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Abstract

In this paper we show that the Voronoi-based 9-intersection model (V9I) proposed by
Chen et al. (2001) is more expressive than what has been believed before. Given any two
spatial entities A,B, the V9I relation between A and B is represented as a 3 × 3 Boolean
matrix. For each pair of types of spatial entities points, lines, and regions, we first show that
most Boolean matrices do not represent a V9I relation by using topological constraints and
the definition of Voronoi regions, and then find illustrations for all the remaining matrices.
This guarantees that our method is sound and complete. In particular, we show that there
are 18 V9I relations between two areas with connected interior, while there are only nine 4-
intersection relations. Our investigations also show that, unlike many other spatial relation
models, V9I relations are context- or shape-sensitive. That is, the existence of other entities
or the shape of the entities may affect the validity of certain relations.

Keywords: Voronoi region; 9-intersection; topological relation; qualitative spatial reason-
ing

1 Introduction

Construction of Voronoi diagrams of a finite system of points is very useful in computer graphics,
geographical information systems, and many other research areas (Aurenhammer and Klein, 1996).
Okabe et al. (2009) give a comprehensive introduction to various theories and applications of
Voronoi diagrams. Since it is highly related to distance, Voronoi diagram has been used exten-
sively in solving distance problems. For instance, Geng et al. (2011) and De Rezende and Westrupp
(1999) discuss the Voronoi-based nearest neighbor problem, and Sud et al. (2006) study the fast
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Table 1: Numbers of V9I relations

Type 4-Int. Relations V9I Relations V9I Relations identified
in (Chen et al., 2001)

(area, area) 9 18 13
(line, line) 16 17 8
(line, area) 11 16 13
(point, point) 2 3 3
(point, line) 3 4 4
(point, area) 3 6 5

proximity computation. Voronoi diagram has also been used as a better representation of space
between obstacles for path planning (Takahashi and Schilling, 1989; Bhattacharya and Gavrilova,
2008; Foskey et al., 2001). Moreover, the distance under which Voronoi diagram is defined has
been generalized in various ways. For example, the ‘boat-sail’ distance is proposed and gener-
alized in (Sugihara, 1990, 2011), which apply Voronoi diagram to an anisotropic and dynamic
problem. Another example is the A-distance in ambulance facility location problem studied by
Hsia et al. (2009). Nowadays, Voronoi diagram has been used to help make energy efficient
network architecture (Nojeong and Varshney, 2005) and to compute and improve the coverage
of sensors (Meguerdichian et al., 2001).

Chen et al. (2001) propose a Voronoi-based 9-intersection (V9I) model for describing spatial
relations between entities in the real plane.1 The idea is similar to the influential 9-Intersection
Model (9IM) of Egenhofer and Herring (1991), but the exteriors of the two spatial entities are
replaced with their Voronoi regions. Three types of spatial entities are considered in their paper,
viz. (simple) points, (simple) lines, and regions with connected interior (i.e. simple regions
with holes). Chen et al. (2001) argue that the replacement of exterior with Voronoi region can
circumvent two imperfections of 9IM, viz. the linear dependency between a region’s interior,
boundary, and exterior, and the inconsistency of a line’s topological property in R and in R2.

The authors further give a classification for the relations between area/line/point and area/line/point,
where an area is represented by a simple region with holes, which has a connected interior, and
lines and points are all simple entities. The idea of replacing exterior with Voronoi region in 9IM
is novel and brilliant, but the classification made in Chen et al. (2001) is informal, sometimes
imprecise, and far from complete.

In this paper, we revisit the V9I model proposed by Chen et al. (2001) and provide a formal
and complete classification of spatial relations using the V9I model. Our results show (see Ta-
ble 1) that there are more V9I relations than what have been identified by Chen et al. (2001). For
each pair of types of spatial entities points, lines, and regions, we first show that most Boolean
matrices do not represent a V9I relation by using topological constraints and the definition of
Voronoi regions, and then provide illustrations for all the remaining matrices. This guarantees
that our method is sound and complete.

Both 9IM and the V9I refine the 4-Intersection Model (4IM) (Egenhofer and Franzosa, 1991).
The 9IM splits one 4IM relation into several different topological relations, but the V9I splits a

1According to Google Scholar, this work has been cited more than 100 times before December 20, 2012.
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4IM relation in a different way. Very often, two different V9I relations that are contained in the
same 4IM relation are topologically equivalent. This implies that these distinctions made by V9I
cannot be obtained by 9IM. A closer examination shows that, unlike many other spatial relation
models, V9I relations are context- or shape-sensitive. That is, the existence of other entities or
the shape of the entities may affect the validity of certain relations.

In the remainder of this paper, we first introduce basic notions that will be used later in
Section 2. These include basic topological terminologies, definition of Voronoi regions, and the
definition of 9IM relations and the V9I relations. In Section 3, we examine for each pair of types
of spatial entities how many V9I relations are there and provide illustrations (i.e. realizations)
for each realizable matrix. We also explain here how V9I splits 4IM relations. In Section 4
we analyse how different definitions of Voronoi regions affect the V9I relations between spatial
entities. The last section concludes the paper.

