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We have constructed the Green’s tensor for two-dimensional gyrotropic photonic clusters and have calculated
their optical local density of states (LDOS). For clusters that support the chiral Hall edge states we calculate the
LDOS as a function of wavelength, position, size, and shape of the cluster. It is shown that the LDOS of Hall
edge states is a strong function of the cluster shape and position. The LDOS can be orders of magnitude higher at
the edges of the cluster compared to the free space value while it vanishes towards the cluster center. It is shown
that the LDOS in such photonic clusters can withstand a very strong disorder due to their topological protection.
The spatial profiles of chiral Hall edge modes, their quality factors, and their excitations have been calculated.
Both gyroelectric and gyromagnetic (ferrite) clusters have been treated.
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I. INTRODUCTION

Analogies between solid-state physics and optics have
turned out to be very productive. One of the examples of
this is the field of photonic crystals.1 Such materials are some-
times called semiconductors for photons owing to the strong
resemblance between optical and electronic band structures.
The properties of such artificial periodic nanomaterials can
be exploited to miniaturize optical components leading to
compact energy-efficient optical devices.

One of the well-known fundamental effects in solid-state
physics is the integer quantum Hall effect (QHE).2–5 It has
been discovered that the Hall conductance of two-dimensional
metallic samples at low temperatures in a magnetic field
is quantized in multiples of the ratio e2/h. This led to
the establishment of an electrical resistance standard and
unprecedentedly accurate measurement of the fine-structure
constant α = e2/hc. One of the fundamental features of the
QHE is the existence of chiral edge states. This property has
been recognized early5 and has been used to characterize the
Hall conductance in Landauer’s formalism. At first sight it
is hard to assume that chiral Hall edge states can exist for
photons, where there are no Landau levels in the presence of a
magnetic field, and photons are bosons in contrast to fermionic
electrons. However, these differences have been proven to
be not essential.6 What is crucial instead is the breaking of
time-reversal symmetry which leads to the realization of the
QHE in electronic systems without the necessity of a static
magnetic field. This finding paves the way for the possibility
to have an analog of the chiral Hall edge states for photons.

Recently the existence of the photonic chiral states have
been pointed out in beautiful papers by Haldane and Raghu7,8

where they proposed to use photonic crystals made of optically
active materials possessing Dirac points in their dispersion
diagrams at the absence of the magnetic field. Subsequently it
has been shown theoretically that one-way edge states can exist
in photonic crystals with gyrotropic components, even without
Dirac points9 and experimentally observed by Wang et al.10

In these geometries7–10 the one-way edge states exist at the
interface of two photonic crystals where the Chern number—

the topological invariant of a band11—changes across the
interface. The second photonic crystal here acts like a mirror
and thus provides the confinement of the one-way edge state
given that the edge states lie inside the light cone. It turns out
that the one-way edge state can exist also at the interface of
a gyrotropic photonic crystal and free space provided that the
one-way edge states lie below the light cone.12

Similar one-way electromagnetic modes exist as a one-way
surface plasmon when a metal is subject to a strong magnetic
field,13 at the edges of a photonic crystal ribbon with infinite
extent in transverse directions,14 or even in coupled plasmonic
particle chains,15–17 and at the interface of two gyrotropic me-
dia with opposite magnetization.18 Such strong interest in the
properties of photonic chiral Hall edge states is based on their
intrinsic properties, immunity to backscattering and disorder.
This makes them an ideal candidate for the development of
robust nanoscale waveguides and interconnects. Therefore,
it is important to understand their fundamental properties.
A microscopic theory of chiral Hall edge states has been
developed in the tight-binding approximation,19 where the
connection between the one-way edge modes and the bulk
modes has been established.

So far the research has been concerned mainly with the
establishment of the existence of the chiral Hall edge states
in different photonic systems with an infinite or semi-infinite
extent, with the exception of Ref. 12. However, all realistic
photonic structures are finite and therefore it is necessary to
investigate the properties of the chiral Hall edge modes in
finite photonic clusters. Knowledge of the spatial profiles and
quality factors of these chiral edge modes, their dependencies
on the shape of the cluster, as well as their excitations are
very important in potential applications. It is important also
to investigate the radiation properties of sources embedded in
such structures. These properties are determined by their local
density of states, which is given by the imaginary part of the
trace of the electromagnetic Green’s tensor.20,21

The purpose of this paper is twofold. The first is to construct
the Green’s tensor in finite photonic gyrotropic clusters which
support chiral Hall edge states, and to characterize their local
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density of states (LDOS). The second is to calculate the spatial
profiles of chiral Hall edge states, their quality factors, and their
excitations. We also present the effects of disorder on LDOS of
one-way Hall edge states. We consider both gyroelectric and
gyromagnetic (commonly known as ferrites) photonic clusters
composed of circular cylinders of infinite extent.

In Sec. II we outline the construction of the Green’s tensor of
gyrotropic photonic clusters based on the multipole approach.
In Sec. III we present the numerical results of the LDOS
calculations of gyroelectric and ferrite photonic clusters. Then,
we present the results of the spatial profile calculations of chiral
Hall edge modes, their quality factors, and their excitations.
Finally, we consider the effects of disorder on the LDOS.

