
“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



On Finding Approximate Solutions of
Qualitative Constraint Networks

Jason Jingshi Li †
Artificial Intelligence Group

The Australian National University
Email: jason.li@gmx.ch

Sanjiang Li
QCIS, FEIT

University of Technology Sydney
Email: sanjiang.li@uts.edu.au

Abstract—Qualitative Spatial and Temporal Reasoning
(QSTR) represents spatial and temporal information in terms
of human comprehensible qualitative predicates and reasons
about qualitative information by solving qualitative constraint
networks (QCNs). Despite significant progress in the past three
decades, more and more evidence has shown that it is inherently
hard to find exact solutions for expressive qualitative constraints.
In many applications, however, we are often required to make
decisions in a very limited time. In these cases, finding a good
approximate solution in seconds is much more desirable than
waiting days for an exact solution. In this paper, we will exploit
the algebraic structure of qualitative calculi (e.g. Interval Algebra
and RCC8) as well as their conceptual neighbourhood graphs to
develop approximate methods for consistency checking in QSTR.
Moreover, we propose and empirically compare four independent
methods to serve as tools for finding good approximate solutions
for the given qualitative calculi.

I. INTRODUCTION

Spatial and temporal information is pervasive and increas-
ingly involved in our everyday life. Many tasks in the real or
virtual world require sophisticated spatial reasoning abilities.
Qualitative Spatial and Temporal Reasoning (QSTR) is the AI
subfield that represents spatial and temporal information in
terms of human comprehensible qualitative predicates.

In the past three decades, QSTR has made significant
progress in relation modelling. Since Allen’s seminal work
on the Interval Algebra (IA) [1], dozens of qualitative cal-
culi (i.e. relation models) have been proposed. Moreover,
prominent relation models such as Interval Algebra and the
Region Connection Calculus RCC8 [22] have been applied
in areas including natural language processing, geographical
information systems, robotics, content-based image retrieval.

QSTR reduces qualitative reasoning (e.g. consistency check-
ing and entailment) to solving qualitative constraint networks.
The consistency problem, i.e. the problem of deciding the
consistency of qualitative constraint networks, is one central
task in qualitative reasoning. In the past three decades, the
consistency problem has been studied for many different cal-
culi individually and jointly. For example, Nebel and Bürckert
show that reasoning with IA is NP-complete in general but also
identify the unique maximal tractable subclass of IA which
contains all basic IA relations [19]. Renz identifies all three
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Fig. 1. An inconsistent IA constraint network (left) and one of its consistent
approximation (middle) and a solution to the approximation (right)

maximal tractable subclasses of RCC8 that contain all basic
RCC8 relations [24], [23].

The consistency problem becomes much harder if we extend
for example RCC8 to more expressive topological languages
or combine other spatial aspects (e.g. connectivity, Boolean
constraints, directions, convexity) with RCC8 constraints. For
example, the consistency problem becomes PSPACE hard if
RCC8 constraints are augmented with Boolean constraints
[28]. When combining RCC8 with the DRM (direction relation
matrix) model, the consistency problem becomes NP-hard
even when only basic constraints are considered [16].

NP-hardness is, however, not the end of the study of
qualitative constraint solving. Several different tools have
been develops to decide consistency efficiently [27], [9], [14],
[12]. Approximate methods for consistency checking are more
desirable in applications where efficiency is vital. In these
cases, finding a good approximate solution in seconds is
much more desirable than waiting days for an exact solution,
where by a good approximate solution we mean a qualitative
configuration that satisfies or almost satisfies each constraint.

Tools for finding approximate solutions can be useful in
at least two ways. First, if the given qualitative constraint
problem is inconsistent, this suggests that the modelling of the
problem is improper and some constraints are too hard. In this
case, we can use the ‘good’ approximate solution computed by
our methods to remodel the constraint problem. An example
in IA is shown in Figure 1, where vi (i = 1, 2, 3) are three
temporal events. On the left, it specifies that event v

1

should
overlap v

2

, v
2

occurs during v
3

and v
3

finishes with v
1

. One
can easily check the composition table of IA to verify that such
a constraint network is inconsistent. However, we can quickly
modify the relation from v

1

to v
3

to overlap, which is within
the conceptual neighborhood of the original relation. Then the
second constraint network is consistent, and on the right we
show one such consistent instantiation of this network. It is



reasonable to regard the second constraint network as a ‘good’
approximate solution of the first network as ‘overlap’ is a
conceptual neighbour of ‘finished by’ [7].

