
Downloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.org

Robust Textual Data Streams Mining Based on Continuous Transfer Learning

Bo Liu∗ Yanshan Xiao† Philip S. Yu‡ Longbing Cao § Zhifeng Hao¶

Abstract
In textual data stream environment, concept drift can occur
at any time, existing approaches partitioning streams into
chunks can have problem if the chunk boundary does not co-
incide with the change point which is impossible to predict.
Since concept drift can occur at any point of the streams, it
will certainly occur within chunks, which is called random
concept drift. The paper proposed an approach, which is
called chunk level-based concept drift method (CLCD), that
can overcome this chunking problem by continuously mon-
itoring chunk characteristics to revise the classifier based on
transfer learning in positive and unlabeled (PU) textual data
stream environment. Our proposed approach works in three
steps. In the first step, we propose core vocabulary-based
criteria to justify and identify random concept drift. In the
second step, we put forward the extension of LELC (PU
learning by extracting likely positive and negative micro-
clusters)[1], called soft-LELC, to extract representative ex-
amples from unlabeled data, and assign a confidence score to
each extracted example. The assigned confidence score rep-
resents the degree of belongingness of an example towards
its corresponding class. In the third step, we set up a trans-
fer learning-based SVM to build an accurate classifier for the
chunks where concept drift is identified in the first step. Ex-
tensive experiments have shown that CLCD can capture ran-
dom concept drift, and outperforms state-of-the-art methods
in positive and unlabeled textual data stream environments.

1 Introduction
Text classification plays an important role in summarizing
textual information. Its main task is to set up a distinctive
classifier to predict unseen examples. From the supervised
learning perspective, both labeled positive and negative ex-
amples are required to build such a predictive classifier. In

∗Faculty of Automation, Guangdong University of Technology and
Department of Computer Science, University of Illinois at Chicago. Email:
csbliu@gmail.com
†Corresponding author. Faculty of Computer, Guangdong University of

Technology. Email: xiaoyanshan@gmail.com
‡Department of Computer Science, University of Illinois at Chicago

and Computer Science Department, King Abdulaziz University. Email:
psyu@uic.edu
§Faculty of Engineering and IT, University of Technology, Sydney,

Email: LongBing.Cao@uts.edu.au
¶Faculty of Computer, Guangdong University of Technology. Email:

mazfhao@scut.edu.cn

practice, it is not always possible to collect labeled nega-
tive examples [2]. For example, users may bookmark their
favorite Web pages, but they are usually unwilling to mark
boring pages. Another fact is that a positive class is usually
more specific than a negative class. People can characterize
their interests in detail, but they are often unable to specify
what they do not like very well. Consequently, the problem
of positive and unlabeled learning has attracted increasing
attention [3]. In PU learning, only positively labeled training
data and unlabeled data are available.

Depending on the nature of the representation models,
the previous work on PU learning can be broadly classified
into two categories: (1) static data-based methods [2, 4, 5, 6],
in which a binary classifier and a one-class classifier are
used to build a distinctive classifier for prediction; (2) the
stream data-based method [1], in which LELC (PU learn-
ing by extracting likely positive and negative micro-clusters)
extracts reliable negative examples, likely positive examples
and likely negative examples from the unlabeled data; a clas-
sifier is thereafter built by combining positive and likely
positive examples as positive class, and combining reliable
negative examples and likely negative examples as negative
class. Although this method has been found to be more
accurate than most static data-based algorithms [1], the di-
rect combination of examples ignores the difference between
the reliable examples and the likely reliable examples, such
as reliable negative examples and likely negative examples.
This tends to limit the performance of LELC.

Despite much progress being made in LELC on min-
ing textual data streams, most of the existing work holds
an underlying assumption that concept drift occurs between
chunks, and data in the same chunk share identical distribu-
tion. However, in real-world textual data streams, concept
drift can occur at any point of the streams, it will certainly
occur within chunks and that data in the same chunk may not
share identical distribution, which is called random concept
drift. This is because when a data stream system separates
stream data into chunks, it is unlikely to know when and
where the concept drift occurs. Consequently, existing ap-
proaches partitioning streams into chunks can have problems
if the chunk boundary does not coincide with the change
point which is impossible to predict. This type of issues,
typically ignored in most previous work, is critically impor-
tant and should be considered in the learning phase to build
a more accurate classifier.

731 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

This paper proposes a novel approach that can overcome
this chunking problem by continuously monitoring chunk
characteristics to revise the classifier based on transfer learn-
ing. Our proposed approach, which is called chunk level-
based concept drift method (CLCD), can justify and identify
possible random concept drift. The main contributions of our
work are summarized as follows.

(1): We propose core vocabulary-based criteria to ad-
dress random concept drift by analyzing the characteristic of
the feature representation of the positive examples in textual
data streams. Our method can automatically justify possible
random concept drift and vaguely identify where it occurs if
it exists.

(2): We introduce soft-LELC, on top of the LELC
method [1], by assigning a confidence score for each ex-
tracted representative example from unlabeled data. The
confidence score denotes the degree of belongingness of an
example towards its corresponding class. In this way, exam-
ples contribute differently to the classifier construction based
on their confidence scores, such that we can build a more ac-
curate classifier for prediction.

(3): We extend transfer learning-based SVM to build
a classifier for the chunks where random concept drift is
identified in the first step of Algorithm 1. In this phase,
the extracted examples, as well as their confidence scores,
are incorporated into the learning phase. In case that no
random concept drift is found in the first step of Algorithm
1, we extend the standard SVM to incorporate the extracted
examples and their confidence scores into the learning.

(4): Finally, we conduct experiments on the textual data
streams generated from real-world textual datasets to evalu-
ate the performance of our proposed CLCD approach. The
results show that CLCD can capture random concept drift
and can outperform state-of-the-art PU learning methods.

