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set. They are nonlinear generalization of the first Principal Component. In this 
paper, we take a new approach by defining principal curves as continuous 
curves based on the local tangent space in the sense of limit. It is proved that 
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construction algorithm of principal curves is illustrated on some simulated data 
sets. 
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1 Introduction 

Finding low-dimensional manifold embedded in the high-dimensional space is a 
fundamental problem in the field of data mining, pattern recognition and computer 
vision. The research on this problem started as linear, and then as nonlinear 
parametric model, at last generated to the nonlinear non-parametric model. Meantime, 
there bring many mathematic problems, such as theory foundation, approximation 
algorithm and so on. Principal Curves are the nonlinear generalization of first 
principal components, and have been defined as smooth one-dimensional curves, 
which pass through the middle of a multidimensional data set. Although the 
description is intuitional, there are different definitions about the middle of data 
distribution. Principal curves were firstly introduced by Hastie and Stuetzle [1], and 
have been defined as satisfying the self-consistency property (HSPC). Tharpey and 
Flury[2] generalize the concept of self-consistency to random vectors, and then 
construct a unified theoretical basis for principal components, principal curves and 
surfaces, principal points, principal variables, and other statistical methods, and show 
the relationships between the various method. Tibshirani[3] give an alternative 
definition of principal curves based on a mixture model, then carry out the estimation 
through EM algorithm. This model, however, has inducted parameters, and can not 
give the method to remove the bias of estimation, and in practice does not satisfy the 



 

property of self-consistency. Kégl et al. [4] provide a new definition for principal 
curves with bounded length, and show that such curves exist for any distribution with 
bounded second moment. They also give an algorithm to implement the proposals, 
and calculated rates of convergence of the estimators. Due to the length constraint, the 
treatment does not encompass the case of classical principal component analysis. 
Delicado[5] introduces a new definition of principal curves based on the principal 
oriented points, prove the existence of principal curves passing through these points, 
and then propose an algorithm to find the principal curves, but all the arguments are 
based on conditional expectation and variance. Chang[6] propose an unified model as 
probabilistic principal surface (PPS) to address a number of issues associated with 
current algorithms using a manifold oriented covariance noise model, based on the 
generative topographical mapping (GTM), which can be viewed as a parametric 
formulation of SOM. In the past twenty years, the research on the principal curves 
around the middle property of data distribution has got excited progress, however, 
there have some open problems. For example, the existence of principal curves cannot 
be guaranteed for any distributions, and theoretical analysis is not as straightforward 
as with parametric models due to its nonparametric formulation. Duchamp and 
Stuetzle[7,8], José L. Martínez-Morales[9] study the differential geometry property of 
principal curves in the plane, find that the largest and the smallest principal 
components are extrema of the distance of expected distance from the data points, but 
all the principal curves are saddle points. This means that cross-validation can not be 
used to choose the complexity of principal curves estimates. By solving differential 
equation, they find that there are oscillating solutions and principal curves will not be 
unique. These conclusions indicate that the middle of data distribution lacks the 
sufficient theoretic support. 

Therefore, we have to turn back to consider the problem of nonlinear 
generalizations. There are two different ways in technology: one is that we can 
assume the data set obey some kind of distribution, and then find the statistical 
distribution model which is the best of the intrinsic structures describing this 
distribution. Manifold fitting, principal curves and GTM are the representative 
algorithms. Another is to transform the input data space, and then computer the linear 
component, such as kernel PCA. Principal component analysis is a widely used tool in 
multivariate data analysis for purposes such as dimension reduction and feature 
extraction. Now that principal curves are the nonlinear generalization of principal 
components, they can be used for reference more idea from linear PCA. PCA can be 
used to project the high-dimensional observed data to low-dimensional principal 
subspace, and the preconditions is that data set can be embedded in the global linear 
or approximation linear low-dimensional sub-manifold. So if the sub-manifold is 
nonlinear, PCA can not preserve the local information. Eliminating the statistical 
redundancy among the components of high-dimensional data with little information 
loss, is the main goal of finding low-dimensional representation. So in this problem, 
although the data distribution is nonlinear in global, can we think it as linear in local? 
And is it feasible in theoretic and algorithm? 

