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Abstract – This paper describes a team of robots that are 

designed for urban search and rescue applications.  The team 

CASualty consists of four tele-operated robots and one 

autonomous robot.  A brief description of the capabilities of 

the robot team is presented together with the details of 

capabilities of the autonomous robot HOMER.  In particular, 

the software architecture, user interface, strategies used for 

mapping, exploration and the identification of human victims 

present in the environment are described. The team 

participated in an international competition on urban search 

and rescue (RoboCup Rescue) held in Bremen, Germany in 

June 2006 where HOMER was placed second in the 

autonomy challenge.   

I INTRODUCTION 

In an urban search and rescue scenario, detecting the 
locations of survivors and then recovering them from a 
collapsed building is one of the biggest challenges faced by 
emergency response personnel.  The environment can be 
unstable and difficult to negotiate while survivors trapped 
need to be rescued within a short time frame.  Use of a 
robot or a team of robots to assist human rescuers in such 
situations is one of the areas where robotics research can be 
of great benefit to humanity. While significant progress has 
been made and a variety of robots have been used during 
many recent disasters, much research is needed to achieve 
the objective of deploying a team of autonomous robots for 
urban search and rescue.   

The RoboCup Rescue competition is a forum where the 
latest research on urban search and rescue can be evaluated 
in a competitive environment. The rescue arenas 
constructed to host these competitions are based on a 
template developed by the U.S. National Institute of 
Standards and Technology (NIST) [1]. The arenas simulate 
a collapsed building with three distinct grades of 
complexity. A maze of walls, doors, and elevated floors 
provide various tests for robot navigation and mapping 
capabilities.  Variable flooring, overturned furniture, and 
problematic rubble provide obvious physical obstacles.  
Intuitive operator interfaces and robust sensor fusion 
algorithms are essential in order to reliably negotiate the 
arenas and locate victims.  Arena used in the 2005 
competition in Osaka, Japan is shown in Fig. 1.  

RoboCup Rescue competition aims to promote research so 
that [1] 

“When disaster happens, minimize risk to search and 
rescue personnel, while increasing victim survival rates, by 
fielding teams of collaborative robots which can:  

 Autonomously negotiate compromised and collapsed 
structures 

 Find victims and ascertain their conditions 

 Produce practical maps of their locations 

 Deliver sustenance and communications 

 Identify hazards 

 Emplace sensors (acoustic, thermal, hazmat, seismic, 
etc,…) 

 Provide structural shoring  

…allowing human rescuers to quickly locate and extract 
victims.” 

 

Fig. 1 The arena used in the 2005 RoboCup competition held in Osaka 

 

This paper is organised as follows.  Section II describes 

the robot team deployed by the Centre for Autonomous 

Systems (CAS) in the June 2006 RoboCup Rescue 

competition held in Bremen, Germany.   Sections III –VI 

describe various aspects of the autonomous platform 

HOMER and its capabilities.  Discussion and conclusions 

are presented in section VII. 

II ROBOT PLATFORMS 

A Caster 

 

Fig. 2 CASTER II  



CASTER-II (seen in Fig. 2), is. based on the Yujin 

Robotics DT-3 locomotion platform.  CASTER-II uses a 

tank-like track arrangement that is steered differentially 

using tracks. The rubber tracks are ribbed to improve 

traction over rough terrain. However, unlike most tanks, 

CASTER-II consists of two articulated sections. The rear 

section is similar to a conventional tank. The front section 

consists of a triangular track path. This allows CASTER-II 

to traverse tall obstacles such as stairs. 

The sensor package on this robot consists of a number of 

cameras, including a thermal camera (FLIR Thermovision 

A10), for situational awareness and victim identification. 

Three dimensional mapping capability is provided through 

a time-of-flight range imager (CSEM Swiss Ranger 2). A 

robot arm is used to carry some of the sensors so that they 

can be easily manoeuvred. 

B Redback 

Redback is a lightweight, low cost, advanced mobility 

platform based on the Tarantula RC vehicle is shown in 

Fig. 3. These robots complement the abilities of CASTER. 

