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Abstract— Cloud computing is a new paradigm for hosting 

and delivering services on demand over the internet where 

users access services. It is an example of an ultimately 

virtualized system, and a natural evolution for data centers 

that employ automated systems management, workload 

balancing, and virtualization technologies. Live virtual 

machine (VM) migration is a technique to achieve load 

balancing in cloud environment by transferring an active 

overload VM from one physical host to another one without 

disrupting the VM. In this study, to eliminate whole VM 

migration in load balancing process, we propose a Fuzzy 

Predictable Load Balancing (FPLB) approach which confronts 

with the problem of overload VM, by assigning the extra tasks 

from overloaded VM to another similar VM instead of whole 

VM migration. In addition, we propose a Fuzzy Prediction 

Method (FPM) to predict VMs’ migration time. This approach 

also contains a multi-objective optimization model to migrate 

these tasks to a new VM host. In proposed FPLB approach 

there is no need to pause VM during migration time. 

Furthermore, considering this fact that VM live migration 

contrast to tasks migration takes longer to complete and needs 

more idle capacity in host physical machine (PM), the 

proposed approach will significantly reduce time, idle memory 

and cost consumption. 

Keywords—cloud computing, load balancing, virtual 

machine migration, workload prediction. 

I.  INTRODUCTION 

Cloud computing is a style of computing where flexible 
high-performance, pay-as-you-go, and on-demand offering 
service are delivered to external customers using Internet 
technologies. Cloud computing services are divided into 
three classes, according to the abstraction level of the 
capability provided and the service model of providers, 
namely Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS) and Software as a Service (SaaS) [1]. The key 
underlying technology in cloud infrastructures is 
virtualization.  Virtualization is a technique for hiding the 
physical characteristics of computing resources and allows 
servers and storage devices to be shared and utilization be 
increased. This simulated environment is called a virtual 
machine (VM) that is a software abstraction with the looks of 
a computer system's hardware (real machine) [2]. 

Cloud computing platform achieves dynamic balance 
between the servers applying virtualization technology for 
resource management. In virtualized cloud environment, 
applying online VM migration technology can achieve 
online remapping of VMs and physical resources, and 
dynamic whole system load balancing [3]. In particular, VM 
migration has been applied for flexible resource allocation or 
reallocation, by moving VM from one physical machine to 
another for stronger computation power, larger memory, fast 
communication capability, or energy savings [4].  

Although a significant amount of research has been done 
to achieve system load balancing [4, 5], more improvement 
is still needed as most of these approaches tried to migrate 
VMs, when they became overload. In addition, in most of 
them predicting VMs’ migration time is missed. Considering 
this fact that the whole VM migration takes much more 
times and cost in comparison with tasks migration, we 
propose a fuzzy load balancing method which migrates tasks 
from overloaded VMs instead of migration VMs to achieve 
load balancing in cloud environment. We also propose an 
algorithm to solve the problem of migrating these tasks to 
new VMs host which is a multi-objective problem subject to 
minimizing cost, minimizing execution and transferring 
time. To solve this problem we apply multi-objective genetic 
algorithm (MOGA). Furthermore, to accelerate load 
balancing process and reduce response time, we develop a 
fuzzy prediction method to predict VM workload situation 
and its migration time.  

The rest of this paper is organized as follows. Section II 
presents the related works about VM migration techniques 
and VM workload prediction methods. Section III explains 
the basic concept of expert systems and neural networks, and 
genetic algorithm. In Section IV, we develop a Fuzzy 
Prediction Method (FPM) to predict VM migration time. In 
Section V, we propose a conceptual model and the algorithm 
of Fuzzy Predictable Load Balancing (FPLB) approach for 
solving the problem of overloaded VMs by optimal tasks 
migration from overloaded VMs. Our developed algorithm 
for solving multi-objective tasks scheduling problem and 
completing FPLB algorithm, is described in Section VI.  The 
proposed approach is evaluated in Section VII. Finally we 
present the conclusion and future works in Section VIII. 

