
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Basic Transformations on Virtual Hexagonal Structure

Xiangjian He1,2, Wenjing Jia1, Qiang Wu1, Namho Hur2, Tom Hintz1, Huaqing Wang1, and
Jinwoong Kim2

1Department of Computer Systems
Faculty of Information Technology
University of Technology, Sydney

{sean,wejia,wuq,hintz,huwang}@it.uts.edu.au
2Broadcasting System Research Group
Digital Broadcasting Research Division

Electronics Telecommunications Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea

{namho,jwkim}@etri.re.kr

Abstract
Hexagonal structure is different from the traditional

square structure for image representation. The geometri-
cal arrangement of pixels on hexagonal structure can be
described in terms of a hexagonal grid. Hexagonal
structure provides an easy way for image translation and
rotation transformations. However, all the existing
hardware for capturing image and for displaying image
are produced based on square architecture. It has
become a serious problem affecting the advanced
research based on hexagonal structure. In this paper, we
introduce a new virtual hexagonal structure. Based on
this virtual structure, a more flexible and powerful image
translation and rotation are performed. The virtual
hexagonal structure retains image resolution during the
process of image transformations, and does not
introduce distortion. Furthermore, images can be
smoothly and easily transferred between the traditional
square structure and the hexagonal structure.

Keywords--- Hexagonal structure, image transla-

tion, image rotation, Spiral Architecture

1. Introduction

The advantages of using a hexagonal grid to
represent digit images have been investigated for more
than thirty years. The importance of the hexagonal
representation is that it possesses special computational
features that are pertinent to the vision process. Its
computational power for intelligent vision pushes
forward the image processing field. Dozens of reports
describing the advantages of using hexagonal grids have
been found in the literature. The hexagonal image

structure has features of higher degree of circular
symmetry, uniform connectivity, greater angular
resolution, and a reduced need of storage and
computation in image processing operations.

In spite of its numerous advantages, hexagonal grid
has so far not yet been widely used in computer vision
and graphics field. The main problem that limits the use
of hexagonal image structure is believed due to lack of
hardware for capturing and displaying hexagonal-based
images.

In the past years, there have been various attempts to
simulate a hexagonal grid on a regular rectangular grid
device [1-6]. Wuthrich et al. [3] proposed a pseudo
hexagonal pixel in order to evaluate the visual effect of
hexagonal pixel and square pixel. A hexagonal pixel,
called a hyperpel, is simulated using a set of many square
pixels and the simulated square grid had to be adapted in
order to make its density comparable with the hexagonal
grid. This results in a great loss of image resolution and
an inexact simulation of the square grid. He [4] proposed
a mimic hexagonal structure, called mimic Spiral
Architecture, where one hexagonal pixel consists of four
traditional square pixels and its grey level value is the
average of the four pixels involved. This mimic scheme
preserves the important property of hexagonal
architecture that each pixel has exactly six surrounding
neighbours. However, this mimic scheme also introduces
loss of resolution. In addition, we know that according to
hexagonal structure theory the distance between each of
the six surrounding pixels and the central pixel is the
same. However, this property is lost in the mimic Spiral
Architecture.

Wu et al. [5] constructed a virtual hexagonal
structure which is an important milestone for the
theoretical research and the practical application using
this architecture. Images on rectangular structure can be

smoothly converted to the virtual hexagonal structure,
and vice versa. The virtual hexagonal pixels do not
physically exist but are recorded in the memory space of
a computer only during image process. Unlike the
previously proposed mimicking methods, this mimicking
operation almost does not introduce distortion or reduce
image resolution, while keeping the isotropic property of
the hexagonal architecture. But one of the disadvantages
of using this approach is that the computation cost is
high when converting between the square based images
and hexagon based images because of the complex
computation in determining the locations (or the areas)
of hexagonal pixels.

In order to increase the computation speed for image
processing based on hexagonal structures and to reduce
the computation complexity, He et al. [7] have proposed
a new virtual hexagonal structure. In this new structure,
the locations of virtual hexagons can be easily located
through simple computations. It avoids the necessity of
building a large table to record the information of pixel
locations. Like the virtual structure shown in [5], this
new virtual structure hardly changes the image resolution
and almost does not introduce image distortion either.

