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A New Approach to Applying Discrete Sliding Mode Control to 2D
Systems

Ahmadreza Argha, Li Li and Steven W. Su

Abstract— Sliding mode control has been applied previously
to a specific form of 2D systems (Roesser model). In this paper
a new approach (1D vectorial form) is introduced for this
problem. Using 1D form to represent 2D systems can be used as
an alternative strategy to reduce the inherent complexity of 2D
systems and their applications. Unlike Wave Advanced Model
(WAM) form (proposed by Porter and Aravena), the suggested
1D vectorial form, in this paper, has invariable dimension and
consequently can be converted to regular form for sliding mode
control (SMC). In this paper, the first Fornasini and Marchesini
(FM) model of 2D systems which is a second order recursive
form is considered. Meantime, the suggested method can be
simply deployed to other first or second order 2D models.

I. INTRODUCTION

Needless to say, a large number of ordinary phenomena in
the nature have various quantities which are only functions
of time and basically 1D systems can be used to represent
them in mathematical language; for instance, the electrical
potential of an electrical capacitor. On the other hand, there
are a number of phenomena in the nature whose quantities
are functions of more than one variable and necessarily
none of them is time. Multidimensional systems are the
mathematical framework used to describe these quantities
[1]. Meantime, in industrial applications we are faced with
a special form of multidimensional systems with only two
independent variable called two-dimensional (2D) systems.
2D systems are used to describe a wide variety of the
phenomena such as image, sound, heat, electrostatics, elec-
trodynamics, fluid flow, or elasticity. Discrete 2D systems
can be obtained by discretizing Partial Differential Equations
(PDEs) [2]. To describe 2D systems like 1D systems, state
space equation is commonly used. However, the method
of describing 2D systems can be varied based on their
applications. Besides state space equation, transfer functions
and difference equations have been used so far [1].
During recent decades, multidimensional systems have been
studied in many aspects and also in many applications.
According to the large number of works in the literature,
the stability of multidimensional systems in various models
has been a matter of interest among researchers [3] - [6]. In
addition, inspired by the Lyapunov stability condition, the
problem of stability of 2D systems has been presented in
[6]. Robust stability problem and also optimal guaranteed
cost control of the uncertain 2D systems are considered in
[7], [8] and [9].
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As an effective approach, the SMC method is used for 1D
continuous and discrete time systems [10] - [12]. SMC is
known as a robust control method which leads to consid-
erable results in invariant control systems. Here, the term
invariant means that the system is completely insensitive
to uncertainties which are within the range space of the
control input matrix. In other words, SMC provides dy-
namics with an invariance property to matched uncertainties
[10]. Furthermore, SMC makes it possible to decouple the
whole system motion to independent components with lower
dimensions. Therefore, the complexity of feedback design
is reduced [10]. The main idea of SMC is to force the
states toward the sliding surface and remain on the sliding
surface after reaching. However, chattering is a significant
drawback for continuous SMC (which mainly involves a
discontinuous control term). To soften the discontinuous
control part, a continuous approximation is used for reducing
the chattering [13]. On the other hand, for DSMC, removing
the discontinuous control part from the control law leads
to the elimination of the chattering issue [14], [16] and
[15]. The obtained control law is called linear control law.
In [17], according to the so called 1D quasi-sliding mode
[12], SMC design has been extended for 2D systems in
Roesser Model (RM). In addition, the conditions to ensure
the remaining horizontal and vertical states in RM on the
switching surfaces and also the reaching condition using a
2D Lyapunov function are investigated in [18].
As another method to deal with 2D systems, it appears that
the popular strategy is to generalize 1D concept. Wave ad-
vance model (WAM) is a 1D form of 2D systems established
by Porter-Aravena [19]. In this method, the 2D systems are
considered as advanced waves and consequently the original
stationary 2D system is converted to a time varying 1D sys-
tem. Indeed, the state matrices have rectangular shape rather
than square shape. As a result, the major drawback of this
1D form of 2D systems is the varying dimensions of defined
state vectors. This makes it hard and probably impossible
to adopt Discrete Sliding Mode Control (DSMC). Then, it is
motivated to investigate another proper method to convert 2D
systems to 1D form. In the proposed method of this paper,
instead of WAM method, a row (column) processing method
is used. In simpler term, 2D variables which are in the same
rows (columns) form 1D stacking vectors. Consequently, the
states, input and output of the obtained 1D system are in
the vector form, and more importantly they have invariant
dimensions. This method is basically useful for a class of 2D
linear systems in which information propagation in one of the
two distinct directions only occurs over a finite horizon. More



