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The Application of Discrete Sliding Mode Control in Parabolic PDE
Dynamics

Ahmadreza Argha, Li Li, Steven W. Su and Hung Nguyen

Abstract— In this paper, the problem of applying Discrete
Sliding Mode Control (DSMC) on spatially finite-dimensional
systems arising from discretization of bi-variate Partial Dif-
ferential Equations (PDEs) describing spatio-temporal systems
is studied. To this end, heat transfer PDE is discretized to
create 2D discrete dynamics and eventually this 2D spatio-
temporal discrete form is represented in 1D vectorial form. In
order to study the effect of discrepancy between original PDE
dynamics and their discrete schemes, an uncertainty term is also
considered for the obtained discrete dynamics. According to the
notion of strong stability and, in addition, using scaling matrices
(similarity transformation), a new method for considering the
stability of discrete-time systems in the presence of general
uncertainty term (matched and unmatched) is developed. It
is also shown that the proposed method in this paper can be
used for the case with spatial constraints on the actuation.
Consequently, as special cases, the problem of spatially piece-
wise constant, sparse and also boundary control input are
studied.

I. INTRODUCTION

Although PDEs problem are usually much harder to
address than ODEs, discretizing method which converts
PDEs to linear 2D systems can be used as an alternative
simple solution [1]. In this paper, we will use the discrete
finite-dimensional approximation (numerical approximation)
of infinite-dimensional parabolic PDEs to deploy the Discrete
Sliding Mode Control (DSMC) method to the dynamics
defined by PDEs.
There are a number of studies on the dynamics described by
PDEs. For instance, in [2] - [3], controlling an unstable linear
system with a wave PDE in the actuation path is studied.
Moreover, Iterative Learning Control (ILC) is used in [4] for
a distributed parameter system which is governed by a second
order hyperbolic PDE. In [5], the ILC method is deployed to
distributed parameter systems governed by parabolic PDEs.
In [6], an irrigation application in dry-land farming governed
by a set of PDEs which include three spatial variables and
one temporal independent variable is explained. In [7], ILC
method is applied to parabolic classes of spatio-temporal
systems based on the stability theory of 2D discrete systems.
Basically, Sliding Mode Control (SMC) is a nonlinear control
method and a special kind of Variable Structure Control
(VSC) which can change its structure automatically in order
to improve the dynamic performance. The main idea of SMC
is to force the states into the sliding surface and remain
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on the sliding surface after reaching. The most significant
characteristics of SMC is its robustness, as it provides dy-
namics with an invariance property to matched uncertainties
[8]. Therefore, SMC can address the modeling uncertainties
and especially it is useful when the exact model of the
dynamics is not available. However, there is a significant
drawback for Continuous SMC (which mainly involves a
discontinuous control term) which is known as chattering.
Mainly, the method of softening the discontinuous control
part by a continuous approximation is used for reducing the
chattering [26]. On the other hand, for DSMC, elimination
of the discontinuous control part from the control law leads
to the eliminating the chattering issue [17], [20], [18]. The
obtained control law is called linear control law.
Obviously, one approach to applying SMC to PDEs is to
work directly with the determining equations; for instance,
continuous SMC is used as a boundary control method
for stabilizing infinite-dimensional parabolic PDE systems
[9], and also with application to Arc Welding [10]. As an
alternative method, one can discretize PDEs by an implicit
discretization scheme which is appropriate for dynamics
over spatially finite problems. In this paper, using DSMC
a new method for dealing with the problem of stabilizing
parabolic PDE dynamics via discretizing the heat PDEs by an
implicit discretization scheme is proposed. To this end, after
discretizing the PDE equation and making it a 2D system,
it is converted to a 1D form with vector states, and then
the 1D sliding mode control is used to stabilize the obtained
dynamics.
On the other hand, physical constraints in many distributed
parameter systems are arising from the fact that only bound-
ary control can be used for controlling this kind of dynam-
ics. However, distributed sensors and also actuators have
been recently developed in a number of fields. Hence, dis-
tributed controllers have had effective application in infinite-
dimensional dynamics [7]. This can also justify our innova-
tion to use DSMC for stabilizing the dynamics arised from
heat PDEs which covers general actuation constraints. The
problem is then extended to spatially constrained actuators,
for more generality.
Besides, the discrepancy between the original PDE model
and its discrete approximation which mainly depends on the
space and time step sizes, makes it inevitable to consider
an uncertainty term in the obtained discrete state space.
With a glimpse into the literature, it can be found that
DSMC is mainly used for the systems which contain matched
uncertainty and/or disturbance only [17], [18]. In this paper,
a more general case of uncertainty (matched and unmatched)



