methods exhibition.

The challenge ahead for the author is to develop a critical framework through which to view future research, and to design a more comprehensive data collection methodology. DOC has created a practice and is forging new relationships in taking on difficult challenges. The co-creation of new ways of taking on crime problems is part of the challenge ahead. This will provide new insights not just in to the outcomes of design processes, but the methods developed and used to take on these complex problems.

ACKNOWLEDGMENTS

The author acknowledges Professor Kees Dorst who’s work has been drawn on heavily in this paper. Also Lucy Kaldor who assisted with editing this paper, Associate Professor Douglas Tomkin and Jessica Wong, the author’s co-exhibitors at the DAB LAB exhibition. The author also thanks the rest of the DOC team who participated in the DOC method cards initiative. Thank you also to the City of Sydney for their partnership on the Kings Cross project, and to the NSW Department of Attorney General and Justice and other partners for the support and funding that DOC receives.
REFERENCES
City of Sydney (2012). OPEN Sydney
IDEO Method Cards: 51 Ways to Inspire Design” (2003) by IDEO; William Stout
ICED13
THE 19TH INTERNATIONAL CONFERENCE
ON ENGINEERING DESIGN

19th-22nd August 2013
Sungkyunkwan University (SKKU)
Seoul, Korea

Organised By
Creative Design Institute, Sungkyunkwan University
and the Design Society

Proceedings Volume DS75-09
DESIGN FOR HARMONIES
VOLUME 9: DESIGN METHODS AND TOOLS

Edited By
Udo Lindemann
Srinivasan V
Yong Se Kim
Sang Won Lee
Panos Papalambros
Wei Chen

Published by the Design Society
Preface by the Programme Chair

We welcome you to the proceedings of arguably the biggest conference on engineering design: 19th International Conference on Engineering Design (ICED13) held in Sungkyunkwan University, Seoul, Korea!

This proceedings is a compilation of the 342 peer-reviewed and accepted papers submitted to ICED13. The proceedings is published in different forms: a book of abstracts, a soft-copy of proceedings on a USB-based memory device and a hard-copy of proceedings, which is available via a print-on-demand supplier. All these different forms of proceedings are numbered against both Design Society and ISSN referencing to allow wider access, better referencing and improved citation in the near and distant future. All the accepted papers are divided among the following 9 themes: Design Processes; Design Theory and Research Methodology; Design Organisation and Management; Products, Services and Systems Design; Design for X, Design to X; Design Information and Knowledge; Human Behaviour in Design; Design Education; and Design Methods and Tools. The hard-copy of the proceedings is in turn divided into 9 volumes where each volume comprises papers from a theme. All the accepted papers are presented in podium or discussion sessions in the conference. It is important to make it explicit that all the accepted papers have successfully cleared the criteria for acceptance in ICED13. The division into podium and discussion sessions is solely based on grouping similar papers so as to allow relevant, connected, lively and stimulating presentations and discussions. For this year’s conference we have introduced a number of novel schemes to reduce the bureaucratic load for authors and organisers and, it is hoped, to increase the quality of the conference. To name a few: (i) automatic production of the cover page of papers based on title of paper, details of authors, abstract and list of keywords in the Conference Management System, (ii) electronic acceptance of terms and conditions in copyrights, (iii) feedback of acceptance and quality of reviews to reviewers from authors, etc.

This proceedings is a consequence of dedicated efforts of many people, namely, the authors, the reviewers, the chairs and associate chairs of the various themes, and the members of the Programme Committee. The Programme Chair on behalf of Programme Committee would like to acknowledge the contributions of: (a) Authors for submitting papers, (b) Reviewers for providing timely comments and feedbacks to improve the quality of papers, (c) Chairs and Associate Chairs of themes for assisting in selection of reviewers, providing directions for improvements to papers with the status of major revisions, and helping in the final decisions of papers.

We hope that you enjoy the programme of ICED13 as much as we have enjoyed creating and organising it.

Udo Lindemann
Programme Chair

Srinivasan V
Assistant Programme Chair
Preface by ICED13 Conference Chair

Welcome to the 19th International Conference on Engineering Design 2013 (ICED13), and its conference proceedings. The theme of ICED13, Design for Harmonies, is well reflected in the programme and papers of the conference. As design practice and research make progress, integration and incorporation of diverse viewpoints take more essential roles. ICED13 will make its mark in the history of ICED and the Design Society as an important cornerstone for harmonies in design.