II. ANALYTICAL TREATMENT

In this section we outline the application of the multipole
method to construct the Green’s tensor for two-dimensional
ferrite and gyroelectric photonic clusters composed of cylin-
ders with circular cross sections, and to calculate their LDOS.
The method of calculation of chiral Hall edge mode profiles
and their quality factors is also given. The details of the
derivation will be presented elsewhere. To construct the
Green’s tensor we apply the multipole technique22 proven to be
highly efficient and accurate.23,24 The LDOS can be calculated
from the imaginary part of the Green’s tensor,20,21

ρ(r; ω) = −4ImTr
[
Ge

αβ(r,r; ω)
]
, (1)

where Ge
αβ(r,cs; ω) is the 3 × 3 electric field Green’s tensor

for an observation point at r and a source point at cs . The
columns of the Green’s tensor [Ge

xβ,Ge
yβ,Ge

zβ ] are generated
by a source parallel to axes β = x,y,z. In Eq. (1) the LDOS is
normalized to its free space value.

The geometry of the problem consists of Nc nonoverlapping
monotype gyrotropic cylinders aligned along the z axis
with radii al and located at the positions cl and with the
dispersive tensorial material parameters ε̂l(ω) and μ̂l(ω). The
cylinders are located in a gyrotropic background medium with
material parameters ε̂b(ω) and μ̂b(ω). The positions of the
cylinders, their radii, and their material characteristics can be
arbitrary. Although the material characteristics of cylinders
and background media can be complex, in the numerical
examples in Sec. III they are assumed to be Hermitian tensors.
The time dependence we choose in the form e−iωt , and we scale
the magnetic field by the free space impedance Z0, Z0H → H.

The magnetic permeability tensor of a ferrite material is
given by

μ̂ =

⎛
⎜⎝

μ⊥ iμxy 0

−iμxy μ⊥ 0

0 0 μ||

⎞
⎟⎠ (2)

and the dielectric constant of a ferrite is a scalar ε. The
dielectric permittivity tensor of a gyroelectric material has
the form

ε̂ =

⎛
⎜⎝

ε⊥ iεxy 0

−iεxy ε⊥ 0

0 0 ε||

⎞
⎟⎠ (3)

and the magnetic permittivity is a scalar μ. In (2) and (3) we
have assumed the Voigt geometry where the external static
magnetic field H0 is applied in the z-axis direction.

For this geometry, the polarizations are decoupled and
the field is determined by a single component Ez for TM
polarization and ferrite cylinders, while it is specified by
the Hz component for the TE polarization and gyroelectric
cylinders. The TE polarization for ferrite cylinders and the
TM polarization for gyroelectric cylinders are not interesting
and their solutions simply reduce to the known scalar case.22

Therefore, for ferrite clusters we consider only the TM
polarization, while for the gyroelectric cylinders we consider
the TE polarization only.

Accordingly, for this two-dimensional geometry the
Green’s tensor for TM polarization reduces to a form involving
only a single scalar Ge = Ezδuz, and the LDOS can be
calculated from

ρ = −4Im[Ez(r,r; ω)], (4)

while for TE polarization the Green’s tensor reduces to a 2 × 2
tensor

Ge =

⎛
⎜⎝

Gxx Gxy 0

Gyx Gyy 0

0 0 0

⎞
⎟⎠ (5)

and the LDOS we calculate from (1) where the Green’s tensor
is given by (5).

For the ferrite cluster, the electric-field component Ez is
determined from the equation

∇2Ez(r; cs) + k2n2(r)Ez(r; cs) = −δ(r − cs), (6)

where n2(r) = ε(μ2
⊥ − μ2

xy)/μ⊥ takes the role of the refractive
index. For the gyroelectric cluster the magnetic field Hz

component of the Green’s tensor is given by the solution of
the equation

[∇2 + k2n2(r)]Hz(r) = îz · {∇ × [ε̂−1u δ(r − cs)]}/k, (7)

where n2(r) = μ(ε2
⊥ − ε2

xy)/ε⊥ and ε̂−1 is the inverse of
the dielectric tensor (3). To find all the components of the
electric Green’s tensor Ge (5) it is necessary to solve (7)
for the two orientations of the source u = x,y and find
the corresponding electric-field components from Maxwell’s
equation E = −ε̂−1∇ × H/ik. Equations (6) or (7) needs to
be solved in order to construct the Green’s tensor and to deduce
the LDOS using (1) for the TE polarization or (4) for the TM
polarization. The calculations of the spatial profiles of chiral
Hall edge states are also found from the solutions of (6) or (7)
but without the source terms.

To find a solution of the multiple scattering problem (6) or
(7) we represent the exterior field in the background medium
at cylinder l with local coordinates rl = (rl,θl) = r − cl in the
multipole expansion

V (r; cs) =
∞∑

m=−∞

[
Al

mJm(knerl) + Bl
mH (1)

m (knerl)
]
eimθl , (8)

while the interior field is

V (r; cs) =
∞∑

m=−∞

[
Cl

mJm

(
knl

irl

) + Dl
mH (1)

m

(
knl

irl

)]
eimθl , (9)
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where V (r) represents either the Ez or Hz field and ne and
nl

i are the refractive indices of the background medium and
cylinder l, respectively. The coefficients Al = [Al

m] represent
the local field at the vicinity of the lth cylinder originating
from all other cylinders or external sources and Bl = [Bl

m]
represent the outgoing field of the lth cylinder, while Cl =
[Cl

m] represent the internal field of the cylinder l and Dl =
[Dl

m] represent the field originating from an internal source
of the lth cylinder. By applying Green’s second theorem over
the cluster, with a subsequent application of Graf’s addition
theorem, we derive a partitioned system of linear equations for
the unknown multipole coefficients Bl . With the introduction
of the partitioned vector B = [Bl] the linear system for the
unknown coefficients B can be expressed as