2 Basic Notions

In this paper, we are concerned with the two dimensional Euclidean plane R2, with the usual
distance and topology. For two points p, q, we write d(p, q) for the distance between p and q.
The distance of p and a subset A of R2 is defined as

d(p,A) = inf{d(p, q) | q ∈ A}. (1)

For a point p and a positive real number ε, we write B(p, ε) for the closed disk centred at p with
radius ε, and write B◦(p, ε) for the corresponding open disk. A set U in R2 is said open if for
any point p in U , there exists ε > 0 such that B◦(p, ε) ⊂ U . A set A in R2 is said closed if its
set complement in R2 is open. For a set X in R2, the interior of X , denoted as X◦, is defined as
the largest open set contained in X; the closure of X , denoted as X , is defined as the smallest
closed set that contains X; the boundary of X , denoted as ∂X , is defined as the set difference
of X and X◦. The exterior of X , denoted as Xe, is defined as the interior of the set complement
of X . Note that if X is a closed set, then Xe is exactly the set complement of X .

In real-world applications, spatial entities are often represented as ‘points’, ‘lines’, or ‘areas’.
A point is interpreted, as usual, as an element of R2. A line is a simple curve, i.e. a set in the
plane that is topological equivalent to the closed interval [0,1]. A simple area is a set in the
plane that is topologically equivalent to a closed disk. A simple area is also known as a simple
region in e.g. (Egenhofer and Herring, 1991). In this paper, following Chen et al. (2001), we
use a more general notion of area. Let X be a set in R2. Then X is an area if

(i) X is bounded, i.e. it is contained in some closed disk; and

(ii) X is regular closed, i.e. X = X◦ is the closure of its interior; and

(iii) X◦ is connected, i.e. for any two disjoint open sets U, V ̸= ∅ , U ∪ V ̸= X◦.

Therefore, an area is actually a simple region with holes in (Egenhofer and Herring, 1991).
We next recall the 9-intersection model (9IM) of Egenhofer and Herring. Given two spatial

entities A and B in the plane, the topological relation between A and B, written as R9(A,B), is
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characterized by examining whether the nine intersections between the interiors, the boundaries,
and the exteriors of A and B are empty or not. If an intersection is empty, then we put a ‘0’ in the
corresponding entry in the matrix, and a ‘1’ otherwise. In this way, we represent the topological
relation between A and B as a 3× 3 Boolean matrix.

R9(A,B) =

⎛

⎝
A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩Be

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩Be

Ae ∩B◦ Ae ∩ ∂B Ae ∩Be

⎞

⎠ . (2)

The 9IM relations can be defined for any pair of points/lines/areas. For points and areas, the
topological notions of interior, boundary, and exterior are interpreted as in classical topology,
but for a line L, we regard it as an embedding in the one-dimensional R. Therefore, each
simple line L has two boundary points, viz. the two end points of L, and each non-boundary
point of L is an interior point. Because A = A◦ ∪ ∂A ̸= ∅, B = B◦ ∪ ∂B ̸= ∅, and
A◦ ∪ ∂A ∪ Ae = B◦ ∪ ∂B ∪ Be = R2, it is clear that not all 3 × 3 Boolean matrices are
valid 9IM relations. We refer the reader to (Egenhofer et al., 1993) and (Li, 2006) for detailed
discussion.

A simplified version of 9IM is obtained by considering the top left 2 × 2 sub-matrix of the
matrix R9(A,B) in (2). This is known as the 4-intersection model (Egenhofer and Franzosa,
1991), and such a relation will be addressed as a 4IM relation henceforth.

Let A be an area. Note that the exterior of A is the same as its set complement. This linear
dependency among the interior, the boundary, and the exterior of an area is regarded as one
imperfection of the 9IM in (Chen et al., 2001). The use of the embedding topology of a line in
R is regarded as another imperfection of the 9IM, as the interior and exterior of a line in the plane
are connected to each other. Having observed these imperfections, Chen et al. (2001) suggest to
replace the exterior with the corresponding Voronoi region of an entity. In this way, they show
that the resulting V9I model is able to make more distinctions of spatial relations between spatial
entities and the above two imperfections can be circumvented.

The classification made in (Chen et al., 2001) is, however, informal and incomplete. It is
the aim of this paper to examine the Voronoi-based 9-intersection (V9I) model proposed in
(Chen et al., 2001) and make a complete classification of spatial relations using the V9I model.

The notion of Voronoi regions is usually defined for points in a finite system of points in the
plane. Intuitively, a Voronoi region is a ‘region of influence’ of a particular point, and all these
Voronoi regions together form a partition of the plane into convex polygons. This definition
has been extended to entities other than points. We next present a formal definition of Voronoi
regions.

Definition 1. (Chen et al., 2001) Let Γ be a finite set of spatial entities (points/lines/areas) and
E ∈ Γ be an arbitrary entity. The Voronoi region of E w.r.t. Γ, written as Ev, is defined as

Ev = {p | (∀E′ ∈ Γ)d∗(p,E) ≤ d∗(p,E′)}, (3)

where d∗(p,X) = d(p,X) if X is a point or a line, and d∗(p,X) = d(p, ∂X) if X is an area.

Remark 1. Γ was not explicitly mentioned in (Chen et al., 2001). We think it is necessary
to include Γ in the definition, because Voronoi regions may change if entities are added to or
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deleted from Γ. We note that there are other interpretations of Voronoi regions. In particular,
several authors define the Voronoi region of an entity E as the set of points which are closer to E
than to any other entities E′ in Γ. Moreover, when E is an area, sometimes it is more desirable
to define Ev as the set of points that is close to E itself instead of to its boundary. In this paper,
to facilitate the comparison, we adopt the interpretation used in (Chen et al., 2001). A detailed
analysis will be given in Section 4.