Second, when the consistency of the given qualitative con-
straint problem is hard to determine, then we first determine
if the problem has a ‘good’ approximate solution, which
assumedly can be efficiently decided. If it has no ‘good’
approximate solution, it has no solution at all; if it has a
‘good’ approximate solution, then, starting from the ‘good’
approximate solution and combined with local search, we may
have a great chance to find an exact solution if the problem
is consistent.

Approximate methods have been considered in QSTR more
than 20 years ago [6], and remain an interesting research
topic in QSTR (see e.g. [20], [3], [2], [26]). Some of these
works, e.g. [20], approximate a spatial object by a point or
a box. Therefore, the shape/structure of the object is ignored.
Most other works deal with the impreciseness or uncertainty in
spatial/temporal phenomena (see e.g. [3], [2], [25], [26].) That
is, the spatial/temporal objects and/or predicates are regarded
as fuzzy or vague.

In classical constraint solving, an “approximate consistency
solving” technique (e.g. arc or path consistency) usually means
a decision procedure that can partially decide the consistency
problem. That is, the consistency of a set of constraints may
remain undetermined after applying the approximation.

Unlike the approximate methods described in the two
preceding paragraphs, this paper will exploit the algebraic
structure of the qualitative calculus as well as its conceptual
neighbourhood graph (CNG) [7] to develop approximate but
efficient methods for consistency checking in QSTR. The idea
has been slightly touched in the combination of topological
and directional spatial information [15].

The remainder of this paper is organised as follows. Section
2 recalls IA and RCC8 and their conceptual neighbourhood
graphs. Section 3 introduces two distances for measuring the
“goodness” of an approximate solution and examine the com-
putational complexities of finding good approximate solutions.
In Section 4 we give four methods for finding approximate
solutions to a qualitative constraint network and these methods
are then empirically compared in Section 5. The last section
concludes the paper and outlines future work.

II. PRELIMINARIES

The qualitative approach to spatial and temporal knowledge
representation and reasoning is mainly based on qualitative
calculi. Suppose U is the universe of spatial or temporal
entities. Write Rel(U) for the Boolean algebra of binary
relations on U . A qualitative calculus on U is a finite Boolean
subalgebra of Rel(U). For a relation ↵ in a qualitative calculus
A, we call ↵ a basic relation if it is an atom in A. We note
that the set B of basic relations form a jointly exhaustive and
pairwise disjoint (JEPD) set, i.e. any two elements in U are
related by a unique relation in B. For convenience, we often
denote a non-basic relation R by the set of basic relations it
contains.
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Relation Meaning
DC a \ b = ?
EC a \ b 6= ?, a� \ b

� = ?
PO a 6✓ b, b 6✓ a, a� \ b

� 6= ?
TPP a ⇢ b, a 6⇢ b

�

NTPP a ⇢ b

�

EQ a = b

TABLE II
TOPOLOGICAL INTERPRETATION OF BASIC RCC8 RELATIONS IN A

TOPOLOGICAL SPACE X , WHERE a, b ARE REGIONS IN X , AND a

�
, b

� ARE
THE INTERIORS OF a, b, RESPECTIVELY.

In the following subsection, we recall two most important
qualitative calculi.

A. Interval Algebra and RCC8

Definition 1 (Interval Algebra [1]): Let U be the set of
closed intervals on the real line. Thirteen binary relations
between two intervals x = [x�, x+

] and y = [y�, y+] are
defined by the order of the four endpoints of x and y, see
Table I. The Interval Algebra (IA) is generated by these JEPD
relations.

The RCC8 algebra has interpretations in arbitrary topolog-
ical spaces.

Definition 2 (RCC8 Algebra): Let U be the set of
nonempty regular closed sets, or regions, in a topological
space X . The RCC8 algebra is generated by the topological
relations

DC,EC,PO,EQ,TPP,NTPP,TPP⇠,NTPP⇠,

where DC,EC,PO,TPP,NTPP and EQ are defined in
Table II, and TPP⇠ and NTPP⇠ are the converses of TPP
and NTPP respectively.

B. Conceptual Neighbourhood Graph

Two basic relations in a qualitative calculus A are called
conceptual neighbours if there exists a smooth transition from
one to another directly [7]. For example, in RCC8, DC is a
conceptual neighbour of EC, but not a conceptual neighbour of
PO (see Table 2). The conceptual neighbourhood graph (CNG)
of RCC8 or IA is obtained by connecting basic relations that
are conceptual neighbours.