Increasing numbers of presentations in topics like human behavior in design and product, service and systems design indicate that issues of harmonies of products and services and those of human-centered views and technology support are at the core of design research. With continued excellence in the topics of design methods and tools, design information and knowledge and design processes, strong research foundations of design have been confirmed in the programme. Presentations in design organisation and management, design for X, design to X, and design theory and research methodology also demonstrate the leadership of the Design Society community in these important issues. Design education is yet another important area where new needs and requirements appear as the roles of design become broader. As Seoul is the very first Asian city hosting ICED, more papers from Asian countries appear in ICED13. This reflects harmonies of East and West being strengthened in design research. ICED13 will make a good transition for drawing more such harmonies.

In addition to a technical programme of keynote, podium and discussion sessions, ICED13 has organized a few special events such as the Young Members Event. Ten selected presentations by young designers and design researchers will address the Future of Design. This event is open to the (young) public so that diverse harmonies can be achieved by the attendees. With opening and closing ceremonies and receptions as well as a conference banquet, diverse opportunities for cultural harmonies are prepared. For example, Korean traditional culture experiences are available for conference attendees and accompanying guests together with old Korean traditional buildings in order to draw harmonies from the Old and the New. The optional Gangnam-Style tour will introduce modern Korean culture as featured in the world hit music video.

We hope you enjoy ICED 13 and have the fun and excitement of Design for Harmonies.

Yong Se Kim
Conference Chair

Sang Won Lee
Assistant Conference Chair
Preface by the Design Society President

The 2013 International Conference on Engineering Design (ICED) will be the nineteenth held since the conference series was inaugurated in 1961. It will also be the sixth held under the auspices of the Design Society, an international society founded in 2001 to develop an understanding of all aspects of design. The previous five conferences have been in Stockholm, Melbourne, Paris, Stanford (California) and Copenhagen, and by holding the conference in Asia for the first time it is surely established as a truly world-wide event. The 2013 conference continues the tradition of holding the conference in an exciting location with a vibrant design research community and for which design is important to local industry and commerce. Seoul is exceptional in this regard, the dynamic heart of the world's second largest metropolis whose success is built on great design and engineering.

ICED13 also continues the format, established in 2009 and continued in 2011, of a conference programme made up of plenary sessions, podium presentations, discussion sessions with focused debate and workshops led by the Design Society's Special Interest Groups. We hope that this varied programme, combined with extensive opportunities for networking, will provide an exciting opportunity for researchers and practitioners to learn about the latest developments in design research and practice.

Organising an international conference takes an enormous amount of work, and I would like to express the thanks of the Society to the great team that has worked over many months to make the Conference a success. Especially I would like to thank Yong Se Kim, Sang Won Lee and colleagues at Sungkyunkwan University for their great work in the Organising Committee, and Udo Lindemann, Srinivasan V and the Programme Committee for bringing together such an excellent programme. Of course, their work would be in vain without the fantastic contributions of the authors, reviewers, theme chairs and session chairs, and the thanks of the Society are due to all of them.

Chris McMahon
Design Society President
ICED13 Programme Committee

Udo Lindemann – Programme Chair, Technical University of Munich, Germany
Srinivasan V – Assistant Programme Chair, Technical University of Munich, Germany
Panos Papalambros – Design Society Representative, University of Michigan, USA
Chris McMahon – Design Society Representative, University of Bristol, UK
Yong Se Kim – Organising Committee Representative, Sungkyunkwan University, Korea
Sang Won Lee – Organising Committee Representative, Sungkyunkwan University, Korea

ICED13 Organising Committee

Yong Se Kim – Conference Chair, Sungkyunkwan University, Korea
Sang Won Lee – Assistant Conference Chair, Sungkyunkwan University, Korea
Tom Howard – Technical University of Denmark, Denmark
Chris McMahon – University of Bristol, UK
Yoo Suk Hong – Seoul National University, Korea
Haeseong Jee – Hongik University, Korea
Jong Won Kim – Seoul National University, Korea
Kee-Ok Kim – Sungkyunkwan University, Korea
Myoun Kim – Sungkyunkwan University, Korea
Ji Hyun Lee – KAIST, Korea
Seong Il Lee – Sungkyunkwan University, Korea
ICED13 Theme Chairs