In this paper, we will perform in detail the
computations to easily and quickly convert between the
square pixels and hexagonal pixels on the virtual
structure proposed in [7]. We will also present basic
image transformations including translation and rotation
on this new virtual structure. These transformations are
critical for image processing on hexagonal structure.

The rest of this paper is organized as follows. In
Section 2, we briefly review a hexagonal image structure
with a numbering scheme. In Section 3, the algorithms to
convert between the traditional square structure and a
virtual hexagonal structure are preformed. Two basic
image transformations on the virtual structure are
presented in Section 4. Experimental results are
demonstrated in Section 5. We conclude in Section 6.

2. Spiral Architecture

Apparently, the hexagonal pixels cannot be labeled
in row and column order as in the traditional rectangular
structure. In order to properly address and store
hexagonal images data, Sheridan [8] proposed a one-
dimensional addressing scheme for a hexagonal structure,
called Spiral Architecture, as shown in Figure 1. The
Spiral Architecture is inspired from anatomical
consideration of the primate's vision system.

For the whole image, following the spiral-like curve,
as shown in Figure 1, one can find out the location of any
hexagonal pixel with a given spiral address starting from
the central pixel of address 0. From Figure 1, it is easy to
see that the location of the pixel with a given spiral
address

,11 aaa nn − 6,,2,1,0=ia for .,,2,1 ni =
can be found from the locations of

110 −× i
ia for .,,2,1 ni =

For example, to find the location of the pixel with
spiral address 43, we need only know the locations of the
pixels with spiral addresses 40 and 3.

Figure 1. Spiral Architecture with spiral

addressing

3. Virtual hexagonal structure

In this section, we introduce the construction of this
new virtual hexagonal structure and perform the
algorithms that convert between the pixels on the
traditional square structure and the virtual hexagonal
structure.

3.1. Construction of hexagonal pixels

To construct hexagonal pixels, each square pixel is
first separated into 7×7 smaller pixels, called sub-pixels.
To be simple, the light intensity for each of these sub-
pixels is set to be the same as that of the pixel from
which the sub-pixels are separated. Each virtual
hexagonal pixel is formed by 56 sub-pixels arranged as
shown in Figure 2. To be simple, the light intensity of
each constructed hexagonal pixel is computed as the
average of the intensities of the 56 sub-pixels forming
the hexagonal pixel.

Figure 2. The structure of a single hexagonal
pixel

Note that the size of each constructed pixel is

%5.12
56

4956
=

−

bigger than each square pixel. Hence, the number of
hexagonal pixels is 12.5% less than the number of square
pixels to cover the same image. From the observation
result obtained in [9], it is claimed that 13.4% fewer
sampling points (or pixels) are required with a hexagonal
structure to maintain equal amount of image information
(or the same image resolution) with the traditional square
structure. Because 12.5% is less than 13.4%, the image
represented using the hexagonal pixels constructed in the
way above will not lose image resolution if proper light
intensities of hexagonal pixels are assigned or
interpolated.

Figure 3 shows a collection of seven hexagonal
pixels constructed with spiral addresses from 0 to 6.
From Figure 3, it is easy to see that the hexagonal pixels
constructed in this way tile the whole plane without
spaces and overlaps.

Figure 3. A cluster of seven hexagonal pixels

From Figure 3, it can be easily computed that the
distance from pixel 0 to pixel 1 or pixel 4 is 8. The
distance from pixel 0 to pixel 2, pixel 3, pixel 5 or pixel
6 is

.06.847 22 =+
which is close to 8. Hence, the feature of equal distance
is almost retained and hence this construction hardly
introduces image distortion.

