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Abstract 
Hexagonal structure is different from the traditional 

square structure for image representation. The geometri-
cal arrangement of pixels on hexagonal structure can be 
described in terms of a hexagonal grid. Hexagonal 
structure provides an easy way for image translation and 
rotation transformations. However, all the existing 
hardware for capturing image and for displaying image 
are produced based on square architecture. It has 
become a serious problem affecting the advanced 
research based on hexagonal structure. In this paper, we 
introduce a new virtual hexagonal structure.  Based on 
this virtual structure, a more flexible and powerful image 
translation and rotation are performed. The virtual 
hexagonal structure retains image resolution during the 
process of image transformations, and does not 
introduce distortion. Furthermore, images can be 
smoothly and easily transferred between the traditional 
square structure and the hexagonal structure. 
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1. Introduction 

The advantages of using a hexagonal grid to 
represent digit images have been investigated for more 
than thirty years. The importance of the hexagonal 
representation is that it possesses special computational 
features that are pertinent to the vision process. Its 
computational power for intelligent vision pushes 
forward the image processing field. Dozens of reports 
describing the advantages of using hexagonal grids have 
been found in the literature. The hexagonal image 

structure has features of higher degree of circular 
symmetry, uniform connectivity, greater angular 
resolution, and a reduced need of storage and 
computation in image processing operations.  

In spite of its numerous advantages, hexagonal grid 
has so far not yet been widely used in computer vision 
and graphics field. The main problem that limits the use 
of hexagonal image structure is believed due to lack of 
hardware for capturing and displaying hexagonal-based 
images.  

In the past years, there have been various attempts to 
simulate a hexagonal grid on a regular rectangular grid 
device [1-6]. Wuthrich et al. [3] proposed a pseudo 
hexagonal pixel in order to evaluate the visual effect of 
hexagonal pixel and square pixel. A hexagonal pixel, 
called a hyperpel, is simulated using a set of many square 
pixels and the simulated square grid had to be adapted in 
order to make its density comparable with the hexagonal 
grid. This results in a great loss of image resolution and 
an inexact simulation of the square grid. He [4] proposed 
a mimic hexagonal structure, called mimic Spiral 
Architecture, where one hexagonal pixel consists of four 
traditional square pixels and its grey level value is the 
average of the four pixels involved. This mimic scheme 
preserves the important property of hexagonal 
architecture that each pixel has exactly six surrounding 
neighbours. However, this mimic scheme also introduces 
loss of resolution. In addition, we know that according to 
hexagonal structure theory the distance between each of 
the six surrounding pixels and the central pixel is the 
same. However, this property is lost in the mimic Spiral 
Architecture. 

Wu et al. [5] constructed a virtual hexagonal 
structure which is an important milestone for the 
theoretical research and the practical application using 
this architecture. Images on rectangular structure can be 



smoothly converted to the virtual hexagonal structure, 
and vice versa. The virtual hexagonal pixels do not 
physically exist but are recorded in the memory space of 
a computer only during image process. Unlike the 
previously proposed mimicking methods, this mimicking 
operation almost does not introduce distortion or reduce 
image resolution, while keeping the isotropic property of 
the hexagonal architecture. But one of the disadvantages 
of using this approach is that the computation cost is 
high when converting between the square based images 
and hexagon based images because of the complex 
computation in determining the locations (or the areas) 
of hexagonal pixels. 

In order to increase the computation speed for image 
processing based on hexagonal structures and to reduce 
the computation complexity, He et al. [7] have proposed 
a new virtual hexagonal structure. In this new structure, 
the locations of virtual hexagons can be easily located 
through simple computations. It avoids the necessity of 
building a large table to record the information of pixel 
locations. Like the virtual structure shown in [5], this 
new virtual structure hardly changes the image resolution 
and almost does not introduce image distortion either.  

In this paper, we will perform in detail the 
computations to easily and quickly convert between the 
square pixels and hexagonal pixels on the virtual 
structure proposed in [7]. We will also present basic 
image transformations including translation and rotation 
on this new virtual structure. These transformations are 
critical for image processing on hexagonal structure.  

The rest of this paper is organized as follows. In 
Section 2, we briefly review a hexagonal image structure 
with a numbering scheme. In Section 3, the algorithms to 
convert between the traditional square structure and a 
virtual hexagonal structure are preformed. Two basic 
image transformations on the virtual structure are 
presented in Section 4. Experimental results are 
demonstrated in Section 5. We conclude in Section 6. 