(I − RH)B = Q, (10)

where Q represents the external or internal sources. This
is an infinite system of equations and must be truncated
in any numerical implementation. The number of retained
multipole coefficients per cylinder determines the accuracy
of the solution. The internal field expansion coefficients Cl are
expressed in terms of Bl using boundary conditions which are
satisfied exactly in this approach. The nonreciprocal behavior
of the considered clusters originates from the boundary
conditions. The boundary condition matrix for gyrotropic
circular cylinders is diagonal as in the scalar case (see Ref. 22)
but contains an additional term proportional to εxy . The explicit
form of these relations will be given elsewhere. The external
Ez field can be reconstructed from the global expansion

Ez(r; cs) = H
(1)
0 (kne|r − cs |)/(4i)

+
Nc∑

q=1

∞∑
m=−∞

Bq
mH (1)

m (kne|rq |)eim arg(rq ), (11)

where rq = r − cq , while the internal field of the lth cylinder
can be calculated using the local expansion (9). The recon-
struction equation for the Hz field takes a similar form,

Hz(r; cs) = (Q1e
i arg(r−cs ) + Q2e

−i arg(r−cs ))H (1)
1 (kne|r − cs |)

+
Nc∑

q=1

∞∑
m=−∞

Bq
mH (1)

m (kne|rq |)eim arg(rq ), (12)

and the internal Hz field of the lth cylinder can be calculated
using the local expansion (9). The first term in (11) or (12)
is absent when the source is located in one of the cylinders.
Likewise the second term in (9) is absent if the source is in
the background. All other field components are found from
Maxwell’s equations analytically.

The outlined multipole method is as efficient and accurate
as for the scalar material case.22 The singularity of Green’s
tensor is associated only with the source term and this is
removed analytically in Eqs. (1) and (4) thereby leading to
highly accurate results for the calculated LDOS values. The
boundary conditions on each cylinder are satisfied exactly,
facilitating convergence, and the calculation of the LDOS
map requires only one matrix inversion. The generalized
Lorentz reciprocity condition25 Ge

αβ(r,cs ,H0) = Ge
β,α(cs ,r,

− H0) holds with accuracy better than 10−10 in all our
numerical examples in Sec. III.

To find the chiral Hall edge states it is necessary to find the
null solutions of the generalized eigenvalue system,

(I − RH)B = 0. (13)

This requires the vanishing of the determinant of the linear
system, i.e.,

det(S−1) = 0, (14)

S−1(λ) = (I − RH). (15)

This is equivalent to finding the poles of the scattering matrix
S in the complex frequency ω plane, or equivalently in
the complex wavelength plane λp = λ′

p + iλ′′
p. All poles are

located in the lower half of the complex frequency plane or
equivalently in the upper half of the complex wavelength plane
because of the causality condition.

The finite cluster is open, and therefore all modes are leaky.
Their quality factors can be calculated using the ratio Q =
λ′

p/2λ′′
p, where λ′

p is the real part of the wavelength and λ′′
p is

its imaginary part. The real part λ′
p defines the wavelength or

the frequency of the mode while the imaginary part λ′′
p defines

its quality factor Q. After the poles are found the application
of the singular value decomposition to (13) determines the
vector of the multipole coefficients B for all cylinders. The
modal field can then be reconstructed using Eqs. (9), (11), or
(12) without source terms, and all other field components are
calculated analytically using Maxwell’s equations. It is well
known that the Green’s tensor has a modal decomposition [see
Eq. (II.12) in Ref. 20 or Eq. (3.5) in Ref. 21], but we will not
consider this representation here.

III. NUMERICAL RESULTS

In this section we present the results of numerical calcula-
tions of the LDOS of chiral Hall edge modes as a function of
wavelength, position, and cluster shape based on the method
outlined in Sec. II. The spatial dependencies, quality factors,
and excitations of chiral Hall edge modes are also presented.
First we consider the gyroelectric photonic honeycomb cluster
[see Fig. 1(a)], and then we present results for ferrite clusters in
the shape of a finite honeycomb ribbon and a hexagonal-shaped
honeycomb flake (see Fig. 9). The effects of disorder on the
LDOS are also briefly discussed.

A. LDOS and chiral Hall edge modes in gyroelectric clusters

Here we study the properties of the LDOS and the chiral
Hall edge modes in gyroelectric clusters. For this case we use
the parameters and geometry reported in Ref. 19, in which
it was shown that the one-way Hall states exist between the
interface of two semi-infinite photonic crystal regions [see
Fig. 1(a)]. The underlying photonic crystal structure has a
hexagonal lattice of period d of air cylinders. The cylinders
have a radius a = 0.35d and are located in a uniform dielectric
with ε = 16. The TE modes of this crystal have a complete
band gap for wavelengths 3.390 < λ/d < 5.208 [see the band
diagram in Fig. 1(b)]. In the structure shown in Fig. 1(a) the
top region consists of such a photonic crystal. The bottom
crystal is the same as the top except that there are gyroelectric
cylinders embedded in the hexagonal lattice, which themselves
form a honeycomb lattice, with a lattice period d ′ = 6d and
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FIG. 1. (Color online) (a) The geometry of the gyroelectric
cluster composed with Nc = 770 cylinders. In the corresponding
semi-infinite photonic cluster the edge states are localized at the
interface between the top five layers and the bottom gyroelectric
cluster formed with Nc = 633 cylinders. (b) The band structure of a
corresponding infinite photonic crystal embedded with honeycomb
resonators.

