Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

What vs. How: Comparing Students’
Testing and Coding Skills

Colin Fidge'

Jim Hogan'

Ray Lister?

1School of Electrical Engineering and Computer Science,
Queensland University of Technology, Brisbane, Qld, Australia

2Faculty of Engineering and Information Technology,
University of Technology Sydney, Sydney, NSW, Australia

{c.fidge, j.hogan}@qut.edu.au, Raymond.Lister@uts.edu.au

Abstract

The well-known difficulties students exhibit when
learning to program are often characterised as either
difficulties in understanding the problem to be solved
or difficulties in devising and coding a computational
solution. It would therefore be helpful to understand
which of these gives students the greatest trouble.
Unit testing is a mainstay of large-scale software de-
velopment and maintenance. A unit test suite serves
not only for acceptance testing, but is also a form
of requirements specification, as exemplified by ag-
ile programming methodologies in which the tests are
developed before the corresponding program code. In
order to better understand students’ conceptual dif-
ficulties with programming, we conducted a series of
experiments in which students were required to write
both unit tests and program code for non-trivial prob-
lems. Their code and tests were then assessed sep-
arately for correctness and ‘coverage’, respectively.
The results allowed us to directly compare students’
abilities to characterise a computational problem, as a
unit test suite, and develop a corresponding solution,
as executable code. Since understanding a problem
is a pre-requisite to solving it, we expected students’
unit testing skills to be a strong predictor of their
ability to successfully implement the corresponding
program. Instead, however, we found that students’
testing abilities lag well behind their coding skills.

Keywords: Learning to program; unit testing; object-
oriented programming; program specification

1 Introduction

Failure and attrition rates in tertiary programming
subjects are notoriously high. Many reasons have
been suggested for poor performance on program-
ming assignments, including an inability to fully un-
derstand the problem to be solved and an inability
to express a solution in the target programming lan-
guage.

To help determine whether students do poorly on
programming tasks due to an incomplete understand-
ing of the problem or an inability to write a solu-
tion, we conducted a series of experiments in which
these two aspects of programming were evaluated sep-
arately. Students in second and third-year program-
ming classes were given assessable assignments which
required them to:

Copyright (©2013, Australian Computer Society, Inc. This
paper appeared at the Fifteenth Australasian Computing Ed-
ucation Conference (ACE 2013), Adelaide, South Australia,
January—February 2013. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 136, Angela Carbone
and Jacqueline Whalley, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

1. unambiguously and completely characterise the
problem to be solved, expressing the require-
ments as a unit test suite; and then

2. produce a fully-functional computational solu-
tion to the problem, expressed as an object-
oriented program.

Both parts of the assignments carried equal weight.
By directly comparing how well each student per-
formed on each of these tasks we aimed to see if there
was a clear relationship between students’ ability to
say what must be done versus their ability to say how
to do it.

Since understanding a problem is a necessary pre-
requisite to solving it, our expectation was that stu-
dents would inevitably need to do well on problem
definition before succeeding in coding a solution. We
therefore designed assignments which allowed us to
produce independent marks for code functionality and
test coverage, enabling students’ skills in these two
distinct stages of large-scale object-oriented program-
ming to be contrasted.

2 Related and previous work

Our overall goal is to help expose the underlying
reasons for students’ difficulties in learning how to
develop program code. In particular, we aimed to
distinguish students’ abilities to both describe and
solve the same computational problem, using ‘test-
first’ programming as a basis. We did this with classes
of students who had already completed two previous
programming subjects, so they had advanced beyond
the basic problems of developing imperative program
code. As a clearly-defined test-first programming
paradigm we used ‘test-driven development’ (Beck
2003), in which unit tests are developed first and the
program code is then extended and refactored in or-
der to pass the tests.

The academic role of unit testing in general, and
test-first programming in particular, has already re-
ceived considerable attention. For instance, an early
study by Barriocanal et al. (2002) attempted to in-
tegrate unit testing into a first-year programming
subject. They made unit testing optional to assess
its take-up rate and found that only around 10% of
students voluntarily adopted the approach (although
those who did so reported that they liked it).

In another early study, Edwards (2004) advocated
the introduction of testing into student assignments
as a way of preventing them from following an ad hoc,
trial-and-error coding process. He describes a mark-
ing tool called Web-CAT which assesses both program
code correctness and unit test coverage. (We do the
same thing, but developed our own UNIX scripts for
this purpose.) However, where we kept students’ code
correctness and test coverage marks separate, so that

97

CRPIT Volume 136 - Computing Education 2013

we could perform a correlation analysis on them, Ed-
wards (2004) combined the marks to produce a single
composite score for return to the students.