In the following of this paper, we firstly introduce definition and construction 
algorithm of HSPC and discuss the property of self-consistency in Section 2. Then in 
Section 3, according to the relation between the local tangent space and principal 
components, a new definition of principal curves is given in the sense of limit. We 



 

also prove that this principal curves satisfy the self-consistency property, and the 
existence of that curves for any given open covering. Based on this definition, a 
constructing algorithm of principal curves is proposed in Section 4. Our experimental 
results on simulate data sets are given in Section 5. Conclusions are provided in the 
last section. 

2 Definition of HSPC and Self-consistency Property 

2.1 Definition and Construction Algorithm of HSPC 

Problem Description: Consider a multivariate random variable ),,,( 21 pXXXX =  in 

 with density function  and a random sample frompR )(xp X X , named , 
then how to find a one-dimensional smooth curves 

nxxx ,,, 21

)(λf , which pass through the 
middle of X ? 

The first principal component can be viewed as the straight line which best fits the 
clouds of data. Principal curves were firstly introduced by Hastie to formalize the 
notion of curves passing through the middle of a dataset.  

Definition (HSPC): let )(λf  be  smooth curves in , parametrized by , and 
for any , let projection index 

pR R∈λ
R∈λ )(xfλ denote the largest parameter value   for 

which the distance between 
λ

x  and )(λf  is minimized, i.e., 

⎭⎬
⎫

⎩⎨
⎧ −=−= )(inf)(:sup)( µλλλ

µλ
fxfxxf . Then principal curves are the curves 

satisfying the self-consistency property )())(|( . XE λλλ fXf ==

Hastie has proved that the project index should be a random variable, and found 
the principal curves have the same property as principal component. But according to 
this definition, HSPC cannot be the self-intersecting curves. Given the density 
function of X , HS principal algorithm for constructing principal curves is given in the 
following: 

Step 1: Set be the first principal component line for )()0( λf X , and set ; 1=j

Step 2: Define ; ))(|()( )(
)( λλλ == XXEf jf

j

Step 3: Compute 
⎭⎬
⎫

⎩⎨
⎧ −=−= )(min)(:max)( )()(

)( µλλλ
µ

jj
f

fxfxxj , for all ; dRx∈

Step 4: Compute ))((()( )(
)()( XfXEf jf

jj λ−=∆ . If 

 thresholdff jj <∆−∆ − )()( )1()( , then stop. Otherwise, let 1+= jj  and go to Step 2. 
In practice, the distribution of X is often unknown, but the data set consisting of n 

samples from X is known, so the expectation in step 2 can be substituted by a 
smoother or non-parametric regression estimation. 



 

2.2 Self-consistency Property 

In HSPC, self-consistency is introduced to describe the property that each point on the 
smooth curves is the mean of all points projected onto it. Self-consistency is the 
fundamental property of principal curves, and then is generalized to define the self-
consistent random vectors. 

Definition 2: A random vector Y is self-consistent for X  if each point in the 
support of Y  is the conditional mean of X , namely YYXE =)|( . 

For jointly distributed random vectors Y and X , the conditional mean is 
called the regression of Y on 

)|( XYE
X . For the regression equation ε+= )(XfY , where 

X is m-dimensional random variable, )(⋅f a function from to ,mR nR ε is a n-
dimensional random vector independent of X ,and 0)( =εE . Then 

, that is, is self-consistent for Y . )())(|( XfXfYE = )(Xf
In practice, because we only have the finite data set, so the point projected on the 

principal curves is only one at most. Therefore Hastie introduces the conception of 
neighborhood and defines the point as conditional expectations of data set projected 
in the neighborhood. This definition also agrees with the mental image of a summary. 