radii a = 0.5d. These are cylinders with larger radii, as plotted
in Fig. 1(a). The components of the dielectric tensor for
gyroelectric resonators are ε⊥ = 16 and εxy = 1, while μ = 1
throughout. Such a choice of parameters has allowed the
application of the tight-binding approximation in Ref. 19.
The typical value of εxy for available materials is of the
order of 10−3 and presently there is an intense search to find
ways in which this parameter can be enhanced. The dielectric
tensor components ε⊥ and εxy are functions of frequency and
they have a form similar to the ferrites permittivity tensor
components [see Eq. (16)]. It has been shown in Ref. 9 that the
effect of the dispersion is not essential on the chiral Hall edge
states and here we follow Ref. 19 and consider ε⊥ and εxy as
constants. The introduction of the honeycomb resonators with
ε⊥ = 16 without magnetization εxy = 0 introduces new bands
in the band gap [red bands in Fig. 1(b)] at d/λ ≈ 0.24 and
d/λ ≈ 0.29.

The bands at d/λ ≈ 0.24 are replotted in Fig. 2(a) with an
enlarged scale as a function of the wavelength λ/d revealing
the existence of a degenerate Dirac point at the K point of
the Brillouin zone for the wavelength λ/d ≈ 4.44. Using the
λ/d scale will facilitate the subsequent comparison of the
band diagram and the LDOS calculations. The introduction
of gyrotropic resonators with εxy = 1 lifts the degeneracy and
band gaps are opened up [see Fig. 2(b)] resulting in bands with
nonzero Chern numbers.7
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FIG. 2. (Color online) (a) A fragment of the band structure for a
hexagonal photonic crystal with embedded microresonators without
magnetization; (b) band structure for a hexagonal photonic crystal
with embedded microresonators with magnetization.

In these situations the Hatsugai theorem26 ensures the
existence of chiral Hall edge states. Then the introduction
of the top photonic crystal creates sufficient conditions for the
existence of one-way Hall modes at the interface of the two
regions. For more details, see Ref. 19.

Having reviewed the properties of semi-infinite structures,
we now consider the properties of finite clusters. In Fig. 3 we
plot the LDOS ρ on a logarithmic scale versus wavelength
(the green dashed curve) for a finite hexagonal cluster of
Nc = 633 air cylinders embedded in the background with
ε = 16 and for a point located in the background near the center
of the cluster with the coordinates (−0.5,2.89) [the bottom
black dot in Fig. 1(a)]. This cluster is similar to the structure
plotted in Fig. 1(a) but without the top five layers and without
the embedded resonators in the bottom region. The LDOS for
this cluster exhibits a clear photonic band gap in the wavelength
range 3.40 < λ/d < 5.2 consistent with the band-structure
calculations. Within the gap the LDOS can be 109 times
smaller than free space value.

The blue solid curve in Fig. 3 is the LDOS for the same
point and the same hexagonal cluster but with embedded
honeycomb resonators [see Fig. 1(a)]. The introduction of
the honeycomb resonators in this finite cluster introduces
two resonance regions at λ/d ≈ 3.5 and λ/d ≈ 4.5 inside the

 10-9

 10-7

 10-5

 10-3

 10-1

 101

3.0 3.5 4.0 4.5 5.0 5.5
λ/d

ρ

FIG. 3. (Color online) The LDOS ρ on a logarithmic scale versus
wavelength λ/d for an observation point at (−0.5; 2.98) located in
the background for the cluster composed with Nc = 633 cylinders
(bottom green dashed curve). The blue solid curve is the same as
the green dashed curve but for a hexagonal cluster embedded with
nonmagnetized honeycomb resonators and the red long dashed curve
is the same as the blue curve but with gyroelectric resonators with
radii a = 0.48d .

035127-4



LOCAL DENSITY OF STATES OF CHIRAL HALL EDGE . . . PHYSICAL REVIEW B 88, 035127 (2013)

 4.38  4.40  4.42  4.44  4.46  4.48  4.5
 10

-5

 10
-3

 10

 103

 10
-1

ρ

λ/d

1

FIG. 4. (Color online) The red long dashed curve is the same red
curve as in Fig. 3, while the green dashed curve is the LDOS for
a gyroelectric cluster depicted in Fig. 1(a) and for a source point
located at (−0.5,11.65) (top black dot). The blue oscillating curve
is for the gyroelectric cluster with Nc = 1007 cylinders formed by
placing four layer mirrors around the gyroelectric cluster composed
with Nc = 633 cylinders and for the same observation point as the
green dashed curve.

band gap which is consistent with the band structure shown
in Fig. 1(a). The LDOS at the Dirac point λ/d = 4.4 [see
Fig. 2(a)] of this finite cluster is two orders of magnitude lower
than the free space value (see the blue curve at λ/d ≈ 4.4 in
Fig. 3), while for the infinite photonic crystal the LDOS at
the Dirac point vanishes. We have calculated ρ for a larger
cluster and have observed that ρ at the Dirac point is reduced
accordingly.