In a more recent study of unit testing for first-year
students, Whalley & Philpott (2011) assessed the ad-
vantages of supplying unit tests to students. (We do
likewise in our first-year programming subject, giving
students unit tests but not expecting them to write
their own.) Using a questionnaire they concluded that
although it was generally beneficial for students to ap-
ply the ‘test-early’ principle, a minority of students
still struggle to understand the concept.

In an earlier study, Melnick & Maurer (2005)
surveyed students’ perceptions of agile programming
practices, and found that students failed to see the
benefits of testing and believed that it requires too
much work. In our experience, there is no doubt
that test-first programming requires considerable dis-
cipline from the programmer and can be more time-
consuming than ‘test-last’ programming. Neverthe-
less, we have found that this extra effort is compen-
sated for by a better quality product, as have many
other academics (Desai et al. 2008).

Given students’ reluctance to put effort into unit
testing, Spacco & Pugh (2006) argued that testing
must be taught throughout the curriculum and that
students must be encouraged to “test early”. Like us
they did this by assessing students’ test coverage and
by keeping some unit tests used in marking from the
students. (In fact, in our experiments we did not pro-
vide the students with any unit tests at all. Instead
we gave them an Application Programming Interface
to satisfy, so that they had to develop all the unit
tests themselves.)

Keefe et al. (2006) aimed to introduce not just
test-driven development into first-year programming,
but also other ‘extreme’ programming concepts such
as pair programming and refactoring. (These prin-
ciples are also introduced in our overall curriculum,
but not all during first year.) Their survey of stu-
dents found a unanimous dislike of test-driven devel-
opment, and they concluded that students find it a
“difficult” concept to fully appreciate. (In our course
we introduce students to unit testing in first year, but
don’t get them to write their own test suites until the
second and third-year subject described herein. At
all levels, however, our experience is also that there
is considerable resistance to the concept from novice
programiners.)

Like many other researchers, Janzen & Saiedian
(2007) found that mature programmers were more
likely to see the benefits of test-driven development.
Given a choice they found that novice programmers
picked test-last programming in general. In a sub-
sequent study they also found that students using
test-first programming produced more unit tests, and
hence better test coverage, than those using test-
last programming, but that students nevertheless still
needed to be coerced to follow test-first programming
(Janzen & Saiedian 2008). (Both of these findings are
entirely consistent with our experiences. Although
our own academic staff can clearly see the benefits of
test-first programming, our students must be coerced
into adopting it.)

Most recently, using attitudinal surveys, Buffardi
& Edwards (2012) again found that students did not
readily accept test-driven development, despite the
fact that those students who followed the approach
produced higher quality code. (They report that they
taught test-driven development but did not assess it
directly. By contrast we directly assessed our stu-
dents’ unit testing skills.)

Thus, while there have been many relevant studies,
none has presented a direct comparison of unit test-
ing and program coding skills as we do below. Fur-

98

thermore, while we focussed on students with some
programming experience, most previous studies have
considered first-year students only.

3 Programming versus unit testing

In traditional “waterfall” programming methodolo-
gies, program code is developed first, followed by a set
of acceptance tests. Modern “agile” software develop-
ment approaches reverse this sequence (Schuh 2005).
Here the tests are written first, in order to define what
the program code is required to do, and then cor-
responding program code is developed which passes
the tests. In the most extreme form, test-driven de-
velopment involves iteratively writing individual unit
tests immediately followed by extending and refac-
toring the corresponding program code to pass the
new test (Beck 2003). This is usually done in object-
oriented programming, where the “unit” of testing is
one or more methods. Advantages claimed for this ap-
proach to software development include the fact that
a “working” version of the system is available at all
times (even if all the desired functionality has not yet
been implemented), that it minimises administrative
overheads, and that it responds rapidly to changing
customer requirements.

Most importantly for our purposes, a suite of unit
tests can be viewed as a specification of what the cor-
responding program is required to do. It defines, via
concrete examples, what output or effect each method
in the program must produce in response to specific
inputs. For each method in the program, a well-
designed unit test suite will include several represen-
tative examples of ‘typical’ cases, which validate the
method’s ‘normal’ functionality, as well as ‘extreme’
or ‘boundary’ cases, which confirm the method’s ro-
bustness in unusual situations (Schach 2005, Astels
2003). Overall, a unit test suite must provide good
coverage of the various scenarios the individual meth-
ods are expected to encounter. (However, unit test-
ing does not consider how separate program modules
work together, so it is usually followed by integration
testing.)

Test-driven software development thus produces
two distinct artefacts, a unit test suite and corre-
sponding program code. The first defines what needs
to be done and the second describes how this require-
ment is achieved computationally. Having taught
object-oriented programming and test-driven devel-
opment for several years, we realised that these two
artefacts can be assessed separately, giving indepen-
dent insights into students’ programming practices.