Design Processes
John Clarkson, University of Cambridge, UK
Gaetano Cascini, Politecnico di Milano, Italy

Design Theory and Research Methodology
Amaresh Chakrabarti, Indian Institute of Science, India
Yoram Reich, Tel Aviv University, Israel

Design Organisation and Management
Marco Cantamessa, Politecnico di Torino, Italy
Bernard Yannou, Ecole Centrale Paris, France

Products, Services and Systems Design
Olivier de Weck, Massachusetts Institute of Technology, USA
Yoo Suk Hong, Seoul National University, Korea

Design for X, Design to X
Tim McAloone, Technical University of Denmark, Denmark
Sandro Wartzack, Friedrich-Alexander-University Erlangen-Nuremberg, Germany

Design Information and Knowledge
Andy Dong, The University of Sydney, Australia
Ying Liu, National University of Singapore, Singapore

Human Behaviour in Design
Petra Badke-Schaub, Delft University of Technology, The Netherlands
Keiichi Sato, Illinois Institute of Technology, USA

Design Education
Bill Ion, University of Strathclyde, UK
Johan Malmqvist, Chalmers University of Technology, Sweden

Design Methods and Tools
Panos Papalambros, University of Michigan, USA
Wei Chen, Northwestern University, USA
ICED13 Scientific Committee

Achiche, Sofiane - Polytechnique Montreal, Canada
Adams, Robin - Purdue University, USA
Agogino, Alice Mernér - University of California at Berkeley, USA
Agogue, Marine - ENSMP, France
Ahmed-Kristensen, Saeema - Technical University of Denmark, Denmark
Ahn, Jaemyung - KAIST, Korea
Albers, Albert - Karlsruhe Institute of Technology, Germany
Allen, Janet Katherine - University of Oklahoma, USA
Allison, James T. - University of Illinois at Urbana-Champaign, USA
Almeiet, Lars - Chalmers University of Technology, Sweden
Anderle, Reiner - TU Darmstadt, Germany
Andersson, Kjell - KTH Royal Institute of Technology, Sweden
Andrade, Ronaldo - Universidade Federal do Rio de Janeiro, Brazil
Annalamai, Vasanth, Gokula Vijaykumar - University of Strathclyde, UK
Aoussat, Améziane - ENSAM, France
Arai, Eiji - Osaka University, Japan
Aurisicchio, Marco - Imperial College London, UK
Badke-Schaub, Petra - Delft University of Technology, Netherlands
Balan, Gurumoorthy - Indian Institute of Science, India
Ben-Ahmed, Walid - RENAULT, France
Berton, Marco - Luleå University of Technology, Sweden
Bey, Niki - Technical University of Denmark, Denmark
Bhamra, Tracy - Loughborough University, UK
Bigand, Michel - Ecole Centrale de Lille, France
Binz, Hansgeorg - University of Stuttgart, Germany
Birkhofer, Herbert - TU Darmstadt, Germany
Bjärnemo, Robert - Lund University, Sweden
Björk, Evastina, Lilian - NHV Nordic School of Public Health, Sweden
Blanco, Eric - Grenoble Institute of Technology, France
Blessing, Lucienne - University of Luxembourg, Luxembourg
Boelskifth, Per - Technical University of Denmark, Denmark
Bohemia, Erik - Loughborough University, UK
Bojcetic, Nenad - University of Zagreb, Croatia
Boks, Casper - Norwegian University of Science and Technology, Norway
Bolognini, Francesca - NuKem Technologies, Italy
Booker, Julian David - University of Bristol, UK
Bordegioni, Monica - Politecnico di Milano, Italy
Borg, Jonathan C. - University of Malta, Malta
Boujot, Jean-François - Grenoble Institute of Technology, France
Bouwhuis, Dominic G - TU Eindhoven, Netherlands
Bracewell, Robert Henry - University of Cambridge, UK
Brown, David C. - Worcester Polytechnic Institute, USA
Bruun, Hans Peter Lomholt - Technical University of Denmark, Denmark
Burchardt, Carsten - Siemens Industry Software GmbH & Co. KG, Germany
Burvill, Colin Reginald - University of Melbourne, Australia
Bylund, Nicklas - Sandvik Coromant, Sweden
Cagan, Jonathan - Carnegie Mellon University, USA
Caillaud, Emmanuel - ENSAM, France
Campbell, Matthew Ira - University of Texas at Austin, USA
Cantamessa, Marco - Politecnico di Torino, Italy
Casakin, Hernan - Ariel University, Israel
Cascini, Gaetano - Politecnico di Milano, Italy
Cash, Philip - Technical University of Denmark, Denmark
Chakrabarti, Amaresh - Indian Institute of Science, India
Chan, Kuei-Yuan - National Cheng Kung University, Taiwan
ICED13 Scientific Committee cont.