Definition 3: For two basic relations ↵,�, the conceptual
distance of ↵ to �, written dist(↵,�), is the length of a shortest
path from ↵ to � in the conceptual neighbour graph.

Note that dist(PO,↵)  2 for any RCC8 basic relation ↵
and dist(eq,�)  3 for any IA basic relation �.



Fig. 2. Conceptual neighbourhood graphs of (a) IA and (b) RCC8

For a basic relation ↵ and a nonempty set R of basic
relations, the conceptual distance of ↵ to R is defined as

dist(↵, R) = min{dist(↵,�) : � 2 R}. (1)

C. Consistency Problem

Let A be a qualitative calculus with universe U and S be
a subset of A. A qualitative constraint over S has the form
(xRy), where R is a relation in S and x, y are spatial/temporal
variables taking values from U . A qualitative constraint net-
work (QCN) over S is a set of qualitative constraints over
S . Without loss of generality, we assume that N has the form
{viRijvj : 1  i, j  n}, where Rii is the identity relation for
each variable vi, and, for any two variables vi, vj with i 6= j,
Rij is the unique constraint from vi to vj and Rji = R⇠

ij , the
converse of Rij . We say a QCN N over S is consistent or
satisfiable if it has a solution in U . The consistency problem
over S , written CSPSAT(S), is the problem of deciding the
consistency of qualitative constraint networks over S . It is
well-known that both CSPSAT(IA) and CSPSAT(RCC8) are
NP-complete [19], [23].

A constraint network N = {viRijvj : 1  i, j  n} is
called basic if each Rij is a basic relation. In this paper,
we also call a (consistent) basic constraint network as a
(consistent) scenario. For a consistent scenario s = {vi�ijvj :
1  i, j  n} and a network N = {viRijvj : 1  i, j  n},
we say s is a consistent scenario (or an exact solution) of N
if �ij is a basic relation contained in Rij for any i, j. It is
clear that a network is consistent iff it has an exact solution
in the above sense.

We say a constraint network N = {viRijvj : 1  i, j  n}
is path-consistent if, for every three variables vi, vj , vk (1 
i, j, k  n), we have 1

Rij = R⇠
ji and Rij ✓ Rik �w Rkj , (2)

where R�w S is the weak composition [5] of R and S, i.e. the
smallest relation in A that contains the usual composition of R
and S. As a local property, path-consistency can be enforced
in cubic time. Recall that IA has a unique maximal tractable
subclass that contains all basic relations [19], called ORD-
Horn and written H, and RCC8 has three maximal tractable
subclasses bH

8

, C
8

, Q
8

[23]. Let S be one of the above maximal
tractable subclasses. The consistency of any network over S
can be determined by enforcing path-consistency [19], [23],
and hence CSPSAT(S) is in P.

1This definition of path-consistency is different from that for finite CSPs
[18], [17] as we use weak composition instead of composition.

We say a constraint network N is pseudo-consistent if no
empty constraint occurs when enforcing path-consistency. It is
clear that every consistent network is pseudo-consistent, but
not the vice versa.

III. APPROXIMATE SOLUTION: DEFINITION AND
COMPLEXITIES

Let A be a qualitative calculus with universe U , and let B
be the set of its basic relations. We assume path-consistency
implies consistency for basic constraint networks over A.
Several important qualitative calculi, e.g. the point algebra,
the interval algebra, RCC5 and RCC8, enjoy this property.

As the consistency problem is NP-complete for IA and
RCC8, it could be very hard to find an exact solution. In this
section we discuss what will happen if our task is to find a
‘good’ approximate solution.

Definition 4 (approximate solution): For a network N of
constraints over A, an approximate solution of N is a con-
sistent scenario s that is over the same set of variables
{v

1

, · · · , vn} as N .
Note that this is a very general notion. In the following we

provide measures for evaluating the quality of approximate
solutions.

A. When Is an Approximate Solution Good?

It is clear that two approximate solutions of the same
network N are not equally good. To measure the “goodness”
of an approximate solution s to N , we introduce two distances
that are intuitive and easy to compute. The first distance
is obtained by adding up the conceptual distances between
corresponding relations in s and N (1).