Redback is fitted with sensors and a computer that allows it 

to be driven remotely, generate 3D maps of its environment 

and perform semi-autonomous actions, allowing them to be 

used with minimal need for operator attention.  

 

Fig. 3 Three Redbacks in various stages of development  

C HOMER 

HOMER (Fig. 4) is a lightweight differential drive robot 

designed to autonomously operate in relatively flat terrain.  

The 2006 competition included pitch and roll ramps of up 

to 10˚ elevation.  The principal mapping sensor is a 

Hokuyo URG-04LX laser range finder, and obstacle 

avoidance is achieved with the laser and additionally two 

built-in sonar range sensors. Victim identification is 

achieved via a Thermoteknix Miricle thermal infrared 

camera, and two optical cameras – a Point Grey Flea, and a 

Point Grey Dragonfly2.  The Flea is co-mounted with the 

thermal camera on a pan-tilt unit constructed from two 

Megarobotics AI-1001 modules, while the Dragonfly2 is 

attached to a Vstone hyperboloidal mirror for 

omnidirectional vision.     

All computation for mapping, localization, exploration, 

navigation, obstacle avoidance and victim identification is 

performed on-board the robot with a Toshiba Libretto 

U100 computer.  The Libretto has a very small form factor, 

measuring 210x160x30mm, and weighing less than a 

kilogram.  It contains a 1.2 GHz Pentium M processor, 

with 1024MB RAM and on-board USB and IEEE1394 

ports for device interfacing. 

HOMER‟s front wheels are differentially driven by two 

Maxon RE-35 motors, and a custom built motor controller 

board.  The rear wheels are Kornylak omni wheels.  These 

provide excellent omnidirectional motion without the usual 

drawbacks of caster wheels – particularly when changing 

direction. This main focus of this paper is on the 

development of the HOMER.  

 

 
(b) Front view:  Two sonar sensors as well as the optical (right) and 

thermal (left) cameras mounted on a pan-tilt unit are visible.   

 
(b) Side view:  The omni-directional back wheels and a panoramic 

camera (not used during the competition) visible.   

Fig. 4 Two views of the HOMER  

III MAPPING 

The ability to generate a map, while navigating in an 

unknown environment is one of the most essential 

capabilities of an autonomous robot. The principal mapping 

sensor in the HOMER is the Hokuyo URG-04LX laser 

rangefinder.  This is a new low cost, low power and 

lightweight range sensor.  It produces range scans at 10Hz 

with an angular field of view of 240 degrees, and a 

maximum range of 4m.  This sensor is ideally suited to 

mapping in an indoor, tightly constrained environment. 

Maps are produced using a new algorithm "Map 

Referenced Iterative Closest Point" (MRICP).  This method 

incorporates Iterative Closest Point (ICP) [2], an established 

general purpose algorithm for matching clouds of points in 

two or three-dimensions according to a least squares 

criterion.  In MRICP, a subset of an existing occupancy grid 

map is converted to a point cloud and matched with the 

most recent laser scan in order to produce an accurate 



estimate of current position.  The current laser scan is then 

used to update the occupancy grid based on Bayes rule 

using a model of the laser range sensor.  This method 

generally produces better maps than standard sequential 

ICP scan matching, and in particular it obviates the need for 

explicit loop-closures over short distances (up to 10-

20m).  As larger loops are included, this method needs to be 

extended by detecting loop closures explicitly, or by a 

hierarchical method which integrates small map patches 

into a larger map. 

The mapping strategy was initially designed with a totally 

flat environment in mind.  At the 2006 Rescue competition, 

pitch and roll ramps of up to 10˚ elevation were introduced 

for the first time.  Ramps introduce particular difficulties 

for robots which exclusively use horizontal laser scans for 

mapping.  Firstly, if the laser is mounted too low, the top of 

a ramp may be detected as an obstacle and incorporated into 

the map even though it is in fact traversable.  Secondly, 

laser scans taken from an inclined position may not 

accurately match with scans taken from a fully horizontal 

position.  The first issue was addressed by raising the laser 

position sufficiently so that ramps do not impede the laser 

view.  The MRICP method worked robustly enough that the 

second issue did not impact the laser alignment 

substantially, and the map produced was still quite 

navigable.  Fig. 5 shows the map produced during the 

competition run including pitch and roll ramps. Mismatches 

due to the ramps are visible as multiple lines corresponding 

to a single wall.  Fig. 6 shows a more accurate map 

generated in a larger flat area during laboratory testing.  

