
“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

A Fuzzy Predictable Load Balancing Approach in

Cloud Computing

Fahimeh Ramezani, Jie Lu, Farookh Hussain

Decision Systems & e-Service Intelligence Lab, Centre for QCIS

School of Software, Faculty of Engineering and IT, University of Technology, Sydney

PO Box 123, Broadway NSW 2007 Australia

 Fahimeh.Ramezani@student.uts.edu.au, {Jie.Lu, Farookh.Hussain}@uts.edu.au

Abstract— Cloud computing is a new paradigm for hosting

and delivering services on demand over the internet where

users access services. It is an example of an ultimately

virtualized system, and a natural evolution for data centers

that employ automated systems management, workload

balancing, and virtualization technologies. Live virtual

machine (VM) migration is a technique to achieve load

balancing in cloud environment by transferring an active

overload VM from one physical host to another one without

disrupting the VM. In this study, to eliminate whole VM

migration in load balancing process, we propose a Fuzzy

Predictable Load Balancing (FPLB) approach which confronts

with the problem of overload VM, by assigning the extra tasks

from overloaded VM to another similar VM instead of whole

VM migration. In addition, we propose a Fuzzy Prediction

Method (FPM) to predict VMs’ migration time. This approach

also contains a multi-objective optimization model to migrate

these tasks to a new VM host. In proposed FPLB approach

there is no need to pause VM during migration time.

Furthermore, considering this fact that VM live migration

contrast to tasks migration takes longer to complete and needs

more idle capacity in host physical machine (PM), the

proposed approach will significantly reduce time, idle memory

and cost consumption.

Keywords—cloud computing, load balancing, virtual

machine migration, workload prediction.

I. INTRODUCTION

Cloud computing is a style of computing where flexible
high-performance, pay-as-you-go, and on-demand offering
service are delivered to external customers using Internet
technologies. Cloud computing services are divided into
three classes, according to the abstraction level of the
capability provided and the service model of providers,
namely Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) [1]. The key
underlying technology in cloud infrastructures is
virtualization. Virtualization is a technique for hiding the
physical characteristics of computing resources and allows
servers and storage devices to be shared and utilization be
increased. This simulated environment is called a virtual
machine (VM) that is a software abstraction with the looks of
a computer system's hardware (real machine) [2].

Cloud computing platform achieves dynamic balance
between the servers applying virtualization technology for
resource management. In virtualized cloud environment,
applying online VM migration technology can achieve
online remapping of VMs and physical resources, and
dynamic whole system load balancing [3]. In particular, VM
migration has been applied for flexible resource allocation or
reallocation, by moving VM from one physical machine to
another for stronger computation power, larger memory, fast
communication capability, or energy savings [4].

Although a significant amount of research has been done
to achieve system load balancing [4, 5], more improvement
is still needed as most of these approaches tried to migrate
VMs, when they became overload. In addition, in most of
them predicting VMs’ migration time is missed. Considering
this fact that the whole VM migration takes much more
times and cost in comparison with tasks migration, we
propose a fuzzy load balancing method which migrates tasks
from overloaded VMs instead of migration VMs to achieve
load balancing in cloud environment. We also propose an
algorithm to solve the problem of migrating these tasks to
new VMs host which is a multi-objective problem subject to
minimizing cost, minimizing execution and transferring
time. To solve this problem we apply multi-objective genetic
algorithm (MOGA). Furthermore, to accelerate load
balancing process and reduce response time, we develop a
fuzzy prediction method to predict VM workload situation
and its migration time.

The rest of this paper is organized as follows. Section II
presents the related works about VM migration techniques
and VM workload prediction methods. Section III explains
the basic concept of expert systems and neural networks, and
genetic algorithm. In Section IV, we develop a Fuzzy
Prediction Method (FPM) to predict VM migration time. In
Section V, we propose a conceptual model and the algorithm
of Fuzzy Predictable Load Balancing (FPLB) approach for
solving the problem of overloaded VMs by optimal tasks
migration from overloaded VMs. Our developed algorithm
for solving multi-objective tasks scheduling problem and
completing FPLB algorithm, is described in Section VI. The
proposed approach is evaluated in Section VII. Finally we
present the conclusion and future works in Section VIII.