including model-based uncertainty and external disturbance
is considered. In order to achieve this goal, primarily, the
notion of strong stability [23] is introduced. Then, it will
be shown that any asymptotic stable system is strongly
stable under a specific norm. Eventually, as a significant
contribution, a new method to consider the bound on system
states subject to the general uncertainty is given based on
the notion of strong stability.
The rest of this paper is organized as follows: in Section
II, the procedure of discretizing a heat PDE is explained.
Section III describes the Discrete Sliding Mode Controller
design for our problem. In Section IV, the notion of strong
stability is introduced. Section V explains the DSMC for the
obtained 1D discrete dynamics including general uncertainty
term. In Section VI, effectiveness and efficiency of the
proposed method is studied by numerical examples. Finally,
Section VII concludes this paper.

II. DISCRETIZING HEAT PDES

This section intends to explain the method of discretizing
the heat transfer equation (as a parabolic PDE). Consider the
following heat transfer equation,

∂h(t,x)
∂ t

= ϒ
∂ 2h(t,x)

∂x2 +ζ u(t,x) t ≥ 0, 0 < x < l, (1)

where h(t,x) and u(t,x) represent the heat flow and the
control input, respectively. Here, t and x are time and space
variables respectively; thermal diffusivity ϒ is a positive con-
stant; ζ is an operator characterizing the actuation location
constraints, which is independent of t. It is assumed that time
dependent Dirichlet boundary conditions are imposed to the
heat PDE (1),

h(t,0) = α̂(t), h(t, l) = β̂ (t), t ≥ 0. (2)

Besides, the following initial conditions are assumed,

h(0,x) = g(x), 0≤ x≤ l. (3)

Whenever the direct discretization method is applied to heat
transfer dynamics, it is necessary to guarantee the numerical
stability by choosing proper sampling period. To discretize
the equation (1), the following uniformly mesh is assumed,

tk = k∆t, x j = j∆x, (4)

where ∆t and ∆x = l
n represent, respectively, the time step

size and the spatial mesh size and also n represents the
number of spatial meshes. From Taylor’s expansion we can
obtain [13]

h(t±∆t,x) = h(t,x)±∆t
∂h(t,x)

∂ t
+

1
2
(∆t)2 ∂ 2h(t,x)

∂ t2 +O[(∆t)3],

Therefore

∂ 2h(tk,x j)

∂x2 ≈
h(tk,x j+1)−2h(tk,x j)+h(tk,x j−1)

(∆x)2 , (5)

and similarly

∂h(t,x)
∂ t

≈
h(tk+1,x j)−h(tk,x j)

(∆t)
. (6)

Define the vectorial form H(k) = [hk,1,hk,2, . . . ,hk,n−1]
T =

[h(tk,x1),h(tk,x2), . . . ,h(tk,xn−1)]
T , and U(k) =

[uk,i1 ,uk,i2 , . . . ,uk,im ]
T , where uk,iw ,w = 1, · · · ,m are control

input at locations xiw ,w = 1, · · · ,m, and time k which is
specified by the operator ζ in (1). Then, we have

H(k+1) = ΛH(k)+BU(k)+υ(k), (7)

where

Λ=



(1−2κ) κ

κ (1−2κ) κ

κ
. . .