There are plans to include a tilt sensor based on a two-axis 

accelerometer in the sensor package to deal with some of 

the issues associated with the presence of the ramps. 

 

Fig. 5 Occupancy grid map generated by HOMER during the competition 

in Breman, Germany   The shade of grey is proportional to the probability 
of occupancy (white = 1, black= 0).  The area mapped is approximately 

7x5m. 

 

 

Fig. 6 Larger occupancy grid map generated by during laboratory testing.  
The area mapped is approximately 12x8m. 

IV NAVIGATION 

In the search and rescue scenario, the autonomous robot 

needs a high level planner that makes certain that all 

unknown areas are explored.  Furthermore, the robot also 

needs a reactive strategy for avoiding nearby obstacles as 

path planning for exploration is typically done at a coarser 

resolution to minimize the computational resources 

required. This section describes the algorithms used for 

these two tasks. 

A Local Navigation 

Local navigation is achieved by applying the well known 

Vector Field Histogram (VFH) method [3].  The VFH 

method uses a two-dimensional Cartesian histogram grid as 

a world model. The world model is updated with data about 

local obstacles - in this case, data from the URG laser and 

two onboard sonars are fused to produce local proximity 

estimates.  VFH provides a robust local navigation method 

which reliably avoids collisions, but has limitations in very 

tightly constrained spaces.  A modified version of VFH 

algorithm is implemented on the HOMER in order to 

improve performance in cases where the goal point is 

behind the robot, or out of the angular range of the range 

sensors. 

B Exploration  

Exploration requires the robot to be driven towards 

unexplored regions of the environment. Using the current 

occupancy grid provided by the mapping module, the 

boundaries between explored and unexplored regions, 

known as frontiers, are first extracted. A global planner 

based on the wavefront expansion method is used to 

generate a set of way points the robot must follow to reach 

the nearest frontier. The way point generation also attempts 

to make the robot stay in the middle of open spaces and 

minimize turning if at all possible. The global path is 

recalculated at regular intervals as the occupancy grid gets 

updated. At all times, the robot is in the look-out for victims 

in the vicinity.  As soon as a victim is detected, a new path 



to the victim is recalculated and the platform driven closer 

to the potential victim for its identification. Once that is 

accomplished, the autonomy module drives the robot back 

in search of places and victims in the rescue arena not yet 

explored. 

 

V VICTIM IDENTIFICATION 

The victim identification strategy has two components; 
firstly the sensor data is processed to produce signs of life; 
secondly these signs of life are mapped to an occupancy 
gird (where the occupancy represents the probability of a 
victim in that cell) to localize different victims with respect 
to the map generated by MRICP. 

 Four signs of life expected in the simulated victims placed 
in the competition arena were examined during the 
development of the HOMER victim identification strategy.  

A Body Temperature 

Heat is one of the most reliable means of detecting the 
presence of human life, due to the very specific temperature 
range of human skin.  The most reliable use of heat 
detection is achieved with a thermal camera such as the 
Thermoteknix Miricle camera mounted on HOMER.  A 
camera enables thermal readings to be filtered and clustered 
so that only regions of appropriate size and shape are 
considered.  An elevation filter is also applied in order to 
minimize false-positive readings from lights or spectators.   

B Alternative Signs of Life 

Skin colour can be extracted by considering histograms of 
skin and non skin images from the optical camera.  Skin 
detection using Gaussian Mixture Models is, in fact, quite 
reliable and robust to variation in skin colour and texture.  
However skin detection is much more reliable for actual 
skin rather than the painted dummies used in Robocup 
Rescue. 

Movement is another sign of life which can be found by 
thresholding differential images taken from a stationary 
camera, or by optical flow techniques. 