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine

II. RELATED WORKS

A. VM Migration Thechniques

Virtualization technique has improved utilization and
system load balancing by enabling VM migration, and
provided significant benefits for cloud computing [6].
Several methods have been developed to migrate a running
instance of a VM from one physical host to another to
optimize cloud utilization. Primary migration relies on
process suspend and resume. Many systems [7, 8] just pause
the VM and copy the state data, then resume the VM on the
destination host. This forces the migrated application to stop
until all the memory states have been transferred to the
migration destination where it is resumed. These methods
cause the application to become unavailable during the
migration process. ZAP [9] could achieve lower downtime of
the service by just transferring a process group, but it still
uses stop-and-copy strategy. To reduce the migration
downtime and move the VM between hosts in local area
network without disrupting it, VMotion [10] and Xen [11]
utilize pre-copy migration technique to perform live
migration and support seamless process transfer. In pre-copy
migration technique, VMs migrate by pre-copying the
generated run-time memory state files from the original host
to the migration destination host. If the rate for such a dirty
memory generation is high, it may take a long time to
accomplish live migration because a large amount of data
needs to be transferred. In extreme cases, when dirty
memory generation rate is faster than pre-copy speed, live
migration will fail. Considering this fact, Jin et al. presented
the basic pre-copy model of VM live migration and proposed
an optimized algorithm to improve the performance of live
migration by limiting the speed of changing memory through
controlling the CPU scheduler of the VM monitor [4]. Lin et
al. believe that most of the proposed methods for on-demand
resource provisioning and allocation, focused on the
optimization of allocating physical resources to their
associated virtual resources and migrating VMs to achieve
load balance and increase resource utilization. Unfortunately,
these methods require the suspension of the executing cloud
computing applications due to the mandatory shutdown of
the associated VMs [12]. To overcome this drawback, they
proposed a threshold-based dynamic resource allocation
scheme for cloud computing that dynamically allocate the
VMs among the cloud computing applications based on their
load changes. In their proposed method, they determined
when migration should be done but they did not specify the
details of how the reallocation will occur.

A fundamental drawback of the most existing researches
is that they consider complete VM migration to overcome
overload VM and achieve system load balance. In addition,
predicting VMs’ workload situation and their migration time,
are not considered in most of traditional load balancing
approaches. In this paper, we propose a new Fuzzy
Predictable Load Balancing (FPLB) approach which predicts
VMs’ workload situation, and transfers tasks from overloads
VMs instead of whole VM migration to achieve system load
balancing. The proposed approach not only eliminates the

suspend and resume process during VM migration, but also
omits pre-copy mechanism and producing dirty memory in
live VM migration.

B. Workload Prediction Methods

Resource provisioning in compute clouds often requires
an estimate of the required capacity for VMs. The estimated
VM size is essential for allocating resources commensurate
with demand [13]. Meng et al. proposed an algorithm for
estimating the aggregate size of multiplexed VMs. They
decoupled VM workload into regular and irregular
fluctuating components. To forecast regular workload, they
simply assumed that the regular patterns will preserve in the
future, e.g., a steadily increasing trend keeps increasing at
the same rate. On the other hand, for forecasting irregular
workload, they performed a time series forecasting technique
based on historic workload patterns [13]. Nagothu et al.
proposed a new method for load prediction. They separated
load prediction into linear and non-linear prediction
algorithms categories. They believed a linear prediction
algorithm can either involve 1-Dim observation sequences or
d-Dim observation space signals [14].

Most of the existing researches in this area have applied
prediction methods such as neural networks and linear
regression to forecast VMs workload in cloud environment.
These prediction methods predict future workload applying
previous workload patterns in time slot t. In IaaS where VMs
are assigned to customers; VMs’ workload is affected by
customers’ behavior and decisions, and significantly changes
in seconds. Therefore, upcoming VMs’ workload in cloud
environment could be independent from their previous
workload pattern. To overcome this problem we propose a
workload prediction method applying a neural network and
an expert system with the specific parameters that control
and monitor recent changes in VMs’ workload pattern.