. . .
. . . κ

κ (1−2κ)

 ,υ(k)=


κα̂k
0
...
0

κβ̂k

 ,
(8)

κ = ϒ∆t
(∆x)2 and B ∈ R(n−1)×m.

Remark 1: It is shown in [13] that this discretizing method
is stable if 0 ≤ κ ≤ 1

2 . Besides, an unconditionally stable
method can be obtained by the Crank-Nicolson discretizing
method [7].
In (7), the control matrix B and control input U(k) can be
different based on different spatial constraints. According to
the physical position of spatially distributed controller, it is
assumed that there are only m locations available for control.
Thus, the significant point is that the number of spatially
distributed states and control inputs are not necessarily equal.
It should be noted that in [14], some examples of actuators
(sensors) such as spatially distributed (zone case and point-
wise case) and boundary (zone case and point-wise case)
actuators for diffusion systems are considered. This will
lead to more control options including spatially piece-wise
constant, sparse and also boundary control etc.
For instance, in some applications, the control input is in
spatially piece-wise constant form. As an illustration, assume
that the control input has the same value at every successive
two spatial points. In this case, the control vector is supposed
to be U(k) = [uk,1,uk,3,uk,5, . . .]

T and also the control matrix
is assumed to be as B1 in (9). It is also possible that control
effort is only possible in restricted points of space mesh
named spatially sparse control input. As an illustration, for
the control vector U(k) = [uk,1,uk,3,uk,5, . . .]

T , the control
matrix is as B2 in the following,

B1 =



µ 0 0
µ 0 0
0 µ 0
0 µ 0 · · ·
0 0 µ

0 0 µ

...


,B2 =



µ 0 0
0 0 0
0 µ 0
0 0 0 · · ·
0 0 µ

0 0 0
...


. (9)

Furthermore, as it was mentioned before, in many dis-
tributed parameter systems, owing to the physical constraints,



boundary controllers are the only choice. In this case, we
assume that in (7), boundary condition on one side is the
control inputs of the system and as a result it is not constant
value. To this end, system (7) is changed to the following
form

H(k+1) = ΛH(k)+Bub(k)+ υ̂(k), (10)

where

υ̂(k) =
[
κα̂k 0 . . . 0

]T
,B =

[
0 0 . . . µ

]T
, (11)

and υ̂ ∈ Rn−1, B ∈ R(n−1)×1. Here, ub(k) is a scalar which
represents the control input on the boundary. Generally,
based on the physical position of actuators, control matrix B
can have any different form, including the mentioned forms.
In all these cases, it is assumed that matrix B has full rank,
rank(B) = m.

III. DESIGNING DSMC

Discrete Sliding Mode Control (DSMC) was first intro-
duced in the mid 80s [15]. This idea was followed by a large
number of publications [16] - [19]. Similar to Continuous
Sliding Mode Control (CSMC), the design procedure of the
DSMC for stabilizing problems is split into two steps:

1) Design a sliding surface which should have stable
internal dynamics.

2) Create a control law which drives the closed-loop
system into the sliding surface and forces the system
trajectories to stay on or at least as close as possible
to the surface.

Here, the objective is to design a DSMC to stabilize the
states of the dynamics in (7). Generally, it is assumed that
B ∈ R(n−1)×m and m≤ n−1. Obviously, the dynamics in (7)
is not in regular form with control matrices (9). Besides,
rank(B) = m (matrix B has full rank) and it is assumed that
the pair (Λ,B) is controllable [19]. Since rank(B) = m, there
exists an orthogonal matrix Tr ∈ R(n−1)×(n−1) such that

TrB =

[
0[(n−1)−m]×m

B̄2

]
, (12)

where the matrix B̄2 ∈Rm×m is nonsingular [20] (The orthog-
onal matrix Tr can be computed using QR decomposition
[20]). After the coordinate transformation, the dynamics in
(7) is converted to[

h̄1(k+1)
h̄2(k+1)