importantly, the proposed method of this paper is effective
for the classes of 2D systems which, for instance, result from
certain discretization of PDEs in a spatio-temporal dynamics.
This issue will be demonstrated in the next section. The
2D model considered here is FM model [20], however, our
innovative technique can be deployed to other 2D models
with some modifications. Eventually, after converting 2D
systems to 1D form, a 1D MIMO DSMC will be designed
to control original 2D systems.
The rest of this paper is as follows: in the next section the
WAM form of 2D systems is explained and then the proposed
procedure of converting a first FM model to 1D vectorial
form is introduced. Section III describes the Discrete Sliding
Mode Controller design for our problem. In Section IV,
the effectiveness and efficiency of the proposed method is
studied by numerical examples. Finally, Section V concludes
this paper.

II. PROBLEM FORMULATION

To illustrate how 2D systems can be converted to 1D
form, we consider the first FM model with the following
formulation

x(i+1, j+1) = A1x(i+1, j)+A2x(i, j+1)+
A0x(i, j)+Bu(i, j)

(1)

where x ∈ Rn and u ∈ Rm are respectively local state and
control input. In addition, the matrices in this equation are
A1 ∈ Rn×n, A2 ∈ Rn×n, A0 ∈ Rn×n and B ∈ Rn×m. It can be
seen that this relation is a second order recursive equation.
In the rest of this section, firstly, a brief review of WAM
model of 2D systems is given based on the first FM model.
Secondly, the drawbacks of this method are explained. These
drawbacks motivate us to investigate an alternative 1D form
of 2D systems which is more effective and efficient. Finally,
our proposed 1D form of first FM model is presented.

A. WAM model of 2D systems

Porter and Aravena were the first investigators who consid-
ered 2D systems as a 1D model in 1984 [19]. In this model,
by using a different classification on local state vectors of a
2D system, a novel form of local state vectors is achieved.
In [21], it is presented that, with this new vector, study
on 2D system’s controllability and observability is simpler
in comparison to conventional 2D methods. However, as
mentioned, this proposed form has varying dimension of
states, and coefficient matrices should be updated in each
step. To resolve the varying dimension of state vectors in
WAM model, in [19] it is suggested to expand all states to
the largest dimension via augmenting system matrices with
appropriate blocks of zeros. However, the system matrices
are still left varying and complicated to compute. Moreover,
the framework of obtaining the stack state vectors, especially
for second order 2D models such as the first FM model, is
relatively confusing and time-consuming. To illustrate, define

the state vectors φ(k) and ν(k) as

φ(k) =


x(k,0)

x(k−1,1)
...

x(0,k)

 ,

ν(k) =


u(k,0)

u(k−1,1)
...

u(0,k)

 . (2)

In this case, the resulting WAM form of first FM model is
as follows

φ(k+1) = M(k)φ(k)+N(k−1)φ(k−1)+
F(k−1)ν(k−1).

(3)

Here, matrices M(k), N(k−1) and F(k−1) are determined
in the following forms

M(k) =


A2 0n · · · 0n
A1 A2 · · · 0n

0n A1
. . .

...
...

...
. . . A2

0n 0n · · · A1

=

[
Ik+1

01×(k+1)

]
⊗A2 +

[
01×(k+1)

Ik+1

]
⊗A1,

(4)

N(k−1) = T (k)⊗A0, F(k−1) = T (k)⊗B, (5)

where

T (k) =

01×k
Ik

01×k

 , (6)

and Ik is identity matrix of order k. According to (3) it is
obvious that by defining the following relation

r(k) = N(k−1)φ(k−1)+F(k−1)ν(k−1), (7)

the relation (3) is converted to a 1D state space model,[
φ(k+1)
r(k+1)

]
=

[
M(k) I
N(k) 0

][
φ(k)
r(k)

]
+

[
0

F(k)

]
ν(k). (8)

Remark 1: As can be seen, state vector in (8) is a linear
combination of local states and inputs. However, in some
applications, having state space equations with direct access
to the local states is required. In this case, by introducing a
new state vector,

φ(k) = [x(k+1,0),x(k,0),x(k,1),x(k−1,1),x(k−1,2),

. . . ,x(1,k−1),x(1,k),x(0,k),x(0,k+1)]T ,
(9)

a 1D sate space equation with direct access to the state
vectors φ(k) and φ(k+1) is acquired [22].