Having defined Voronoi region for each spatial entity in a finite system of spatial entities Γ,
we are now ready to define the Voronoi-based 9-intersection relation of two entities in Γ. Let
A,B be two entities in Γ. We define

Rv9(A,B) =

⎛

⎝
A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩Bv

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩Bv

Av ∩B◦ Av ∩ ∂B Av ∩Bv

⎞

⎠ . (4)

As in 9IM, we represent the V9I relation between two spatial entities A,B by a 3 × 3 Boolean
matrix Rv9(A,B), where an entry is 0 if the corresponding intersection is empty and 1 other-
wise.

Given a 3 × 3 Boolean matrix M, a natural question arises whether M represents a V9I
relation between two spatial entities. In the following section, we will give a complete analysis
to this question. The results show that there are more V9I relations than identified in (Chen et al.,
2001). For ease of discussion, we assign a unique decimal integer d between 0 to 511 to each
3*3 Boolean matrix M as follows2

d = M(1, 1) ∗ 28 +M(1, 2) ∗ 27 + ...+M(3, 2) ∗ 2 +M(3, 3),

and call d the matrix identity of M. For example, matrix
⎛

⎝
1 0 1
1 1 0
0 1 1

⎞

⎠

has identity 371 = 1×28+0×27+1×26+1×25+1×24+0×23+0×22+1×21+1×20.
There are 512 different Boolean matrices in total, but very few of them are realizable. Table 2
gives all matrixes that represent a realizable V9I relation in each case respectively.

3 V9I relations between spatial entities

In this section, we give a complete classification of V9I relations between two spatial enti-
ties. According to whether these spatial entities are points, lines, or areas, there are nine cases
to consider. Since the case (line, point) is the converse of the case (point, line), the case
(area, point) is the converse of the case (point, area), and the case (area, line) is the con-
verse of the case (line, area), we need only consider six cases.

In the following, we will show, for each pair of types (Type-1,Type-2) of spatial entities and
each 3 × 3 Boolean matrix M, whether there exist a finite system Γ of spatial entities and a
Type-1 entity A ∈ Γ and a Type-2 entity B ∈ Γ such that M = Rv9(A,B).

2We believe this or similar encoding has been used elsewhere before.
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Table 2: Realizable Relations in V9I

Type Corresponding Matrix Identities of Real-
izable Relations in V9I

(area, area) M0,M1,M27,M31,M91,M95,
M351,M292,M293,M319,M383,M448,
M449,M475,M479,M484,M485,M511

(line, line) M0,M1,M27,M45,M63,M195,
M219,M239,M255,M325,M351,M365,
M383,M455,M479,M495,M511

(line, area) M0,M1,M27,M31,M195,M199,
M219,M223,M287,M455,M479,M292,
M293,M319,M487,M511

(point, point) M0,M1,M27

(point, line) M0,M1,M45,M27

(point, area) M0,M1,M27,M31,M36,M37

3.1 The V9I relation between two points

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between two points p, q. Note that for two points p, q, we have {p}◦ = {q}◦ = ∅, and ∂{p} =
{p}, ∂{q} = {q}. Moreover, we have p ∈ {p}v and q ∈ {q}v. Therefore, if M represents the
V9I relation between p, q, then the first row and the first column of M are both (0, 0, 0).

As a consequence, the V9I relation between two points p, q is represented by the following
matrix:

Rv9(p, q) =

⎛

⎝
0 0 0
0 {p} ∩ {q} {p} ∩ {q}v
0 {p}v ∩ {q} {p}v ∩ {q}v

⎞

⎠ .

We will need the following result, which shows that, in particular, p is in {q}v iff p = q.

Proposition 1. Let Γ be a finite set of spatial entities and p be a point in Γ. If X is a point or a
line in Γ, then p ∈ Xv iff p ∈ X; if X is an area in Γ, then p ∈ Xv iff p ∈ ∂X .

Proof. Take the case when X is a line as an example. If p ∈ X , then d(p,X) = d(p, p) = 0,
and hence p ∈ Xv. On the other hand, if p ̸∈ X , then d(p, p) = 0 < d(p,X) because X is a
closed set. Hence p ̸∈ Xv.

Note that {p} ∩ {q} ̸= ∅ iff p = q. By p ∈ {p}v and q ∈ {q}v, we know if {p} ∩ {q} is
nonempty, then the other three intersections are all nonempty. On the other hand, if {p}∩{q} =
∅, then by Proposition 1 we know p ̸∈ {q}v and q ̸∈ {p}v. So, in this case, {p}v ∩ {q}v is
the only undetermined intersection. This suggests that there are at most three possible matrices.
These are all realizable and their realizations are shown in Figure 1. We note that the first two
relations are context-sensitive in the sense that existence of other entities in the finite system Γ
will affect the validity of these relations.
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Figure 1: V9I (point, point) relations between two points p and q, where L is an auxiliary line.

Definition 2. We say a V9I relation α is context-sensitive if there exists an instance (A,B) of
α such that the V9I relation between A,B changes if we add (or delete) a third entity C to Γ
without changing all the other entities.

Remark 2. Let A,B be two spatial entities that are related by a context-sensitive V9I relation
α. Suppose the relation between A,B changes to another V9I relation α′ if we add or delete a
third region C from Γ. Because A,B have not changed, it is clear that the topological relation
between them does not change. Therefore, the V9I relations α and α′ are contained in the same
4IM relation. Moreover, these relations cannot be distinguished by 9IM.