Definition 5 (sum conceptual distance): Suppose
s = {vi�ijvj : 1  i, j  n} is a consistent scenario
and N = {viRijvj : 1  i, j  n} is a QCN. The sum
conceptual distance of s to N is defined as

dist

P
(s,N ) =

X
{dist(�ij , Rij) : 1  i < j  n}. (3)

A consistent scenario s is called an optimal approximate
solution of N if dist(s, N )  dist(s0,N ) for any other
consistent scenario s0.
It is clear that the smaller the distance is the better the
approximate solution is. In particular, if N is consistent, then
every optimal approximate solution is an exact solution of N
and has distance 0 to N .

Remark 1: The above notion of sum conceptual distance
was first proposed for measuring the likeliness of two consis-
tent scenarios in [4], where the authors also define the distance
between a consistent scenario s and a network N as:

dist

+P
(s,N ) =

⇢
min{dist(s, s0) : s0 2 [N ]}, if N is consistent
0, otherwise;

where [N ] is the set of consistent scenarios of N . This
extension is different from (3) even when N is consistent.2

2Let N and s be specified as {v1TPPv2, v2NTPPv3, v1 ? v3} and,
respectively, {v1TPPv2, v2TPPv3, v1TPPv3}, where ? is the universal
relation. Then dist

P(s,N ) = 1 but dist

+P(s,N ) = 2.



Moreover, it does not suit our purpose for characterising the
“goodness” of approximate solutions.

Another way to measure the goodness of an approximate
solution s to a network N is by computing the maximum
conceptual distance between corresponding relations in s and
N .

Definition 6 (max conceptual distance and cn-solution):
Suppose s = {vi�ijvj : 1  i, j  n} is a consistent scenario
and N = {viRijvj : 1  i, j  n} is a QCN. The max
conceptual distance of s to N is defined as

dist

max

(s,N ) = max{dist(�ij , Rij) : 1  i < j  n}. (4)

For an integer l � 0, we say a consistent scenario s is an
l-th order conceptual solution of N if dist(s,N ) = l. In
the following, we call each first order conceptual solution a
conceptual neighbourhood solution (cn-solution for short) of
N . If N has a cn-solution, then we also say that N is cn-
consistent.
Note that 0-th order conceptual solutions are exact solutions
of N .

Similar to propositional merging [10], there exist many
other ways to characterise the “goodness” of approximate
solutions. For example, we may consider the sum of the
squares of the conceptual distances between corresponding
relations in the consistent scenario and the network. The sum
and max conceptual distances are in a sense the two limits of
the classes of distances proposed in [10]. In this paper, we will
also combine the sum and max conceptual distances to obtain
a finer measure of the fitness of an approximate solution.

B. Complexities

Recall that finding an exact solution (i.e. a consistent
scenario) for an IA or RCC8 network is in general NP-
complete. It is straightforward to show that finding an optimal
approximate solution is also NP-complete.

In the following, we consider the computational complexity
of determining when a network has an l-th order cn-solution.
We call this problem the l-th order cn-consistency problem.
Clearly, the consistency problem and the cn-consistency prob-
lem are actually the zero order and, respectively, the first order
cn-consistency problems.

For a basic relation ↵, an arbitrary relation R, and an integer
l � 0, we call

cn

l
(↵) = {� 2 B : dist(↵,�)  l} (5)

the l-th order conceptual neighbourhood of ↵, and call

cn

l
(R) = {� 2 B : dist(�, R)  l} =

[
{cn

l
(�) : � 2 R}

(6)

the l-th order conceptual neighbourhood of R.
For a network N = {viRijvj}, we write

cn

l
(N ) = {vicn

l
(Rij)vj}, (7)

and call cn

l
(N ) the l-th order conceptual neighbourhood

network of N . If l = 1, then we omit the superscripts in
cn

l
(↵), cn

l
(R), and cn

l
(N ).

cn(R) dc ec po t n eq ti ni
n * * *
t * * * *
ni * * *
ti * * * *

n,ni * * * * *
eq * * * * * *
po * * * * *

po,t * * * * * *
po,ti * * * * * *
po,eq * * * * * * *

dc * *

cn(R) dc ec po t n eq ti ni
ec * * *

dc,n * * * * *
dc,t * * * * * *
dc,ni * * * * *
dc,ti * * * * * *

dc,n,ni * * * * * * *
dc,po * * * * * *

dc,po,t * * * * * * *
dc,po,ti * * * * * * *
dc,eq * * * * * * * *

TABLE III
EXAMPLES OF CONCEPTUAL NEIGHBOURHOODS OF RCC8 RELATIONS,

WHERE T=TPP, N=NTPP, TI=TPP⇠ , NI=NTPP⇠ , AND, FOR
EXAMPLE, CN({NTPP}) = {TPP,NTPP,EQ}.