The LDOS for the cluster with the embedded resonators has
one peak at the first resonance region at λ/d = 3.5 and two
peaks at the second resonance region at λ/d = 4.5 (see the blue
solid curve in Fig. 3). The introduction of the magnetization
splits these peaks in two. To see this more clearly we have
replotted the vicinity of the second resonance region in Fig. 4.
The red long-dashed curve in Fig. 4 is the same as the red
curve in Fig. 3 and reveals these four resonance regions which
correspond to the four bands of the infinite photonic crystal
with embedded gyroelectric microresonators [see Fig. 2(b)].
The green dashed curve in Fig. 4 corresponds to the cluster with
Nc = 770 cylinders depicted in Fig. 1(a) but for a point located
at the interface of a cluster with gyroelectric microresonators
and a “mirror” composed of five layers of a hexagonal photonic
crystal for the point with the coordinates (−0.5,11.65) [top
black dot in Fig. 1(a)].

The blue solid curve in Fig. 4 is the LDOS for a cluster com-
posed with Nc = 1007 cylinders formed by placing mirrors
composed of four layers of cylinders around the cluster with
Nc = 633 cylinders and embedded gyroelectric resonators
and for the same observation point as for the green dashed
curve. The geometry of this cluster is plotted in Fig. 6. The
introduction of the mirrors has a dramatic effect on the LDOS
which now has a number of strong oscillations in this region.
Surrounding a gyroelectric cluster with mirrors substantially
confines the one-way modes. This shifts the poles of the
scattering matrix toward the real axis therefore their quality
factors are substantially higher and the one-way modes become
“visible” in the LDOS plot as well developed oscillations. By
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FIG. 5. (Color online) The intensity of the magnetic field distri-
bution |Hz|2 of the chiral Hall edge state in a logarithmic scale for the
gyroelectric cluster depicted in Fig. 1(a) at λ/d = 4.436 + i0.015.

increasing the size of the cluster more poles move closer to the
real axis leading to more oscillatory behavior of the LDOS. In
the limit of the semi-infinite photonic crystal these oscillations
form the band of the chiral Hall edge states (see Ref. 19).
Likewise decreasing the cluster size reduces the number of the
LDOS oscillations and broadens their width. The LDOS for
the interface point of these two finite clusters can be four orders
of magnitude greater than the free space value (see Fig. 4).

As reported in Ref. 19 the one-way Hall edge states exist
for wavelengths in between these four bands [see Fig. 2(b)]
of the corresponding infinite photonic crystals. These bands
are represented as four peaks of the LDOS in Fig. 4 for a
finite cluster. Therefore the scattering matrix S (15) must have
poles for wavelengths in between these four peaks. We have
searched for the poles of the scattering matrix for the cluster
with Nc = 770 cylinders [see Fig. 1(a)] and have found a
number of poles in this region. In particular there is a pole at
the wavelength λ/d = 4.436 + i0.015 for the cluster shown
in Fig. 1(a).

In Fig. 5 we plot the spatial profile of the magnetic field
intensity |Hz|2 of this mode. The energy flow of this mode
is clockwise and a substantial part of the energy is leaked
from the right-hand side of the cluster as the mode propagates
clockwise. The quality factor of this mode is Q = 140. The
field intensity |Hz|2 of this one-way mode is localized at the
right edge of the cluster. In contrast, the one-way mode for
the corresponding semi-infinite photonic crystals is localized
at their interface, which for this finite cluster is at y/d = 11.3.

To reduce the energy loss of this mode at the right edge
of the cluster we have placed an additional mirror (with a
band gap at these wavelengths) consisting of five layers of
a hexagonal photonic crystal at the right-hand side of the
cluster. We have found a chiral Hall edge state for this enlarged
cluster of Nc = 810 cylinders at λ/d = 4.439 + i0.009. We
have observed that now the leakage of the one-way edge mode
is taking place from the bottom edge of the cluster (the plot
is not provided). The quality factor of this mode is Q = 245.
These high losses of the one-way modes in Fig. 5 and for a
cluster with an additional mirror at the right-hand side occur
because these modes exist for a frequency above the light line
and therefore they need the support of mirrors to confine their
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FIG. 6. (Color online) The intensity of the magnetic field distri-
bution |Hz|2 of the chiral Hall edge state for the gyroelectric cluster in
the logarithmic scale at λ/d = 4.435 + i4.617 × 10−4. The quality
factor of this mode is Q = 48 022.

energy. This support occurs for semi-infinite photonic crystals
where the one-way mode is localized at their interface.19

In Fig. 6 we plot |Hz|2 as a function of position for a
gyroelectric cluster surrounded by mirrors at all four edges.
There are Nc = 1007 cylinders in this cluster. The one-way
edge mode is confined at the interface of the gyroelectric
cluster and mirrors (see Fig. 6), and the quality factor is
substantially higher for this mode Q = 48 022. The blue curve
in Fig. 4 is the LDOS for this cluster and for the top black
source point in Fig. 1(a). The LDOS is highly oscillatory in this
case and each resonance corresponds to a one-way edge mode.
To show the one-way nature of this mode in Fig. 7 we plot the
distribution of the Poynting vector at the bottom right corner
of the cluster. This plot shows the clockwise nature of the field
propagation. Interestingly the energy flow inside the cylinders
is anticlockwise. Such behavior might be determined by the
geometry of the cluster but more calculations are needed before
a general conclusion can be made. The field is concentrated
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FIG. 7. (Color online) The map of the Poynting vector of the
chiral Hall edge state of the outlined rectangular region in Fig. 6.
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FIG. 8. (Color online) The LDOS ρ in the logarithmic scale
versus position for one-way Hall state wavelength λ = 4.435.