The advantage of our proposed approach can be sum-
marized as follows. (1): Our proposed approach can vaguely
detect and handle concept drift occurs within a data chunk
and construct a more accurate classifier in comparison to the
existing data stream methods. (2): Compared with existing
methods for positive and unlabel learning, the soft-LELC,
on top of LELC, can be efficiently converted into transfer-
learning-based classifier by incorporated the different distri-
bution data and the confidence scores into learning and de-
livers accurate classifier at the third step of of Algorithm 1.

For clarity, the basic notations and their meanings are
presented in Table 1.
2 Related Work
We review the previous PU learning methods and data
streams as follows.

2.1 PU Learning for Text Mining The previous work on
PU learning can be broadly classified into two categories:
(1) static data-based methods, and (2) the stream data-based

Table 1: Basis notations and meaning

Notions Meaning
xi the ith training example
fk the kth feature of source data
V features set of source data, fk ∈ V

|S|, r sample size of S and concept drift rate of stream
for current chunk

Dc stream chunk between tt−1 and tt
PDc labeled positive samples set
UDc unlabeled examples set

for jth portion
l number of portions for current chunk
Dj

c the jth portion of current chunk
PDj

c the positive examples set in Dj
c

UDj
c the unlabeled examples set in Dj

c , Dj
c = PDj

c
⋃

UDj
c

V P j
c positive features set of Dj

c

Hj
c (fk) feature strength of feature fk

θj
c average feature strength where fk ∈ V

for neighboring portions
Hj−j+1

c (fk) feature strength of fk between PDj
c and

PDj+1
c , fk ∈ V P j

c
⋃

V P j+1
c

Θj
c similarity of PVj and PVj+1

for first category data 1

DI
c The set of the first category data

PDI
c positive documents set of DI

c

UDI
c unlabeled documents set of DI

c

RUI
c negative documents set of DI

c

LUI
c LUI

c = UDI
c −RUI

c

method.
In the static data-based methods, a binary classifier and a

one-class classifier can be used to predict unseen examples.
In the binary classifier-based methods [3, 4, 7, 8], a set of
representative examples is extracted from the unlabeled data
in step one, and a classifier is then built in step two. Xiao [9]
introduces similarity weights to each sample in the unlabeled
data and constructs an classifier to improve the performance
of positive and unlabeled learning; on the other hand, it does
not handle the concept drift in data streams. .

For the stream data-based method [1], LELC [1] ex-
tracts reliable negative examples, likely positive examples
and likely negative examples from unlabeled data in step one,
and then builds an SVM classifier in step two. The positive
and likely positive examples are considered as positive class,
and negative and likely negative examples are treated as neg-
ative class. Although LELC has been shown to be more ac-
curate than other methods, this direct combination ignores
the difference between positive examples and likely posi-
tive examples, and the difference between negative examples
and likely negative examples. However, the reliable exam-
ples (positive and reliable negative examples) and likely ex-
amples (likely positive and likely negative examples) should
contribute differently to the construction of the SVM-based
classifier. This always limits the performance of the LELC
method.

732 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

2.2 Data Stream Recently, advanced data stream tech-
nologies have been used to process large amounts of high
frequency data such as textual news streams [10]. Due to
its crucial position in industry applications, data stream min-
ing has been investigated [10, 11]. We briefly introduce the
previous data stream work according to the assumption on
concept drift.

In the first category [1, 12], they typically hold the as-
sumption that concept drift occurs between chunks, and that
data in the same chunk share identical distribution. This is
because, for most data stream problems, it is difficult to know
whether and where concept drift may occur [13]. Conse-
quently, a classifier is built for each chunk by considering
the chunk data as a whole. The advantage of these meth-
ods is that, they can address concept drift occurring between
chunks very well. However, they may have problem if the
chunk boundary does not coincide with the change point
which is impossible to predict.

In another category, the work in [14] assumes that
concept drift occurs from the last 10% examples at the tail
of each chunk. However, this assumption of a fixed drift
point for each chunk is not always realistic. This is because
concept drift may occur anywhere within a chunk in addition
to occurring at the end of the chunk. Another reason is
that, for some chunks, there may not exist concept drift in
them. For the above reasons, it is necessary to explore new
techniques to justify and identify random concept drift in the
data stream environment.

This paper proposes core vocabulary-based criteria to
automatically justify and identify random concept drift and
then vaguely identifies where the concept drift occurs if there
exists.

3 Preliminary
3.1 Problem Definition Suppose we have a series of tex-
tual data stream chunks D1, D2, . . . , Dc, where each chunk
Dt(t = 1, 2, . . . , c) contains the data that arrived between
time period of tt−1 and tt. Here, Dc is called the current
chunk and the yet-to-come data chunk (denoted as Dc+1) is
called target chunk. Due to the fact that data in the same
chunk may not share identical distribution, this makes tex-
tual data stream learning far more difficult than previous data
stream learning.

To describe this scenario, a conceptual view is shown
in Figure 1. For the current chunk, we broadly category
data into two categories. As illustrated in Figure 1, data
in the first category (type 1) has a similar distribution to
the target chunk data, and examples in the second category
(type 2) share the same data distribution as the target chunk
data. The assumption is the same as the previous work [14].
Considering the temporal correlations of the data streams

1Similar notions are defined for the second category data, i. e.,
DII

c , PDII
c , UDII

c , RUII
c , LUII

c .

Current Chunk Target ChunkPast Chunk

** * *
*** *

*

Type 1 Type 2

Training chunk Predict chunk

Figure 1: A conceptual view of the example type categoriza-
tion for current chunk
[10, 14], the second category data might be close to the target
chunk. Since data distribution of type 1 is similar to that
of type 2, the work in [14] assumes concept drift occurs
from the last 10% examples at the tail of each chunk and
constructs transfer learning classifier on both types of data.
Our proposed approach automatically detects the concept
drift and builds transfer learning classifier to build a more
accurate classifier.