Proposition 1: A network N is cn-consistent if and only if
cn(N ) is consistent.

Write CNRCC8

for the subclass of RCC8 that is comprised
of all conceptual neighbourhoods. That is, each relation in
CNRCC8

is the union of a set of conceptual neighbourhoods
of basic relations. Then the cn-consistency problem of RCC8
is exactly the consistency problem over the class CNRCC8

,
i.e. CSPSAT(CNRCC8

).
Theorem 1: The cn-consistency problem of RCC8 is NP-

complete.
Proof: We first compute the set CNRCC8

. There are
all together 21 such relations (shown in Table III). Then we
compute dCNRCC8

, the closure of CNRCC8

in RCC8 under
converse, intersection, and weak composition. It is comprised
of 107 relations, with 24 relations belonging to none of the
three maximal tractable subsets. Moreover, the whole RCC5
algebra is contained in dCNRCC8

, i.e. RCC5 ⇢ dCNRCC8

⇢
RCC8. By the NP-completeness of CSPSAT(RCC5) and
CSPSAT(RCC8), we know dCNRCC8

is also NP-complete.

Similarly, we can show
Theorem 2: The cn-consistency problem and the second

order cn-consistency problem of IA are both NP-complete.
Proof: For each IA relation R, it can be proved that

cn

2

(R) = {↵ : dist(↵, R)  2} =

S{cn(�) : � 2
cn(R)} = cn(cn(R)). That is, each second order conceptual
neighbourhood is also a first order conceptual neighbourhood.
Let CN IA and CN 2

IA be the subclasses of IA that are com-
prised of, respectively, all first order conceptual neighbour-
hoods and all second order conceptual neighbourhoods. Since
CN IA ◆ CN 2

IA, we need only show that the second order
cn-consistency problem of IA is NP-complete. The closure
of CN 2

IA under converse, intersection, and weak composition
happens to be IA itself. Because CSPSAT(IA) is NP-complete,
the second order cn-consistency problem of IA is also NP-
complete.



Recall that dist(PO,↵)  2 for every RCC8 basic relation
↵ and dist(eq,�)  3 for every IA basic relation �. This
implies that each RCC8 network has a second (and l-th for
l � 2) order cn-solution, where every two different variables
are related by PO; and each IA network has a third (and
l-th for l � 3) order cn-solution, where every two different
variables are related by eq.

IV. FINDING APPROXIMATIONS

In this section we look at different ways of finding approx-
imations. One fairly obvious idea is to transform the existing
SAT encodings [21], [9] to a MaxSAT problem. However, in
our first attempt we have found that this could be very inef-
ficient, as the previous SAT encoding only has to encode the
weak composition constraints of the existing relations, whereas
finding approximation would require encoding composition
constraint for all possible relations. Instead, we propose four
efficient methods for finding approximations to a qualitative
constraint network.

A. Approximate with cn-solutions

The notion of cn-solutions provides one good characterisa-
tion of “approximate solutions.” A cn-solution can be found
by using standard constraint search. As a constraint network
may have many cn-solutions, it is reasonable to measure the
‘goodness’ of cn-solutions in terms of conceptual distance (3).

Let s = {vi�ijvj : 1  i < j  n} be a consistent
scenario and N = {viRijvj : 1  i < j  n} be a QCN.
Note that if s is a cn-solution of N , then s satisfies m �
dist(s,N ) constraints in N and ‘almost’ satisfies each of the
remaining constraints in N , where m is the number of non-
trivial constraints in s. It is clear that the smaller the distance
is the better the approximate solution is. In particular, if N
is consistent, then each optimal approximate cn-solution has
distance 0 to N and, hence, is an exact solution.

Given that we have already shown that deciding cn-
consistency is NP-hard and finding a cn-solution may still
involve modifying a large number of constraints, we will
instead turn and look for polynomial methods that provide
‘good’ approximate solutions, where the ‘goodness’ of an
approximate solution s is measured by the conceptual distance
dist(s,N ) of s to N (3).

B. Approximate with Tractable Subsets

One approach is to make use of the identified tractable
subsets of the given qualitative calculus, as they allow consis-
tency of the constraint networks containing only the tractable
relations to be decided in polynomial time.

Above we have seen that computing a cn-solution is hard in
general. In the following, however, we show that a cn-solution
can be found in polynomial time if the network is pseudo-
consistent, which is a very weak condition. To this end, we
introduce the following notion.