more inside the gyroelectric cylinders. To excite this one-way
mode, it is sufficient to place a radiating source close to the
interface between these two clusters. We have calculated the
field distribution for a source located at (0.5,11.65). The field
distribution is very similar to the modal distribution (see Fig. 6)
and we do not provide them here. Interestingly the field values
inside of the gyroelectric cylinders and for a source oriented
along the x axis are two orders of magnitude greater than
for a y source orientation. This behavior can be explained by
the fact that the x-oriented source matches the edge state field
value and excites the edge state more easily than the y-oriented
source at this source position.

In Fig. 8 we plot the spatial distribution of the LDOS for the
chiral edge mode wavelength λ = 4.435 and for a cluster with
Nc = 1007 cylinders. The LDOS is more than two orders of
magnitude greater at the interfaces of the gyroelectric cluster
and mirrors. The value of the LDOS is similar along the
cluster’s zigzag edges and armchair edges. Inside the cluster
ρ diminishes and for this cluster it is four orders of magnitude
smaller than the free space value.

The results shown demonstrate that the maximum value
of the field intensity of chiral modes for finite clusters
is not necessarily localized at the interface of photonic
clusters (see Fig. 5). This information is important for the
utilization of chiral edge modes in waveguiding, switching,
and other applications. Surrounding a gyroelectric cluster with
mirrors can create suitable conditions for photon storage and
manipulation, which can be achieved by changing the strength
of an external magnetic field.

B. LDOS and chiral Hall edge modes in ferrites clusters

In this section we study the properties of the LDOS and
the chiral Hall edge modes in ferrite clusters. Here we use
the parameters and geometry reported in Ref. 12 where it
was shown that the one-way Hall states exist at the edge of
the semi-infinite honeycomb ferrite photonic crystal and free
space.

The honeycomb ribbon cluster [see Fig. 9(a)] is composed
of a honeycomb lattice of yttrium-iron-garnet cylinders located
in free space with radii a = 0.2d, where d = 10 mm is the
lattice constant. The magnetic permeability tensor has the
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FIG. 9. The geometry of the ferrite clusters; (a) honeycomb
ribbon, (b) honeycomb hexagonal flake.

form27 with

μ⊥ = 1 + ω0ωm

ω2
0 − ω2

, μxy = ωωm

ω2
0 − ω2

, (16)

where ωm = 4πγMs and ω0 = γH0. Here H0 is the applied
static magnetic field, 4πMs is the saturation magnetization,
and γ is the gyromagnetic ratio. Following Ref. 12 we have
used the following values for these parameters: 4πMs =
1750 G, H0 = 500 Oe with dielectric permittivity ε = 15.
These are typical parameters for yttrium-iron-garnet ferrites
(see Ref. 27). It is shown that the one-way Hall edge state
can be excited at the wavelength λ/d = 3.937. This mode lies
below the light line and is confined to the edge of the semi-
infinite photonic crystal. Without magnetization (μ⊥ = 1, and
μxy = 0) this infinite crystal has a degenerate Dirac point at
the K point of the Brillouin zone. After magnetization the
degeneracy at the K point is lifted and a band gap is opened.
So the mechanism of the creation of the chiral Hall edge states
is similar here to that for the gyroelectric example.

In Fig. 10(a) we plot the LDOS ρ as a function of
wavelength for three different points located in free space,
for a honeycomb ribbon with Nc = 854 cylinders plotted in
Fig. 9(a). The bottom red solid curve is for a point at the center
of the cluster [see the top black dot in Fig. 9(a)]. The LDOS
ρ is three orders of magnitude lower than the free space value
for this point. These low values for the LDOS are in accord
with the existence of the band gap for a corresponding infinite
photonic crystal. The middle blue dashed curve in Fig. 10 is the
LDOS for the bottom left point in Fig. 9(a) and the green dotted
top curve is for the bottom right point in Fig. 9(a). Although
these points are located close to each other the difference
between the LDOS values can be as high as two orders of
magnitude. This implies that the LDOS is a sensitive function
of position. The LDOS value for the point located at the zigzag
edge inside the cylinder (not plotted here) is very similar to
the LDOS value of the green dotted curve, except that it is

 3.5  3.6  3.7  3.8  3.9 4.0  4.1
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FIG. 10. (Color online) The LDOS ρ on a logarithmic scale vs
wavelength λ/d for an observation point at the center of the cluster
(0,0) (red solid curve), for the zigzag edge points at (0,−5.8) (blue
dashed curve) and for the point (0.5,−6.0) (green dotted curve). All
points are located in free space.

an order of magnitude higher due to the higher value of the
refractive index of the cylinders.

We have also calculated the LDOS for a honeycomb ribbon
as in Fig. 9(a) but with twice the width. The qualitative
behavior of the LDOS is very similar to Fig. 10 except for the
point at the center where the LDOS is two orders of magnitude
lower than in Fig. 10.