3 Definition of Principal Curves Based on Local Tangent Space 

Consider )(λf  is continuously differentiable curve, where )supp(λλ∈ . A Taylor 
series approximation about 0λ  is )())(()()( 2

0000 λλλλλλλ −Ο+−+= fJff , where 
)( 0λfJ  is the Jacobian matrix. The tangent space of )(λf  on 0λ  will be spanned by 

the column vectors of )( 0λfJ . So the points in the neighborhood of )( 0λf  can be 
approximated by ))(()()( 000 λλλλλ −+≈ fJff . A new definition of principal curves is 
presented in the following: 

Definition 3: let )(λf  be a smooth curves in , parametrized by . For 
any , a cluster of neighborhood 

pR R∈λ
R∈λ )},(,),,(),,({ 2211 kkBBB δλδλδλ  is an open 

covering of , where λ kii ,,2,1, =∈λλ , is the local tangent space vector of iξ )(λf  

in the ),( iiB δλ . Let ),(),( iiBxxP
i

δλξ ∈  be the projection on the . If  

is existent, then  is the principal curves, and satisfies the self-

consistency property, where 
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Some remarks on the above definition is given in the following. 
a). Definition of principal curves is in the sense of limit. 

Supposed random samples  is iid, and embedded on the smooth manifold nxxx ,,, 21

M in , and pR )(λfx = , ,where, mRd ∈ pm << . The mean of samples is x , the 



 

covariance matrix is  ∑
=

−−=
n

i
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ii xxxx

n
XCov

1
))((1)( . Wanli Min et al.[11] have 

proved that the eigenvectors of  can construct the tangent space of manifold )(XCov
M  on x . This indicates that the local tangent space can be approximated by the 
eigenvectors of the covariance matrix of samples, and in each local neighborhood, the 
topology structure can be preserved. 

So for any kii ,,2,1, =∈λλ , its tangent vector can be approximated by the first 
eigenvectors  of covariance matrix of data points in the iξ kiB ii ,,2,1),,( =δλ . 

So we have  ∑∑
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b). Satisfying the self-consistency property 
Self-consistency is the fundamental property of principal curves, in the following we 
will show how this definition satisfying this property. 

Suppose for given any neighborhood ),( iiB δλ , P  is the orthogonal projection 
from to its q  linear subspace pR M . If iii PXXEPIY +−= )()(  is self-consistency for 

, then iX M  is spanned by the  eigenvectors of . If , where q )( iXCov 'ξξ=P ξ  is the 
first principal components of , the  is self-
consistency for . 

)( iXCov iii XXEIY '' )()( ξξξξ +−=

iX

For any point  on the )( *λf )(λf , )},(,),,(),,({ 2211 kkBBB δλδλδλ  is an open 
covering for , so there exist a λ kii ,,2,1, =∈λλ , , satisfying 

. Therefore, 
),()( *

iii BYf δλλ ⊂∈

)())(|( ** λλλ fXXE f == )(λf  is self-consistency. 
c). For any given covering, there exists a principal curves which minimizes LRE 
Suppose random vector X and , for any function Y g , 

)()|( YgXEYXEXE −≤− . Taking g  to be the identity, then 
YXEYXEXE −≤− )|( . Thus if )|( YXEY = , Y  is local optimal for approximating 

X . 
For the observed data sets, in every neighborhood kiB ii ,,2,1),,( =δλ , the local 

reconstruction error LRE ( ∑
∈

−=
),(

2

2
ˆ

iiij Bx
ijijki xxLRE

δλ
) is minimal if and only if 

)(ˆ xxxx ij
T

hhij −+= ξξ , where kξ  is the eigenvectors of the input covariance matrix 
corresponding to its largest eigenvalue. 

Hence, for any given open covering, there exist curves which minimize the local 
reconstruction error. 



 

4 Construction Algorithm of Principal Curves 

In this section, we give a construction algorithm of principal curves based on the local 
tangent space, according to Definition 3. The algorithm of construct principal curves 
is described as following.  