Chen, Wei - Northwestern University, USA
Childs, Peter R.N. - Imperial College London, UK
Choi, Young Mi - Georgia Institute of Technology, USA
Chu, Chih-Hsing - National Tsing Hua University, Taiwan
Chun-Hsien, Chen - Nanyang Technological University, Singapore
Clarkson, Peter John - University of Cambridge, UK
Claudio, Dell’Era - Politecnico di Milano, Italy
Coatanéa, Eric - Aalto University, Finland
Cornican, Kathryn - National University of Ireland, Ireland
Coutellier, Daniel - University of Valenciennes, France
Crilly, Nathan - University of Cambridge, UK
Cugini, Umberto - Politecnico di Milano, Italy
Culley, Steve - University of Bath, UK
Daly, Shanna - University of Michigan, USA
Deans, Joe - University of Auckland, New Zealand
Dekoninck, Elies Ann - University of Bath, UK
Dong, Andy - University of Sydney, Australia
Donndelinger, Joseph A. - General Motors LLC, USA
Dorst, Kees - University of Technology Sydney, Australia
Duffy, Alex - University of Strathclyde, UK
Eckert, Claudia - Open University, UK
Eigner, Martin - TU Kaiserslautern, Germany
Ekman, Kalevi - Aalto University, Finland
Ellman, Asko Uolevi - Tampere University of Technology, Finland
Elspass, Wilfried J. - Zurich University of Applied Sciences, Switzerland
Eppinger, Steven - Massachusetts Institute of Technology, USA
Erikson, Åsa - Luleå University of Technology, Sweden
Eris, Özgür - Delft University of Technology, Netherlands
Evans, Steve - University of Cambridge, UK
Fadel, Georges M. - Clemson University, USA
Fan, Ip-Shing - Cranfield University, UK
Fantoni, Gualtiero - University of Pisa, Italy
Fargnoli, Mario - Sapienza University of Rome, Italy
Feldhusen, Jörg - RWTH Aachen, Germany
Filippi, Stefano - University of Udine, Italy
Finger, Susan - Carnegie Mellon University, USA
Fischer, Xavier - ESTIA, France
Frankenberger, Eckart - Airbus, Germany
Frise, Peter R. - University of Windsor, Canada
Fujita, Kikuo - Osaka University, Japan
Fukuda, Shuichi - Stanford University, USA
Gardoni, Mickael - ÉTS / INSA de Strasbourg, Canada
Georgiev, Georgi - Kobe University, Japan
Gerhard, Detlef - Vienna University of Technology, Austria
Gericke, Killian - University of Luxembourg, Luxembourg
Gero, John - Krasnow Institute for Advanced Study, USA
Gerson, Philips M. - Hanze University of Applied Sciences, Netherlands
Giess, Matt - Glue Reply, UK
Goel, Ashok - Georgia Institute of Technology, USA
Goh, Yee Mey - Loughborough University, UK
Göhlich, Dietmar - TU Berlin, Germany
Goker, Mehmet H. - Salesforce.com, USA
Goldschmidt, Gabriela - Technion - Israel Institute of Technology, Israel
Gomes, Samuel - University of Technology Belfort-Montbéliard, France
Graessler, Iris - Robert Bosch GmbH, Germany
Graziosi, Serena - Politecnico di Milano, Italy
Green, Graham - University of Glasgow, UK
Gries, Bruno - Capgemini Consulting, Germany
Grimmheden, Martin - KTH Royal Institute of Technology, Sweden
Grote, Karl-Heinrich - Otto-von-Guericke University Magdeburg, Germany
Gzara, Lilja - Grenoble Institute of Technology, France
ICED13 Scientific Committee cont.