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine


 

 

II. RELATED WORKS 

A. VM Migration Thechniques 

Virtualization technique has improved utilization and 
system load balancing by enabling VM migration, and 
provided significant benefits for cloud computing [6]. 
Several methods have been developed to migrate a running 
instance of a VM from one physical host to another to 
optimize cloud utilization. Primary migration relies on 
process suspend and resume. Many systems [7, 8] just pause 
the VM and copy the state data, then resume the VM on the 
destination host. This forces the migrated application to stop 
until all the memory states have been transferred to the 
migration destination where it is resumed. These methods 
cause the application to become unavailable during the 
migration process. ZAP [9] could achieve lower downtime of 
the service by just transferring a process group, but it still 
uses stop-and-copy strategy. To reduce the migration 
downtime and move the VM between hosts in local area 
network without disrupting it, VMotion [10] and Xen [11] 
utilize pre-copy migration technique to perform live 
migration and support seamless process transfer. In pre-copy 
migration technique, VMs migrate by pre-copying the 
generated run-time memory state files from the original host 
to the migration destination host. If the rate for such a dirty 
memory generation is high, it may take a long time to 
accomplish live migration because a large amount of data 
needs to be transferred. In extreme cases, when dirty 
memory generation rate is faster than pre-copy speed, live 
migration will fail. Considering this fact, Jin et al. presented 
the basic pre-copy model of VM live migration and proposed 
an optimized algorithm to improve the performance of live 
migration by limiting the speed of changing memory through 
controlling the CPU scheduler of the VM monitor [4]. Lin et 
al. believe that most of the proposed methods for on-demand 
resource provisioning and allocation, focused on the 
optimization of allocating physical resources to their 
associated virtual resources and migrating VMs to achieve 
load balance and increase resource utilization. Unfortunately, 
these methods require the suspension of the executing cloud 
computing applications due to the mandatory shutdown of 
the associated VMs [12]. To overcome this drawback, they 
proposed a threshold-based dynamic resource allocation 
scheme for cloud computing that dynamically allocate the 
VMs among the cloud computing applications based on their 
load changes. In their proposed method, they determined 
when migration should be done but they did not specify the 
details of how the reallocation will occur.  

A fundamental drawback of the most existing researches 
is that they consider complete VM migration to overcome 
overload VM and achieve system load balance. In addition, 
predicting VMs’ workload situation and their migration time, 
are not considered in most of traditional load balancing 
approaches. In this paper, we propose a new Fuzzy 
Predictable Load Balancing (FPLB) approach which predicts 
VMs’ workload situation, and transfers tasks from overloads 
VMs instead of whole VM migration to achieve system load 
balancing. The proposed approach not only eliminates the 

suspend and resume process during VM migration, but also 
omits pre-copy mechanism and producing dirty memory in 
live VM migration.  

B. Workload Prediction Methods  

Resource provisioning in compute clouds often requires 
an estimate of the required capacity for VMs. The estimated 
VM size is essential for allocating resources commensurate 
with demand [13]. Meng et al. proposed an algorithm for 
estimating the aggregate size of multiplexed VMs. They 
decoupled VM workload into regular and irregular 
fluctuating components. To forecast regular workload, they 
simply assumed that the regular patterns will preserve in the 
future, e.g., a steadily increasing trend keeps increasing at 
the same rate. On the other hand, for forecasting irregular 
workload, they performed a time series forecasting technique 
based on historic workload patterns [13]. Nagothu et al. 
proposed a new method for load prediction. They separated 
load prediction into linear and non-linear prediction 
algorithms categories. They believed a linear prediction 
algorithm can either involve 1-Dim observation sequences or 
d-Dim observation space signals [14].  