3.2 The V9I relation between a point and a line

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between a point p and a line L. Note that {p}◦ = ∅ and ∂{p} = {p} ⊂ {p}v. Therefore, the
V9I relation between p and L is represented by the following matrix:

Rv9(p, L) =

⎛

⎝
0 0 0

{p} ∩ L◦ {p} ∩ ∂L {p} ∩ Lv

{p}v ∩ L◦ {p}v ∩ ∂L {p}v ∩ Lv

⎞

⎠ .

There are two subcases according to whether p is in L.
First, suppose p is not in L. Then by Proposition 1 we know p ̸∈ Lv, i.e. {p} ∩ Lv = ∅.

Similarly, for any q ∈ L, we have d(q, L) = 0 < d(q, p), and hence q ̸∈ {p}v. We have
{p}v ∩ L = ∅. So there are only two possible matrices in this subcase:

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

Second, suppose p is a point of L. Then it is straightforward to show that {p}v ∩ L =
{p}v ∩Lv = {p}. If p ∈ L◦, then we have {p}∩ ∂L = ∅ and {p}v ∩ ∂L = ∅. If p ∈ ∂L, then
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we have {p} ∩ L◦ = ∅ and {p}v ∩ L◦ = ∅. Because {p} ⊂ {p}v and L ⊂ Lv, there are only
two possible matrices in this subcase:

⎛

⎝
0 0 0
1 0 1
1 0 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠ .

These four matrices are all realizable, and illustrations are given in Figure 2. We note that the
first two relations are context-sensitive.

Figure 2: V9I (point, line) relations between a point p and a line L, where K is an auxiliary
line.

3.3 The V9I relation between a point and an area

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between a point p and an area A. Note that {p}◦ = ∅, ∂{p} = {p} ⊆ {p}v and ∂A ⊆ Av. The
V9I relation between p and a is represented by the following matrix:

Rv9(p,A) =

⎛

⎝
0 0 0

{p} ∩A◦ {p} ∩ ∂A {p} ∩Av

{p}v ∩A◦ {p}v ∩ ∂A {p}v ∩Av

⎞

⎠ .

There are three subcases according to the topological relation between p and a. First, if
p ∈ A◦, then {p} ∩ A◦ ̸= ∅, {p}v ∩ A◦ ̸= ∅, and {p} ∩ ∂A = {p}v ∩ ∂A = {p} ∩ Av = ∅.
Thus the only undetermined intersection is {p}v ∩Av, and there are only two possible matrices:

⎛

⎝
0 0 0
1 0 0
1 0 0

⎞

⎠

⎛

⎝
0 0 0
1 0 0
1 0 1

⎞

⎠ .

Second, if p ∈ ∂A, then {p} ∩ A◦ = ∅ and {p} ∩ ∂A = {p}v ∩ ∂A = {p} ∩ Av =
{p}v ∩ Av ̸= ∅. The only undetermined intersection is {p}v ∩ A◦. Thus there are also two
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possible matrices in this subcase:
⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
1 1 1

⎞

⎠ .

Third, when p ̸∈ A, then {p}v ∩ A = ∅ and {p} ∩ Av = ∅. The only undetermined
intersection is {p}v ∩Av. Thus we also get two possible matrices for this subcase:

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

These six matrices are all realizable, and illustrations are given in Figure 3. Note that rela-
tions M0 and M1 in Figure 3 are context-sensitive and split the 4IM (point, area) relation dis-
joint. They cannot be distinguished by 9IM. Similarly, the relations M36 and M37 are context-
sensitive and split the 4IM (point, area) relation contained by. They cannot be distinguished
by 9IM either. In addition, the V9I relations M27 and M31

3 split the 4IM (point, area) rela-
tion touch, and they could neither be distinguished by 9IM. These relations are, however, not
context-sensitive.

Figure 3: V9I (point, area) relations between a point p and an area A, where L is an auxiliary
line and B is an auxiliary area.

3This relation was not considered in (Chen et al., 2001).
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Definition 3. We say a V9I (point, region) relation α is shape-sensitive if there exists an in-
stance (p,A) of α such that the V9I relation between p and A changes if we replace a tiny part
of the boundary of A around p with either a straight line segment or an angle centred at p.

Remark 3. The V9I relations M27 and M31 are shape-sensitive (see Figure 3). In fact, M27

occurs when the boundary of A around p is “angled”, while M31 occurs when the boundary of
A around p is “straight”.

3.4 The V9I relation between two lines

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between two lines L and K, i.e. when M = Rv9(L,K).

Rv9(L,K) =

⎛

⎝
L◦ ∩K◦ L◦ ∩ ∂K L◦ ∩Kv

∂L ∩K◦ ∂L ∩ ∂K ∂L ∩Kv

Lv ∩K◦ Lv ∩ ∂K Lv ∩Kv

⎞

⎠ .

Recall that L ⊂ Lv and K ⊂ Kv. We have the following proposition.

Proposition 2. Let Γ be a finite set of spatial entities and L,K be two lines in Γ. Suppose
X ⊆ L and Y ⊆ K. Then we have

(i) If X ∩ Y ̸= ∅, then Lv ∩ Y ̸= ∅, X ∩Kv ̸= ∅, and Lv ∩Kv ̸= ∅.

(ii) If X ∩K = ∅ then X ∩Kv = ∅.

(iii) If L ∩ Y = ∅ then Lv ∩ Y = ∅.