Definition 7: Let D be a subclass of A. Suppose N is a
network. Write

Nd = {xRd
ijy : 1  i, j  n}, (8)

where Rd
ij , called the D-closure of Rij , is the smallest relation

in D that contains Rij . We call Nd the D-coarse network of
N .

Lemma 1: Let D be a subclass of A that is closed under
converse, intersection, and weak composition. Suppose N is
a path-consistent network. Then the D-coarse network of N
is also path-consistent.

Proof: For every three variables v
1

, v
2

, v
3

in N , we need
to show that Rd

13

is contained in Rd
12

�w Rd
23

, the weak
composition of Rd

12

and Rd
23

. By the path-consistency of N ,
we have R

13

✓ R
12

�w R
23

. Because D is closed under weak
composition, Rd

12

�wRd
23

is a relation in D. It therefore contains
Rd

13

since it already contains R
13

.
Proposition 2: Let D be a subclass of A that is closed under

converse, intersection, and weak composition. Suppose each
path-consistent network over D is consistent. Then the D-
coarse network of each pseudo-consistent network N over A
is consistent.

Proof: Suppose N is a pseudo-consistent network over A.
Let N p be the path-consistent network obtained by enforcing
path-consistency to N . Note that N p refines N . By Lemma 1,
the D-coarse network of N p, written N p

d , is also path-
consistent. Since N p

d is over D, by assumption, we know that
N p

d is consistent. Because N p
d refines Nd, we know Nd is

consistent.
By Proposition 2 we know that Nd is consistent if N

is pseudo-consistent. On the other hand, it is not difficult
to construct examples to show that there are inconsistent
networks whose D-coarse network are consistent.

Recall that the ORD-Horn subset H of IA, and the three
maximal tractable subsets bH

8

, Q
8

, and C
8

of RCC8 are all
closed under converse, intersection, and weak composition.
Moreover, path-consistency implies consistency for networks
over any of these subclasses. As a consequence of Proposi-
tion 2 we have

Corollary 1: Suppose N is a pseudo-consistent IA (or
RCC8) network. Let D be the (or a) maximal tractable
subset of IA (or RCC8). Then the D-coarse network of N
is consistent.

Moreover, using the refinement method for bH
8

[23], we
have

Theorem 3: Every pseudo-consistent RCC8 network is cn-
consistent.

Proof: Let N be a pseudo-consistent RCC8 network.
Write N p for the path-consistent network obtained by enforc-
ing path-consistency to N . Then the bH

8

-coarse network of N p

is path-consistent and a consistent scenario can be constructed
by using the refinement method of [23]. For any RCC8
relation R, write R0 for its bH

8

-closure. It is straightforward to
check that the conceptual distance dist(�, R) (1) of each basic
relation � in R0 to R is either 0 or 1. As a consequence, we
know that any consistent scenario of the bH

8

-coarse network of
N p is a cn-solution of N p. In particular, the one constructed
by using the refinement method of [23] is a cn-solution of N .

The above theorem shows that, despite that it is in general

Sanjiang Li




NP-hard, the cn-consistency problem can be partially deter-
mined in polynomial time (by checking if a network is pseudo-
consistent) for RCC8.

C. Approximate with Consistency Subsets

Let B be the set of basic relations of A. A subset S of B
is called a consistency subset if any assignment � of basic
relations in S to edges in {(vi, vj) : 1  i < j  n} is a
consistent scenario, where V = {v

1

, ..., vn} (n � 1) is a set
of ordered variables.

For example {eq} is a consistency subset of IA. In fact, IA
has altogether 11 consistency subsets, all are singletons. RCC8
has 12 consistency subsets, 8 are singletons and the other 4
are subsets of {DC,EC,PO}.

A consistency subset can be used in finding an approximate
consistent scenario for arbitrary networks in linear time. Let
N = {viRijvj} be an RCC8 network over V = {v

1

, ..., vn}.
The following scenario s = {vi�ijvj} provides an approxi-
mation to N :

�ij =

8
<

:

DC, if DC 2 Rij ;

EC, else if EC 2 Rij ;

PO, else.

Note that s is path-consistent and, hence, consistent. This
is because any triple of relations from {DC,EC,PO} is
a composition triad of the RCC8 composition table. As the
conceptual distance of PO to any other basic RCC8 relation
is less than or equal to 2, this provides a reasonable approxi-
mation to N . In fact, s is a second order cn-solution of N .