III. BACKGROUND

A. Expert Systems

The basic idea behind expert systems (ES) is simply that
expertise, which is the vast body of task-specific knowledge,
is transferred from a human to a computer. This knowledge
is then stored in the computer and users call upon the
computer for specific advice as needed. The computer can
make inferences and arrive at a specific conclusion. Then
like a human consultant, it gives advices and explains, if
necessary, the logic behind the advice. A rule-based ES is
defined as one, which contains information obtained from a
human expert, and represents that information in the form of
rules, such as IF–THEN. The rule can then be used to
perform operations on data to inference in order to reach
appropriate conclusion. These inferences are essentially a
computer program that provides a methodology for
reasoning about information in the rule base or knowledge
base, and for formulating conclusions [15, 16].

B. Neural Networks

A neural network (NN) consists of a number of layers:
the input layer has a number of input neurons

 ; the output layer has one or more output neurons
 and several hidden layers with hidden
neurons in between. In a fully-connected
NN, the neurons at each layer are connected to the neurons
of the next layer; these connections are known as synapses.
Each synapse is associated with a weight, which is to be
determined during training. During the training phase, the
NN is fed with input vectors and random weights are
assigned to the synapses. After presentation of each input
vector, the network generates a predicted output . The
generated output is then compared with the actual output y;
the difference between the two is known as the error term
which is then used as a feedback to correct the synaptic
weights of the network. The training of the NN continues
until a specific criterion is met, e.g. the sum of squared errors
falls below a certain threshold [17].

C. A Multi Objective Genetic Algorithm

A multi-objective genetic algorithm (MOGA) is
concerned with the minimization of multiple objective
functions that are subject to a set of constraints. In MOGA
for solving multi-objective optimization problems, first
initial population whose scale is N is generated randomly.
The first generation child population is gained through non-
dominated sorting [18] and basic operations such as
selection, crossover and mutation. Then, from the second
generation on, the parent population and the child population
will be merged and sorted based on fast non-dominated.
Calculate crowding distance among individuals on each non-
dominated layer. According to non-dominant relationship
and crowding distance among individuals, select the
appropriate individuals to form a new parent population.
Finally, new child population is generated through basic
operations of genetic algorithm and so on, until the
conditions of the process end can be met [19].

IV. A FUZZY PREDICTION METHOD FOR DETERMINING

THE VM MIGRATION TIME

Considering this fact that future VMs’ workload could be
independent from their previous workload pattern, we
propose a Fuzzy Prediction Method (FPM) that not only
applies neural network to predict workload patterns in VMs,
but also applies an expert system to control near future
changes in workload patterns for every VM, and determine
the time that VMs will be overloaded and need to be
migrated. To design the FPM, we first determine the
conditions which lead to a VM to be overloaded. Then the
ES rules are extracted from determined conditions. We run
FPM every 5 minutes and control VM workload situation for
the past 2 minutes.

A. VM Migration Conditions

If be the VM workload capacity and be
the number of executing tasks in the VM as a time series in
time slot T, then the VM will be overloaded at the time x
when:

and Equation 1 could have an answer for variable x during
next 2 minutes, if following conditions be satisfied where ct
is current time, and :

Condition 1: Time series rises one or more times
during T. It means:

 (2)

It means:

Condition 2: There would be overloading time for the VM

if: (3)

Condition 3: Rao (2011) proposed a metric of Productivity
Index (PI) and use it to measure the system processing
capability. He defined PI as:

 (4)

where is the amount of completed work and is
the amount of resource (CPU) consumed during the time slot
t. An overloaded system means that its cost keeps increasing
but with stagnated or compromised yield. Virtual machine
will be overloaded if PI begins to drop. Although Rao
believes that for online identification, the single PI metric is
not enough to identify system state because any change of PI
can be either due to the system capacity or the input load

change [20]. Considering this fact, to control VM’s
workload situation during T, We determine following
conditions that show PI drops during T:

It means:

In addition, the time series has a decreasing trend:

Condition 4: Time series has a raising trend:

B. The Variables of Fuzzy Prediction Method

The input variables of proposed FPM are defined as
follows: the number of executing tasks in the VM at current
time as , the maximum number of executing tasks

in VM during T as , the change in number

of executing tasks in the VM at random time
as , the
 that shows raised during T, the
amount of completed tasks in the VM till current time as
 , the amount of CPU consumed till current time as
 , the change in productivity index at random time
 as , the
 that shows decreased during T. In addition, in
this approach a neural network model is trained, given the
previous historic workload patterns (training data set) to
predict VM workload pattern. The neural network prediction
results (desired output of neural network) will be
applied by proposed FPM as an input variable. The FPM’s

output variable is defined as that denotes the
predicted VM workload situation in near future. The FPM’s
variables membership functions are defined as follow:

TABLE I. FUZZIFICATION OF AND : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0,)

TABLE II. FUZZIFICATION OF
 AND

 : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
VL Very Low -1 -0.5

L Low -0.5 -1,0

M Medium 0 -0.5,0.5

H High 0.5 0,1

VH Very High 1 0.5

Universe of discourse: (-1,1)

TABLE III. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0, 100% Virtual CPUs utilization=CU)

Note: Virtual CPUs determines how many physical CPUs can be used by a VM. The
number of virtual CPUs together with the scheduler credit determine the total CPU
resource allocated to a VM [20].

TABLE IV. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0, Total number of executed tasks during T=N)

TABLE V. FUZZIFICATION OF
 AND

 : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
VL Very Low -1 -0.5

L Low -0.5 -1,0

M Medium 0 -0.5,0.5

H High 0.5 0,1

VH Very High 1 0.5

Universe of discourse: (-1, 1)

TABLE VI. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
U Underload 0,0.3 0.7

O Overload 0.7,1 0.3

Universe of discourse: (0,1)

TABLE VII. FUZZIFICATION OF : OUTPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
U Underload 0,0.3 0.7

O Overload 0.7,1 0.3

Universe of discourse: (0,1)

C. The Expert System Rules

We determine the ES rules base on aforementioned
conditions to control VM’s workload changes and predict the
time of VM migration. The two main rules are described as
follows. For random and and ct as current
time:

 If and and

or and and
 or and
 and then

 If and and

or and and
 or and
 and then

V. A FUZZY PREDICTABLE LOAD BALANCING

APPROACH

In this section, we propose a FPLB approach. This
approach contains a conceptual model and an algorithm
which are designed to achieve system load balancing by
migrating tasks from overloaded VMs. In addition, in this
approach to decrease energy consumption and costs, we
avoid choosing idle PMs as a new PM host, because if we
transfer tasks to an idle PM, we have to turn it on and this
action will increase energy consumption and costs [5].

The complex applications in cloud environment are
classified into two groups: (1) computing intensive, and (2)
data intensive applications. To transfer data intensive
applications, the scheduling strategy should decrease the data

Fig. 1. The Membership Function of Input Variables of Tables 2 and 5

Fig. 3. The Membership Function of Output Variable and

Fig. 2. The Membership Function of Input Variables of Tables 1, 3 and 4

movement to reduce the transferring time; but for
transferring computing intensive tasks, the scheduling
strategy should schedule the data to the high performance
computer [21]. In this paper, we consider bandwidth as a
variable to minimize the tasks transferring time for data
intensive applications. In addition we consider new host
PM’s properties (memory, hard disk, etc) to enhance
performance utilization for computing intensive applications.

In cloud environment, there are some tasks schedulers
that consider task types, priorities and their dependencies to
schedule tasks in optimal way and transfer them to the
specific VM’s resources. In our proposed approach, we
design a blackboard, where all cloud schedulers which
manage VMs on clouds, share their information about VMs,
their features and their tasks. Furthermore, the criteria of
QoS as SLA information are mentioned in this blackboard.
In proposed FPLB approach, there is a central scheduler that
transfers tasks from an overhead VM to a new similar and
appropriate VM. This scheduler applies the information of
the blackboard to find an appropriate host VM for the task.
In addition, the proposed FPM is used in FPLB approach to
predict VM migration time to accelerate load balancing
process and reduce response time. The proposed FPLB
approach is illustrated in Figure 4 and its algorithm is
described as follows:

Step1- Gathering data and information about virtual
machine managers (VMMs), VMs, PMs and SLA
information, in the global blackboard as inputs:

1. VMs tasks information:
1.1. The number of executing tasks
1.2. Tasks’ execution time and locations
1.3. Tasks’ required resources (number of

required processors)

2. PMs’ Criteria (total/current)
2.1. CPU (number and speed of the processors)

2.2. Free Memory and Free Hard disk
2.3. Bandwidth
2.4. PM situation: Idle or active
2.5. Its host VMM

3. SLA information
4. The objectives of the tasks migration

optimization model and their information:
4.1. Minimizing cost

4.1.1. Cost policy information
4.2. Minimizing execution time and

transferring time
4.1.2. Execution information
4.1.3. Bandwidth information

Step2- Monitoring data and information to determine VMs’
workflow information

Step3- Predicting VM migration time applying proposed
FPM:

1. Determining

 when

2. Determining when

3. Determining

4. Determining NN results about VMs’ workload
situation (Input for FPM)

5. Calculating other FPM input variables
6. Determining overloaded VMs and their migration

time applying proposed FPM
Step4- Determining the list of tasks which should be

migrated from overloaded VM’s, and the list of
candidate VMs to be the new host

Step5- Finding optimal homogeneous VMs as a new host
for executing the tasks of the overloaded VMs,
which is a multi-objective task migration problem,
applying MOGA (this step will be described in
Section VI).

Step6- Considering obtained optimal tasks migration
schema, determining following information as the
outputs:
1. New optimal cost and optimal execution time
2. Current VMs properties (Executing tasks, CPU, etc.)

Step7- Transferring tasks and their corresponding data to the
determined optimal host VMs

Step8- Updating blackboards and schedulers’ information
according to the outputs of Step 4.

Step9- End.

VI. AN ALGORITHM FOR SOLVING MULTI-OBJECTIVE

TASKS MIGRATION PROBLEM USING MOGA

In this section, we describe a sub-algorithm to complete
the Step 5 of FPLB algorithm and solve the multi-objective
tasks migration problem. This sub-algorithm determines an
optimal tasks scheduling model to assign tasks from
overloaded VMs to the new host VMs applying MOGA.
Among different MOGA methods, we apply Deb's NSGAII
[19]. NSGAII not only has good convergence and
distribution mechanism, but also has higher convergence
speed. This sub-algorithm applies data and information
which are determined in Steps 1 to 4 of the FPLB algorithm
as its inputs, then finds the optimal schema to assign arrival
tasks from overloaded VMs to host VMs, conducting
following steps:

Step5.1. Determining candidate host VMs set by choosing
the set of VMs which satisfy the constraints about
host VMs’ properties as

Step5.2. Eliminating the list of overloaded VMs (which are
determined in Step 2 applying proposed FPM) from
candidate host VMs set.

Step5.3. Determining the set of tasks which should migrate
from overloaded VMs as immigrating tasks set:

Step5.4. Applying MOGA to solve the multi-objective
problem and assign the immigrating tasks to the
optimal host VMs to minimize execution and
transferring time and processing cost, conducting
following steps:
Step5.4.1. Initializing population P0 which is

generated randomly
Step5.4.2. Assigning rank to each individual based

on non-dominated sort

Step5.4.3. Implementing binary tournament
selection, crossover and mutation on the
initial population and creating a new
population Q0 and set t=0.

Step5.4.4. Merging the parent Pt and the child Qt to

form a new population Rt = Pt  Qt.
Step5.4.5. Adopting non-dominated relationship to

sort population and calculate the
crowding distance among population on
each layer.

Step5.4.6. Selecting the former N individuals as the
parent population, namely

Pt+1= Pt+1 1: N (Elite strategy).
Step5.4.7. Implementing reproduction, crossover

and mutation on population Pt+1 to form
population Qt+1.

Step5.4.8. If the termination conditions are met,
output results as optimal tasks migration
schema; otherwise, update the
evolutionary algebra counter t=t+1 and
go to step 5.4.4.