A directional microphone can be used to detect the sound 
of a person talking or baby crying.  By recording the sound 
for a short period and filtering the signal over a narrow 
vocal range containing human formants, the presence of a 
voice may be recognized.   

C Victim Map 

By combining the sensor model of a victim detection 
sensor with the occupancy grid map produced by MRICP, a 
„victim map‟ containing spatial probabilities of the presence 
of a victim is generated.  When enough positive sensor 
readings are found in a particular location, a victim is 
registered in the map, and the navigation component is 
instructed to move to a closer proximity.  When the robot 
achieves close proximity to a victim a „snapshot‟ of all of 
the sensors is sent back to the user interface and the 
operator is alerted.  The robot then waits for the operator‟s 
instruction to resume the search. 

In the Bremen competition, the thermal camera was the 
principal victim sensor used.  Skin detection was unreliable, 

as very little skin was visible on most victims and because 
skin was painted rather than genuine human skin (for 
obvious reasons). 

Fig. 7 and 8 show the visual and thermal images for the 
two victims HOMER detected during the it‟s successful 
final competition run.  

  

Fig. 7 Visual (left) and thermal (right) images of the first victim.  Note 

that the two cameras are not aligned.  The victim is seen as a bright region 

in the top right corner of the thermal image 

   

Fig. 8 Visual (left) and thermal (right) images of the second victim (a 

heated baby doll).   

 

VI SOFTWARE ARCHITECTURE 

As the CASualty team consists of five robots, a distributed 
software architecture is essential so that each robot can 
collect data from the local sensors and make the required 
decisions based on the level of autonomy of the platform. 
The raw/processed data is sent back to the remote central 
operators unit, where a number of tasks are performed 
automatically, such as managing and manipulating the 
maps provided by the platforms, placing victims and 
landmarks in the global map.   

Given the large amount of simultaneous data available to 
the operator, as well as the need to effectively control the 
remotely-operated and semi-autonomous platforms at the 
same time, a great deal of effort has been dedicated to 
present the user with an integrated user-friendly GUI [4].   
The left half of the interface (see Fig. 9) contains collective 
information:  maps in one tab, and victim snapshots in 
another.  The right half contains robot specific information:  
There is one tab for each robot, including the main camera 
view, an unfolded omni-camera view and a thermal 
overlay.  There is also a variety of robot-specific status and 
control available in each tab. 



 

Fig. 9 Screen shot from RescueGUI.  The current global map can be 

viewed on the left, while the current robot (HOMER) view can be seen on 
the right, including camera view, thermal view (yellow/red overlay) and 

laser view (blue/grey inset). 

 

The interface has also the ability to accept or reject victims 
found by the autonomous platform, and to record logs of 
the various sensor data, including victim/landmark 
snapshots. Distributed middleware software architecture, 
ORCA [5], has been employed to connect the various 
components that make up the system. This is an open-
source (orca-robotics.sourceforge.net) framework for 
developing component-based robotic systems, which takes 
advantage of the flexibility of the ICE (www.zeroc.com) 
middleware package for inter-component communications.   
 

VII DISCUSSION AND CONCLUSIONS 

The Robocup Rescue competition is an excellent testing 

ground for robotic platforms and algorithms.  The 

competition enables practical research outcomes in 

autonomous mapping, navigation and decision making to 

be tested against other research groups from around the 

world. 

In the Bremen 2006 competition, CASulaty achieved 

second place in the Autonomous Robot event, and the semi-

finals of the multi-robot mixed initiative event.  In the final 

run of the autonomous event, HOMER successfully 

navigated through approximately eight metres of arena over 

two ramps, and correctly identified two victims along the 

way.  

It is important however, not to lose sight of the real-world 

application towards which this research effort is directed.  

The objective is for a team of robots to be able to be 

deployed in genuine disaster scenarios in order to survey 

the area, detect the presence or otherwise of human victims 

and report this data back to an incident commander. 

The development of autonomous solutions enables a 

single operator to be able to take charge of multiple robots 

in a coherent way. 

An important next step is for some of the autonomous 

capabilities of flat-terrain robots to be transferred to more 

mobile platforms.  This will be one of the objectives of the 

CASualty team for next year. 
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