]
=

[
Λ̄11 Λ̄12
Λ̄21 Λ̄22

][
h̄1(k)
h̄2(k)

]
+[

0[(n−1)−m]×m
B̄2

]
U(k)+Trυ(k),

(13)

where

H̄(k) =
[

h̄1(k)
h̄2(k)

]
= TrH(k),

h̄1(k) ∈ R[(n−1)−m] and h̄2(k) ∈ Rm

Λ̄11 ∈ R[(n−1)−m]×[(n−1)−m], Λ̄12 ∈ R[(n−1)−m]×m

Λ̄21 ∈ Rm×[(n−1)−m], Λ̄22 ∈ Rm×m.

(14)

To design the sliding surface, since the boundary conditions
do not influence the stability situation, we can temporarily
ignore the term Trυ(k) arising from boundary conditions.
Now, sliding surface is introduced as

σh(k) = S̄H̄(k) = S̄1h̄1(k)+ S̄2h̄2(k), (15)

where S̄1 ∈ Rm×[(n−1)−m] and S̄2 ∈ Rm×m are the design
parameters which determine the sliding surface and should
be chosen such that, in the case that σh(k) = 0, all remaining
dynamics are stable. During ideal sliding on the surface,
σh(k) = 0 for all k ≥ ks, where ks is the time when sliding
starts, therefore

h̄2(k) =−S̄−1
2 S̄1h̄1(k). (16)

Substituting the equation (16) into the equation (13) leads to

h̄1(k+1) = (Λ̄11− Λ̄12S̄−1
2 S̄1)h̄1(k). (17)

Hence, stability in the sliding mode is satisfied when all
eigenvalues of the matrix (Λ̄11−Λ̄12S̄−1

2 S̄1) are located inside
the unit circle. On the other hand, in [26], it is presented
that if the pair (Λ,B) is controllable, the pair (Λ̄11, Λ̄12) is
controllable as well. Therefore, the problem of finding the
term S̄−1

2 S̄1 can be addressed as a classical state feedback
problem which can be solved by pole placement, LQR-
design or LMI method. It is also assumed that the matrix S̄2
plays the role of a scaling parameter which can be selected
arbitrarily but invertible. Here, we design S̄1, S̄2 by solving
a certain discrete Riccati equation with proper choices of
weighting matrices. Eventually, the sliding surface in the
original coordinate can be found by

S = [S̄1 S̄2]Tr. (18)

In this stage, we want to design a controller which ensures
the sliding mode of system. Firstly, a transformation matrix
Ts is defined as

Ts =

[
I(n−1)−m 0[(n−1)−m]×m

S̄1 S̄2

]
. (19)

Using the above transformation matrix the dynamics in (13)
is converted to

H̃(k+1) =
[

h̄1(k+1)
σh(k+1)

]
=

[
Λ̃11 Λ̃12
Λ̃21 Λ̃22

][
h̄1(k)
σh(k)

]
+[

0[(n−1)−m]×m
S̄2B̄2

]
U(k)+

[
υ̃1(k)
υ̃2(k)

]
,

(20)

where [υ̃T
1 (k) υ̃T

2 (k)]
T = TsTrυ(k) and υ̃1(k) ∈ R(n−1)−m,

υ̃2(k) ∈ Rm. In order to design a controller which forces the
closed-loop system into the sliding mode we use the linear
reaching law presented in [21] and [18], which is given by

σh(k+1) = Φσh(k), (21)

where Φ ∈ Rm×m has been chosen to be a diagonal matrix
with all its diagonal elements φr, r = 1, . . . ,m, satisfying
0≤ φr < 1.