2. Spiral Architecture 

Apparently, the hexagonal pixels cannot be labeled 
in row and column order as in the traditional rectangular 
structure. In order to properly address and store 
hexagonal images data, Sheridan [8] proposed a one-
dimensional addressing scheme for a hexagonal structure, 
called Spiral Architecture, as shown in Figure 1. The 
Spiral Architecture is inspired from anatomical 
consideration of the primate's vision system. 

For the whole image, following the spiral-like curve, 
as shown in Figure 1, one can find out the location of any 
hexagonal pixel with a given spiral address starting from 
the central pixel of address 0. From Figure 1, it is easy to 
see that the location of the pixel with a given spiral 
address  

,11 aaa nn − 6,,2,1,0=ia  for .,,2,1 ni =  
can be found from the locations of  

110 −× i
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For example, to find the location of the pixel with 
spiral address 43, we need only know the locations of the 
pixels with spiral addresses 40 and 3. 

 

 
Figure 1. Spiral Architecture with spiral 

addressing 

 

3. Virtual hexagonal structure 

In this section, we introduce the construction of this 
new virtual hexagonal structure and perform the 
algorithms that convert between the pixels on the 
traditional square structure and the virtual hexagonal 
structure. 

3.1. Construction of hexagonal pixels 

To construct hexagonal pixels, each square pixel is 
first separated into 7×7 smaller pixels, called sub-pixels. 
To be simple, the light intensity for each of these sub-
pixels is set to be the same as that of the pixel from 
which the sub-pixels are separated. Each virtual 
hexagonal pixel is formed by 56 sub-pixels arranged as 
shown in Figure 2. To be simple, the light intensity of 
each constructed hexagonal pixel is computed as the 
average of the intensities of the 56 sub-pixels forming 
the hexagonal pixel.  

 

 

Figure 2. The structure of a single hexagonal 
pixel 



Note that the size of each constructed pixel is  
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bigger than each square pixel. Hence, the number of 
hexagonal pixels is 12.5% less than the number of square 
pixels to cover the same image. From the observation 
result obtained in [9], it is claimed that 13.4% fewer 
sampling points (or pixels) are required with a hexagonal 
structure to maintain equal amount of image information 
(or the same image resolution) with the traditional square 
structure. Because 12.5% is less than 13.4%, the image 
represented using the hexagonal pixels constructed in the 
way above will not lose image resolution if proper light 
intensities of hexagonal pixels are assigned or 
interpolated.  

Figure 3 shows a collection of seven hexagonal 
pixels constructed with spiral addresses from 0 to 6. 
From Figure 3, it is easy to see that the hexagonal pixels 
constructed in this way tile the whole plane without 
spaces and overlaps.  

 

 

Figure 3. A cluster of seven hexagonal pixels 

From Figure 3, it can be easily computed that the 
distance from pixel 0 to pixel 1 or pixel 4 is 8. The 
distance from pixel 0 to pixel 2, pixel 3, pixel 5 or pixel 
6 is 

.06.847 22 =+  
which is close to 8. Hence, the feature of equal distance 
is almost retained and hence this construction hardly 
introduces image distortion. 

3.2. Locating hexagonal pixels 

To locate a pixel or to know how to move from the 
central pixel to any pixel with a given spiral address, we 
only need to derive the way to locate the pixel with spiral 
address in the form of 

.6,,2,1.,,2,1,10 ==× aia i  
Let us use vector [0, 0] to denote the location of the 

hexagonal pixel with spiral address 0, and vector [j, k] (j, 
k are integers) to denote the location of a pixel that is 
obtained by moving from [0, 0] down (or up if j is 
negative) for |j| sub-pixels and towards right (or left if k 
is negative) for |k| sub-pixels. If we also use L(a) to 
denote the relative location of the hexagonal pixel with 
spiral address a to the central pixel, then we have L(0) = 
[0, 0]. From Figure 3, it is easy to see that  

],7,4[)3(],7,4[)2(],0,8[)1( −−=−== LLL
].7,4[)6(],7,4[)5(],0,8[)4( =−=−= LLL  (1) 

These vectors used to describe the relative locations 
of pixels compared with the central pixel should not be 
confused with the coordinates used to describe the pixel 
locations. The origin of the coordinate system is sitting at 
the top left corner of an image at row 0 and column 0. 
Note that relative location of hexagonal pixel with 
address 9 is obtained by moving from pixel 1 in the 
direction from pixel 6 towards pixel 1 for two pixels 
distance [8] (see Figure 1). Similarly, we can determine 
the relative locations of pixels 20, 30, 40, 50 and 60. 
From Figure 1, the relative locations of these pixels can 
be computed as follows. 
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Following this track, it is easy to derive that 
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Therefore, the relative location of the pixel with a 
given spiral address  
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can be computed by 
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For example,  
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Therefore, our new simulation of Spiral Architecture 
avoids the complex computation of pixel regions as 
shown in our previous paper [5] and we no longer need 
to create a large table (saved in the PC memory) to 
record the locations of hexagonal pixels. This greatly 
increase the speed of image processing based on SA.  