For this problem setting, we assume the number of
labeled positive examples depends on the labeling speed the
experts offer. Assume the data streams flow at a speed of sd

examples per second, the coming data is buffered and labeled
by experts with a speed of sl examples per second.

One key challenge in positive and unlabeled textual
data streams is how to justify and identify random concept
drift. We will introduce our proposed core vocabulary-based
criteria to address this in Section 4.1.

3.2 Confidence Score Model For a given instance x, the
confidence score model is defined as {x, y, m(x)}, where
y denotes the class label. The confidence score m(x)
represents the degree of belongingness of instance x towards
class y. In general, 0 ≤ m(x) ≤ 1 holds true and
m(x) = 1 means example x completely belongs to class y.
By assigning a confidence score to each example, we can
ensure that the examples make different contributions to the
construction of the classifier.

4 Proposed Approach
In this Section, we introduce our proposed approach for
positive and unlabeled textual data streams. Due to the
fact that concept drift may occur within chunks and data
in the same chunk may not share identical distribution, as
illustrated in Figure 1, this creates a new challenge for data
stream problems. Our proposed CLCD approach consists of
four steps, as illustrated in Algorithm 1. In the following, we
exhibit the four steps in detail. For simplicity, we detail each
step for the current chunk Dc. We can generalize each step
on other chunks.
4.1 Core Vocabulary-based Criteria for Identifying
Two Categories of Data The determination of the two cate-
gories of data depends on the concept drift rate [14]. Assum-
ing that data come uniformly between tc−1 and tc, the num-
ber of the second category of data has a reverse proportion to
r with a coefficient γ. In theory, around γ ·r−1|Dc| examples

733 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

Algorithm 1 Outline of CLCD Approach
1: Step 1: Propose core vocabulary-based criteria to justify whether

concept drift exists in the current chunk. If there exists, vaguely identify
the concept drift point;

2: Step 2: Put forward soft-LELC to introduce a confidence score for each
extracted example on top of the LELC method [1];

3: if there exists random concept drift then
4: For the two types of data distributions, use soft-LELC on each data

distribution to extract representative examples and assign confidence
scores for them;

5: else
6: Use soft-LELC on the whole chunk data to extract representative

examples and assign confidence scores for them;
7: end if
8: Step 3:
9: if there exists random concept drift then

10: Build a new transfer learning-based SVM to incorporate the two
types of data distributions into learning;

11: else
12: Build an SVM-based classifier on the whole chunk by incorporating

the extracted examples and their confidence scores into a learning
phase;

13: end if
14: Step 4: Integrate the classifiers from the current and historical chunks

to form an ensemble classifier for prediction.

Dc
1=PDc

1+UDc
1 Dc

2=PDc
2+UDc

2 Dc
3=PDc

3+UDc
3 Dc

4=PDc
4+UDc

4

tc-1 tc

Portion1 Portion2 Portion3 Portion4

tc-1+(tc-tc-1)/4 tc-1+(tc-tc-1)/2 tc-1+3(tc-tc-1)/4

Figure 2: Example of dividing the current chunk into four
portions referring to the time interval.

belong to the second category of data while (1−γ ·r−1)|Dc|
examples belong to the first category of data. However, we
may have no knowledge about r and γ in practice, thus this
method can not be used directly. As an alternative, we pro-
pose core vocabulary-based criteria to justify whether con-
cept drift exists within the current chunk and, if it does, to
vaguely identify where it occurs by considering the charac-
teristic of features representation of the positive examples.

4.1.1 Portions of the Current Chunk First, for the cur-
rent chunk Dc, we divide data into l portions by referring
to the time interval between tc−1 and tc so that each portion
contains both positive and unlabeled examples. More specif-
ically, let ∆c = (tc − tc−1)/l and assume the data coming
between tc−1 + (j − 1) · ∆c and tc−1 + j · ∆c are stored
in Dj

c (j = 1, 2, . . . , l). Consequently, Dj
c consists of two

sets: PDj
c which contains labeled positive examples, and

UDj
c which consists of unlabeled examples. As illustrated

in Figure 2, assume we divide the current chunk data into
four portions; we then have four sets Dj

c (j = 1, 2, 3, 4).
4.1.2 Positive Features Extraction For each portion Dj

c ,
we identify the positive features which frequently appear
in PDj

c according to the notion of core vocabulary [2]. It

is generally believed that an example belonging to positive
examples (Dj

c) must possess some features contained in the
core vocabulary of Dj

c [2], and the set of positive features
for Dj

c is denoted by V P j
c . Following the operation in

[2], we extract the positive features which appear frequently
in positive examples (Dj

c) while occur less frequently in
unlabeled examples (UDj

c) as follows.
For each portion Dj

c , we calculate the feature strength
of a particular feature fk by measuring the differences of the
normalized examples frequency between PDj

c and UDj
c

Hj
c (fk) =

n
P D

j
c
(fk)−min

P D
j
c

max
P D

j
c
−min

P D
j
c

− n
UD

j
c
(fk)−min

UD
j
c

max
UD

j
c
−min

UD
j
c

,(4.1)

where nPDj
c
(fk) and nUDj

c
(fk) represent the number of

examples that contain fk in PDj
c and UDj

c respectively,
maxPDj

c
and minPDj

c
are maximum and minimum values

of nPDj
c
(fk) for fk ∈ PDj

c . A similar formula applies to
maxUDj

c
and minUDj

c
.

After that, the positive features are identified by extract-
ing fk such that Hj

c (fk) > θj
c , where

θj
c = 1

N
P D

j
c

∑
fk∈PDj

c
Hj

c (fk)(4.2)

when NPDj
c

is the number of features in PDj
c .