Most of the existing researches in this area have applied 
prediction methods such as neural networks and linear 
regression to forecast VMs workload in cloud environment. 
These prediction methods predict future workload applying 
previous workload patterns in time slot t. In IaaS where VMs 
are assigned to customers; VMs’ workload is affected by 
customers’ behavior and decisions, and significantly changes 
in seconds. Therefore, upcoming VMs’ workload in cloud 
environment could be independent from their previous 
workload pattern. To overcome this problem we propose a 
workload prediction method applying a neural network and 
an expert system with the specific parameters that control 
and monitor recent changes in VMs’ workload pattern. 

III. BACKGROUND 

A. Expert Systems  

The basic idea behind expert systems (ES) is simply that 
expertise, which is the vast body of task-specific knowledge, 
is transferred from a human to a computer. This knowledge 
is then stored in the computer and users call upon the 
computer for specific advice as needed. The computer can 
make inferences and arrive at a specific conclusion. Then 
like a human consultant, it gives advices and explains, if 
necessary, the logic behind the advice. A rule-based ES is 
defined as one, which contains information obtained from a 
human expert, and represents that information in the form of 
rules, such as IF–THEN. The rule can then be used to 
perform operations on data to inference in order to reach 
appropriate conclusion. These inferences are essentially a 
computer program that provides a methodology for 
reasoning about information in the rule base or knowledge 
base, and for formulating conclusions [15, 16]. 

B. Neural Networks 

A neural network (NN) consists of a number of layers: 
the input layer has a number of input neurons   



 

 

         ; the output layer has one or more output neurons 
            and several hidden layers with hidden 
neurons             in between. In a fully-connected 
NN, the neurons at each layer are connected to the neurons 
of the next layer; these connections are known as synapses. 
Each synapse is associated with a weight, which is to be 
determined during training. During the training phase, the 
NN is fed with input vectors and random weights are 
assigned to the synapses. After presentation of each input 
vector, the network generates a predicted output    . The 
generated output is then compared with the actual output y; 
the difference between the two is known as the error term 
which is then used as a feedback to correct the synaptic 
weights of the network. The training of the NN continues 
until a specific criterion is met, e.g. the sum of squared errors 
falls below a certain threshold [17]. 

C. A Multi Objective Genetic Algorithm 

A multi-objective genetic algorithm (MOGA) is 
concerned with the minimization of multiple objective 
functions that are subject to a set of constraints. In MOGA 
for solving multi-objective optimization problems, first 
initial population whose scale is N is generated randomly. 
The first generation child population is gained through non-
dominated sorting [18] and basic operations such as 
selection, crossover and mutation. Then, from the second 
generation on, the parent population and the child population 
will be merged and sorted based on fast non-dominated. 
Calculate crowding distance among individuals on each non-
dominated layer. According to non-dominant relationship 
and crowding distance among individuals, select the 
appropriate individuals to form a new parent population. 
Finally, new child population is generated through basic 
operations of genetic algorithm and so on, until the 
conditions of the process end can be met [19]. 

IV. A FUZZY PREDICTION METHOD FOR DETERMINING 

THE VM MIGRATION TIME 

Considering this fact that future VMs’ workload could be 
independent from their previous workload pattern, we 
propose a Fuzzy Prediction Method (FPM) that not only 
applies neural network to predict workload patterns in VMs, 
but also applies an expert system to control near future 
changes in workload patterns for every VM, and determine 
the time that VMs will be overloaded and need to be 
migrated. To design the FPM, we first determine the 
conditions which lead to a VM to be overloaded. Then the 
ES rules are extracted from determined conditions. We run 
FPM every 5 minutes and control VM workload situation for 
the past 2 minutes. 