Lloveras, Joaquim - TU Catalonia, Spain
Mabogunje, Ade - Stanford University, USA
MacDonald, Erin - Iowa State University, USA
MacGregor, Steven Patrick - IESE Business School, Spain
Maier, Anja Martina - Technical University of Denmark, Denmark
Malak, Richard - Texas A&M, USA
Malmqvist, Johan Lars - Chalmers University of Technology, Sweden
Manfredi, Enrico - University of Pisa, Italy
Marini, Vinicius Kaster - Technical University of Denmark, Denmark
Marjanovic, Dorian - University of Zagreb, Croatia
Marle, Franck - Ecole Centrale Paris, France
Matta, Nada - Universite of Technology of Troyes, France
Matthews, Jason Anthony - University of Glamorgan, UK
Matthiesen, Sven - Karlsruhe Institute of Technology, Germany
Maurer, Maik - Technical University of Munich, Germany
McAlone, Tim C. - Technical University of Denmark, Denmark
McDonnell, Janet Theresa - Central Saint Martins, UK
McKay, Alison - University of Leeds, UK
McMahon, Chris - University of Bristol, UK
Meboldt, Mirko - ETH Zurich, Switzerland
Mekhilef, Mounib - University of Orleans, France
Merlo, Christophe - ESTIA, France
Millet, Dominique - SUPMECA Toulon, France
Mocko, Gregory Michael - Clemson University, USA
Moehringer, Stefan - Simon Moehringer Anlagenbau GmbH, Germany
Moes, Niels - Delft University of Technology, Netherlands
Montagna, Francesca - Politecnico di Torino, Italy
Mortensen, Niels Henrik - Technical University of Denmark, Denmark
Mörtl, Markus - Technical University of Munich, Germany
Moshaiov, Amiram - Tel Aviv University, Israel
Mougenot, Céline - Tokyo Institute of Technology, Japan
Moultrie, James - University of Cambridge, UK
Mourelos, Zissimos P. - Oakland University, USA
Mulet, Elena - University of Jaume, Spain
Mullineux, Glen - University of Bath, UK
Murakami, Tamotsu - University of Tokyo, Japan
Nadeau, Jean-Pierre - ENSAM, France
Nagai, Yukari - JAIST, Japan
Nagel, Jacquelyn - James Madison University, USA
Newnes, Linda - University of Bath, UK
Nomaguchi, Yutaka - Osaka University, Japan
Norell Bergendahl, Margareta E B - KTH Royal Institute of Technology, Sweden
Oehmen, Josef - Massachusetts Institute of Technology, USA
Öhrwall Rönnbäck, Anna B - Linköping University, Sweden
Olesen, Jesper - Bang & Olufsen, Denmark
Ölundh Sandström, Gunilla - KTH Royal Institute of Technology, Sweden
Ölvander, Johan - Linköping University, Sweden
Otto, Kevin - Singapore University of Design and Technology, Singapore
Ottosson, Stig - Gjøvik University College, Norway
Ouertani, Mohamed Zied - ABB, Germany
Ovtcharova, Jivka - Karlsruhe Institute of Technology, Germany
Paetzold, Kristin - University Bundeswehr Munich, Germany
Palm, William John - Roger Williams University, USA
Papalambros, Panos Y. - University of Michigan, USA
Parkinson, Matt - Pennsylvania State University, USA
Pavkovic, Neven - University of Zagreb, Croatia
Peters, Diane - LMS International, USA
Tegel, Oliver - Porsche AG, Germany
Terpeny, Janis P. - Iowa State University, USA
Thallemer, Axel - Universität für Künstlerische und Industrielle Gestaltung, Austria
Thoben, Klaus-Dieter - University of Bremen, Germany
Tollenaere, Michel - Grenoble Institute of Technology, France
Tomiyama, Tetsuo - Cranfield University, UK
Törlind, Peter - Luleå University of Technology, Sweden
Torry-Smith, Jonas Markeberg - Technical University of Denmark, Denmark
Trussier, Nadege - University of Technology of Troyes, France
Udiljak, Toma - University of Zagreb, Croatia
Vajna, Sandor J. - Otto-von-Guericke University Magdeburg, Germany
Valderrama Pineda, Andres Felipe - Aalborg University, Denmark
Vance, Judy M. - Iowa State University, USA
Vaneker, Tom Henricus Jozef - University of Twente, Netherlands
Vargas Hernandez, Noe - University of Texas at El Paso, USA
V, Srinivasan - Technical University of Munich, Germany
Vermaas, Pieter - Delft University of Technology, Netherlands
Vietor, Thomas - Braunschweig University of Technology, Germany
Vukic, Fedja - University of Zagreb, Croatia
Wang, Charlie C.L. - Chinese University of Hong Kong, Hong Kong
Wang, Yue - Hong Kong University of Science and Technology, Hong Kong
Wartzack, Sandra - Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Weber, Christian - TU Ilmenau, Germany
Weil, Benoit - Mines ParisTech, France
Weiss, Menachem P. - Technion - Israel Institute of Technology, Israel
Whitfield, Ian - University of Strathclyde, UK
Whitney, Daniel E - Massachusetts Institute of Technology, USA
Wood, Kristin - Singapore University of Design and Technology, Singapore
Wörösch, Michael - Technical University of Denmark, Denmark
Wynn, David - Cambridge University, UK
Yan, Liang - National University of Singapore, Singapore
Yan, Xi-Tian - University of Strathclyde, UK
Yanagisawa, Hideyoshi - University of Tokyo, Japan
Yang, Maria - Massachusetts Institute of Technology, USA
Yannou, Bernard - Ecole Centrale Paris, France
Yilmaz, Seda - Iowa State University, USA
Yuen, Matthew - Hong Kong University of Science and Technology, Hong Kong
Zavbi, Roman - University of Ljubljana, Slovenia
Zeller, Wim - TU Eindhoven, Netherlands
Zeng, Yong - Concordia University, Canada
Table of Contents