D. Approximate with Constraint Search

A fourth possible approximation approach is to modify the
constraints when performing the standard constraint search.
Whenever an inconsistency is detected, instead of backtrack-
ing, we simply relax the violated constraint. In practice,
this entails modifying the constraint solver such that when
enforcing path-consistency, instead of refining the relation on
an edge to empty relation when inconsistency is detected,
the solver modifies the relation to the weak composition of
the two other relations. For example, if when enforcing path-
consistency we found that R

02

\R
01

�w R
12

= ?, instead of
return inconsistent, we simply “repair” R

02

to R
01

�w R
12

.
Note that this is not exactly the same as removing the original
constraint of R

02

completely, as the said relation R
02

may
have already been refined during search, and the product of
the weak composition of the two other relations may still have
a non-empty intersection of the original relation. This allows
us to avoid backtracking, and hence the complexity of the
procedure is the same as enforcing path-consistency at O(n3

),
where n is the number of variables in the constraint network.

V. EMPIRICAL EVALUATIONS

In this section, we empirically evaluate, on both IA and
RCC8 benchmarks, the four approximation methods men-
tioned in the previous section, viz. approximate with tractable
subsets, approximate with consistency subsets, repairing in-
consistent constraints with a modified constraint search, and
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Fig. 3. Average approximation distance of random RCC8 networks of
100 nodes (upper), and average CPU time of approximating random RCC8
networks of 100 nodes (below), 100 instances per data point.

finding a cn-solution using standard constraint search. The
approaches are compared by the average approximation dis-
tance, which is defined as the average ratio between the sum of
the conceptual distance of the approximating scenario to the
original constraint network (3) and the number of specified
constraints of the original constraint network.3 The constraint
search solver is GQR-1418 [27], and the experiments were run
on 2.4 GHz processors with a 2GB memory limit.

A. RCC8

First we evaluate approximating constraint networks of
RCC8. We randomly generate two sets of RCC8 networks.
In the first set, we allow any RCC8 constraint network size
100 with average degree between 4 to 20. In the second set, we
allow only pseudo-consistent networks size 110 with only the
relations outside the three maximal tractable subsets of RCC8,
with average degree falling in the phase transition region.
These are standard benchmarks in literature for deciding
consistency in RCC8.

Figure 3 shows the average approximation distance and the
CPU solving time for the four different approaches in the first
set. We have found that despite CN-search is proved to be NP-
complete, while the other three approaches are polynomial,
in practice the CPU time used for the approaches are fairly
similar. The tractable-subset approach which uses bH

8

(denoted
by horn in the figure) failed to find any approximations for
random networks with average degree more than 12, as none
of those networks are pseudo-consistent. We observe that the

3Recall that we assume Rji = R

⇠
ij and hence only consider those

constraints Rij such that i < j and Rij is not the universe relation.



0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

14" 15" 16" 17" 18" 19" 20"

Av
er
ag
e'
CP

U
'T
im

e'
(s
)'

Average'Degree'

horn" c2set" c2search" CN2search"

Fig. 4. Average approximation distance of difficult RCC8 networks of
110 nodes (upper), and average CPU time of approximating difficult RCC8
networks of 110 nodes (below), 100 instances per data point.

constraint-search based approximation (c-search) performed
best in most cases, where only very few edges are modified,
while the approach using tractable subsets failed to find any
approximations for average degree greater than 12. Further-
more, as the number of constraint increases, the c-search
approach would require to modify more constraints, but the
solving time decreases. Figure 4 shows a similar picture for
the difficult networks in the phase transition region, with the
approximation based on the tractable subset bH

8

become the
most expensive approach.

B. Interval Algebra

Second, we evaluate the approaches for approximating
randomly generated constraint networks of Interval Algebra.
Since there are no non-trivial consistency subsets for IA, we
omit it from this evaluation. Similar to RCC8, we randomly
generate two sets of IA networks with 100 nodes, with the first
set containing random IA constraint networks with average
degree between 4 and 20 (Fig. 5), and the second containing
only pseudo-consistent networks with only relations outside
the maximal tractable subset ORD-Horn with the average
degree in the phase transition region (Fig. 6).