Theorem 1: The system (20) is stable underc the control
input U as

U(k) = (S̄2B̄2)
−1([Φ− Λ̃22]σh(k)− Λ̃21h̄1(k)− υ̃2(k)). (22)

Proof: Applying the above control law to the system
(20) results in the following closed-loop system[

h̄1(k+1)
σh(k+1)

]
=

[
Λ̃11 Λ̃12
0 Φ

][
h̄1(k)
σh(k)

]
+

[
υ̃1(k)

0

]
. (23)

Obviously, the eigenvalues of Φ are designed to be stable. In
addition, it can be easily proved that Λ̃11 = Λ̄11− Λ̄12S̄−1

2 S̄1
which is designed to be a stable matrix by (17). Conse-
quently, the system (20) is stable under the control law (22).

Remark 2: As seen from (21) and (23), the states σh(k) in
sliding surface are not influenced by the boundary conditions.
However, broadly speaking, the boundary conditions have
an obvious effect on the dynamics of the total states and,
in addition, the final value that the states approach to. The
bound of states will be found in Section V when the system
(7) is assumed to have boundary conditions and an additional
uncertainty term.
It should be mentioned that instead of control law (22),
another direct method is also possible to obtain the sliding
control law [18], [20]. Assuming that matrices S̄1 and S̄2
have been designed (by for instance LQR design) such that
the reduced order dynamics (17) is stable. Now, from (21),
(15) and (7) we have

Φσh(k) = S[ΛH(k)+BU(k)+υ(k)], (24)

where S is defined in (18). Thus, the control law can be
determined by

U(k) = (SB)−1[ΦSH(k)−SΛH(k)−Sυ(k)]. (25)

This control law is called direct control law which can be
obtained directly after computing sliding matrix S.

IV. STRONG STABILITY FOR DISCRETE-TIME
SYSTEMS

The stability studied in Theorem 1 is based on the notion
of asymptotic stability. To analysis the effect of uncertainty,
in this section, another notion of stability referred to as strong
asymptotic stability or briefly strong stability is studied.

Definition 1: Consider the following LTI discrete-time
system

x(k+1) = Ax(k), k ≥ 0, x ∈ Rn. (26)

The system (26) is strong asymptotically stable if and only
if ‖x(k+1)‖< ‖x(k)‖, for all k > 0 : x(k) 6= 0.

Lemma 1 ( [23]): The system in (26) is strong asymptot-
ically stable if and only if

‖A‖< 1. (27)
Although it is clear that all the systems are not strong stable
with respect to Euclidean norm, in the following it will
be shown that each asymptotically stable system is strong
asymptotically stable with respect to a specific norm.

Lemma 2 ( [23]): For each asymptotically stable LT I
discrete-time system (26) there exists a similarity transfor-
mation matrix T , such that

∥∥TAT−1
∥∥< 1.

Lemma 3 ( [22]): If T is a nonsingular similarity trans-
formation matrix then

‖A‖T
4
=
∥∥TAT−1∥∥ , (28)

is a matrix norm.
Thus, it should be noted that

∥∥TAT−1
∥∥ can be assumed

as a special norm (T − norm) of the matrix A. Lemmas 2
and 3 ensure that for every asymptotically stable system
there exists a specific norm such that, under that norm, the
closed-loop system is strong asymptotically stable [23]. The
issue of strong asymptotic stability for uncertain systems will
be studied in the next section. More importantly, a specific
similarity transformation T such that

∥∥TAT−1
∥∥< 1 which is

known as the balancing transformation is introduced in [24].
Lemma 4: Define a vector norm ‖x‖T as

‖x‖T
4
= ‖T x‖ . (29)

Then, the matrix norm in (28) is an induced norm for the
vector norm in (29).

Proof: It can be shown that for every A ∈ Rn×n,

max
‖x‖T=1

‖Ax‖T = max
‖x‖T=1

‖TAx‖=

max
‖T x‖=1

∥∥TAT−1T x
∥∥= ∥∥TAT−1∥∥= ‖A‖T .

(30)

Remark 3: Moreover, for every vector x ∈ Rn we have

‖T‖−1 ‖x‖T ≤ ‖x‖ ≤
∥∥T−1∥∥‖x‖T . (31)

Besides, for every matrix A ∈ Rn×n,

cond(T )−1 ‖A‖T ≤ ‖A‖ ≤ cond(T )‖A‖T , (32)

where cond(T ) = ‖T‖
∥∥T−1

∥∥ is the condition number of the
transformation matrix T .