4 The experiments

To explore the relationship between students’ test-
ing (specification) and coding (programming) ability,
we conducted a series of four experiments over two
semesters. This was done in the context of a Soft-
ware Development subject for second and third-year
IT students. (The classes also contained a handful of
postgraduate students, but too few to have a signif-
icant bearing on the results.) The students enrolled
have typically completed two previous programming
subjects, meaning that they have already advanced
beyond simple imperative coding skills and are now
concerned with large-scale, object-oriented program-
ming.

The Software Development subject focuses on
tools and techniques for large-scale program develop-
ment and long-term code maintenance. Topics cov-
ered include version control, interfacing to databases,
software metrics, Application Programming Inter-
faces, refactoring, automated builds, etc. In particu-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

anNnon Dam Simulator

Day 8: Water level = 693 ML: Default release selected "
Today's consumption = 24 ML
Today's inflow = 88 ML -

Day 9; Water level = 717 ML

4F

R

T
} ' }
\ ¢ \
}) '

Last week Yesterday Today

Water levels (+134 ML)

Random number seed:

Dam capacity (megalitres):

Maximum daily inflow (megalitres):
Maximum daily consumption (megalitres):
Default downriver release (megalitres)

Job duration (days):

Default Double

“Har_ '
Water release controls

Figure 1: User interface for the solution to Assign-
ment 2a

lar, the role of unit testing is introduced early and is
used throughout the semester. Test-driven develop-
ment is also introduced early as a consistent method-
ology for creating unit test suites. The illustrative
programming language for the subject is Java, al-
though the concepts of interest are not Java-specific.

Each semester’s assessment includes two non-
trivial programming assignments. Both involve de-
veloping a unit test suite and a corresponding object-
oriented program, each worth approximately equal
marks. The first assignment is individual and the
second is larger and conducted in pairs. In the first
assignment the students are given a front-end Graph-
ical User Interface and must develop the back-end
classes needed to support it. In the second assign-
ment the student pairs are required to develop both
the GUI and the back-end code.

For example, one of the individual assignments in-
volved developing classes to complete the implemen-
tation of a ‘Dam Simulator’ which models the ac-
tions involved in controlling water levels in a dam.
(This topical assignment was introduced shortly af-
ter the January 2011 Brisbane floods, which were
exacerbated by the overflow of the Wivenhoe dam.)
The simulator models the effects on water levels of
randomly-generated inflows and user-controlled out-
flows over a period of time. The user acts as the
dam’s operator and can choose how much water to
release into the downstream spillway each day. The
simulation ends if the dam overflows or runs dry.

(This assignment, and the ‘Warehouse Simulator’
described below, are examples of ‘optimal stopping’
problems, in which the challenge is to optimise the
value of a certain variable, such as a dam’s water
level, despite one or more influencing factors, such
as rainfall, being out of the user’s control (Ferguson
2010). We find that these problems make excellent
assignment topics because they can form the basis

Method Detail

addEntry

void addEntry(Integer newEntry)
throws SimulationException

Adds a new entry to the log. Existing entries are shifted
along one place in the window accordingly.

The characteristic feature of the Log type Is that entries
in the series are indexed in reverse, using non-positive
values, in accordance with the notion that the type
implements a log of past values. Thus the most recent
entry is at index 0, the previous entry is at index -1, etc.
For a log with window size N the oldest entry stored is
atindex =N+ 1.

Parameters:
newEntry - the new value to be added to the log
Throws:
SimulationException - if the given value is not
in the range 0 10 maxEntry, Inclusive

Figure 2: Example Javadoc specification of a method
to be implemented in Assignment 2a

of game-like simulations which are popular with the
students.)

The students were given the code for the user in-
terface (Figure 1), minus the back-end calculations.
(As per civil engineering convention, the dam’s ‘nor-
mal” water level is half of its capacity, which is why
the meters in Figure 1 go to 200%.) To complete the
simulator they were required to develop two classes
and their corresponding unit tests. One class is used
to keep a daily log of water levels in the dam and the
other implements the effects of the user’s inputs.

The necessary classes and methods to be imple-
mented were defined via Java ‘interface’ classes, de-
scribed in standard ‘Javadoc’ style. For instance,
Figure 2 contains an extract from this specification,
showing the requirements for one of the Java methods
that must be implemented for the assignment. In this
case the method adds a new entry to the log of daily
water levels. It must check the validity of its given
arguments, add the new entry to the (finite) log, and
keep track of the number of log entries made to date.
Our anticipated solution is the Java method shown in
Figure 3.

Each of these Java functions must be accompanied
by a corresponding suite of ‘JUnit’ tests (Link 2003),
to ensure that the method has been implemented cor-
rectly and to document its required functionality. For
instance, Figure 4 shows one such unit test which con-
firms that this method correctly maintains the num-
ber of log entries made to date. The test does this by
instantiating a new log object, adding a fixed num-
ber of entries into it, and asserting at each step that
the number of entries added to the log so far equals
the number of entries reported by the log itself. In
general there will be several such unit tests for each
method implemented—it is typically the case that a
comprehensive unit test suite will be much larger than
the program code itself. In our own solution we had
seven distinct unit tests like the one in Figure 4 to
fully define the required properties of the method in
Figure 3.