The LDOS values for the top green curve in Fig. 10 are
nearly flat for the band-gap wavelengths 3.65 < λ/d < 3.95,
while the LDOS gradually increases for the middle blue curve.
The chiral Hall edge states should exist within the band gap
where we observe only very minute oscillations of the LDOS.
We have searched for the poles in the complex plane for band-
gap wavelengths and located one at λ/d = 3.928 + i0.0177.
The real part of this pole is close to the edge state wavelength
λ/d = 3.937 of a semi-infinite photonic crystal.12 The Q

factor of this chiral Hall edge state is Q = 110.
In Fig. 11 we plot the logarithm of the electric-field intensity

|Ez|2 distribution of this chiral Hall edge mode. The electric
field of this mode is concentrated at the edges of the cluster
and is maximal at the lower right corner and the upper left
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FIG. 11. (Color online) The intensity of the electric-field distri-
bution |Ez|2 in the logarithmic scale of the chiral Hall edge state for
the honeycomb ribbon plotted in Fig. 9(a).
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FIG. 12. (Color online) The fragment of the Poynting vector plot
of the chiral edge mode plotted in Fig. 11 showing the unidirectional
counterclockwise flow of energy at the bottom right edge of the
ribbon.

corner. The main “leakage” of the energy of this mode appears
to be taking place at these corners. The values of |Ez|2
diminish toward the center of the cluster and they are six
orders of magnitude lower than at the edges of the cluster.
The modal intensity is slightly stronger at the zigzag edges
of the honeycomb ribbon than at the armchair edges for this
configuration.

To show the unidirectional flow of energy in Fig. 12 we plot
a fragment of the Poynting vector distribution for the bottom
right corner of the ribbon which shows the way the chiral
edge Hall mode propagates at the corner. When we swap the
external magnetization to the opposite direction we find the
pole at the same location as it should be but now the energy
propagates in the clockwise direction and the maximum values
of the electric-field intensity are reached at the top right and
the bottom left corners of the ribbon.

To excite this one-way Hall edge state we used a point
source located close to the zigzag edge of the cluster. In Fig. 13
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FIG. 13. (Color online) The spatial dependence of the Green’s
function, |G|2 = |Ez|2 in a logarithmic scale for a chiral edge state
wavelength λ/d = 3.928 and for a source located at (0.0,−5.8) (black
dot in the plot) showing the excitation of the one-way Hall edge
mode.
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FIG. 14. (Color online) The LDOS map in the logarithmic scale
versus position for the chiral Hall edge state wavelength λ′/d =
3.928.

we present the electric-field intensity distribution showing the
anticlockwise flow of energy. The wavelength of the radiation
is equal to the real part of the corresponding pole wavelength
value λ′/d = 3.928. The quality factor of this mode is not high
and nearly all energy leaks out after one loop around the edge
of the ribbon. If we change the direction of the magnetization
then the energy flow will reverse, giving a convenient handle
with which to control the direction of the propagation.

In Fig. 14, we plot the distribution of the LDOS for the
chiral edge mode wavelength λ′/d = 3.928 as a function of
position. The density of states more than an order of magnitude
greater closer to the edges of the ribbon and diminishes toward
the center of the ribbon. The values of the LDOS along the
zigzag edges, and along the armchair edges, of the ribbon are
comparable.

Now we consider the honeycomb hexagonal flake geometry
[see Fig. 9(b)]. This cluster is composed of Nc = 486 cylinders
and the cylinders are located at the honeycomb lattice points;
the edges of the cluster itself have a hexagonal symmetry. The
rest of the parameters are the same as in the previous example
of the honeycomb ribbon. It is reported in Ref. 12 that such a
cluster has a one-way edge state at λ/d = 3.926.

First in Fig. 15 we plot the LDOS as a function of
wavelength. The red solid curve is for a point at the center
of the flake at (0.0,0.0) while the green dotted curve and the
blue dashed curve are for points at the bottom zigzag edge of
the flake located at (0.0,−7.75) and (0.5,−7.75), respectively.
In this case there are some resonances of the LDOS for
gap wavelengths 3.65 < λ/d < 3.95, even for an observation
point near the center of the cluster. The oscillations are more
pronounced for the point (0.0,−7.75) which is located between
the cylinders at the bottom zigzag edge and the resonances are
very well developed for the point at (0.5,−7.75). The number
of resonances are the same for the top two curves. This is
in strong contrast to the honeycomb ribbon case where the
LDOS resonances inside the band gap are very weak (see
Fig. 10). Such strong dependence of the LDOS on the shape of
the cluster has been reported also for conventional clusters,28

where the effects of the shape of the cluster on the Lamb shift
and LDOS have been considered.
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FIG. 15. (Color online) The LDOS ρ in the logarithmic scale vs
wavelength λ/d for an observation point at the center of the cluster
(0,0) [top black dot in Fig. 9(b)] (red solid curve), for the zigzag
edge points at (0,−7.75) bottom left black dot in Fig. 9(b) (green
dotted curve), and for the point (0.5,−7.75) bottom right black dot in
Fig. 9(b) (blue dashed curve). All points are in free space.