3.2. Locating hexagonal pixels

To locate a pixel or to know how to move from the
central pixel to any pixel with a given spiral address, we
only need to derive the way to locate the pixel with spiral
address in the form of

.6,,2,1.,,2,1,10 ==× aia i
Let us use vector [0, 0] to denote the location of the

hexagonal pixel with spiral address 0, and vector [j, k] (j,
k are integers) to denote the location of a pixel that is
obtained by moving from [0, 0] down (or up if j is
negative) for |j| sub-pixels and towards right (or left if k
is negative) for |k| sub-pixels. If we also use L(a) to
denote the relative location of the hexagonal pixel with
spiral address a to the central pixel, then we have L(0) =
[0, 0]. From Figure 3, it is easy to see that

],7,4[)3(],7,4[)2(],0,8[)1(−−=−== LLL
].7,4[)6(],7,4[)5(],0,8[)4(=−=−= LLL (1)

These vectors used to describe the relative locations
of pixels compared with the central pixel should not be
confused with the coordinates used to describe the pixel
locations. The origin of the coordinate system is sitting at
the top left corner of an image at row 0 and column 0.
Note that relative location of hexagonal pixel with
address 9 is obtained by moving from pixel 1 in the
direction from pixel 6 towards pixel 1 for two pixels
distance [8] (see Figure 1). Similarly, we can determine
the relative locations of pixels 20, 30, 40, 50 and 60.
From Figure 1, the relative locations of these pixels can
be computed as follows.

).1(2)6()60(),6(2)5()50(
),5(2)4()40(),4(2)3()30(
),3(2)2()20(),2(2)1()10(

LLLLLL
LLLLLL
LLLLLL

+=+=
+=+=
+=+=

 (2)

Following this track, it is easy to derive that
)10)1((2)10()10(11 −− ×++×=× iii aLaLaL

)10(2)106()106(11 −− +×=× iii LLL
for .5,,2,1.,,2,1 == ai

Therefore, the relative location of the pixel with a
given spiral address

,11 aaa nn − 6,,2,1,0=ia for .,,2,1 ni =
(3)

can be computed by

.)10()(
1

1
11 ∑

=

−
− ×=

n

i

i
inn aLaaaL (4)

For example,

.]7,20[
]74[]74[2]08[

)3()5(2)4(
)3()]5(2)4([

)3()40(
)43(

−=
−−+−+−=

++=
++=

+=

LLL
LLL

LL
L

Therefore, our new simulation of Spiral Architecture
avoids the complex computation of pixel regions as
shown in our previous paper [5] and we no longer need
to create a large table (saved in the PC memory) to
record the locations of hexagonal pixels. This greatly
increase the speed of image processing based on SA.

3.3. Conversion between image structures

Let us assume that original images are represented
on a square structure arranged as 2M rows and 2N
columns, where M and N are two positive integers. M=0
corresponds to the first row and N=0 corresponds to the
first column. Let the centre of the virtual hexagonal
structure be located at the middle of rows M and M+1,
and at column N.

Note that there are 14M rows and 14N columns in
the (virtual square) structure consisting of virtual sub-
pixels obtained from the original square pixels.

Let us construct the first hexagonal pixel using the
56 sub-pixels with centre located in the middle of rows
7M and 7M +1 and the column 7N of the virtual square
structure. After the 56 sub-pixels for the first hexagonal
pixel are allocated, the corresponding sub-pixels for its
six neighbouring hexagonal pixels can be easily allocated
from (1). Then all sub-pixels for all hexagonal pixels can
be assigned from (4). For our translation and rotation
algorithms in this paper, the assignment of sub-pixels to
corresponding hexagonal pixels is not required. We do
not need to compute the intensities for the virtual
hexagonal pixels either.

4. Image Transformations

In this section, we perform two basic trans-
formations on the virtual hexagonal structure.

4.1. Translation

We perform image translation in any direction based
on movement of hexagonal pixels. Let us assume that we
wish to translate an image such that the central
hexagonal pixel O is moved to the hexagonal pixel with
spiral address A represented in the form of (3). Then,
from Equation (4), we can compute the numbers of rows
and columns in the virtual structure to move, and the
direction of the movement in order to move the central
pixel from O to A. If, for example, the computed
numbers of rows and columns for the movement are R
and C, the translation transformation can be performed
by moving all sub-pixels |R| rows downwards (upwards
if R is negative) and |C| columns rightwards (leftwards
if C is negative).

4.2. Rotation

In this paper, we consider the rotation with an angle
of 60o only. The rotations with angles 120o, 180o, 240o
and 300o can be achieved in the same way.