Since the deliverables for these assignments in-
cluded both unit tests and code, we determined to
exploit the opportunity to directly compare how well
students performed on unit testing and coding. We
considered only those parts of the assignments where
both unit tests and code must be produced. (The
GUI code in the two pair-programming assignments

99

CRPIT Volume 136 - Computing Education 2013

public void addEntry(Integer newValue) throws SimulationException {

£/ Sanity checks
if (newValue < @)

throw new SimulationException("New log entry '

if (newValue > maxEntry)

throw new SimulationException("New log entry '

+ newValue + " too small");

+ newValue + " too big");

// Remove oldest entry, 1f window 1s full

if (waterlog.size() == windowSize)

waterLog. remove(windowSize - 1);

S/ Add new entry and keep count
waterLog.add(®, newValue);
number0fEntries += 1;

Figure 3: Example of a Java method to be implemented in Assignment 2a

@Test(timeout = maxWait)

public void NumEntriesIsCorrect() throws SimulationException {
testlog = new WaterLog(windowSizeSmall, maxEntrylLarge);
/7 Add entries up to, but not exceeding, the window size
for (Integer numkEntered = 1; numEntered <= windowSizeSmall; numEntered++) {

// Add an entry

testlog.addEntry(smal lEntryOne);

/¢ Confirm that number entered equals number reported by the log
assertEquals(numEntered, testlog.numEntries());

Figure 4: Example of a JUnit test for the method in Figure 3

Table 1: Statistics for the four assignments

Assignment
la 1b 2a 2b

Number of classes to

implement (excluding 2 10| 2 6
GUIs)

Number of methods to

implement (excluding 16 | 25 | 12 | 26
GUIs)

}\.Tuml?er of gnit tests in our 66 | 63 | 45 53
ideal’ solution

Number of assignments
submitted and marked 170 | 83 1 217 1 113

was not accompanied by unit tests and was marked
manually. Nor did we consider marks awarded for
‘code quality’ in the experiment.) At the time the
experiment was conducted we had four assignments’
worth of results to analyse, two from each semester
(Table 1). In all four cases the students were required
to implement both program code and unit tests and
it was emphasised that these two parts were worth
equal marks.

e Assignment la: First semester, individual as-
signment. This assignment involved completing
the back-end code for a ‘Warehouse Simulator’
which models stock levels in a warehouse. A
Graphical User Interface was supplied and stu-
dents needed to complete a ‘ledger’ class, to track
expenditure, and a ‘transactions’ class, to imple-
ment user-controlled stock buying and randomly-
generated customer supply actions.

e Assignment 1b: First semester, paired assign-

100

ment. This assignment involved developing the
GUI and back-end code for a ‘Container Ship
Management System’ which models loading and
unloading of cargo containers on the deck of a
ship, subject to certain safety and capacity con-
straints. Classes were needed for different con-
tainer types (refrigerated, dry goods, hazardous,
etc) and for maintaining the ship’s manifest.
(There were a large number of classes and meth-
ods in this assignment, but most were trivial sub-
classes just containing a constructor and one or
two additional methods.)

e Assignment 2a: Second semester, individual
assignment. This was the ‘Dam Simulator’ as-
signment described above.

e Assignment 2b: Second semester, paired as-
signment. This assignment involved developing
the GUI and back-end code for a ‘Departing
Train Management System’ which modelled the
assembly and boarding of a long-distance pas-
senger train. Classes were needed to model the
shunting of individual items of rolling stock (in-
cluding an engine, passenger cars, freight cars,
etc) to assemble a train and then simulate board-
ing of passengers.

In each case the students were expected to follow the
test-driven development discipline. For each func-
tional requirement they were expected to develop a
JUnit test (such as that in Figure 4) and then extend
and refactor their Java program code (like that in Fig-
ure 3) until all the system requirements were satisfied.
During individual Assignments 1a and 2a the lone stu-
dent was expected to alternate roles as ‘tester’ and
‘coder’. Pair-programming Assignments 1b and 2b
allowed each student to adopt one of these roles at a
time.