A. VM Migration Conditions 

If       be the VM workload capacity and         be 
the number of executing tasks in the VM as a time series in 
time slot T, then the VM will be overloaded at the time x 
when: 
                                                                               

and Equation 1 could have an answer for variable x during 
next 2 minutes, if following conditions be satisfied where ct 
is current time, and                               :  

Condition 1: Time series          rises one or more times 
during T. It means: 

                                     (2) 

It means:                 
                           

Condition 2: There would be overloading time for the VM 

if:                                                             (3) 

Condition 3: Rao (2011) proposed a metric of Productivity 
Index (PI) and use it to measure the system processing 
capability. He defined PI as: 

       
      

       
                                  (4) 

where       is the amount of completed work and       is 
the amount of resource (CPU) consumed during the time slot 
t. An overloaded system means that its cost keeps increasing 
but with stagnated or compromised yield. Virtual machine 
will be overloaded if PI begins to drop. Although Rao 
believes that for online identification, the single PI metric is 
not enough to identify system state because any change of PI 
can be either due to the system capacity or the input load 

change [20]. Considering this fact, to control VM’s 
workload situation during T, We determine following 
conditions that show PI drops during T: 

                                           

It means:        

                             

In addition, the time series        has a decreasing trend: 

                                               

Condition 4: Time series          has a raising trend: 

                                            

B. The Variables of Fuzzy Prediction Method  

The input variables of proposed FPM are defined as 
follows: the number of executing tasks in the VM at current 
time as          , the maximum number of executing tasks 

in VM during T as                 , the change in number 

of executing tasks in the VM at random time          
as                       , the          
                that shows         raised during T, the 
amount of completed tasks in the VM till current time as 
      , the amount of CPU consumed till current time as 
      , the change in productivity index at random time 
         as                , the              
       that shows       decreased during T.  In addition, in 
this approach a neural network model is trained, given the 
previous historic workload patterns (training data set) to 
predict VM workload pattern. The neural network prediction 
results        (desired output of neural network) will be 
applied by proposed FPM as an input variable. The FPM’s 



 

 

output variable is defined as         that denotes the 
predicted VM workload situation in near future.  The FPM’s 
variables membership functions are defined as follow: 

TABLE I. FUZZIFICATION OF          AND                 : INPUT  

Set Linguistic term α level cuts 

  1-level cut 0-level cut 

VL Very Low 0           

L Low           0,           

M Medium                    ,           

H High                   ,        

VH Very High                   

Universe of discourse: (0,     ) 

TABLE II. FUZZIFICATION OF                              
 AND               

                         : INPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 
VL Very Low -1 -0.5 

L Low -0.5 -1,0 

M Medium 0 -0.5,0.5 

H High 0.5 0,1 

VH Very High 1 0.5 

Universe of discourse: (-1,1) 

TABLE III. FUZZIFICATION OF       : INPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 

VL Very Low 0          

L Low         0,        

M Medium               ,         

H High               ,      

VH Very High               

Universe of discourse: (0, 100% Virtual CPUs utilization=CU) 

Note: Virtual CPUs determines how many physical CPUs can be used by a VM. The 
number of virtual CPUs together with the scheduler credit determine the total CPU 
resource allocated to a VM [20]. 

TABLE IV. FUZZIFICATION OF       : INPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 

VL Very Low 0       

L Low         0,       

M Medium              ,        

H High             ,     

VH Very High              

Universe of discourse: (0, Total number of executed tasks during T=N) 

TABLE V. FUZZIFICATION OF                         
 AND                               

                  : INPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 
VL Very Low -1 -0.5 

L Low -0.5 -1,0 

M Medium 0 -0.5,0.5 

H High 0.5 0,1 

VH Very High 1 0.5 

Universe of discourse: (-1, 1) 

TABLE VI. FUZZIFICATION OF       : INPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 
U Underload 0,0.3 0.7 

O Overload 0.7,1 0.3 

Universe of discourse: (0,1) 

TABLE VII. FUZZIFICATION OF          : OUTPUT  

Set Linguistic term α level cuts  

  1-level cut 0-level cut 
U Underload 0,0.3 0.7 

O Overload 0.7,1 0.3 

Universe of discourse: (0,1) 

C. The Expert System Rules 

We determine the ES rules base on aforementioned 
conditions to control VM’s workload changes and predict the 
time of VM migration. The two main rules are described as 
follows. For random        and           and ct as current 
time: 