We searched for poles and as expected we found poles
close to these LDOS resonance wavelengths. In Fig. 16
we plot the one-way Hall edge mode for the pole value
λ/d = 3.927 + i6.875 × 10−4. The quality factor of this mode
is Q = 2856 which is much higher than the mode for
the honeycomb ribbon. Overall the spatial behavior of this
mode is very similar to the mode of the honeycomb ribbon.
The field mainly concentrates at the edges of the cluster and
its value diminishes toward the center of the flake. The energy
flow for this mode is anticlockwise. To excite this mode it is
sufficient to place a point source with a radiation wavelength
equal to the real part of the corresponding pole wavelength
near the flake edge.12

Finally in Fig. 17 we plot the LDOS map as a function
of position in the logarithmic scale for chiral edge wavelength
λ/d = 3.927. The LDOS is two orders of magnitude greater at
the edges of the flake and it diminishes toward the center of the
flake. This behavior of the LDOS is similar to the honeycomb
ribbon case. Such a spatial distribution of ρ is reminiscent
of topological insulators which have metallic surfaces (high
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FIG. 16. (Color online) The intensity of the electric-field distri-
bution |Ez|2 in the logarithmic scale of the chiral Hall edge state for
the honeycomb flake with λ/d = 3.927 + i6.875 × 10−4.
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FIG. 17. (Color online) The LDOS map in the logarithmic scale
versus position for chiral Hall edge state wavelength λ/d = 3.927.

density of states) and insulating bulk (low density of states)
although they have different topological invariants.29

One of the intrinsic properties of the chiral Hall edge
states is their immunity to disorder. We have introduced radial
disorder in which the radii of all honeycomb flake cluster
cylinders are disordered [Fig. 9(b)]. In our calculation the
radii of cylinders have been uniformly distributed in the range
[0.13d,0.2d] which corresponds to a 35% degree of disorder
from the initial value a = 0.2d. In such strong radial disorder
guiding is no longer taking place in conventional photonic
crystal waveguides.30 Here however the resonances of the
LDOS representing chiral Hall edge states largely withstand
such strong disorder (see green dotted line in Fig. 18). The
resonances are broadened and their maximum values are
reduced and shifted toward shorter wavelengths while the
number of peaks are essentially preserved. We have also
considered radial disorder in which only the radii of the bottom
row of the honeycomb flake cluster cylinders are disordered
[Fig. 9(b)]. In this calculation the radii of the cylinders have
been uniformly distributed in the range [0.05d,0.2d] which
corresponds to a 75% (one-sided) degree of disorder. The
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FIG. 18. (Color online) The LDOS ρ on the logarithmic scale as
a function of wavelength λ/d for the bottom right point on Fig. 9(b);
the blue dashed curve is the same blue dashed curve as in Fig. 15, the
green dotted line is for 35% degree of radial disorder for all cluster
cylinders, while the red solid line is for a cluster with the 75% degree
of radial disorder of the bottom row of cylinders only in Fig. 9(b).
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resonances of the LDOS withstand such strong disorder also
(see the red solid line in Fig. 18). The resonances are simply
shifted toward short wavelengths but their number is preserved
and their quality factors do not change substantially.

IV. CONCLUSIONS

We have constructed the Green’s tensor using a mul-
tipole approach and have calculated the LDOS of chiral
Hall edge states for finite photonic gyrotropic clusters. The
multipole method has proven to be very accurate and effective.
Both ferrites and gyroelectric photonic clusters have been
treated.

For a honeycomb ribbon, honeycomb hexagonal flake,
and square photonic clusters with embedded honeycomb
gyroelectric resonators, we have calculated the LDOS as a
function of wavelength, position, shape, and the size of the
cluster. It is shown that the LDOS is a sensitive function of the
position and the shape of the cluster. The LDOS at the edges of
the ferrite clusters can have low values even at the chiral edge
state wavelengths. For the ferrite honeycomb ribbon these low
values of the LDOS are located between the cylinders at either
the armchair edges or at the zigzag edges of the ribbon or at
the zigzag edges of the honeycomb flake (see Figs. 14 and 17).
The LDOS along the zigzag edges and armchair edges of both
gyroelectric and ferrite clusters are similar at one-way edge
wavelengths.

The LDOS value at the one-way edge state wavelengths
can be orders of magnitude higher at the edges of the
cluster compared with its free space value, while its value
diminishes toward the center of the cluster. This property
of the LDOS at one-way edge state wavelengths ensures
high edge transmission (conductance) and insulating bulk
in such clusters. Therefore the conductance properties of
such clusters have some resemblance to those of topological
insulators.29

The spatial distribution of chiral Hall modes and their
quality factors have been calculated for both gyroelectric and
ferrites clusters. The spatial distribution of these modes is not
necessarily localized at the edges of the cluster. The modal field
can be localized at the “leaking edges” of the cluster rather than
at the interface of two clusters as in the semi-infinite photonic
crystals case. We have observed such behavior for gyroelectric
clusters.

For ferrites clusters the chiral modes are localized uni-
formly at the edges of the honeycomb hexagonal flake
while for the honeycomb ribbon the modes are localized
more at two diagonally opposite corners and their modal
intensity distribution depends on the direction of the external
magnetic field. We have also observed strong immunity of the
LDOS to disorder. Strong radial disorder blueshifts the LDOS
resonances but does not change their number and their quality
factors substantially.

The results presented here are important for designing chiral
edge state based waveguide interconnects, delay waveguides,
as well as in photon storage and manipulation applications.
These findings can also be used for understanding chiral mode
excitations and the characterization of radiation dynamics of
sources embedded in such clusters. The results for the spatial
distribution of chiral Hall edge modes may also be useful in
electronic systems given that the photonic chiral modes are the
direct analog of the electronic Hall edge states.
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