Remark 2: In definition of state vectors (9), instead of
using states just on the line i+ j = k+1, local states located
on one step before (i+ j = k) are also used to form state
vectors. Generally, for WAM description of 2D systems
which are at least second order, using state vector (9) is



useful. However, obtaining WAM method for second order
2D systems (for instance FM model) and especially for large
scale 2D systems is complicated and, more importantly, the
dimension of state vector (9) is varying. On the other hand,
as it will be explained in the DSMC design section, to design
sliding matrices, it is necessary to find ‘regular form’ [28]
of state space equation, while by using WAM form a new
regular form should be found in each step which would result
in heavy computational burden.

B. New 1D form of 2D first FM model
The FM model (1) can be represented in the following

form
x(i+1, j+1)−A1x(i+1, j) = A2x(i, j+1)+

A0x(i, j)+Bu(i, j).
(10)

Now, we define the following stacking vectors

V (i) =


A1x(i+1,0)+A0x(i,0)

0
...
0

 ,

X(i) =


x(i,1)
x(i,2)

...
x(i,v)

 ,U(i) =


u(i,0)
u(i,1)

...
u(i,v−1)

 , (11)

where v is the dimension of distinct variable j, X(i) ∈ Rv.n,
V (i)∈ Rv.n and U(i)∈ Rv.m. As a result, the 2D equation (10)
can be presented as

JX(i+1) = KX(i)+LU(i)+V (i), (12)

where

J =



I 0 0 . . . 0 0
−A1 I 0 . . . 0 0

0 −A1 I . . . 0 0
...

...
. . .

...
...

0 0 0 . . . I 0
0 0 0 . . . −A1 I


= Iv⊗ In +

[
01×(v−1) 0

Iv−1 0(v−1)×1

]
⊗ (−A1),

K =



A2 0 0 . . . 0 0
A0 A2 0 . . . 0 0
0 A0 A2 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . A2 0
0 0 0 . . . A0 A2


= Iv⊗A2 +

[
01×(v−1) 0

Iv−1 0(v−1)×1

]
⊗A0. (13)

Besides,

L =


B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B

= Iv⊗B.

Here, x(i+1,0) and x(i,0) are state boundary conditions on
boundary ( j = 0). Moreover, as it is seen with the vectorial
definition (11), the variable j is hidden in the new defined
1D form. Model (12) is also known as descriptor model.

Remark 3: In general, the dimension of 2D systems can
be infinite. However, as it was mentioned before, in this
paper, it is assumed that one of the distinct variable of
2D system is finite. Moreover, the computing limitations
have made it inevitable to assume finite dimensions for
both separate directions of 2D systems. In this paper, the
dimension of considered 2D system is assumed to be µ× v
and, as a result, the size of 1D state vector X(i) and control
input vector U(i) in (12) are v.n and v.m, respectively.
Besides, there are two set of boundary conditions (i = 0 and
j = 0). {

α(i) = x(i,0)
β ( j) = x(0, j)

over j = 0,
over i = 0.

(14)

Remark 4: Likewise, note that matrices J and K are bi-
diagonal (in general block) Toeplitz matrices and the sizes
of these matrices depend on the dimension of state vector
X(i). The dimensions of the matrices defined in (12) are

J : [v.n]× [v.n], K : [v.n]× [v.n],

L : [v.n]× [v.m].
(15)

To apply discrete sliding mode control to the system (12),
this equation should be left multiplied by J−1 (obviously,
matrix J is of full rank). In the case that the elements
of matrix J are varying, in every step the inverse of this
matrix should be computed. A very heavy computational load
could result, especially for 2D grids with large dimensions.
However, in our case, the matrix J is time invariant and
consequently in the proposed DSMC of this paper, the matrix
J−1 can be computed only once.

Remark 5: In [23], a simple formula for the inverse of a
block matrix with non-zero blocks in the principal diagonal
and the first sub-diagonal only is proved. Adapting this
formula to our case results in the following form for J−1 =[
γp,q
]
,

γp,q =


0n if p < q,
In if p = q,
(−1)p+q(−A1)

p−q if p > q.
(16)

Then, by left multiplying (12) by J−1, the following standard
1D state space form can be obtained,

X(i+1) = K̂X(i)+ L̂U(i)+ R̂V (i), (17)

where

K̂ = J−1K, L̂ = J−1L, and R̂ = J−1.

In this new 1D form, the dimension of state vectors is con-
stant and consequently finding its regular form is possible.
This sets the stage for designing specific 1D DSMC for the
obtained 1D state space model (17), which is the subject of
next section.