 If             and             and                     

or                          and           and        
  or                   and                    
  and                           then        

 If             and              and                   

or                           and          and        
   or                   and                    
  and                             then        

V. A FUZZY PREDICTABLE LOAD BALANCING 

APPROACH  

In this section, we propose a FPLB approach. This 
approach contains a conceptual model and an algorithm 
which are designed to achieve system load balancing by 
migrating tasks from overloaded VMs. In addition, in this 
approach to decrease energy consumption and costs, we 
avoid choosing idle PMs as a new PM host, because if we 
transfer tasks to an idle PM, we have to turn it on and this 
action will increase energy consumption and costs [5].  

The complex applications in cloud environment are 
classified into two groups: (1) computing intensive, and (2) 
data intensive applications. To transfer data intensive 
applications, the scheduling strategy should decrease the data 

Fig. 1. The Membership Function of Input Variables of Tables 2 and 5 

Fig. 3. The Membership Function of Output Variable and        

Fig. 2. The Membership Function of Input Variables of Tables 1, 3 and 4 



 

 

movement to reduce the transferring time; but for 
transferring computing intensive tasks, the scheduling 
strategy should schedule the data to the high performance 
computer [21]. In this paper, we consider bandwidth as a 
variable to minimize the tasks transferring time for data 
intensive applications. In addition we consider new host 
PM’s properties (memory, hard disk, etc) to enhance 
performance utilization for computing intensive applications.  

In cloud environment, there are some tasks schedulers 
that consider task types, priorities and their dependencies to 
schedule tasks in optimal way and transfer them to the 
specific VM’s resources. In our proposed approach, we 
design a blackboard, where all cloud schedulers which 
manage VMs on clouds, share their information about VMs, 
their features and their tasks. Furthermore, the criteria of 
QoS as SLA information are mentioned in this blackboard. 
In proposed FPLB approach, there is a central scheduler that 
transfers tasks from an overhead VM to a new similar and 
appropriate VM. This scheduler applies the information of 
the blackboard to find an appropriate host VM for the task.  
In addition, the proposed FPM is used in FPLB approach to 
predict VM migration time to accelerate load balancing 
process and reduce response time. The proposed FPLB 
approach is illustrated in Figure 4 and its algorithm is 
described as follows: 

Step1- Gathering data and information about virtual 
machine managers (VMMs), VMs, PMs and SLA 
information, in the global blackboard as inputs: 

1. VMs tasks information: 
1.1. The number of executing tasks 
1.2. Tasks’ execution time and locations 
1.3. Tasks’ required resources (number of 

required processors) 

2. PMs’ Criteria (total/current) 
2.1. CPU (number and speed of the processors) 

2.2. Free Memory and Free Hard disk 
2.3. Bandwidth  
2.4. PM situation: Idle or active 
2.5. Its host VMM  

3. SLA information 
4. The objectives of the tasks migration 

optimization model and their information: 
4.1. Minimizing cost 

4.1.1. Cost policy information 
4.2. Minimizing execution time and 

transferring time 
4.1.2. Execution information  
4.1.3. Bandwidth information 

Step2- Monitoring data and information to determine VMs’ 
workflow information 

Step3- Predicting VM migration time applying proposed 
FPM:  

1. Determining   
 
   

 
   when    

         
2. Determining           when           

3. Determining                 

4. Determining NN results about VMs’ workload 
situation (Input for FPM) 

5. Calculating other FPM input variables 
6. Determining overloaded VMs and their migration 

time applying proposed FPM 
Step4- Determining the list of tasks which should be 

migrated from overloaded VM’s, and the list of 
candidate VMs to be the new host   

Step5- Finding optimal homogeneous VMs as a new host 
for executing the tasks of the overloaded VMs, 
which is a multi-objective task migration problem, 
applying MOGA (this step will be described in 
Section VI). 