Proof. Item (i) follows directly from the fact that L ⊂ Lv and K ⊂ Kv. As for (ii), suppose
X ∩K = ∅. Then for any point p in X , we have d(p, L) = 0 < d(p,K), i.e. p is not in Kv.
Therefore X ∩Kv = ∅. Item (iii) is completely similar to (ii).

We first consider the case when L◦ ∩K◦ ̸= ∅. By Proposition 2(i) we know L◦ ∩Kv ̸= ∅,
Lv ∩K◦ ̸= ∅ and Lv ∩Kv ̸= ∅. Therefore, the representation matrix becomes:

Rv9(L,K) =

⎛

⎝
1 L◦ ∩ ∂K 1

∂L ∩K◦ ∂L ∩ ∂K ∂L ∩Kv

1 Lv ∩ ∂K 1

⎞

⎠ .

Consider the intersection between L◦ and ∂K. By Proposition 2 we know Lv ∩ ∂K ̸= ∅ if
L◦ ∩ ∂K ̸= ∅, and ∂L ∩Kv ̸= ∅ if ∂L ∩K◦ ̸= ∅, and ∂L ∩K = ∅ iff ∂L ∩Kv = ∅, and
L∩ ∂K = ∅ iff Lv ∩ ∂K = ∅. In addition, if ∂L∩ ∂K ̸= ∅, then we have ∂L∩Kv ̸= ∅ and
Lv ∩ ∂K ̸= ∅. Summing these up, we know that there are at most eight possible matrices with
nonempty interior-interior intersection:

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠

⎛

⎝
1 1 1
0 0 0
1 1 1

⎞

⎠

⎛

⎝
1 0 1
1 0 1
1 0 1

⎞

⎠

⎛

⎝
1 0 1
0 1 1
1 1 1

⎞

⎠

⎛

⎝
1 1 1
0 1 1
1 1 1

⎞

⎠

⎛

⎝
1 0 1
1 1 1
1 1 1

⎞

⎠

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠

⎛

⎝
1 1 1
1 0 1
1 1 1

⎞

⎠.
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We next consider the case when L◦ ∩K◦ = ∅. By Proposition 2, we know L◦ ∩K = ∅ iff
L◦∩Kv = ∅, L∩K◦ = ∅ iff Lv ∩K◦ = ∅, ∂L∩K = ∅ iff ∂L∩Kv = ∅, and L∩∂K = ∅
iff Lv ∩ ∂K = ∅. Combing with the fact that K ⊂ Kv and L ⊂ Lv, we know there are only
nine possible matrices when L◦ ∩K◦ = ∅:

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 1 1
0 0 0
0 1 1

⎞

⎠

⎛

⎝
0 0 0
1 0 1
1 0 1

⎞

⎠

⎛

⎝
0 1 1
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 0 0
1 1 1
1 1 1

⎞

⎠

⎛

⎝
0 1 1
1 0 1
1 1 1

⎞

⎠

⎛

⎝
0 1 1
1 1 1
1 1 1

⎞

⎠.

Thus altogether we have 17 possible matrices. These matrices are all realizable and illustra-
tions are given in Figure 4.

Remark 4. The first pair of relations in Figure 4 are context-sensitive and split the 4IM relation
disjoint. Again, these context-sensitive relations cannot be distinguished by 9IM. As there are
sixteen (line, line) 4IM relations (Hadzilacos and Tryfona, 1992), the V9I model leaves all 4IM
relations other than disjoint unchanged. We also note that only eight V9I (line, line) relations
have been found in (Chen et al., 2001).

3.5 The V9I relation between a line and an area

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between a line L and an area A. The corresponding Voronoi-based 9-intersection model is:

Rv9(L,A) =

⎛

⎝
L◦ ∩A◦ L◦ ∩ ∂A L◦ ∩Av

∂L ∩A◦ ∂L ∩ ∂A ∂L ∩Av

Lv ∩A◦ Lv ∩ ∂A Lv ∩Av

⎞

⎠ .

Recall that L ⊂ Lv and ∂A ⊂ Av. We have the following proposition.

Proposition 3. Let Γ be a finite set of spatial entities and L be a line, and A be an area, both in
Γ. Suppose X is a set. Then we have

(i) If L ∩X ̸= ∅, then Lv ∩X ̸= ∅; if X ∩ ∂A ̸= ∅, then X ∩Av ̸= ∅.

(ii) If ∂L ∩ ∂A = ∅ then ∂L ∩Av = ∅.

(iii) If L ∩ ∂A = ∅ then Lv ∩ ∂A = ∅.

Proof. Items (i) follows directly from the fact that L ⊂ Lv and ∂A ⊂ Av. As for (ii), suppose
∂L ∩ ∂A is empty. Then for any point p in ∂L, we know d(p, ∂L) = 0 < d(p, ∂A), hence
p is in not in Av. For (iii), suppose L ∩ ∂A is empty. Then for any point p in ∂A we have
d(p, ∂A) = 0 < d(p, L), hence p is not in Lv.

Case 1. We begin by consider the case when L◦∩A◦ is nonempty. By Proposition 3(i) we know
Lv ∩A◦ is also nonempty.
Subcase 1.1. If L◦ ∩ ∂A ̸= ∅, then by Proposition 3(i) we have Lv ∩ ∂A, L◦ ∩Av, and Lv ∩Av

are all nonempty. Therefore the representation matrix becomes:

Rv9(L,A) =

⎛

⎝
1 1 1

∂L ∩A◦ ∂L ∩ ∂A ∂L ∩Av

1 1 1

⎞

⎠ .