Preface by ICED13 Programme Chair
Preface by ICED13 Conference Chair
Preface by the Design Society President
ICED13 Programme Committee
ICED13 Organising Committee
ICED13 Theme Chairs
ICED13 Scientific Committee

VOLUME 9: DESIGN METHODS AND TOOLS

A modular design tool for visualizing complex multiscale systems
Paul Egan, Jonathan Cagan, Christian Schunn, Philip LeDuc
9-1

Smart tiles systems - Spatial structures based on tile systems without external joints
Polina Karake Tener, Yasha Jacob Grobman
9-13

Topographic optimization with variable boundary conditions: Enabling optimal design of interacting components
Martin John Leary, Darpan Shidid, Maciej Mazur, Milan Brandt, Aleksandar Subic
9-23

Concept of product development simulator for an excavator using a haptic device
Omer Eldirdiry, Asko Uolevi Ellman
9-31

Lack of integration between engineering industrial design processes: an analysis based on the historical evolution of professions and tools
Pierre-Antoine Bernard Arrighi, Akin Kazakci
9-39

Application of dynamic value-attribute modeling in a product family
Chathura Withanagan, Seung Ki Moon, Taezoon Park, Truong Ton Hien Duc
9-49

The DNA of design and design signature: A perspective in motorcycle design
Sushil Chandra
9-59

Theory driven design and real prototyping of biomass pyrolytic stove
Mbeo Calvino Ogeya, eric Coatanéa Coatanéa, Galina Medyna Medyna
9-69

Designing on the road; exploring the who, where and why of individual mobility devices
Mieke van der Bijl-Brouwer, Pieta van der Molen, Mascha van der Voort
9-79

Knee dynamic analysis in the development of above knee prosthesis for alpine skiing
Ivan Demšar, Matej Supej, Jože Duhošnik
9-89

CDS platform: A platform for multi-physics computational design synthesis
Amir Hooshmand, Marc Schlaich, Liliya Befaus, Matthew Campbell
9-99

Designing crime prevention - A review of methods
Rodger Neil Watson
9-109

ICED13
A proposal of the usability checklist corresponding to task flows
Toshihisa Doi, Toshiki Yamaoka

Elaboration and assessment of a set of criteria for the evaluation of product ideas
Mathias Messerle, Hansgeorg Binz, Daniel Roth