UNix shell test scripts were developed to auto-
matically mark the submitted assignments. This was

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

done in two stages, to separately assess the students’
program code and unit test suites.

e Code functionality: The students’ classes were
compiled together with our own ‘ideal’ unit test
suite. (As explained below, this often exposed
students’ failures to match the specified API.)
Our unit tests were then executed to determine
how well the students had implemented the re-
quired functionality in their program code. The
proportion of tests passed was used to calculate a
‘code functionality’ mark and a report was gener-
ated automatically for feedback to the students.

e Test coverage: For each of our own unit tests
we developed a corresponding ‘broken’ program
which exhibited the flaw being tested for. To
assess the students’ unit test suite against these
programs, their tests were first applied to our
own ‘ideal’ solution program to provide a bench-
mark for the number of tests passed on a correct
solution. Then the students’ unit tests were ap-
plied to each of our broken programs. If fewer
tests were passed than the benchmark our mark-
ing script interpreted this to mean that the stu-
dents’ unit tests had detected the bug in the pro-
gram. (This process is not infallible since it can’t
tell which of the students’ tests failed. Neverthe-
less, we have found over several semesters that it
gives a good, broad assessment of the quality of
the students’ unit test suites.) The proportion of
bugs found was used to calculate a ‘test cover-
age’ mark and a feedback report was generated
automatically.

These marking scripts needed to be quite elaborate
to cater for the complexity of the assignments and to
allow for various problems caused by students failing
to follow the assignments’ instructions. The mark-
ing scripts ultimately consisted of well over 400 lines
of (commented) UNIX bash code (excluding our own
ideal solution and the broken programs needed to as-
sess the students’ tests).

A particularly exasperating problem encountered
during the marking process was the failure of a large
proportion of students to accurately implement the
specified Application Programming Interface and file
formats, typically due to misspelling the names of
classes and methods, failing to throw required excep-
tions, adding unexpected public attributes, or using
the wrong types for numeric parameters. This was
despite the teaching staff repeatedly emphasising the
need to precisely match the specified API as an im-
portant aspect of professional software development.
In particular, during marking of Assignment 2a it
was found that fully half of the submissions failed
to match the API specification, and therefore could
not be compiled and assessed. In order to salvage
some marks for these defective assignments, those
that could be easily corrected by, for example, chang-
ing the class and method signatures, were fixed man-
ually. In the end 97 assignments, which accounted for
45% of all submissions, were corrected manually and
re-marked. Penalities were applied proportional to
the extent of correction needed. Ultimately, however,
this large amount of effort produced little difference
since the re-marking penalties sometimes outweighed
the additional marks gained!

Another practical issue noted by Spacco & Pugh
(2006), and confirmed by our own experiences, is the
difficulty of developing unit tests that uniquely iden-
tify a program bug. In practice a single program bug
is likely to cause multiple tests to fail. We found when
setting up our automatic marking environment, in-
cluding our own unit test suite (for assessing the stu-
dents’ code) and the suite of ‘broken’ programs (for

Table 2: Measures of central tendency, spread and
correlation for code functionality and test coverage

Assignment
la 1b 2a 2b

Code functionality 89 84 79 91
mean

median

Code functionality 20 20 21 12

standard deviation

Test coverage mean 69 79 45 63

Test coverage median 67 92 52 69

Test coverage
standard deviation 23 25 29 24

Functionality versus 064 1 0.76 | 0.70 | 0.55
coverage correlation ' ’ ’ '

assessing the students’ unit tests), that it was impos-
sible to achieve a precise one-to-one correspondence
between code bugs and unit tests. While frustrating
for us, this did not invalidate the marking process,
however.

Moreover, one of the risks associated with this kind
of study is threats to ‘construct validity’ (Arisholm &
Sjgberg 2004), i.e., the danger that the outcomes are
sensitive to different choices of code functionality and
test coverage measures. Nevertheless, we believe our
analysis is quite robust in this regard because each
of the individual tests in our ‘ideal’ unit test suite
was directly developed from a specific functional re-
quirement clearly described in the Javadoc API spec-
ifications, and each of the broken programs was in-
troduced to ensure that a particular unit test was
exercised. This very close functional relationship be-
tween requirements, code features and unit tests left
little scope for arbitrary choices of unit tests or bro-
ken programs against which to assess the students’
assignments.

5 Experimental results

The marks awarded for code functionality and test
coverage were normalised to percentages and are sum-
marised in Table 2. (These values exclude marks
awarded for ‘code presentation’ and for the front-
end GUIs in Assignments 1b and 2b.) It is obvious
that the average marks for test coverage are well be-
low those for code functionality, which immediately
casts doubt on our assumption that students’ unit
testing abilities would be comparable to their pro-
gramming skills. Furthermore, while a standard cor-
relation measure (last row of Table 2) shows some
correlation between the two sets of marks, it is not
very strong.

Further insight can be gained by plotting both sets
of marks together as in Figures 5 to 8. Here we have
sorted the pairs of marks firstly by code functional-
ity, in blue, followed by test coverage, in red. As-
signments la and 1b used a coarser marking scheme
than was used for Assignments 2a and 2b, thereby ac-
counting for their charts’ ‘chunkier’ appearance, but
the overall pattern is essentially the same in all four
cases. At each level of achievement for code function-
ality there is a wide range of results for test coverage.
This pattern is especially pronounced in Figure 7.