Here we see similar patterns to the random and difficult
instances in RCC8, in that in practice the CN-search are
not more expensive in CPU time than other polynomial
approaches. Also, c-search yields the best performance for
networks of low average degree, and that the CPU time
decreases as the average degree of the networks are increased.
However, in Figure 5 we observe a noticeable difference
for random IA networks compared to random networks in
RCC8, in that c-search became more expensive in terms of
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Fig. 5. Average approximation distance of random IA networks of 100
nodes (upper), and average CPU time of approximating random IA networks
with 100 nodes (below), 100 instances per data point.
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Fig. 6. Average approximation distance of difficult IA networks of 100 nodes
(upper), and average CPU time of approximating difficult IA network of 100
nodes (below), 100 instances per data point.

average distance than approximation using tractable subset and
conceptual-neighbourhood search.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied finding approximate solutions
of qualitative constraint networks. We have determined that
the tasks of finding a conceptual neighbourhood solution for



RCC8 and IA is NP-complete, and proposed and empirically
compared four different methods for finding approximate
solutions. Our experiments have shown that approximations
can be found efficiently, and the approximation based on
constraint search dominates the other approaches in terms of
the averaged approximation distance when the average degree
of the instances is low.

There are several directions for future research. First, it
may be possible to combine the methods proposed here with
local search or greedy search for better solutions. Second, the
proposed approaches do not give estimations of how close the
approximate solutions founded are to the optimal approximate
solutions. This may be determined by computing the or a most
non-redundant subnetwork of a given network.

Except the ORD-Horn class, there are 17 maximal tractable
subclasses of IA [11], which do not contain all basic IA
relations. Although path-consistency does not imply consis-
tency for these subclasses, we could also use these tractable
subclasses for finding approximate solutions (as described in
Section 4.2). Given an IA network, we may first choose the
closest (or the most appropriate) tractable subclass and this
may improve the efficiency of the approximate method.

Furthermore, in this paper we only discussed qualitative
calculi in which path-consistency imply consistency of basic
constraint networks. There are other important calculi, e.g. the
Direction Relation Matrix (DRM) model [8] for representing
cardinal directions between extended objects, which does not
enjoy this property but the consistency problem over basic
constraint networks is still tractable [29]. Future work will
also consider extending approximations to these calculi.

Lastly, we note that our methods can be applied to find
approximate solutions to both consistent networks and incon-
sistent networks. This suggest that these methods could also be
used to repairing or merging inconsistent qualitative constraint
networks [4], [13].

ACKNOWLEDGEMENTS

This work was partially supported by Australian Research Council
(DP120104159, DP120103758, FT0990811), National Natural Sci-
ence Foundation of China (61228305), and the OpenSense project
funded by the NanoTera.ch program. We thank Jochen Renz and
Tony Cohn for fruitful discussions on our joint ARC Project “Ap-
proximate Reasoning with Qualitative Spatial Constraints Involving
Landmarks.”

REFERENCES

[1] J. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26:832–843, 1983.

[2] E. Clementini and P. Di Felice. Approximate topological relations.
International Journal of Approximate Reasoning, 16(2):173–204, 1997.

[3] A. Cohn and N. Gotts. The ‘egg-yolk’ representation of regions
with indeterminate boundaries. In P. Burrough and A. Frank, editors,
Proceedings, GISDATA Specialist Meeting on Geographical Objects
with Undetermined Boundaries. Francis Taylor, 1996.

[4] J.-F. Condotta, S. Kaci, and N. Schwind. A framework for merging
qualitative constraints networks. In D. Wilson and H. C. Lane, editors,
FLAIRS Conference, pages 586–591. AAAI Press, 2008.

[5] I. Düntsch, H. Wang, and S. McCloskey. A relation-algebraic approach
to the region connection calculus. Theoretical Computer Science,
255:63-83, 2001.

[6] S. Dutta. Qualitative spatial reasoning: A semi-quantitative approach
using fuzzy logic. In A. P. Buchmann, O. Günther, T. R. Smith, and
Y.-F. Wang, editors, SSD, volume 409 of Lecture Notes in Computer
Science, pages 345–364. Springer, 1989.

[7] C. Freksa. Temporal reasoning based on semi-intervals. Artificial
Intelligence, 54(1):199–227, 1992.

[8] Goyal, R. and Egenhofer, M., 1997. The direction-relation matrix: A
representation for directions relations between extended spatial objects.
In: The Annual Assembly and the Summer Retreat of University Con-
sortium for Geographic Information Systems Science.

[9] J. Huang, J. J. Li, and J. Renz. Decomposition and tractability in
qualitative spatial and temporal reasoning. Artificial Intelligence, 195:
140–164, 2013.
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