An integrated screening framework to analyze flexibility in engineering systems design
Mehdi Ranjbar Bourani, Michel-Alexandre Cardin, Wen Sin Chong, Ravindu Atapattu, Kok Seng Foo

Clarification of sustainability consequences of manufacturing processes in conceptual design
Sophie Hallstedt, Ola Isaksson

A visualization methodology for evaluating parts made of short fiber reinforced thermoplastics regarding their lightweight potential
Georg Gruber, Johannes Kößler, Sandro Wart Zack

Analyzing social influence through network simulations in choice modeling
Peilin Tian, Wei Chen

A decision support system for market segment driven product design
Ningrong Lei, Seung Ki Moon

An advanced procedure model for property-based product development
Thomas Luft, Hartmut Krehmer, Sandro Wart Zack

An approach to generate flexibility in engineering design of sustainable waste-to-energy systems
Junfei Hu, Michel-Alexandre Cardin, Kim-Leng Poh, Eng Seng Chia

Performance measurement in global product development
Thomas Paul Taylor, Saeema Ahmed Kristensen

Robust design proposal by the use of structural topology optimization considering uncertainties of input parameters and boundary conditions
Thomas Stangl, Michael Walter, Sandro Wart Zack, Thomas Schneyer

Comparison of low- and high-fidelity approach in model based design in the case of a portable motion platform
Asko Uolevi Ellman, Petter Krus, Ville Jouppila

SysML-based model integration for online collaborative design of mechatronic systems
Hongri Fan, Yusheng Liu, Ying Liu

Uncertainty modeling to enable software development platforms that can automate complex mechanical systems design
Kevin Otto, Christoffer Levandowski, Anders Forslund, Hans Johannesson, Rikard Söderberg

Evaluating the failures criticality in collaborative design with suppliers
Hélène Personnle, Marie-Anne Le Dain, Richard Calvi
Market performance prediction based conceptual design of mid-sized passenger aircrafts
Soon Young Han, Hae-Jin Choi

Approaches for mapping between preferential probabilities and relative design preference ratings
Hailfeng Ji, Tomonori Honda, Maria C. Yang

Continuous design FMEA – Proposal for a new perspective on FMEA
Luiz Fernando Segalin de Andrade

Are companies ready for the revolution in design – Modelling maturity for virtual prototyping
Susanna Aromaa, Simo-Pekka Leino, Juhani Viitanen

Research on design idea generation support through design practice
Tamotsu Murakami, Shota Higashihara, Takamasa Fukuda, Kazutaka Ueda

Co-evolution of design tactics and CSCWD systems: Methodological circulation and the TATIN-IPC platform
Andrea Luigi Guerra, Thierry Gidel, Atman Kendra, Enrico Vezzetti, Alistair Jones

Linking of function carriers with physical contradictions
Milosav Ognjanovic, Jasmina Babic, Sanja Vasin

Supporting communication in the supply chain with design rationale maps
Marco Aurisicchio, Rob Bracewell, Gareth Armstrong

Implementing collaborative crowdsourcing in different design problems
Donata Gabelloni, Gabriele Montelisciani, Gualtero Fantoni

Applying models of help desk conversations to the design of a customer sales support interface
Stan Ruecker, Gerry Derksen, Ted Pollari, Piotr Michura, Amanda Geppert, Lauren Braun, Kwame Green, Samia Pedraça, Scott Audette

Operationalization of the quadrant-based validation in case of a designerly software development methodology
Els Du Bois, Imre Horvath

Proofs of utility, innovation, profitability and concept for innovation selection
Bernard Yannou, Benjamin Zimmer, Romain Farel, Marija Jankovic, Julie Stal-Le Cardinal

Agent-based consistency check in early mechatronic design phase
Michael Rauscher, Peter Goehner

Predicting the behavior of solution alternatives within product improvement processes
Michael Abramovici, Andreas Lindner, Susanne Dienst, Madjid Fathi

Promoting void-based design concept generation through computer-supported interactive structurization of verbal and drawing expression
Yutaka Nomaguchi, Tatsuya Ogawa, Kikuo Fujita
Combining surveying patent information, reappearing problem and discovering breakthrough for design-around
Hsiang-Tang Chang, Chen-Yen Chang, Yuan-Po Yang

A classification of the industrial relevance of robust design methods
Tobias Eifler, Martin Ebro, Thomas J. Howard