VII. EVALUATION

A system prototype is being developed based on the
proposed FPLB and will be evaluated against the determined
features. However, in this paper, the evaluation is presented

by comparison of the proposed FPLB approach with
traditional whole VM migration methods applying three
parameters:

(1) Power Consumption: considering this fact that the less
number of active PM means the less power consumption [5],
we applied following ratio to compare power consumption
after load balancing applying FPLB approach:

 

In proposed approach, to transfer extra tasks from
overloaded VM, we just need to find a new similar VM on
an active PM as a new host and there will be no need to turn
a new PM on. In contrast, for whole VM migration, more
hardware capacity is needed and it is impossible for every
case to avoid choosing idle PM. Therefore, in FPLB

approach compare to VM migration technique has lower
value. Therefore, we have less “power consumption” after
load balancing using FPLB approach and:

(2) Idle Memory: to compare the efficiency of FPLB
approach, we apply idle memory that is prepared during the
load balancing process as:

Step 1: Data gathering and updating (Blackboard)

1. Minimizing cost

 Cost information

2. Minimizing execution time

 Execution information

PMs’ Criteria (total/current)

Objectives

Step 5, 6, 7 & 8: Central task scheduler

(Solving tasks scheduling multi-objective problem)

Determine:

 VMs workload information

 Overloaded VMs

 Time of migration

 The tasks which should be migrated

 List of candidate VMs to be new host

Step 2 & 4: Monitoring VMs’ workflow situation

 CPU

 Memory

 Hard disk

 Bandwidth

 Idle or active

 Its host VMM

 …

Computer

node

 The number of tasks

 Tasks’ execution time

 Tasks’ performance model

 Tasks’ locations

 Tasks’ required resources

VMs tasks information

 CPU

 Memory

 …

SLA information

Scheduler m

VMM

Guest VMs

1. Determine:

 Tasks migration destinations (new host VM)

 New optimal cost

 New optimal execution time

 Current VMs properties (CPU, …)

2. Transfer tasks and their corresponding data to

the host VMs

Scheduler m Scheduler m

VMM

Guest VMs

VMM

Guest VMs

Fig. 4. The Conceptual Model of FPLB Approach

Step 3: Prediction VMs’ migration time applying proposed FPM

Determine:

 when

 when



 Neural network results about VMs’ workload situation

 FPM input variables’ values

 Overloaded VMs and their migration time applying proposed FPM

where OriginalVMm and HostVMm are the amount of
original VM memory and host VM respectively.

In offline VMs migration, the original VM should be
suspend during VM migration time, and its memory and the
amount of memory in the new host PM which is determined
for host VM will be idle. In online VMs migration, although
VM will not be suspended during migration process, the
amount of memory in the new host PM will be idle in this
time. In contrast, there is no VM migration in FPLB
approach and the process of suspend and resume for original
VM is eliminated. In conclusion, there will be no downtime
for VMs and no idle memory in FPLB approach. As the
results:

(3) Load Balancing Time Consumption: A part of load
balancing time consumption is equal to VM migration time
and preparation time for determining new PM host. In offline
and online VM migration the total migration time is equal to
migration one whole VM. This time in our approach is
reduced to the time for transferring some extra tasks from
overloaded VM. In addition, as in FPLB approach VMs’
workload situation and the time of VM migration is
predicted applying proposed FPM, the process of
determining new VM host will start before VM overloading
happen and load balancing system will be ready to transfer
extra tasks when VM become overloaded without wasting
time for preparation, in conclusion if is the value of
load balancing time:

VIII. CONCLUSION AND FUTURE WORK

VM migration technique has been applied for elastic
resource allocation, by migrating overload VM from one PM
to another to achieve stronger computation power, larger
memory, fast communication capability, or energy savings.

This paper proposed a new FPLB approach to achieve
system load balancing by migrating arrival tasks from
overloaded VM to another homogeneous VM instead of
whole VM migration. The proposed approach has ability to
determine overloaded VMs and predict their migration time.
This approach also contains a multi-objective tasks migration
model subject to minimizing cost, execution time and
transferring time. In proposed approach there is no need to
pause VM during migration time. In addition, the proposed
approach will significantly reduce time, memory and cost
consumption, because unlike tasks migration, VM live
migration takes longer to complete and needs more idle
capacity in host PM. Furthermore, proposed approach
decreases energy consumption by avoiding choosing idle
PMs as a new host PM. This approach also accelerates load
balancing process and reduces response time applying
proposed FPM.

In our future work we will improve our proposed method
for predicting VM migration time considering SLA
parameters.