11



Figure 4: V9I (line, line) relations between two lines L and K, where M is an auxiliary line.
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Moreover, by Proposition 3(i) and (ii) we know ∂L∩∂A = ∅ iff ∂L∩Av = ∅. Summing these
up, we get four possible matrices for this subcase:

⎛

⎝
1 1 1
0 1 1
1 1 1

⎞

⎠

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠

⎛

⎝
1 1 1
0 0 0
1 1 1

⎞

⎠

⎛

⎝
1 1 1
1 0 0
1 1 1

⎞

⎠ .

Subcase 1.2. If L◦∩∂A = ∅, then by Proposition 3(i) we know L◦∩Av = ∅. The representation
matrix then becomes:

Rv9(L,A) =

⎛

⎝
1 0 0

∂L ∩A◦ ∂L ∩ ∂A ∂L ∩Av

1 Lv ∩ ∂A Lv ∩Av

⎞

⎠ .

In addition, if the boundaries of L and A intersect, then by Proposition 3(i) we know ∂L∩Av ̸=
∅, Lv ∩ ∂A ̸= ∅ and Lv ∩Av ̸= ∅.

If, on the other hand, the boundaries of L and A do not intersect, then by Proposition 3(ii)
we know ∂L ∩ Av = ∅. Since L◦ ∩ A◦ ̸= ∅, we must have ∂L ∩ A◦ ̸= ∅ in this case. This is
because, otherwise, boundary points of L are outside A but some interior points of L are interior
points of A, and hence L should cross the boundary of A (i.e. L◦ ∩ ∂A ̸= ∅). A contradiction.
Furthermore, by Proposition 3(iii) we have Lv ∩ ∂A = ∅ since L ∩ ∂A = ∅. Summing these
results up, we get four possible matrices for this case:

⎛

⎝
1 0 0
0 1 1
1 1 1

⎞

⎠

⎛

⎝
1 0 0
1 1 1
1 1 1

⎞

⎠

⎛

⎝
1 0 0
1 0 0
1 0 0

⎞

⎠

⎛

⎝
1 0 0
1 0 0
1 0 1

⎞

⎠ .

Case 2. The case when L◦ ∩ A◦ = ∅ is much like the previous case. In this case, we note that
when L and A are separated (i.e. L ∩ A = ∅), then Lv ∩ A◦ = ∅. This is because, for any
interior point p of A, we have d(p, ∂A) < d(p, L). In this case, we have eight possible matrices:

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
1 1 1

⎞

⎠

⎛

⎝
0 1 1
0 0 0
0 1 1

⎞

⎠

⎛

⎝
0 1 1
0 0 0
1 1 1

⎞

⎠

⎛

⎝
0 1 1
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 1 1
0 1 1
1 1 1

⎞

⎠ .

Therefore we have in total 16 possible matrices for a line and an area. These matrices are all
realizable and illustrations are shown in Figure 5.

Definition 4. We say a V9I (line, region) relation α is shape-sensitive if there exists an instance
(L,A) of α such that the V9I relation between L and A changes if we replace a tiny part of the
boundary of A and/or the line L around a point p with either a straight line segment or an angle
centred at p, where p is a touching point of A and L, i.e. a 0-dimensional connected component
of ∂A ∩ L.

Remark 5. Egenhofer et al. (1993) have shown that there are eleven 4IM relations between a
simple line and an area. The V9I splits a 4IM (line, area) relation when the line is disjoint from,
or is contained by, or touch the area. Note that there are three different (line, area) touch 4IM
relations according to whether the line touches the region at an interior point or at a boundary

13



Figure 5: V9I (line, area) relations, where L is a line, A is an area, K is an auxiliary line, and
B is an auxiliary area.
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Table 3: 4-intersection (area, area) relations and their matrix representations.
(

0 0
0 0

)
A and B are
disjoint

(
0 0
0 1

)
A and B touch

(
1 0
0 1

)
A equals B

(
1 1
0 0

)
A contains
B

(
1 1
0 1

)
A covers B

(
1 0
1 0

)
A is contained by B

(
1 0
1 1

)
A is covered
by B

(
1 1
1 0

) A and B overlap
with disjoint bound-
aries

(
1 1
1 1

)
A and B overlap with
intersecting boundaries

point of the line, or both, viz.
(

0 0
0 1

)
(touch boundary),

(
0 1
0 0

)
(touch interior), and

(
0 1
0 1

)
(touch both). The disjoint relation is split into M0 and M1, which are context-

sensitive; and the contained by relation is split into M292 and M293, which are also context-
sensitive. The touch boundary relation is split into M27 and M31, the touch interior relation
is split into M195 and M199, and the touch both relation is split into M219 and M223. These six
touch V9I relations are shape-sensitive. As before, these context- and shape-sensitive relations
are not distinguishable by 9IM.

3.6 The V9I relation between two areas

Suppose M is a 3× 3 Boolean matrix. We now determine when M represents the V9I relation
between two areas A and B. The corresponding Voronoi-based 9-intersection model is:

Rv9(A,B) =

⎛

⎝
A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩Bv

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩Bv

Av ∩B◦ Av ∩ ∂B Av ∩Bv

⎞

⎠ .

Egenhofer and Franzosa (1991) have shown that there are nine topological relations (see Table 3)
between two areas A and B, using the 4-intersection model.

By the definition of Voronoi region, we have ∂X ⊂ Xv for any area X . It is easy to conclude
the following proposition:

Proposition 4. Let Γ be a finite set of spatial entities and X,Y be two areas in Γ. Then we have

(i) If ∂X ∩ Y v ̸= ∅ then Xv ∩ Y v ̸= ∅.