Step6- Considering obtained optimal tasks migration 
schema, determining following information as the 
outputs:  
1. New optimal cost and optimal execution time 
2. Current VMs properties (Executing tasks, CPU, etc.) 

Step7- Transferring tasks and their corresponding data to the 
determined optimal host VMs  

Step8- Updating blackboards and schedulers’ information 
according to the outputs of Step 4. 

Step9- End. 

VI. AN ALGORITHM FOR SOLVING MULTI-OBJECTIVE 

TASKS MIGRATION PROBLEM USING MOGA  

In this section, we describe a sub-algorithm to complete 
the Step 5 of FPLB algorithm and solve the multi-objective 
tasks migration problem. This sub-algorithm determines an 
optimal tasks scheduling model to assign tasks from 
overloaded VMs to the new host VMs applying MOGA. 
Among different MOGA methods, we apply Deb's NSGAII 
[19]. NSGAII not only has good convergence and 
distribution mechanism, but also has higher convergence 
speed. This sub-algorithm applies data and information 
which are determined in Steps 1 to 4 of the FPLB algorithm 
as its inputs, then finds the optimal schema to assign arrival 
tasks from overloaded VMs to host VMs, conducting 
following steps:  

Step5.1. Determining candidate host VMs set by choosing 
the set of VMs which satisfy the constraints about 
host VMs’ properties as                   

Step5.2. Eliminating the list of overloaded VMs (which are 
determined in Step 2 applying proposed FPM) from 
candidate host VMs set.  

Step5.3. Determining the set of tasks which should migrate 
from overloaded VMs as immigrating tasks set: 
               

Step5.4. Applying MOGA to solve the multi-objective 
problem and assign the immigrating tasks to the 
optimal host VMs to minimize execution and 
transferring time and processing cost, conducting 
following steps: 
Step5.4.1. Initializing population P0 which is 

generated randomly  
Step5.4.2. Assigning rank to each individual based 

on non-dominated sort 



 

 

Step5.4.3. Implementing binary tournament 
selection, crossover and mutation on the 
initial population and creating a new 
population Q0 and set t=0. 

Step5.4.4. Merging the parent Pt and the child Qt to 

form a new population Rt = Pt  Qt. 
Step5.4.5. Adopting non-dominated relationship to 

sort population and calculate the 
crowding distance among population on 
each layer. 

Step5.4.6. Selecting the former N individuals as the 
parent population, namely                

Pt+1= Pt+1 1: N (Elite strategy). 
Step5.4.7. Implementing reproduction, crossover 

and mutation on population Pt+1 to form 
population Qt+1. 

Step5.4.8. If the termination conditions are met, 
output results as optimal tasks migration 
schema; otherwise, update the 
evolutionary algebra counter t=t+1 and 
go to step 5.4.4. 

VII. EVALUATION 

A system prototype is being developed based on the 
proposed FPLB and will be evaluated against the determined 
features. However, in this paper, the evaluation is presented 

by comparison of the proposed FPLB approach with 
traditional whole VM migration methods applying three 
parameters:  

(1) Power Consumption: considering this fact that the less 
number of active PM means the less power consumption [5], 
we applied following ratio to compare power consumption 
after load balancing applying FPLB approach:  

    
                   

                        
                   

In proposed approach, to transfer extra tasks from 
overloaded VM, we just need to find a new similar VM on 
an active PM as a new host and there will be no need to turn 
a new PM on. In contrast, for whole VM migration, more 
hardware capacity is needed and it is impossible for every 
case to avoid choosing idle PM. Therefore,     in FPLB 

approach compare to VM migration technique has lower 
value. Therefore, we have less “power consumption” after 
load balancing using FPLB approach and: 

             
             

               
  

(2) Idle Memory: to compare the efficiency of FPLB 
approach, we apply idle memory that is prepared during the 
load balancing process as: 

Step 1: Data gathering and updating (Blackboard) 

 