By utilizing the robust positive features extraction
method in [2], we successfully extract positive features for
portion Dj

c and put them into V P j
c .

4.1.3 Boundary Determination for Two Categories of
Data We compare the similarity of the positive features be-
tween two neighboring portions to identify the vague bound-
ary of the two categories of data in the current chunk.
More specifically, for the two neighboring portions PDj

c

and PDj+1
c , the feature strength of feature fk (fk ∈

V P j
c ∪ V P j+1

c) between PDj
c and PDj+1

c , denoted as
Hj−j+1

c (fk), is calculated in the same way as Equation
(4.1). According to Equation (4.2), the similarity of the pos-
itive features between two neighboring portions is defined as
follows.
(4.3)

Θj
c = 1− 1

|V P j
c ∪ V P j+1

c |
∑

fk∈V P j
c

⋃
V P j+1

c

|Hj−j+1
c (fk)|.

The possible vague boundary of two categories of data is
between portion j and j + 1 where j equals

n = arg max(Θj
c)

j

 = 1, 2, . . . , l − 1.(4.4)

Remark: Equation (4.4) is robust since it captures the idea
that the similarity of two sets of positive features which
are from the same core vocabulary distribution is always
higher than that of two sets from different core vocabulary
distributions. For example, as illustrated in Figure 2, assume
the user’s interest is “computer” at the first two portions and
it turns into “recreation” at the third and fourth portions.

734 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

When we calculate the feature strength between the first
two portions, H1−2

c (fk) should ideally be zero because the
positive features of two portions come from the same core
vocabulary distribution; however, it might not equal zero due
to the fact that the positive features of each portion might
contain part of the computer information. For the same
reason, H3−4

c (fk) might not equal zero. However, since the
user’s interest changes between the second and third portion,
the positive features of the second portion should share little
with those of the third portion. This is because the core
vocabulary distributions of “computer” and “recreation” are
quite different. According to the characteristic of Equation
(4.1) discussed in footnote 2, H2−3

c (fk) is either strictly
towards to PD2

c or towards PD3
c . Therefore, Θ2

c will be
a comparably larger value than Θ1

c and Θ3
c .

From (4.4), we can obtain the vague boundary of two
types of data if the user’s interest occurs within chunks. In
the case that there is no random concept drift and we still
return n, we use the following criteria to judge whether
concept drift exists within the current chunk. We first
calculate the average of the other Θj

c except for Θn
c

Θc = 1
l−2

∑
j 6=n Θj

c.(4.5)

We then calculate the ratio of Θc and Θn
c , and if the ratio

is less than a pre-specific tolerance score λ, we consider that
the user’s interest drifts within the chunk. That is, (4.6) holds
true

Θc/Θn
c < λ.(4.6)

Otherwise, it is considered that no concept drift exists within
the chunk. The tolerance score λ reflects the tolerance on the
concept drift, and λ is a value between (0, 1). The smaller
λ is, the larger tolerance we have on the concept drift within
the chunk; the larger λ is, the smaller tolerance we take on
the concept drift.

The pseudo code is presented in Algorithm 2. If the
returned variable bool equals 1, it is considered that concept
drift exists within the current chunk. We then let DI

c =
D1

c ∪ · · · ∪ Dn
c and DII

c = Dn+1
c ∪ · · · ∪ Dl

c such that
PDI

c = PD1
c ∪ · · · ∪ PDn

c , UDI
c = UD1

c ∪ · · · ∪ UDn
c ,

PDII
c = PDn+1

c ∪ · · · ∪PDl
c and UDII

c = UDn+1
c ∪ · · · ∪

UDl
c. In this case, DI

c and DII
c contain two types of data

distributions respectively. If bool returns 0, we consider that
concept drift does not exist within the current chunk.
4.2 Representative Example Extraction and Confidence
Score Assignment We put forward the soft-LELC method,
on top of the LELC method, to extract representative exam-
ples from the unlabeled data and assign a confidence score
for each example. If random concept drift is found, that is
bool returns 1 in Algorithm 2, we perform soft-LELC on DI

c

and DII
c respectively. If no concept drift exists within the

current chunk, that is bool returns 0 in Algorithm 2, we per-
form soft-LELC on the whole chunk data Dc. For simplicity,
we introduce soft-LELC method on DI

c as follows.

Algorithm 2 Justification and identification of two types of
data.
Input: Dc, l, λ; // current chunk, portion number and tolerance score
Output: bool.// bool=1 means concept drift exists within
chunks.
1: Portion Dc into l portions referring to time interval;
2: Obtain Dj

c , PDj
c and UDj

c (j = 1, . . . , l).
3: for (j=1; j++; j≤ l) do
4: Calculate the feature strength of feature fk between PDj

c and UDj
c

according to Equation (4.1);
5: Compute the average feature strength by Equation (4.2);
6: Identify positive features and put them into set V P j

c ;
7: end for
8: for (j=1; j++; j≤ l-1) do
9: Calculate the similarity of positive features between PDj

c and
PDj+1

c by Equation (4.3);
10: Return the possible vague boundary of two types of data by (4.4);
11: end for
12: Obtain the average of Θj

c except for Θn
c by Equation (4.5).

13: if Equation (4.6) holds true then
14: bool=1;
15: else
16: bool=0;
17: end if
18: Return bool.

The soft-LELC method extracts the reliable negative ex-
amples, likely positive and likely negative examples from the
unlabeled examples the same as the LELC method [1]. Un-
like LELC, each example xi is assigned a confidence score
which represents the degree of belongingness towards its
corresponding class. The example with its confidence score
is denoted by (x, y, m(x)). Since the existing positive ex-
amples belong completely to the positive class, each positive
example with its confidence score is denoted as (xi,+1, 1).
4.2.1 Reliable Negative Example Extraction As with
LELC, we integrate both the Spy extraction [3] and the Roc-
chio extraction [7] to extract the most reliable negative exam-
ples. Examples are classified as reliable negative examples
only if both methods consider them as negative examples at
the same time.