101

CRPIT Volume 136 - Computing Education 2013
100

“ Code tunctionality
= Test coverage

Il

50 1T

I ||||||\ AN

60

40 -

0 -

m- w}
~Tr2m

B e i B B e I =it

Figure 5: Comparison of marks for code functionality and test coverage, Assignment la, 170 submissions

100
“ Code functionality

“ Test coverage I] l l

80

60

40

20

““““ w—vl..r aml

““““ .a

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83

Figure 6: Comparison of marks for code functionality and test coverage, Assignment 1b, 83 submissions

Recall that Assignments la and 2a were individ-
ual, so we can assume that the same person developed
both the unit tests and program code. How pairs of
students divided their workload in Assignments 1b
and 2b is difficult to say based purely on the sub-
mitted artefacts, although if they followed the assign-
ments’ instructions they would have swapped ‘tester’
and ‘coder’ roles regularly. Figures 6 and 8 are for
the pair programming assignments and both show an
improvement in the test coverage marks, compared
to the preceding individual assignments in Figures 5
and 7. Regardless of how they divided up the task,
this suggests that the students took the unit testing
parts of the assignment more seriously in their sec-
ond assessment. Nevertheless, the test coverage re-
sults still lag well behind those for code functionality
throughout.

Inspection of the submitted assignments suggests
that many students didn’t follow the test-driven de-
velopment process which, in practice, can be time
consuming and requires considerable discipline. Of-
ten students developed their program code and their
unit tests separately, rather than letting the latter
motivate the former. However, even if students did
not follow the test-driven development process, this
does not invalidate our comparision of their unit test-
ing and program coding abilities, as these are two

102

distinct skills.

In all four sets of results there are numerous ex-
amples of students scoring well for code functionality
but very poorly for test coverage, meaning that they
could implement a solution to a problem that they
couldn’t (or merely chose not to) characterise in the
form of a unit test suite, the exact opposite of what
we would expect if they had strictly followed the test-
driven development process.

To explore this phenomenon further we conducted
a conventional correlation analysis (Griffiths et al.
1998) to see if there was a clear relationship be-
tween students’ testing and coding skills, irrespective
of their absolute marks for each. We began by check-
ing the normality of all the marks’ distributions. This
was done by inspecting quantile-quantile plots gener-
ated by the ggnorm function from the statistics pack-
age R (R Core Team 2012). These plots (not shown)
provide good evidence of normality for seven of the
eight data sets, albeit with some overrepresentation
of high scores in the coding result distributions. The
quantile-quantile plots were skewed somewhat by dis-
cretisation of the marks; evidence for normality was
especially strong for Assignments 2a and 2b, for which
we had the most fine-grained marks available.

The marks were then used to create correlation
scatterplots (Griffiths et al. 1998), comparing stan-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

100
“ Code functionality

& Test coverage

L

AT

80

Lol D

60

20

- =

P R B A e i A C L g G L)

Figure 7: Comparison of marks for code functionality and test coverage, Assignment 2a, 217 submissions

100
¥ Code functionality
“ Test coverage
80
60
40
20
L B o

_ o

Figure 8: Comparison of marks for code functionality and test coverage, Assignment 2b, 113 submissions

dardised marks for each of the four assignments, as
shown in Figures 9 to 12. As usual, dots appearing
in the top-right and bottom-left quadrants suggest
that there is a positive linear relationship between
the variables of interest, in this case students’ code
functionality and test coverage results. (In the inter-
ests of clarity a handful of extreme outliers, result-
ing from some students receiving near-zero marks for
both)tests and code, have been omitted from the fig-
ures.

All four figures exhibit good evidence of a linear re-
lationship, especially due to the numbers of students
who did well on both measures (top-right quadrant).
Overall, though, the pattern is not as strong as we
expected.

Undoubtedly many students put less effort into the
unit tests, despite them being worth equal marks to
the program code. It is clear from the averages in
Table 2 and the charts in Figures 7 and 8 that even
the best students did not do as well on the unit tests
as the program code, and it certainly wasn’t the case
that successfully defining the test cases to be passed
was a pre-requisite to implementing a solution as we
had originally assumed. Even more obvious is the
line of dots along the bottom of Figure 11 which was
caused by students who received zero marks for test
coverage. Evidently these students learned the im-

portance of the unit tests for their overall grade by
the time they did their second assignment because no
such pattern is evident in Figure 12.

Overall, therefore, contrary to our expectations,
computer programming students’ performance at ex-
pressing what needs to be done proved to be a poor
predictor of their ability to define how to do it.