3.3. Conversion between image structures 

Let us assume that original images are represented 
on a square structure arranged as 2M rows and 2N 
columns, where M and N are two positive integers. M=0 
corresponds to the first row and N=0 corresponds to the 
first column. Let the centre of the virtual hexagonal 
structure be located at the middle of rows M and M+1, 
and at column N.  

Note that there are 14M rows and 14N columns in 
the (virtual square) structure consisting of virtual sub-
pixels obtained from the original square pixels.  

Let us construct the first hexagonal pixel using the 
56 sub-pixels with centre located in the middle of rows 
7M and 7M +1 and the column 7N of the virtual square 
structure. After the 56 sub-pixels for the first hexagonal 
pixel are allocated, the corresponding sub-pixels for its 
six neighbouring hexagonal pixels can be easily allocated 
from (1). Then all sub-pixels for all hexagonal pixels can 
be assigned from (4). For our translation and rotation 
algorithms in this paper, the assignment of sub-pixels to 
corresponding hexagonal pixels is not required. We do 
not need to compute the intensities for the virtual 
hexagonal pixels either.  

4. Image Transformations 

In this section, we perform two basic trans-
formations on the virtual hexagonal structure.  

4.1. Translation 

We perform image translation in any direction based 
on movement of hexagonal pixels. Let us assume that we 
wish to translate an image such that the central 
hexagonal pixel O is moved to the hexagonal pixel with 
spiral address A represented in the form of (3). Then, 
from Equation (4), we can compute the numbers of rows 
and columns in the virtual structure to move, and the 
direction of the movement in order to move the central 
pixel from O to A. If, for example, the computed 
numbers of rows and columns for the movement are R  
and C, the translation transformation can be performed 
by moving all sub-pixels |R| rows downwards (upwards 
if R is negative) and |C| columns rightwards  (leftwards 
if C is negative).  

4.2. Rotation 

In this paper, we consider the rotation with an angle 
of 60o only. The rotations with angles 120o, 180o, 240o 
and 300o can be achieved in the same way.  

As shown in Figure 4, let us draw 6 lines from the 
central hexagonal pixel along the directions to hexagonal 
pixels with spiral addresses 1, 2, 3, 4, 5 and 6 
respectively. In our virtual hexagonal structure, 
according to the results shown in (1), the 6 directions can 
be described by the 6 vectors in (1). Again, as shown in 
Figure 1, hexagonal pixels in any region, formed by two 
adjacent lines of the 6 lines obtained above, are arranged 

as multiple layers from the central pixel onwards.  The 
first layer of each region is formed by a single pixel that 
is closest to the central pixel (but not the central pixel). 
The second layer consists of two pixels next to the first 
layer. Every upper layer has one more pixel included. All 
pixels at the same layer are on the same line. 

For example, the region formed by L(1) and L(2) has 
pixel with address 1 at its first layer, and pixels with 
addresses 63 and 15 at its second layer and so forth. 

 

 

Figure 4. Regions, layers and positions of 
hexagonal pixels 

Now, in order to perform image rotation, for any 
sub-pixel location, we need to know the region it belongs 
to. We need also know which layer it is on, its position at 
the layer, and its relative location to the center of the 
hexagonal pixel that it lies on. After the region, layer, 
position and relative location of any given sub-pixel are 
computed. The algorithm for rotation can be followed. 
The idea is to replace any sub-pixel in a region r at layer 
s located at position t with relative location l by the sub-
pixel in the previous region r-1 at the same layer s 
located at the same position t with the same relative 
location l.  

5. Experimental Results 

The above two transformations on the newly 
designed virtual hexagonal structure are implemented 
using C++ programming language and tested on a 
computer with Intel Pentium IV 2.8GHz CPU and 
480MB of RAM. Experimental results of the two image 
transformations on grey-level images are presented here. 

For any given destination spiral address, the image 
can be translated fast to the target address. A sample 
image, called “building” with size of 384*384 is shown 
in Figure 5. An example of image translation on the 
virtual hexagonal structure is shown in Figure 6. In 
Figure 6, the “building” is translated to a new location 
while the central hexagonal pixel is moved to the 



location at the spiral address of 45632. It is easily 
computed that transformation shifts the image by 70 sub-
pixels downwards and 560 sub-pixels rightwards, which 
is equivalent to 9 square pixels downwards and 80 square 
pixels rightwards. As seen from Figure 6, the translated 
image does not change any resolution. Furthermore, the 
operation can be completed very fast. The total time to 
complete the translation of an image with size of 
384*384 is 0.29 seconds. 