We put the extracted reliable negative examples from
UDI

c into set RU I
c . We then assign confidence score 1 to

each extracted reliable example, because we can be confident
that each example belongs completely to the negative class.
Thus, each example with its confidence score in RU I

c is
denoted as (xi,−1, 1). After this, we let LU I

c = UDI
c −

RU I
c and LU I

c consists of the remaining unlabeled examples.
4.2.2 Remaining Unlabeled Examples Assignment Al-
though positive examples and the extracted negative exam-
ples can directly build a classifier for prediction. However, it
is worth extracting likely positive and likely negative exam-
ples from LU I

c and take them into the learning phase to build
an accurate classifier. The pseudo code for the extraction
of the likely positive and negative examples and confidence
score assignment is presented in Algorithm 3.

735 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

Algorithm 3 Extraction of the likely positive and negative
examples and confidence score assignment.
Input: RUI

c , PDI
c , LUI

c // reliable negative examples set, reliable positive
examples set and rest unlabeled examples
Output: (xi, yi, m(xi)), xi ∈ LUI

c //
1: Cluster the reliable negative examples in RUI

c to m micro-clusters:
RUI

c1, RUI
c2, . . . , RUI

cm. The number of m is set as m =
|RUI

c |/(|RUI
c |+ |LUI

c |) ∗ k;
2: for (i=1; i++; i≤m) do
3: −→pi = α 1

|PDI
c |

∑
x∈PDI

c

x
‖x‖ − β 1

|RUI
ci|

∑
x∈RUI

ci

x
‖x‖ ;

4: −→ni = α 1
|RUI

ci|
∑

x∈RUI
ci

x
‖x‖ − β 1

PDI
c

∑
x∈PDI

c

x
‖x‖ ;

5: end for
6: Cluster the remaining unlabeled examples in LDI

c to n micro-
clusters: LDI

c1, LDI
c2, . . . , LDI

cn. The number of n is set as n =
|LUI

c |/(|RUI
c |+ |LUI

c |) ∗ k;
7: for each micro-cluster LUI

ci do
8: pvote=0; nvote=0;
9: for each example x ∈ LDI

ci do
10: if maxm

j=1Sim(x,−→pj) > maxm
j=1Sim(x,−→nj) then

11: pvote=pvote+1;
12: else
13: nvote=nvote+1;
14: end if
15: end for
16: if pvote > nvote then
17: for each example xi in LUI

ci do
18: The label of xi is set positive: yi = 1;
19: m(xi) = pvote/(pvote + nvote);
20: end for
21: else
22: The label of xi is set negative: yi = −1;
23: m(xi) = nvote/(pvote + nvote).
24: end if
25: end for
26: Output: (xi, yi, m(xi))

In Algorithm 3, we use the same technique as LELC
to separate the unlabeled examples from steps 1 to 6. Step
1 clusters the examples in RU I

c into micro-clusters. In the
k-means method, cosine similarity [15] is used for similar-
ity calculation between xi and xj , that is Sim(xi, xj) =

xi·xj

‖xi‖·‖xj‖ . Steps 2 to 4 construct positive and negative repre-
sentative prototypes pi and ni (i = 1, 2, . . . , l), and α = 16
and β = 4 are recommended in [16]. Step 6 clusters the
unlabeled examples into micro-clusters where the examples
in the same micro-cluster are self-similar. In the clustering
steps 1 and 6, k is set 30 as recommended in [1].

Soft-LELC and LELC have different assignment strate-
gies for the examples in the micro-cluster. LELC considers
the examples in the same micro-cluster to be self-similar, and
assigns these examples to a class, in which most of the exam-
ples are similar. For example, assume that lt examples exist
in a micro-cluster, in which lp examples are similar to the
closest positive prototype −→pi , and lt − lp examples are simi-
lar to the closest negative prototype −→ni . If lp > lt− lp holds,
then lt examples are assigned to positive class; If lp < lt− lp

holds, they belong to negative class. Soft-LELC, however,
assigns the examples into the class with a certain confidence
score. For example, if lp > lt − lp, the lt examples are as-
signed into positive class with a confidence score lp/lt. Oth-
erwise, the examples are classified into negative class with a
confidence score (lt − lp)/lt.

Steps 7 to 25 show the confidence score assignment for
the extracted examples in detail. So far, we have assigned
each example in LU I

c into positive class or negative class
with a confidence score. The next step is to build a predictive
classifier using the extracted representative examples and
their confidence scores.
4.3 Classifier Construction Since each chunk may or
may not have concept drift, we put forward transfer learning-
based SVM for the chunks where concept drift occurs, and
extend the standard SVM for the chunks in which no concept
drift exists.

4.3.1 Transfer Learning-based Classifier If random
concept drift is found, that is bool returns 1 in Algorithm
2, the soft-LELC method is performed on DI

c and DII
c re-

spectively. In general, we need to use the classifier built on
DII

c for prediction since the data in DII
c are more likely to

share similar distribution as the target chunk data. In prac-
tice, the samples in DII

c may be limited compared with those
in DI

c , which are insufficient to construct an accurate classi-
fier. In this case, we propose the extension of the transfer
learning-based SVM [17] to refine the classifier boundary by
transferring knowledge from DI

c to DII
c . Meanwhile, we in-

corporate the extracted examples and their confidence scores
into the learning phase.