1. Minimizing cost 

 Cost information 

2. Minimizing execution time 

 Execution information 

PMs’ Criteria (total/current) 

Objectives 

Step 5, 6, 7 & 8: Central task scheduler 

(Solving tasks scheduling multi-objective problem) 

Determine: 

 VMs workload information 

 Overloaded VMs 

 Time of migration 

 The tasks which should be migrated  

 List of candidate VMs to be new host 

Step 2 & 4: Monitoring VMs’ workflow situation 

 

 CPU  

 Memory 

 Hard disk 

 Bandwidth  

 Idle or active 

 Its host VMM  

 … 

Computer 

node 

 

 The number of tasks 

 Tasks’ execution time 

 Tasks’ performance model 

 Tasks’ locations 

 Tasks’ required resources  

VMs tasks information 

 CPU 

 Memory 

 … 

SLA information 

Scheduler m 

VMM 

Guest VMs 

1. Determine: 

 Tasks migration destinations (new host VM) 

 New optimal cost 

 New optimal execution time 

 Current VMs properties (CPU,  …) 

2. Transfer tasks and  their corresponding data to 

the host VMs 

 

 

Scheduler m Scheduler m 

VMM 

Guest VMs 

VMM 

Guest VMs 

Fig. 4. The Conceptual Model of FPLB Approach 

 

Step 3: Prediction VMs’ migration time applying proposed FPM 

 
Determine: 

           when    
         

           when           

                 

 Neural network results about VMs’ workload situation 

 FPM input variables’ values 

 Overloaded VMs and their migration time applying proposed FPM 

 



 

 

                                              

where OriginalVMm and HostVMm are the amount of 
original VM memory and host VM respectively. 

In offline VMs migration, the original VM should be 
suspend during VM migration time, and its memory and the 
amount of memory in the new host PM which is determined 
for host VM will be idle. In online VMs migration, although 
VM will not be suspended during migration process, the 
amount of memory in the new host PM will be idle in this 
time. In contrast, there is no VM migration in FPLB 
approach and the process of suspend and resume for original 
VM is eliminated. In conclusion, there will be no downtime 
for VMs and no idle memory in FPLB approach. As the 
results: 

                                                      

(3) Load Balancing Time Consumption: A part of load 
balancing time consumption is equal to VM migration time 
and preparation time for determining new PM host. In offline 
and online VM migration the total migration time is equal to 
migration one whole VM. This time in our approach is 
reduced to the time for transferring some extra tasks from 
overloaded VM. In addition, as in FPLB approach VMs’ 
workload situation and the time of VM migration is 
predicted applying proposed FPM, the process of 
determining new VM host will start before VM overloading 
happen and load balancing system will be ready to transfer 
extra tasks when VM become overloaded without wasting 
time for preparation, in conclusion if          is the value of 
load balancing time: 

                                                        

VIII. CONCLUSION AND FUTURE WORK 

VM migration technique has been applied for elastic 
resource allocation, by migrating overload VM from one PM 
to another to achieve stronger computation power, larger 
memory, fast communication capability, or energy savings. 

This paper proposed a new FPLB approach to achieve 
system load balancing by migrating arrival tasks from 
overloaded VM to another homogeneous VM instead of 
whole VM migration. The proposed approach has ability to 
determine overloaded VMs and predict their migration time. 
This approach also contains a multi-objective tasks migration 
model subject to minimizing cost, execution time and 
transferring time. In proposed approach there is no need to 
pause VM during migration time. In addition, the proposed 
approach will significantly reduce time, memory and cost 
consumption, because unlike tasks migration, VM live 
migration takes longer to complete and needs more idle 
capacity in host PM. Furthermore, proposed approach 
decreases energy consumption by avoiding choosing idle 
PMs as a new host PM. This approach also accelerates load 
balancing process and reduces response time applying 
proposed FPM. 

In our future work we will improve our proposed method 
for predicting VM migration time considering SLA 
parameters. 
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