III. DSMC FOR 1D DISCRETE VECTOR FORM

The SMC method has been originated from the theory
of Variable Structure Systems (VSS). During recent several
decades, SMC has always been considered as a powerful
method for the control of systems with uncertainties. The
Continuous SMC (CSMC) was primarily introduced by
Utkin [10] as one of the effective nonlinear robust control
approaches. It makes an invariance property to uncertainties
for system dynamics. The insensitivity of the controlled
system to uncertainties exists in the sliding mode, but not
during the reaching phase. Owing to the pervasive usage of
digital controllers, deploying SMC to discrete-time systems
becomes a significant field in control theory. DSMC was
introduced in the mid 80s [24]. This idea was followed by
a growing list of publications [25] - [27] and also different
reaching laws are proposed in [14], [16] and [29]. Similar
to CSMC, the design procedure of the tracking controller is
split into two steps:

1) First, sliding surface with internal stability should be
designed as

σX (i) = SX(i), σX (i) ∈ Rv.m, (18)

where S ∈ R[v.m]×[v.n].
2) Then, the control law should be designed so that states

are forced to reach and stay as close as possible to the
sliding surface.

Assume that rank(L̂) = v.m (matrix L̂ is of full column rank),
and the pair (K̂,L̂) is controllable [27], [13].

Remark 6: Since J is invertible, it is clear that the control
matrix L̂ in (17) is of full column rank if and only if the
control matrix B in (1) is of full column rank.
Since rank(L̂) = v.m, there exists an orthogonal matrix Tr ∈
R[v.n]×[v.n] such that

TrL̂ =

[
0[v.n−v.m]×[v.m]

L̄2

]
, (19)

where the matrix L̄2 ∈ R[v.m]×[v.m] and is nonsingular [28].
(Note that the orthogonal matrix Tr can be computed using
QR decomposition [28]). After the coordinate transformation,
we have [

Z1(i+1)
Z2(i+1)

]
=

[
K̄11 K̄12
K̄21 K̄22

][
Z1(i)
Z2(i)

]
+[

0[v.n−v.m]×[v.m]

L̄2

]
U(i)+TrR̂V (i),

(20)

where [
Z1(i)
Z2(i)

]
= TrX(i),

Z1(i) ∈ R[v.n−v.m] and Z2(i) ∈ Rv.m

K̄11 ∈ R[v.n−v.m]×[v.n−v.m]

K̄12 ∈ R[v.n−v.m]×[v.m]

K̄21 ∈ R[v.m]×[v.n−v.m]

K̄22 ∈ R[v.m]×[v.m].

(21)

This representation is referred to as ‘regular form’ [28].
Further, to design the sliding surface we ignore the term
arising from the boundary conditions as it does not influence
the stability. In these new coordinates the switching function
(18) becomes

σX (i) = S̄1Z1(i)+ S̄2Z2(i), (22)

where S̄1 ∈ R[v.m]×[v.n−v.m] and S̄2 ∈ R[v.m]×[v.m] satisfying S̄ =
[S̄1 S̄2] = ST−1

r . The design parameters S̄1, S̄2 determine the
sliding surface and should be chosen such that, in the case
that σX (i) = 0, all remaining dynamics are stable. During
ideal sliding on the surface, σX (i) = 0 for all k ≥ ks, where
ks is the time when sliding starts, consequently

Z2(i) =−S̄−1
2 S̄1Z1(i). (23)

Defining Ω = S̄−1
2 S̄1 and substituting the equation (23) into

the equation (20) leads to:

Z1(i+1) = (K̄11− K̄12Ω)Z1(i). (24)

As a result, stability in the sliding mode is satisfied when
all eigenvalues of the matrix (K̄11− K̄12Ω) are located inside
the unit circle. Indeed, the problem of finding the matrix Ω

is a classical state feedback problem. In [13], it is presented
that if the pair (K̂, L̂) is controllable, the pair (K̄11, K̄12) is
controllable as well. Therefore, any classical state feedback
method can be used to compute Ω. Regarding the equation
(23), the matrix S̄2 plays the role of a scaling parameter
which can be selected arbitrarily but invertible. For simplicity
it is chosen as the following

S̄2 = L̄−1
2 . (25)

With the choice (25), the matrix Ω and consequently S̄1 can
be found by pole placement, LQR-design or LMI methods. In
this paper the LQR-design method is used to find the matrix
S̄1 by solving a certain discrete Riccati equation with proper
choices of weighting matrices. In this case, the switching
function can be obtained in original coordinate as in (18),
where

S = S̄2[Ω Iv.m]Tr. (26)

Now, to design a controller which guarantees the sliding
mode of system the transformation matrix Ts ∈ R[v.n]×[v.n] is
introduced as

Ts =[
Iv.n−v.m 0[v.n−v.m]×[v.m]

S̄1 S̄2

]
.