Suppose we have two tasks, that is, to train SVM on DI
c

for task one and on DII
c for task two:

w1 = wo + υ1 and w2 = wo + υ2,(4.7)

where w1 and w2 are parameters of the SVM for task
one and task two, respectively. wo is a common parameter
while υ1 and υ2 are specific parameters. By assuming f1 =
w1 · x and f2 = w2 · x to be two hyperplanes for DI

c and
DII

c . w1 and w2 can be denoted as wt = w0 + vt, t = 1, 2
and the extended version of transfer learning-based SVM can
be written as follows.

min J(wo, υt, ξ)

= 1
2‖wo‖2 +

∑2
t=1 Ct‖υt‖2 + C(

∑
m(x1i)ξ1i

+
∑

m(x2j)ξ2j)
s.t. y1i((wo + υ1) · x1i) ≥ 1− ξ1i, x1i ∈ DI

c

y2j((wo + υ2) · x2j) ≥ 1− ξ2j , x2j ∈ DII
c

ξ1i ≥ 0 ξ2j ≥ 0,(4.8)

where parameters C1 and C2 control the preference of the
two tasks. If C1 > C2, task 1 is preferred to task 2;
otherwise, task 2 is preferred to task 1. Parameters ξ1i and

736 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

ξ2j are defined as measure of error, the terms m(x1i)ξ1i and
m(x2j)ξ2j can be therefore considered as measure of error
with different weighting factors. Note that a smaller value
of m(x1i) could reduce the effect of the parameter ξ1i in
Equation (4.8), such that the corresponding data example ξ1i

becomes less significant in the training.
As discussed in [17], Lagrangian function can be used

to resolve Equation (4.8). We then obtain two hyperplanes
for DI

c and DII
c respectively, i.e., f1(x) = w1 · x + b1 and

f1(x) = w1 ·x+ b2. Since the data in DII
c are likely to share

similar distribution as the data in the target chunk, we use the
refined classifier built on the DII

c for prediction, and denote
it as lc.
4.3.2 Extended SVM Construction If no concept drift is
found in the current chunk, that is bool returns 0 in Algorithm
2, the standard SVM is extended to take the extracted
examples and their confidence scores into the learning:

min J(wo, ξ) = 1
2‖wo‖2 + C

∑
m(xi)ξi

s.t. yi(wo · xi + b) ≥ 1− ξi,

ξi ≥ 0 xi ∈ Dc,(4.9)

where wo · xi + b is a hyperplane. By using Lagrangian
function, we can obtain the SVM classifier.

Since no concept drift is found in the current chunk, we
use the obtained classifier for prediction and denote it as lc.
4.3.3 Computation Complexity Analysis Suppose the
computation complexity of the standard SVM is in propor-
tion to O(p)T where T ≤ 2 and p is the sample size for
binary SVM [18]. Since problem (4.8) requires solving a
standard SVM problem with 2m training data [17], where
m = max (|DI

c |, |DII
c |), the computation complexity is

O(2m)T . Additionally, the complexity of solving problem
(4.9) is the same as SVM, i.e., O(|Dt|)T .
4.4 Ensemble Classifier Construction After the classi-
fier lc is trained from the current chunk Dc, this classifier and
the most recent k − 1 classifiers (lc−k+1, lc−k+2, . . . , lc−1),
which are built on the historical chunks, form an ensemble
classifier lE . By referring to the method in [10], the weight
value of each classifier is calculated by computing its clas-
sification error on the data in DII

c (if random concept drift
is determined in Algorithm 2) or on the data in Dc (if no
random concept drift is found in Algorithm 2). After the en-
semble classifier lE has been formed, it is used to predict the
data in the target chunk.
5 Experiments
5.1 Baselines and Metric We evaluate our approach
CLCD method empirically. For comparison, another three
textual data stream methods are used as baselines. (1) The
first method is LELC [1] which is state-of-the-art PU learn-
ing algorithms for handling concept drift and has been found
to be more accurate than traditional PU learning methods
[1]. (2) The second baseline is the degenerated version of

our approach, called soft-LELC, which starts from the sec-
ond step of CLCD without justifying and identifying concept
drift; that is, it assumes concept drift occurs between chunks.
This baseline is used to show the effectiveness of confidence
score assignment by comparing the performance of LELC
and soft-LELC methods. (3) The third baseline is derived
from [14], which assumes concept drift occurs from the last
10% examples at the tail of each chunk. We use soft-LELC
and transfer learning-based SVM to build a classifier for each
chunk, similar to CLCD. This method is called TSVM. This
baseline is used to show the improvement of CLCD over the
method assuming a fixed concept drift for each chunk.

The performance of text classification is typically eval-
uated in terms of F-measure [3] which trades off precision p
and recall r: F = 2pr/(r + p). We use F-measure as metric
in the experiments.
5.2 Dataset Description In the previous data streams
study [1, 19], they always generate data streams from real-
world UCI datasets. The same as them, we use two typical
real-world textual datasets, which have been previously used
by other researchers for textual data streams [12, 1], in the
experiments:

(1): Newsgroup-202: This dataset contains 20 different
sub-categories of news; each sub-category contains about
1000 news items, these 20 sub-categories belong to five
seven categories: “alt”, “comp”, “misc”, “rec”, “sci”, “soc”
and “talk”. We ignore the news having multi labels in
the experiments. (2): Web-KB3: There are 8,282 web
pages and seven categories, i.e., “student”, “faculty”, “staff”,
“department”, “course”, “project” and “other”. Each Web
page belongs to one category. Web-KB is slightly skewed,
“other” category has more web pages compared with others.
We use the first six categories in the experiments.

Each document is represented by TFIDF features. By
referring to the operation in [12, 1], we generate the data
streams from Newsgroup-20 and Web-KB datasets and con-
cept drifts occur in them. For the data streams, we only label
a portion of the positive examples, this operation refers to
the labeled and unlabeled data stream learning [12]. For the
unlabeled positive examples and negative examples are con-
sidered as unlabeled data.
5.3 Experiment Setting The linear kernel function
K(xi, xj) = xi · xj is used since it always performs excel-
lently for text classification tasks [20]. All the experiments
are conducted on a laptop with a 2.8 GHz processor and
3GB DRAM. We implement CLCD using the VC++ 6.0
developing environment and use LibSVM to solve the
standard SVM for LELC and the extended SVM.