REFERENCES

[1] R. Buyya, J. Broberg, and A. Goscinski, "Cloud computing, Principles

and Paradigms," 2011.
[2] M. Rosenblum, "The reincarnation of virtual machines," Queue, vol. 2,

p. 34, 2004.

[3] C. Jun and C. xiaowei, "IPv6 virtual machine live migration framework
for cloud computing," Energy Procedia, vol. 13, pp. 5753-5757, 2011.

[4] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu, and F. Zhou, "Optimizing the

live migration of virtual machine by CPU scheduling," Journal of
Network and Computer Applications, vol. 34, pp. 1088-1096, 2011.

[5] X. Liao, H. Jin, and H. Liu, "Towards a green cluster through dynamic

remapping of virtual machines," Future Generation Computer Systems,

vol. 28, pp. 469-477, 2012.

[6] N. Jain, I. Menache, J. Naor, and F. Shepherd, "Topology-Aware VM

Migration in Bandwidth Oversubscribed Datacenter Networks,"
Automata, Languages, and Programming, pp. 586-597, 2012.

[7] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M.
Rosenblum, "Optimizing the migration of virtual computers," ACM

SIGOPS Operating Systems Review, vol. 36, pp. 377-390, 2002.

[8] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble, "Constructing
Services with Interposable Virtual Hardware," in Proceedings of the

1st symposium on networked systems design and implementation

(NSDI), 2004, pp. 169-82
[9] S. Osman, D. Subhraveti, G. Su, and J. Nieh, "The design and

implementation of Zap: A system for migrating computing

environments," ACM SIGOPS Operating Systems Review, vol. 36, pp.
361-376, 2002.

[10] M. Nelson, B. H. Lim, and G. Hutchins, "Fast transparent migration for

virtual machines," 2005, pp. 25-25.
[11] C. Clark, K. Fraser, S. Hand, and G. H. Jacob, "Live migration of

virtual machines," in In Proceedings of 2nd ACM/USENIX Symposium

on Network Systems, Design and Implementation (NSDI), 2005.
[12] W. Lin, J. Z. Wang, C. Liang, and D. Qi, "A Threshold-based Dynamic

Resource Allocation Scheme for Cloud Computing," Procedia

Engineering, vol. 23, pp. 695 – 703, 2011.
[13] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,

"Efficient resource provisioning in compute clouds via vm

multiplexing," in Proceeding of the 7th international conference on
Autonomic computing, 2010, pp. 11-20.

[14] K. M. Nagothu, B. Kelley, J. Prevost, and M. Jamshidi, "Ultra low

energy cloud computing using adaptive load prediction," in World
Automation Congress (WAC), 2010, 2010, pp. 1-7.

[15] M. Naderpour and J. Lu, "Supporting situation awareness using neural

network and expert system," in International Conference on
uncertainty Modeling in Knowledge Engineering and Decision Making

(FLINS 2012) Turkey, Istanbul, 2012, pp. 993-998.

[16] M. Naderpour and J. Lu, "A fuzzy dual expert system for managing

situation awareness in a safety supervisory system," in 2012 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Australia,

Brisbane, 2012, pp. 1-7.
[17] S. Islam, J. Keung, K. Lee, and A. Liu, "Empirical prediction models

for adaptive resource provisioning in the cloud," Future Generation

Computer Systems, vol. 28, pp. 155–162, 2012.
[18] N. Srinivas and K. Deb, "Muiltiobjective optimization using

nondominated sorting in genetic algorithms," Evolutionary

computation, vol. 2, pp. 221-248, 1994.
[19] Y. Zhang, C. Lu, H. Zhang, and J. Han, "Active vibration isolation

system integrated optimization based on multi-objective genetic

algorithm," in Computing, Control and Industrial Engineering (CCIE),
2011 IEEE 2nd International Conference on, 2011, pp. 258-261.

[20] J. Rao, "Autonomic management of virtualized resources in cloud

computing," 2011.
[21] L. Guo, S. Zhao, S. Shen, and C. Jiang, "Task Scheduling Optimization

in Cloud Computing Based on Heuristic Algorithm," Journal of

Networks, vol. 7, pp. 547-553, 2012.