(ii) If ∂X ∩ Y ◦ ̸= ∅ then Xv ∩ Y ◦ ̸= ∅.

(iii) ∂X ∩ ∂Y ̸= ∅ iff Xv ∩ ∂Y ̸= ∅.

(iv) If X ∩ ∂Y = ∅ then X◦ ∩ Y v = ∅.

Proof. Items (i) and (ii) follow directly from the fact that ∂X is a subset of Xv. So does the
‘only-if’ part of (iii). As for the ‘if’ part of (iii), suppose ∂X ∩ ∂Y is empty. Then for any point
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p in ∂Y , we know d(p, ∂Y ) = 0 < d(p, ∂X), hence p is in not in Xv. For (iv), suppose X ∩∂Y
is empty. Then for any point p in X◦ we have d(p, ∂X) < d(p, ∂Y ), because any path from p
to any boundary point of Y crosses the boundary of X first. That is, no interior point of X is in
the Voronoi region of Y .

We next consider the V9I relation between A and B case by case.
If A and B are disjoint, then by Proposition 4(iii), we know both ∂A∩Bv and Av ∩ ∂B are

empty. Similarly, by Proposition 4(iv), we know both A◦ ∩ Bv and Av ∩ B◦ are empty. Hence
the representation matrix becomes:

Rv9(A,B) =

⎛

⎝
0 0 0
0 0 0
0 0 Av ∩Bv

⎞

⎠ ,

and there are only two possible matrices in this case:
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

If A and B touch, then by Proposition 4(iii) and (i), we know ∂A ∩ Bv, Av ∩ ∂B, and
Av ∩Bv are all nonempty. The representation matrix becomes:

Rv9(A,B) =

⎛

⎝
0 0 A◦ ∩Bv

0 1 1
Av ∩B◦ 1 1

⎞

⎠ ,

and there are only four possible matrices for this case:
⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 0 1
0 1 1
0 1 1

⎞

⎠

⎛

⎝
0 0 0
0 1 1
1 1 1

⎞

⎠

⎛

⎝
0 0 1
0 1 1
1 1 1

⎞

⎠ .

If A equals B, the only relation is
⎛

⎝
1 0 1
0 1 1
1 1 1

⎞

⎠ .

If A contains B, then A◦∩Bv ̸= ∅ by Proposition 4(ii), and both ∂A∩Bv and Av∩∂B are
empty by Proposition 4(iii), and Av∩B◦ = ∅ by Proposition 4(iv) and ∂A∩B = ∅. Therefore,
the representation matrix becomes:

Rv9(A,B) =

⎛

⎝
1 1 1
0 0 0
0 0 Av ∩Bv

⎞

⎠ ,
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and there are only two matrices for this case:
⎛

⎝
1 1 1
0 0 0
0 0 0

⎞

⎠

⎛

⎝
1 1 1
0 0 0
0 0 1

⎞

⎠ .

Symmetrically, for the case that B contains A, the only two matrices are
⎛

⎝
1 0 0
1 0 0
1 0 0

⎞

⎠

⎛

⎝
1 0 0
1 0 0
1 0 1

⎞

⎠ .

If A covers B, then we have A◦ ∩ Bv ̸= ∅ by Proposition 4(ii), and ∂A ∩ Bv, Av ∩ ∂B,
and Av ∩Bv are all nonempty by Proposition 4(iii) and (i). Therefore, the representation matrix
becomes:

Rv9(A,B) =

⎛

⎝
1 1 1
0 1 1

Av ∩B◦ 1 1

⎞

⎠ .

Thus the only two relations for this case are:
⎛

⎝
1 1 1
0 1 1
0 1 1

⎞

⎠

⎛

⎝
1 1 1
0 1 1
1 1 1

⎞

⎠ .

Symmetrically, for the case that B covers A, the only two matrices are
⎛

⎝
1 0 0
1 1 1
1 1 1

⎞

⎠

⎛

⎝
1 0 1
1 1 1
1 1 1

⎞

⎠ .

If A and B overlap with disjoint boundaries, then we have A◦ ∩ Bv and Av ∩ B◦ are both
nonempty by Proposition 4(ii), and both Av ∩ ∂B and ∂A∩Bv are empty by Proposition 4(iii).
Therefore the representation matrix becomes:

Rv9(A,B) =

⎛

⎝
1 1 1
1 0 0
1 0 Av ∩Bv

⎞

⎠ ,

and there are only two matrices in this case:
⎛

⎝
1 1 1
1 0 0
1 0 0

⎞

⎠

⎛

⎝
1 1 1
1 0 0
1 0 1

⎞

⎠ .

If A and B overlap with intersecting boundaries, then we have A◦ ∩ Bv and Av ∩ B◦ are
both nonempty by Proposition 4(ii), and Av ∩ ∂B, ∂A ∩Bv, and Av ∩Bv are all nonempty by
Proposition 4(iii) and (i). Thus there is only one matrix in this case, i.e.:

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .
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Summing these up, we get 18 possible matrices for (area, area) relations. These matrices
are all realizable and illustrations are given in Figure 6.

Definition 5. We say a V9I (region, region) relation α is shape-sensitive if there exists an
instance (A,B) of α such that the V9I relation between A and B changes if we replace a tiny
part of the boundary of A and/or the boundary of B around a point p with either a straight line
segment or an angle centred at p, where p is a touching point of A and B, i.e. a 0-dimensional
connected component of ∂A ∩ ∂B.