6 Conclusion

The students’ poor performance in unit testing com-
pared to program coding surprised us. Nonetheless,
the pattern of results in Figures 5 to 8 is remarkably
consistent. On the left of each chart are a few exam-
ples of students who could characterise the problem to
be solved but couldn’t complete a solution (i.e., their
test coverage results in red are better than their code
functionality results in blue), which is what we would
expect to see if the students applied test-driven de-
velopment. However, this was far outweighed in each
experiment by the dominance of results in which stu-
dents produced a good program but achieved poor
test coverage (i.e., their blue code functionality re-
sults were better than their red test coverage results).
We thus have clear empirical evidence that students
struggle to a greater extent defining test suites than

103

CRPIT Volume 136 - Computing Education 2013

2.0 1

1.5 1

L0 A

-3.0

h

® ©® ©® @000 0@

@ ©® 0@

] 1.5

@®

Figure 9: Correlation scatterplot, code functionality (x-axis) versus test coverage (y-axis), with circled dots
denoting multiple data points with the same value, Assignment la

15 |
1.0 1
® @ L EYRICK . 8 §
[[
L @® ° L @
. : . . . i . -
30 25 20 15 1.0 05 ofo @; 1.0
05 ®
® @ @
1.0
o [L] ® o
L ® -15 1 L
L]
20
®
25
3.0
® C
s

Figure 10: Correlation scatterplot, Assignment 1b

they do implementing solutions, for the same pro-
gramming problem.

The outstanding question from this study is

whether this unexpected result reflects students’ abil-
ities or motivations. From our inspection of the sub-
mitted assignments we can make the following obser-
vations.

104

e The results can be explained in part by many

students’ obvious apathy towards the unit test-
ing part of the assignments. Despite their regular
exposure to the principles of test-driven develop-
ment in class, and despite being well aware that
half of their marks for the assignment were for
their tests, it was clear in many cases that stu-
dents did not follow the necessary discipline and

instead wrote the program code first, seeing it as
more “important”. Their unit tests were then
completed hastily just before the assignment’s
deadline. As noted in Section 2 above, this
student behaviour has been observed in many
prior studies. For instance, Buffardi & Edwards
(2012) found that students procrastinate when
it comes to unit testing, even when a test-first
programming paradigm is advocated, which typ-
ically leads to poor test coverage in the submitted
assignments.

Another partial explanation is simply that many
students had poor unit testing skills. Test-driven
development emphasises the construction of a
large number of small and independent tests,

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

1.5 1

°
°
® ‘.D' ..
. o |°®
° ° %
. o0 el T ° :
o_00
¢ o ® % ®° 4 o
["
U v T T T . T e "T._._'—'
-3.0 -2.5 -2.0 -1.5 -1.0 0.5 0 0. 1.0 1.5
: > o oo ®*'e® '3 4§
™ o0
° @ °
® ® %s-
o @ o ® °
o8e o oo °
™ e 3 : °
° M °
e o o 5 4
° 0000 @ %0000 000 o@ 0000 0 @
=20 -
Figure 11: Correlation scatterplot, Assignment 2a
2.0
°
°
: : : —® o
-3.0 =15 -2.0 -1.5 ° -19
°
°
°
°
° o®
® ® -2.5

-3.0 -

Figure 12: Correlation scatterplot, Assignment 2b

each highlighting a distinct requirement. How-
ever, inspection of some assignments with low
testing scores showed that they consisted of a
small number of large and complicated tests,
each attempting to do several things at once.
This is evidence that the students could not (or
chose not to) follow the test-driven development
discipline. Small sets of complex unit tests are
characteristic of test-last programming and typi-
cally produce poor test coverage because several
distinct coding errors may all cause the same test
to fail, without the reason for the failure being
obvious. At the other extreme there were also a
few examples of students producing a very large
number of tests, often over twice as many as in
our own solution, but still achieving poor cov-
erage because their tests did not check distinct

problems and so many were redundant. This
undirected, ‘shotgun’ strategy is again evidence
of a failure to apply, or understand, test-driven
development, which avoids redundancy by only
introducing tests that expose new bugs.

It is also noteworthy that writing unit tests is
a cognitively more abstract activity than writ-
ing the corresponding program code, thus mak-
ing it more challenging for students still com-
ing to grips with the fundamentals of program-
ming. Whether or not this was the cause of stu-
dents’ poor test coverage marks is impossible to
tell from the submitted artefacts alone. Anecdo-
tally, our discussions with students while they
were working on the assignments left us with
the impression that they understood the prin-

105

CRPIT Volume 136 - Computing Education 2013

ciples of unit testing well enough. By far the
most common question asked by students while
they were working on their assignment was “How
many unit tests should I produce?” rather than
“How do I write a unit test?”

Ultimately, therefore, further research is still re-
quired. Although we have demonstrated that pro-
gramming students’ testing and coding skills can be
analysed separately, and that they consistently per-
form better at coding than testing, more work is re-
quired to conclusively explain why this is so.