V. DSMC FOR UNCERTAIN FORM

Generally, the discrepancy between the original PDE
model (1) and its discrete 1D vectorial approximation (7)
depends on the step sizes ∆x and ∆t. This matter can be
assumed as uncertainty in the state space (7). It means that
we have

H(k+1) = ΛH(k)+BU(k)+υ(k)+ f (k), (33)

where the uncertain term f (k) ∈ R(n−1). We consider the
following general uncertainty

f (k) = ∆H(k)+dk, (34)

where ∆ shows the unknown uncertainty with the bound
‖∆‖< α0 (‖.‖ is the induced Euclidean or induced spectral
norm). Moreover, the term dk ∈ R(n−1), indicates the external
disturbance and it is assumed that ‖dk‖< β0, where β0 is a
known positive constant. As a result, we can write

‖ f (k)‖< α0 ‖H(k)‖+β0. (35)



Thus, with the control law (22) the closed-loop system is[
h̄1(k+1)
σh(k+1)

]
=

[
Λ̃11 Λ̃12
0 Φ

][
h̄1(k)
σh(k)

]
+[

υ̃1(k)
0

]
+

[
f̃1(k)
f̃2(k)

]
,

(36)

where f̃ (k) = TsTr f (k) and also it is obvious that f̃2(k) =
S f (k); here S is defined in (18). Now, back to the original
coordinate H(k) from (36), it is obtained that

H(k+1) = ΛeqH(k)+υeq(k)+ f (k), (37)

where

Λeq = T−1
r T−1

s

[
Λ̃11 Λ̃12
0 Φ

]
TsTr,υeq(k) = T−1

r T−1
s

[
υ̃1(k)

0

]
.

(38)
Here, a new theoretical justification of the robustness of the
closed-loop system against uncertainty based on the strong
stability notion represented in Section IV, is given. According
to Lemmas 2 and 3, it is known that a special induced
norm (T -norm) of the closed loop matrix (Λeq) is necessarily
smaller than 1. Hence, from (37) and (38), one can write that

‖H(k+1)‖T ≤
∥∥Λeq

∥∥
T ‖H(k)‖T +

∥∥υeq(k)
∥∥

T +‖ f (k)‖T .
(39)

Here, the induced norm
∥∥Λeq

∥∥
T is used as proved in Lemma

4. Besides, the bound of uncertainty in this new coordinate
can be shown as

‖ f (k)‖T ≤
∥∥T ∆T−1T H(k)

∥∥+‖T dk‖ ≤
‖T‖‖∆‖

∥∥T−1∥∥‖T H(k)‖+‖T‖‖dk‖ ≤
α0 ‖T‖

∥∥T−1∥∥‖H(k)‖T +β0 ‖T‖ .
(40)

Introducing α = cond(T )α0 and β = ‖T‖β0, the following
theorem is represented to consider the bound on system states
under T -norm and in the presence of uncertainty of the form
(34).

Theorem 2: Consider the uncertain system (37) with un-
certainty defined in (34). If we have Ψ + α < 1, where
Ψ =

∥∥Λeq
∥∥

T , then for any ε > 0, the states of the closed-
loop system are bounded under T -norm by ρε =

β1
1−Ψ−α

+ε ,
when k→ ∞, where β1 = β +max

k
(
∥∥υeq(k)

∥∥
T ). Moreover,

the distance from sliding surface is bounded by ST ρε , where
ST = ‖S‖T .

Proof: From (39) and (40), we derive

‖H(k+1)‖T < (Ψ+α)‖H(k)‖T +β1. (41)

Thus, it can be shown that

‖H(k)‖T < (Ψ+α)k ‖H(0)‖T +
k−1

∑
i=0

(Ψ+α)i
β1. (42)

As a result, when Ψ+α < 1,

‖H(k)‖T < (Ψ+α)k ‖H(0)‖T +
β1

1−Ψ−α
. (43)

Hence, one can derive that

∀ε > 0, ∃K > 0, s.t.