(27)

This transformation matrix converts the system (20) to the
following form:[

Z1(i+1)
σX (i+1)

]
=

[
K̃11 K̃12
K̃21 K̃22

][
Z1(i)
σX (i)

]
+[

0[v.n−v.m]×[v.m]

Iv.m

]
U(i)+

[
Ṽ1
Ṽ2

]
,

(28)

where [Ṽ T
1 Ṽ T

2 ]T = TsTrR̂V (i) and Ṽ1 ∈ R[v.n−v.m], Ṽ2 ∈ Rv.m.
In order to design a controller which forces the closed-loop



system into the sliding mode we use the following linear
reaching law presented in [14] and [16],

σX (i+1) = ΦσX (i), (29)

where the design parameter Φ ∈ R[v.m×v.m] is chosen to be
a diagonal matrix with all its diagonal elements φk, k =
1, . . . ,v.m, satisfying 0≤ φk < 1.

Theorem 1: Assuming the control input U as:

U(i) = [Φ− K̃22]σX (i)− K̃21Z1(i)−Ṽ2, (30)

the system (28) is stabilized.
Proof: Applying the above control law to the system

(28) leads to the following closed-loop system:[
Z1(i+1)
σX (i+1)

]
=

[
K̃11 K̃12
0 Φ

][
Z1(i)
σX (i)

]
+

[
Ṽ1
0

]
. (31)

The poles of the closed-loop system are given by

λ (Acl) = λ (K̃11)∪λ (Φ). (32)

Obviously, the eigenvalues of Φ are assumed to be stable
(by design choice). In addition, it can be easily proved that
K̃11 = K̄11− K̄12Ω which is designed to be a stable matrix by
(24). Consequently, the system (28) is stabilized with control
law (30).

A. Direct method to find control law

It should be mentioned that instead of control law (30),
another direct method is also possible to obtain the sliding
control law [13], [15]. Assuming that matrices S̄1 and S̄2
have been designed (by for instance LQR design) such that
the reduced order dynamics (24) is stable. Now, by using
linear reaching law (29) we have

ΦσX (i) = SX(i+1). (33)

Inserting equation (17) in (33) leads to

ΦσX (i) = S[K̂X(i)+ L̂U(i)+ R̂V (i)]. (34)

Therefore, the control law can be defined to be

U(i) = (SL̂)−1[ΦSX(i)−SK̂X(i)−SR̂V (i)]. (35)

This control law is called direct control law which can be
obtained directly after computing the sliding matrix S.

IV. SIMULATION RESULTS
Consider the following 2D first FM model

A1 =

[
−0.56 −0.33
−0.10 0.45

]
,A2 =

[
0.33 −0.54
1.26 −0.41

]
,

A0 =

[
−0.51 −0.09
0.00 0.04

]
,B =

[
0
2

]
. (36)

Here x∈ R2 and u∈ R . Note that, this 2D system with U = 0
is unstable. We assume this 2D system over the rectangle
µ× v (µ = 60 and v = 39). Furthermore, it is supposed that

x(0, j) =
[

1
1

]
, 0≤ j ≤ 39,

x(i,0) =
[

0.2
0.2

]
, 0≤ i≤ 60.

(37)
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Fig. 1. The system state x1
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Fig. 2. The system state x2

To compute the orthogonal matrix Tr, Matlab QR command
is used. According to (25), the matrix S̄2 ∈ R39×39 is chosen
as L̄−1

2 (However, it is not necessary and can be chosen
arbitrarily but invertible) and in addition matrix S̄1 ∈ R39×39

is determined by LQR design with state weighting of I39 and
control weighting of 100I39. Eventually, matrix S is obtained
from equation (26). Φ = 0.5I39 is used in control law (35)
and the results of applying DSMC are given in Figures 1-3.
These figures show the trajectory of 2D states (x1,x2) and

2D control law, respectively.

V. CONCLUSION

In this paper we have developed a new method to apply the
DSMC to the 2D first FM model using 1D vectorial form of
2D systems. Although the focus of this paper has been on the
first FM model, the derived results are more general and can
be easily extended to other 2D models. In the proposed 1D
vectorial form of this paper, one of the 2D variables (i or j) is
stacked and consequently the original 2D process is replaced
by a 1D virtual process which can be controlled easily.
Dealing with this new 1D form, the designing procedure
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of DSMC is more straightforward compared to 2D system.
Also, analysing the controllability of system is much easier
in this form (which will be considered in the future work).
Moreover, the proposed method of this paper can be extended
to the tracking problem in 2D systems. As the future work, a
new method based on a descriptor model will be investigated
to avoid inverting the descriptor matrix.
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