As shown in Figure 4, let us draw 6 lines from the
central hexagonal pixel along the directions to hexagonal
pixels with spiral addresses 1, 2, 3, 4, 5 and 6
respectively. In our virtual hexagonal structure,
according to the results shown in (1), the 6 directions can
be described by the 6 vectors in (1). Again, as shown in
Figure 1, hexagonal pixels in any region, formed by two
adjacent lines of the 6 lines obtained above, are arranged

as multiple layers from the central pixel onwards. The
first layer of each region is formed by a single pixel that
is closest to the central pixel (but not the central pixel).
The second layer consists of two pixels next to the first
layer. Every upper layer has one more pixel included. All
pixels at the same layer are on the same line.

For example, the region formed by L(1) and L(2) has
pixel with address 1 at its first layer, and pixels with
addresses 63 and 15 at its second layer and so forth.

Figure 4. Regions, layers and positions of
hexagonal pixels

Now, in order to perform image rotation, for any
sub-pixel location, we need to know the region it belongs
to. We need also know which layer it is on, its position at
the layer, and its relative location to the center of the
hexagonal pixel that it lies on. After the region, layer,
position and relative location of any given sub-pixel are
computed. The algorithm for rotation can be followed.
The idea is to replace any sub-pixel in a region r at layer
s located at position t with relative location l by the sub-
pixel in the previous region r-1 at the same layer s
located at the same position t with the same relative
location l.

5. Experimental Results

The above two transformations on the newly
designed virtual hexagonal structure are implemented
using C++ programming language and tested on a
computer with Intel Pentium IV 2.8GHz CPU and
480MB of RAM. Experimental results of the two image
transformations on grey-level images are presented here.

For any given destination spiral address, the image
can be translated fast to the target address. A sample
image, called “building” with size of 384*384 is shown
in Figure 5. An example of image translation on the
virtual hexagonal structure is shown in Figure 6. In
Figure 6, the “building” is translated to a new location
while the central hexagonal pixel is moved to the

location at the spiral address of 45632. It is easily
computed that transformation shifts the image by 70 sub-
pixels downwards and 560 sub-pixels rightwards, which
is equivalent to 9 square pixels downwards and 80 square
pixels rightwards. As seen from Figure 6, the translated
image does not change any resolution. Furthermore, the
operation can be completed very fast. The total time to
complete the translation of an image with size of
384*384 is 0.29 seconds.

Figure 5. A sample image, “building”

Figure 6. The “building” image is translated to
the destination at spiral address 45632

From Figure 6, we can see that if a sub-pixel is
moved out the original image area, its intensity
information is not retained, and if a sub-pixel cannot be
obtained by moving any sub-pixel in the given direction
and for the given distance, its intensity is replaced by 255
(assuming we are working on a 256 grey level image).

The advantages of this newly constructed virtual
hexagonal structure can also been demonstrated by
image rotations. Figure 7 shows the rotation of the image
“building” by 60 degrees in clockwise.

Figure 7. An example of image rotation on the
virtual hexagonal structure, where the original
image “building” in Figure 5 is rotated by 60

degrees in clockwise direction

Again, there is almost no loss of image resolution in
the rotated image, and no distortion introduced. Also,
the processing speed is much faster than previous
mimicking scheme [5]. The total time to complete the
rotation computation for an image with size of 384*384
is 1.1 seconds, and an image with size of 256*256 is 0.5
seconds. Compared with the method introduced in [5]
that takes minutes to complete a rotation, a great
improvement has been achieved using this virtual
structure. When more powerful computers are used and
the algorithms are optimized, the computation speed can
be further improved.

6. Conclusions and Discussion

In this paper, we have developed algorithms to
convert between the traditional square structure and a
newly developed virtual hexagonal structure. Based on
the virtual hexagonal structure, algorithms for image
translation and rotation have been presented. As we do
not compute the light intensities for virtual hexagons,
image resolution is maintained during the

transformations, and we save the processing time and
memory storage.