‖H(k)‖T < ρε = ε +
β1

1−Ψ−α
, ∀k > K.

(44)

Besides, from (15) it can be concluded that

‖σh(k)‖T ≤ ST ‖H(k)‖T (45)

Consequently, the bound on the distance from sliding surface
is ST ρε .

Remark 4 (disturbance only): When there is no model-
based uncertainty and the system includes only disturbance
dk, the parameter α is zero in (35). As a consequence,
the states of the closed loop system will be bounded by
ρε =

β1
1−Ψ

+ ε .
Remark 5: To find the bound in (44) in terms of Euclidean

norm (ρ̂ε ), one can simply obtain from (44) and (31) that

‖H(k)‖< ρ̂ε = ε +
cond(T )[β0 +max

k
(
∥∥υeq(k)

∥∥)]
1−Ψ−α

. (46)

VI. SIMULATION RESULTS

We consider the heat flow equation (1) over 0 ≤ t ≤
40(sec) and 0 ≤ x ≤ 42(m) with ϒ = 1(m2

sec ). Using the
discretization equations (5) and (6), with ∆t = 1(sec) and
∆x= 2(m), we have κ = 0.25. Since 0≤ κ ≤ 0.5 the obtained
discrete scheme will be stable. In addition, it is supposed
that the state initial conditions are equal to 1, and also initial
control inputs are equal to 0. Moreover, it is supposed that
the state boundary conditions (2) and boundary control inputs
are set to zero. Also, it is assumed that the control input is
in spatially piece-wise constant form with the control input
matrix of the form B1 in (9) with µ = 1. As a result, control
is defined only at the space points 1,3,5, · · · ,19 on the grid.
It is clear that the pair (Λ,B) is controllable. To compute
orthogonal matrix Tr we have used Matlab QR command.
The matrix S̄2 ∈ R10×10 is chosen as B̄−1

2 and in addition
matrix S̄1 ∈ R10×10 is determined by LQR design with state
weighting of 10I10 and control weighting of 102I10. Eventu-
ally, matrix S is achieved from equation (18). Furthermore,
it is assumed that f (k) = 0.2H(k)+ 0.2sin(H(k)

3π
)cos(H(k)

2π
).

Here, Φ = 0.3I10 is used in control law (22) and the results
of applying SMC for discretized state space (7) are given in
Figures 1-3. These figures show the system states, 2D control
effort and also 2-norm of control law and states, respectively.
Since the 2D figures are not good indexes for studying the
performance of controller, 2-norm of vectors U(k) and H(k)
are given in Figure 3 as an index to study the performance
of DSMC.

VII. CONCLUSION

In this paper, we have developed new results on the
application of DSMC to a kind of dynamics described by
PDEs. Firstly, the underlying PDE is discretized by the use of
Taylor’s expansion and then the attained 2D discrete system
is converted to 1D vector form. As a result of the proposed
method of this paper, space variable is hidden in the final
1D process structure. Secondly, to stabilize an unstable dis-
cretized 1D vectorial form, DSMC is applied to our problem
successfully. Next, the discretizing error which is modelled
in uncertainty term is studied. To this end, using notion of
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Fig. 1. States for spatially piece-wise constant controller, with Φ = 0.3I10
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Fig. 2. Spatially piece-wise constant control effort, with Φ = 0.3I10

strong stability and similarity transformation matrices a new
framework to analyze the state bound in the presence of
general uncertainty is proposed. Furthermore, since there are
space constraints on the location of actuators (spatially piece-
wise constant, sparse form or boundary control), a general
strategy which can handle all these schemes is proposed in
this paper. The simulation results confirm that the proposed
DSMC is efficient and effective for the underlying PDEs.
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