In the LELC, we use the recommended parameter values
in [1], introduced in Section 4.2. Soft-LELC adopts the same

2Available at http://kdd.ics.uci.edu/databases/20newsgroups
3Available at http://www.cs.cmu.edu/ webkb/

737 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

Table 2: Average performance and standard deviation of the fifty chunks with respect to different concept drift rates.
Data Set Method Concept Drift

r=20% r=30% r=40 % r=50% r=60% r=70%
LELC 0.547±0.067 0.517±0.062 0.478±0.065 0.445±0.085 0.423±0.102 0.397±0.123

Newsgroup-20 Soft-LELC 0.568±0.068 0.549±0.058 0.517±0.06 0.494±0.074 0.475±0.098 0.429±0.107

TSVM 0.598±0.061 0.564±0.056 0.559±0.063 0.543±0.073 0.524±0.103 0.478±0.112

CLCD 0.692±0.057 0.654±0.052 0.649±0.055 0.638±0.069 0.62±0.967 0.606±0.096

LELC 0.753±0.057 0.737±0.065 0.722±0.071 0.683±0.072 0.67±0.101 0.609±0.127

Web-KB Soft-LELC 0.78±0.053 0.768±0.062 0.758±0.069 0.725±0.068 0.708±0.097 0.638±0.108

TSVM 0.812±0.055 0.797±0.065 0.783±0.067 0.752±0.062 0.73±0.085 0.691±0.094

CLCD 0.867±0.051 0.848±0.059 0.841±0.062 0.827±0.065 0.822±0.075 0.805±0.089

0.2

0.4

0.6

0.8

100 200 400 600 800 1000

Chunk Size

A
v

e
r
a

g
e

 P
e

r
fo

r
m

a
n

c
e

LELC soft-LELC TSVM CLCD

(a) Newsgroup-20

0.5

0.6

0.7

0.8

0.9

100 200 400 600 800 1000

Chunk Size

A
v

e
ra

g
e

 P
e

rf
o

rm
a

n
c

e

LELC soft-LELC TSVM CLCD

(b) Web-KB
Figure 3: Performance comparison with different chunk size.

parameter settings as LELC. LELC uses the standard SVM
and soft-LELC uses the extended SVM (Equation (4.9)),
we allow parameter C in SVM classifier to be from 1 to
1000. For the CLCD, λ is set as 0.5. The number of
the portions l is chosen as 10, and we will investigate the
performance sensitivity to l in the experiment. In the transfer
learning-based model (Equation (4.8)), C1 and C2 control
the tradeoff between the global optimal boundary wo and
the local optimal boundary. If we assign a relatively large
value to C2, the global optimal solution will bias towards
task 2. Because the distribution of data in DII

c is likely to
be more similar to the target chunk data compared with the
data in DI

c , we let C2/C1 = 10 ∗ (l − n)/n, where n is
the returned concept drift place in Algorithm 2. The C in
transfer learning-based SVM (Equation (4.8)) is also chosen
from 1 to 1000. In the ensemble framework, the number of
ensemble classifiers is set k = 10.
5.4 Performance Comparison We compare LELC, soft-
LELC, TSVM and CLCD with respect to different concept
rates. Table 2 reports the average performance and standard
deviation of the fifty chunks (from the tenth chunk to the
sixtieth chunk) with respect to different concept drift rates
from r = 20% to r = 70%. Here about 30% of positive
examples are labeled and chunk size is fixed at 400. It is ob-
served that soft-LELC outperforms LELC at all times. This
is because soft-LELC, built on top of LELC, incorporates the
confidence score of each extracted example to build a more
accurate classifier. Meanwhile, we find that CLCD performs
significantly better than others. This indicates the effective-
ness of the core vocabulary-based criteria to justify and iden-
tify random concept drift.

We also observe that the performance of the four meth-
ods decreases as concept drift rate r becomes larger. In gen-
eral, larger r will lead to more concept drifts in the data

0.4
0.5
0.6
0.7
0.8

20% 30% 40%

percentages of labeled examples

p
e

rf
o

rm
a

n
c

e

LELC soft-LELC TSVM CLCD

(a) Newsgroup-20

0.6
0.7
0.8
0.9

20% 30% 40%

percentages of labeled examples

p
e
rf

o
rm

a
n

c
e

LELC soft-LELC TSVM CLCD

(b) Web-KB
Figure 4: Performance comparison with different percent-
ages of labeled examples.

0.1

0.5

0.9

1.3

100 200 400 600 800 1000

chunk size

ru
n

n
in

g
 t

im
e
 (

s
e
c
) LELC soft-LELC TSVM CLCD

(a) Newsgroup-20

0

0.4

0.8

1.2

1.6

2

100 200 400 600 800 1000

chunk size

ru
n

n
in

g
 t

im
e
(s

e
c
)

LELC soft-LELC TSVM CLCD

(b) Web-KB

Figure 5: Running time comparison
streams; consequently, the ensemble classifier becomes less
accurate for predicting the coming data. However, CLCD de-
creases more slowly compared with soft-LELC, LELC and
TSVM. This is because CLCD can identify random concept
drift, so that CLCD offers a more accurate classifier.

In CLCD, we split each chunks into a number of por-
tions, CLCD can accurately determine the concept drift if
the concept drift occurs between the portions; if concept drift
occurs within the portion of chunk, CLCD can just vaguely
detect the concept drift and also perform better than the ex-
isting methods.

We set concept drift r = 30% and about 30% of the
positive examples are labeled for the following experiments.