Step 1: Let neighborhood )},(,),,(),,({ 2211 kkkkk BBB δλδλδλ  be an open covering 
for sample; 

Step 2: For the sample points  in inii xxx ,,, 21 kiB iik ,2,1),,( =δλ , compute the 
, , and ; )(xEki )(xCovki ),,,( 21 ijiikij vvvV =

Step 3: Let , where  denotes the principal 
eigenvector of covariance matrix of sample points in 

jmvVV im
T

lkki ,,1},min{ )1( == − lkV )1( −

),(1 llkB δλ− , and 
),(),( 1 llkiik BB δλδλ −⊂ . Compute the projection of data point  on , and 

reconstruction ; 
kix kiV

kix̂

Step 4: Connect , and use the method for local smooth interpolation; kix̂
Step 5: Compute global reconstruction error . If kGRE thresholdGREGRE kk <− −1 , 

then stop. Otherwise, let , and go to Step 1.  1+= kk
Note about the convergence properties of this algorithm in the following: 
For every , the global least reconstruction error is 0≥kiLRE
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For any continuous differential function )(λf  and )supp(0 λλ ∈ , where  is a 
compact subset of R ., 

λ
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Therefore, . 01 →− −kk GREGRE

5 Experimental Results 

To test the algorithm presented above, we conducted experiments on several artificial 
data sets. Consider a random sample  from a multi-dimensional random nxxx ,,, 21



 

variable X , suppose that a nonlinear curves is a good summary of the structure of the 
distribution of X  and we try to recovering the curves from the observed samples 

.  nxxx ,,, 21

5.1 Experiments on Continuous Function without Noise 

Consider , the number of selected points is 400, and the number of 
neighborhood is 1, 2, 3, 10, respectively. In Fig. 1, we illustrate several stages of the 
principal curve constructing. And the result is promising, when k=10, we can see that 
the principal curves constructed with the proposed algorithm have approximated to 
the origin continuous functions. 
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Fig. 1. Principal Curves. The data was generated by continuous function (sinusoid): (a)k=1, 
(b)k=2, (c)k=3, (d)k=10 

5.2 Experiments on Gaussian Distributions 

Consider the two independent Gaussian distribution and randomly selected 100 
points. We get the principal curves with k=2 and 5, as Fig. 2 shows. From these 
results, we can see the principal curves approximate to the principal component. 
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Fig. 2.  The Principal Curves from elliptical distribution, with k=2(left) and k=5(right) 
respectively 

5.3 Experiments on Continuous Function with Noise 

Consider the ],0[,cos,sin πθθθ ∈== yx , randomly select 200 points, and add 
independent Gaussian noise )1.0,0(~ Niε . Let k=1,2,4,40 respectively and we 
illustrate several stages of the principal curve constructing in fig. 3. The result is also 
promising, when k=40, we can see that the principal curves constructed with the 
proposed algorithm have approximated to the origin continuous functions with noise.  
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Fig. 3.  The Principal Curves. The data was generated by adding independent Guassian noise 
on a half circle (a)k=1, (b)k=2, (c)k=4, (d)k=40 

 



 

And in the fig.4, we give other two experiments results. Due to limited space we 
cannot present exhaustive experimental results but just some illustrations here. 
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Fig. 4. The Principal Curves. The data was generated by adding independent Guassian noise on 
continuous function 

6 Conclusions 

For high-dimensional random vector, it is very important to find an approximation 
whose support is a low-dimensional manifold. Principal curves can be regard as one 
dimension principal manifold, and have been used for dimension reduction and 
pattern classification. In this paper based on the local tangent space, we give a new 
definition of principal curves in the sense of limit, and prove it is self-consistency. We 
also show for any given open covering, this principal curves exists. According to the 
definition, we give a construction algorithm of principal curves. Experimental results 
show that we can approximate to the true principal curves. In this paper we suppose 
the domain of principal curves is compact set and can be covered by finite open 
covering. How to find an open covering for more complex data set will be future 
work. 
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