In our implementation, we adopt the ideas of two
operations defined on Spiral Architecture, namely spiral
addition and spiral multiplication, and use them for
translation and rotation. However, we do not perform
these two operations to avoid a large amount of time
requested for the complex computations on the virtual
structure. This is very different from any of previous
approaches, and has significantly improved the
performance in terms of speed and complexity.

The two transformations performed in this paper
provide a more flexible tool for image translation and
rotation. Using our virtual structure, we can not only
translate images from pixels to pixels as in square
structure, but also translate images from sub-pixels to
sub-pixels showing potential for more accurate image
matching. Furthermore, in addition to the ability to
perform image rotation with 90o as in square structure,
we have shown efficient ways to rotate images by
multiple 60os.

Images can be smoothly and easily transferred
between the traditional square structure and the
hexagonal structure without any change in image shape.
The reason to separate a square pixel into 7×7 sub-pixel
grid is because the total number of sub-pixels that is 49
(the next higher one is 8×8=64) for each square pixel
separated in this way is closest to the total number of
sub-pixels that is 56 for each hexagonal pixel.
Furthermore, this separation retains the image resolution
as discussed in Section 3.

This virtual hexagonal structure does not change the
image resolution and introduce image distortion. It
retains the advantages of the real hexagonal system such
as higher degree of symmetry, uniformly connected and
closed-packed form. As there are simple non-overlapping
mappings between the sub-pixels and the square pixels,
and the mappings between the sub-pixels and the
hexagonal pixels, the results of image processing on the
hexagonal structure can be easily mapped back to the
square structure for display.

Unlike the Virtual Spiral Architecture shown in [5],
the virtual structure does not require complex
computation for determining the regions of hexagonal
pixels, and does not request to build a large table stored
in the computer memory to record the pixel locations.
The location of each pixel can be easily and fast
determined and computed using mathematical formulae.

One other important note to make is that the shape
of image for transformations does not have to be
hexagon-like as shown in Figure 1. We can perform
transformations directly based on the rectangle-like
images as seen in our experimental results.

To complete the basic transformations on the virtual
hexagonal structure, image scaling will be performed in
another paper.

We list other future work related to this paper as
follows.

In order not to lose any image information after a
transformation, an algorithm is to be developed to

properly assign the pixels that are moved out the image
areas to the pixels who intensities were replaced by
‘white’ in this paper. The idea commonly used for spiral
addition and multiplications can be adopted. This may
request a new way of addressing scheme.

On Spiral Architecture, we have performed rotation
with any angle without scaling. This work can be
extended to the virtual hexagonal structure discussed in
this paper.

References

[1] [1] B.K.P. Horn, Robot Vision. 1986: MIT Press,
Cambridge, MA & McGraw-Hill, New York, NY.

[2] [2] R. Staunton, The design of hexagonal sampling
structures for image digitization and their use with local
operators. Image and Vision Computing, 1989. 7(3): p.
162-166.

[3] [3] C.A. Wuthrich and P. Stucki, An algorithmic
comparison between square- and hexagonal-based grids.
CVGIP: Graphical Models and Image Processing, 1991.
53(4): p. 324-339.

[4] [4] X. He,, 2-D Object Recognition with Spiral
Architecture. 1999, PhD Thesis, University of
Technology, Sydney.

[5] [5] Q. Wu,, X. He, and T. Hintz, Virtual Spiral
Architecture. Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 2004. 1: p. 399-405.

[6] [6] Xiangjian He and Wenjing Jia, Hexagonal structure
for intelligent vision, Proceedings of International
Conference on Information and Communication
Technologies (IEEE), Karachi, September 2005, pp.52-
64.

[7] [7] X. He, T. Hintz, Q. Wu, H. Wang and W. Jia, A new
simulation of Spiral Architecture, Proc. of International
Conference on Image Processing, Computer Vision, and
Pattern Recognition, Las Vegas, June 2006, to appear.

[8] [8] P. Sheridan, T. Hintz, and D. Alexander, "Pseudo-
invariant Image Transformations on a Hexagonal
Lattice," Image and Vision Computing, vol. 18, pp. 907-
917, 2000.

[9] [9] R.M. Mersereau, The processing of Hexagonally
Sampled Two-Dimensional Signals. Proceedings of the
IEEE, 1979. 67: p. 930-949.