Figures 3 illustrates the performance comparison under
different chunk sizes. We discover that the performance
of these methods improves as the chunk size increases. In
general, a large size chunk generally contains more data
distribution information and offers a more accurate classifier.
We further find that CLCD outperforms others at all times.

Figure 4 shows the performance comparison under dif-
ferent percentages of labeled examples with p = 20%, p =
30% and p = 40% where r = 30% and chunk size equals to
400. We observe that for a specific p value, CLCD consis-
tently outperforms others. When comparing four methods
across different percentages of labeled examples, all four

738 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

0.5
0.55
0.6

0.65
0.7

0.75

6 7 8 9 10
number of portions

p
e
rf

o
rm

a
n

c
e
 CLCD

(a) Newsgroup-20

0.7
0.75
0.8

0.85
0.9

6 7 8 9 10
number of portions

p
e
rf

o
rm

a
n

c
e
 CLCD

(b) Web-KB
Figure 6: Sensitivity to different numbers of portions.

methods receive improvements as the label data increases.
This indicates that providing a sufficient number of labeled
samples will offer a more accurate classifier.
5.5 Efficiency Comparison Figure 5 shows the average
running time of fifty chunks for each method with respect to
different chunk size. It is found that CLCD takes the most
time compared with LELC and soft-LELC, and it is consis-
tent to the computational analysis in section section 4.3.3.
LELC and soft-LELC take similar time, since their computa-
tional complexity is the same, as discussed in section 4.3.3.
Further, TSVM takes more time than LELC, since TSVM
constructs a transfer learning-based SVM for each chunk,
while CLCD just constructs a transfer learning classifier for
the chunks where concept drift occurs.
5.6 Sensitivity to Different Portion Number Figure 6
shows the sensitivity of the CLCD method to different
numbers of portions from 6 to 10, in which chunk size is
400. Since we separate the chunks into smaller portions to
determine concept drift, our core vocabulary-based criteria
vaguely determine the change point. In general, if we split
each chunk into more portions where each portion contains
a number of samples, the predicted change point should
be more accurate. From the two Figures, it is clear that
the performance of CLCD is improved a little bit with the
increase of portion size l and CLCD is only slightly sensitive
to the portion number.
6 Conclusions
This paper has proposed an effective approach, named
CLCD, to identify random concept drift in positive and unla-
beled textual data stream environment. We put forward soft-
LELC, on top of the LELC method, to extract representative
examples and assign confidence scores for them; we then in-
troduce a transfer learning-based SVM to build a predictive
classifier by incorporating the representative examples and
their confidence scores into learning. Extensive experiments
have shown that CLCD can capture random concept drift and
outperform state-of-the-art methods.

7 Acknowledgment
This work is supported in part by US NSF through grants
IIS-0905215, CNS-1115234, IIS-0914934, DBI-0960443,
and OISE-1129076, US Department of Army through
grant W911NF-12-1-0066, Google Mobile 2014 Program,
HUAWEI and KAU grants, Natural Science Foundation of

China (61070033, 61203280, 61202270), Natural Science
Foundation of Guangdong province (9251009001000005,
S2011040004187, S2012040007078), Specialized Research
Fund for the Doctoral Program of Higher Education
(20124420120004), Australian Research Council Discovery
Grant (DP1096218, DP130102691) and ARC Linkage Grant
(LP100200774 and LP120100566).

References
[1] X. L. Li, P. S. Yu, B. Liu, and S. K. NG. Positive unlabeled

learning for data stream classification. SDM, 2009.
[2] G. P. C. Fung, J. X. Yu, H. Lu, and P. S. Yu. Text classification

without negative examples revisit. TKDE, 18:6–20, 2006.
[3] B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially supervised

classification of text documents. ICML, 2002.
[4] H. Yu, J. Han, and K. C. C. Chang. Pebl: web page

classification without negative examples. TKDE, 16(1):70–81,
2004.

[5] X. Li, B. Liu, and S. K. NG. Learning to classify documents
with only a small positive training set. ECML, 2007.

[6] K. Zhou, G. Xue, and Q. Yang. Learning with positive
and unlabeled exmples using topic-sensitive plsa. TKDE,
22(1):28–29, 2010.

[7] X. Li and B. Liu. Learning to classify texts using positive and
unlabeled data. IJCAI, 2003.

[8] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building
text classifiers using positive and unlabeled examples. ICDM,
2003.

[9] Y. Xiao, B. Liu, J. Yin, L. Cao, C. Zhang, and Z. Hao.
Similarity-based approach for positive and unlabeled learning.
IJCAI, 2011.

[10] H. Wang, W Fan, P. S. Yu, and J. Han. Mining concept-
drifting data streams using ensemble classifiers. KDD, 2003.

[11] C. C. Aggarwal and P. S. Yu. Locust: An online analytical
processing framework for high dimensional classification of
data streams. ICDE, 2008.

[12] Y. Zhang, X. Li, and M. Orlowska. One-class classification
of text streams with concept drift. ICDM workshop, 2008.

[13] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. KDD, 2001.

[14] P. Zhang, X. Zhu, and G. Li. Mining data streams with labeled
and unlabeled training examples. ICDM, 2009.

[15] G. Salton and M. J. McGill. Introduction to modern informa-
tion retrieval. 1986.

[16] C. Buckley, G. Salton, and J. Allan. The effect of adding
relevance information in a relevance feedback environment.
ACM SIGIR, 1994.

[17] T. Evgeniou and M. Pontil. Regularized multi-task learning.
KDD, 2004.

[18] V. Vapnik. Statistical learning theory. Springer, 1998.
[19] Gama J., Rocha R., and Medas P. Accurate decision trees for

mining high-speed data streams. KDD, 2003.
[20] F. Sebastiani. Machine learning in automated text categoriza-

tion. ACM Computing Surveys, 34(1):1–47, 2002.

739 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