Remark 6. The V9I splits each 4IM (area, area) relation except equal and overlap with interse-
cting boundaries. On one hand, disjoint is split into M0 and M1, contained by is split into
M292 and M293, contain is split into M448 and M449, and overlap with disjoint boundaries
is split into M484 and M485. These V9I relations are context-sensitive. On the other hand, touch
is split into M27, M31, M91, and M95, covered by is split into M319 and M383, and covers is
split into M475 and M479. These V9I relations are shape-sensitive. Finally, we note that all split
V9I relations are not distinguishable by 9IM.

Remark 7. Context-sensitive V9I relations are useful in, for instance, identifying ‘safe’ evacu-
ation route for people trapped in bushfire. To be specific, let area A and area B be two disjoint
fire zones which are still spreading radially. Suppose there is a person P who is trapped at a
point C near A and B and trying to go to a safe area D. Could P run from C to D before the
fire from A and B blocks the way? Questions like this can be answered by using the V9I model.
Assume that the running speed of P is the same as the spreading speed of the fire. If C and D are
‘blocked’ by A and B in the V9I model (i.e. the Voronoi regions of C and D are disconnected
because of the existence of A and B), then it is highly possible that P will be engulfed by fire
when running to D. Note that the V9I model can also be generalised to take the spreading speed
of fire and the running speed of P as weights of the distance. In this way, we can get more
reliable suggestions that are critical in bushfire (or flood) evacuation route planning.

Due to shape-sensitivity, V9I is able to distinguish four kinds of touch relation according
to whether the boundaries around a touching point are ‘angled’ or ‘straight’. For example,
in Figure 6, M27 is an ‘angled angled’ touch, M31 is an ‘angled straight’ touch, M91 is an
‘straight angled’ touch, and M95 is a combination of the latter two. In the same sense, V9I is also
distinguishes between ‘angled angled’ covered by (M319) and ‘angled straight’ covered by
(M383).

These distinctions may enhance the recognition of objects or events in image processing.
Take loading cubic boxes (e.g. containers) into a truck as an example. Using the V9I, we could
differentiate between stable and unstable states. It is easy to see that ‘straight straight’ touch rep-
resents a stable state, while the other three touch relations, i.e. ‘angled angled’, ‘angled straight’,
and ‘straight angled’ touch, all represent unstable states. When an unstable state detected, the
monitor system can sound an alarm to avoid potential danger of overturning.

The above distinctions of touch relations is also useful in monitoring changes of complex
objects in GIS. For example, in (Jiang and Worboys, 2009, page 58), the authors remarked that
their model cannot distinguish the two different splits of regions shown in Figure 11 of their
paper (first proposed by Galton (1997)). This problem can be fixed by using the V9I model.
Actually, the two different splits of regions involve, respectively, ‘angled angled’ touch and
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Figure 6: V9I (area, area) relations, where A and B are two areas, L is an auxiliary line, C
and D are two auxiliary simple regions.
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‘straight straight’ touch. In general, this distinguishing power of V9I is useful to the analysis of
dynamic changes involving different touch relations, which are likely to result in different states
or processes in real world.

4 Further discussions

It is clear that the analysis in Section 3 heavily relies on the definition of Voronoi regions. There
are two variant definitions of Voronoi regions.

Let Γ be a finite system of spatial entities. The first variant defines the Voronoi region of a
point or a line as in Definition 1, but defines the Voronoi region of an area A as

Av = {p : (∀X ∈ Γ)d(p,A) ≤ d(p,X)}. (5)

The second variant defines the Voronoi region of an entity E as

Ev = {p : (∀Y ∈ Γ)d∗(p,E) < d∗(p, Y )}. (6)

Compared with Definition 1, these two variants are not desirable in modelling spatial relations.
Take (area, area) relations as an example. If we adopt (5), then there are ten different V9I
(area, area) relations. This is because, by (5), we have A ⊂ Av and B ⊂ Bv, and Av ∩ Bv

is the only (possibly) undetermined entry in the V9I representation matrix if the 4-Intersection
matrix is given. More specifically, only the disjoint relation splits because the existence of a
third entity may block the connection between those two areas.

On the other hand, if we adopt (6), then there are only nine different V9I (area, area)
relations, i.e. the same as the nine 4-Intersection relations. This is because by (6) we have
∂A ∩ Bv = Av ∩ ∂B = Av ∩ Bv, and A◦ ∩ Bv ̸= ∅ iff A◦ ∩ ∂B ̸= ∅, and, symmetrically,
Av ∩B◦ ̸= ∅ iff A∂ ∩B◦ ̸= ∅. In other words, every V9I matrix entry is uniquely determined
by if 4-Intersection matrix is given.

This shows that the definition adopted in Definition 1 of this paper and in Chen et al. (2001)
is the best choice if we want to make more distinctions.

5 Conclusion

In this paper we have given a formal and complete classification for Voronoi-based nine inter-
section (V9I) relations between various types of spatial entities. Our results have shown that the
V9I model is in fact more expressive than what has been believed before. A very interesting
phenomenon we found in this paper is that some V9I relations are context- or shape-sensitive.
This means that the existence of other entities or the shape of the entities may affect the validity
of certain relations. These context- or shape-sensitive relations cannot be obtained by 9IM. Our
future work will develop efficient algorithms for computing the Voronoi regions of a system of
areas or lines, and develop algorithms for computing and/or detecting these sensitive relations.
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