 
 

 

Figure 5. A sample image, “building” 

 

 

Figure 6. The “building” image is translated to 
the destination at spiral address 45632 

From Figure 6, we can see that if a sub-pixel is 
moved out the original image area, its intensity 
information is not retained, and if a sub-pixel cannot be 
obtained by moving any sub-pixel in the given direction 
and for the given distance, its intensity is replaced by 255 
(assuming we are working on a 256 grey level image). 

The advantages of this newly constructed virtual 
hexagonal structure can also been demonstrated by 
image rotations. Figure 7 shows the rotation of the image 
“building” by 60 degrees in clockwise.  

 

 

Figure 7. An example of image rotation on the 
virtual hexagonal structure, where the original 
image “building” in Figure 5 is rotated by 60 

degrees in clockwise direction 

Again, there is almost no loss of image resolution in 
the rotated image, and no distortion introduced.  Also, 
the processing speed is much faster than previous 
mimicking scheme [5]. The total time to complete the 
rotation computation for an image with size of 384*384 
is 1.1 seconds, and an image with size of 256*256 is 0.5 
seconds. Compared with the method introduced in [5] 
that takes minutes to complete a rotation, a great 
improvement has been achieved using this virtual 
structure. When more powerful computers are used and 
the algorithms are optimized, the computation speed can 
be further improved. 

6. Conclusions and Discussion 

In this paper, we have developed algorithms to 
convert between the traditional square structure and a 
newly developed virtual hexagonal structure. Based on 
the virtual hexagonal structure, algorithms for image 
translation and rotation have been presented. As we do 
not compute the light intensities for virtual hexagons, 
image resolution is maintained during the 



transformations, and we save the processing time and 
memory storage.  

In our implementation, we adopt the ideas of two 
operations defined on Spiral Architecture, namely spiral 
addition and spiral multiplication, and use them for 
translation and rotation. However, we do not perform 
these two operations to avoid a large amount of time 
requested for the complex computations on the virtual 
structure. This is very different from any of previous 
approaches, and has significantly improved the 
performance in terms of speed and complexity.  

The two transformations performed in this paper 
provide a more flexible tool for image translation and 
rotation. Using our virtual structure, we can not only 
translate images from pixels to pixels as in square 
structure, but also translate images from sub-pixels to 
sub-pixels showing potential for more accurate image 
matching. Furthermore, in addition to the ability to 
perform image rotation with 90o as in square structure, 
we have shown efficient ways to rotate images by 
multiple 60os. 

Images can be smoothly and easily transferred 
between the traditional square structure and the 
hexagonal structure without any change in image shape. 
The reason to separate a square pixel into 7×7 sub-pixel 
grid is because the total number of sub-pixels that is 49 
(the next higher one is 8×8=64) for each square pixel 
separated in this way is closest to the total number of 
sub-pixels that is 56 for each hexagonal pixel. 
Furthermore, this separation retains the image resolution 
as discussed in Section 3.  

This virtual hexagonal structure does not change the 
image resolution and introduce image distortion.  It 
retains the advantages of the real hexagonal system such 
as higher degree of symmetry, uniformly connected and 
closed-packed form. As there are simple non-overlapping 
mappings between the sub-pixels and the square pixels, 
and the mappings between the sub-pixels and the 
hexagonal pixels, the results of image processing on the 
hexagonal structure can be easily mapped back to the 
square structure for display.  

Unlike the Virtual Spiral Architecture shown in [5], 
the virtual structure does not require complex 
computation for determining the regions of hexagonal 
pixels, and does not request to build a large table stored 
in the computer memory to record the pixel locations. 
The location of each pixel can be easily and fast 
determined and computed using mathematical formulae.  

One other important note to make is that the shape 
of image for transformations does not have to be 
hexagon-like as shown in Figure 1. We can perform 
transformations directly based on the rectangle-like 
images as seen in our experimental results.  

To complete the basic transformations on the virtual 
hexagonal structure, image scaling will be performed in 
another paper.  

We list other future work related to this paper as 
follows.  

In order not to lose any image information after a 
transformation, an algorithm is to be developed to 

properly assign the pixels that are moved out the image 
areas to the pixels who intensities were replaced by 
‘white’ in this paper. The idea commonly used for spiral 
addition and multiplications can be adopted. This may 
request a new way of addressing scheme.   

On Spiral Architecture, we have performed rotation 
with any angle without scaling. This work can be 
extended to the virtual hexagonal structure discussed in 
this paper.  
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