Acknowledgements

We wish to thank Dr Andrew Craik for developing
the assignment marking scripts used in the first two
experiments, and the anonymous reviewers for their
many helpful suggestions for improving the correla-
tion analysis. Support for this project was provided
by the Office of Learning and Teaching, an initiative
of the Australian Government Department of Indus-
try, Innovation, Science, Research and Tertiary Edu-
cation. The views expressed in this publication do not
necessarily reflect the views of the Office of Learning
and Teaching or the Australian Government.

References

Arisholm, E. & Sjgberg, D. (2004), ‘Evaluating the
effect of a delegated versus centralized control
style on the maintainability of object-oriented soft-

ware’, IEEFE Transactions on Software Engineering
30(8), 521-534.

Astels, D. (2003), Test-Driven Development: A Prac-
tical Guide, Prentice-Hall.

Barriocanal, E., Urban, M.-A., Cuevas, 1. & Pérez,
P. (2002), ‘An experience in integrating automated
unit testing practices in an introductory program-
ming course’, SIGCSE Bulletin 34(4), 125-128.

Beck, K. (2003), Test-Driven Development: By Ex-
ample, Addison-Wesley.

Buffardi, K. & Edwards, S. (2012), Exploring influ-
ences on student adherence to test-driven develop-
ment, in T. Lapidot, J. Gal-Ezer, M. Caspersen &
O. Hazzan, eds, ‘Proceedings of the Seventeenth

Conference on Innovation Technology in Computer
Science Education (ITiCSE’12), Israel, July 3-5’,
ACM, pp. 105-110.

Desai, C., Janzen, D. & Savage, K. (2008), ‘A sur-
vey of evidence for test-driven development in
academia’, SIGCSE Bulletin 40(2), 97-101.

Edwards, S. (2004), Using software testing to
move students from trial-and-error to reflection-
in-action, in D. Joyce, D. Knox, W. Dann &
T. Naps, eds, ‘Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Educa-
tion (SIGCSE’04), USA, March 3-7’, ACM, pp. 26—
30.

Ferguson, T. S. (2010), ‘Optimal stopping and ap-
plications’. http://www.math.ucla.edu/~tom/
Stopping/Contents.

Griffiths, D., Stirling, W. D. & Weldon, K. L. (1998),

Understanding Data: Principles and Practice of
Statistics, Wiley.

106

Janzen, D. & Saiedian, H. (2007), A leveled exam-
ination of test-driven development acceptance, in
‘Proceedings of the 29th International Conference
on Software Engineering (ICSE’07), USA, May 20—
26’, IEEE Computer Society, pp. 719-722.

Janzen, D. & Saiedian, H. (2008), Test-driven learn-
ing in early programming courses, in S. Fitzger-
ald & M. Guzdial, eds, ‘Proceedings of the 39th
SIGCSE Technical Symposium on Computer Sci-
ence Education (SIGCSE’08), USA, March 12-15’,
ACM, pp. 532-536.

Keefe, K., Sheard, J. & Dick, M. (2006), Adopting
XP practices for teaching object oriented program-
ming, in D. Tolhurst & S. Mann, eds, ‘Proceedings
of the Eighth Australasian Computing Education
Conference (ACE2006), Hobart’, Vol. 52 of Confer-
ences in Research in Practice in Information Tech-
nology, Australian Computer Society, pp. 91-100.

Link, J. (2003), Unit Testing in Java, Morgan Kauf-
mann.

Melnick, G. & Maurer, F. (2005), A cross-program
investigation of students perceptions of agile meth-
ods, in ‘Proceedings of the 27th International Con-
ference on Software Engineering (ICSE05), USA,
May 15-21’, ACM, pp. 481-488.

R Core Team (2012), R: A Language and Environ-
ment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.

URL: http://www. R-project.org

Schach, S. (2005), Object-Oriented and Classical Soft-
ware Engineering, McGraw-Hill, USA. Sixth edi-
tion.

Schuh, P. (2005), Integrating Agile Development in
the Real World, Thomson.

Spacco, J. & Pugh, W. (2006), Helping students
appreciate Test-Driven Development (TDD), in
W. Cook, R. Biddle & R. Gabriel, eds, ‘Proceed-
ings of the 21st Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA06), USA,
October 22-26’, ACM, pp. 907-913.

Whalley, J. & Philpott, A. (2011), A unit testing ap-
proach to building novice programmers skills and
confidence, in J. Hamer & M. de Raadt, eds, ‘Pro-
ceedings of the Thirteenth Australasian Computer
Education Conference (ACE 2011), Perth’, Vol. 114
of Conferences in Research and Practice in Infor-
mation Technology, Australian Computer Society,
pp. 113-118.

