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Abstract. Subspace clustering is a challenging task in the field of data mining. 
Traditional distance measures fail to differentiate the furthest point from the 
nearest point in very high dimensional data space. To tackle the problem, we 
design minimal subspace distance which measures the similarity between two 
points in the subspace where they are nearest to each other. It can discover 
subspace clusters implicitly when measuring the similarities between points. 
We use the new similarity measure to improve traditional k-means algorithm 
for discovering clusters in subspaces. By clustering with low-dimensional 
minimal subspace distance first, the clusters in low-dimensional subspaces are 
detected. Then by gradually increasing the dimension of minimal subspace 
distance, the clusters get refined in higher dimensional subspaces. Our 
experiments on both synthetic data and real data show the effectiveness of the 
proposed similarity measure and algorithm. 

1. Introduction 

As a main technique for data mining, clustering is confronted with 
increasingly high dimensional data. The dimension of data can be 
hundreds or thousands in the fields of retail, bioinformatics, telecom, 
etc., which brings the “curse of dimensionality”. It not only makes the 
index structure less efficient than linear scan, but also questions the 
meaningfulness of looking for the nearest neighbor [5], which in turn 
makes it ineffective to discover clusters in full dimensional space. The 
key point lies in that traditional distance measures fail to differentiate 
the nearest neighbor from the farthest point in very high-dimensional 
space. One solution is to measure the distance in subspaces, but it is not 
easy to select the appropriate subspaces. Fern et al. proposed random 
projection by choosing subspaces randomly and then the results of 
several random projections are combined in an ensemble way [3]. 
Procopiuc et al. chose the subspaces where a random group of points 



are in a ω-width hyper-rectangular box [7]. Agrawal et al. [2] proposed 
to discover the subspaces in an APRIORI-like way. 
To tackle the above problem, we design a new similarity measure, 
minimal subspace distance, for measuring the similarities between 
points in high dimensional space and discovering subspace clusters. 
The new measure defines the minimal l-D distance between two points 
as the minimum of their distances in all l-D subspaces and thus 
discovers implicitly the subspace of clusters while computing 
similarities. Based on our new similarity measure, k-means algorithm is 
improved for discovering subspace clusters in high dimensional space. 
Our experiments on both synthetic data and real-life data show the 
effectiveness of the proposed similarity measure and algorithm. 

2. K-Means Algorithm 

K-means algorithm is one of the most well-known and widely used 
partitioning methods for clustering. It works in the following steps. 
First, it selects k objects from the dataset, each of which initially 
represents a cluster center. Each object is assigned to the cluster to 
which it is most similar, based on the distance between the object and 
the cluster center. Then the means of clusters are computed as the new 
cluster centers. The process iterates until the criterion function 
converges. A typical criterion function is the squared-error criterion, 
defined as 
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Algorithm: k-means
Input: The number of clusters k and a dataset 
Output: A set of clusters that minimizes the squared-
error criterion. 
1. Select k objects as initial cluster centers; 
2. Assign each data object to the nearest center; 
3. Update the cluster center as the mean value of the 
objects for each cluster; 
4. Repeat steps 2 and 3 until centers do not change or 
the criterion function converges. 

Fig. 1. K-means algorithm 



where E is the sum of square-error, p is a point, and mi is the center of 
cluster Ci. The k-means algorithm is given in Figure 1. For detailed 
description of k-means clustering, please refer to [4]. 

3. Adapting K-Means Algorithm for Subspace Clustering 

In this section, a new similarity measure, minimal subspace distance, 
will be proposed to discover clusters in subspaces. Based on the new 
similarity measure, k-means algorithm will be adapted for discovering 
subspace clusters.  

3.1. Motivation 

Euclidean distance is the mostly used distance measure in the field of 
data mining. However, the difference between the nearest point and the 
farthest one becomes less discriminating with the increase of 
dimensionality [5]. It is the same case with Minkowski distance (Lp-
norm, p=2,3,...), except the Manhattan distance (p=1). Aggarwal et al. 
suggested to use fractional distance metrics (i.e., Lp-norm with 0<p<1) 
to measure the similarity between objects in high dimensional space 
[1]. 
Nevertheless, many researchers argued that most meaningful clusters 
only exist in subspaces for very high dimensional data, so they used the 
traditional Lp-norm (p=1,2,3,...) to discover clusters in subspaces [2, 3, 
6, 7]. For subspace clustering in high-dimensional space, clusters are 
constrained to be axis-paralleled hyper-rectangles in subspaces by 
Agrawal et al. [2], and projective clusters are defined as axis-aligned 
box by Procopiuc et al. [7]. Therefore, it is reasonable to define a 
cluster to be the union of those objects which are within a subspace 
hyper-rectangle.  
What if the subspace of clusters is unknown in advance? In which 
subspace should the objects be projected? To discover subspace 
clusters, a new similarity measure, minimal subspace distance, is 
defined in the following, which can improve traditional Lp-norm 
(p=1,2,3,...) for subspace clustering in high-dimensional space. 



3.2. Minimal Subspace Distance 

Definition 1. [Minimal subspace distance] Assume that X and Y are 
two points in a d-dimensional space, and the coordinates of them are 
(x1,x2,...,xd) and (y1,y2,...,yd), respectively. The minimal l-D subspace 
distance between X and Y is defined as the minimum of the distances 
between them in all l-dimensional subspaces, as given by the following 
formula.  
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where Sl=(j1,j2,...,jl) is a l-dimensional subspace, 
lSX   and 

lSY  are 
respectively the projected vectors of X and Y in subspace Sl, and dist(·) 
is a traditional distance measure. 
It is obvious that minimal subspace distance meets two of the 
requirements of distance metric, non-negativity and symmetry. 
However, it does not satisfy the triangle inequality. The reason lies in 
that it measures the similarity between two points in the subspace 
where they are nearest to each other and that the subspaces are usually 
different for different pairs of points. It discovers subspaces of clusters 
implicitly while measuring the similarities between points by using the 
subspace in which points are nearest. Therefore, it is effective to 
discover subspace clusters, although it is not really a distance metric. 
When Lp-norm is used as the measure of distance, the minimal 
subspace distance is the Lp-norm distance calculated with the l minimal 
differences between each pair of xi and yi, as the following formula 
shows. 
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where ji (i=1..l) are the first l dimensions when sorting ||
ii jj yx −  in 

ascending order. If maximum distance (L∞-norm) is used as the 
measure of similarity, the minimal l-D distance is the maximum of the l 
minimal differences between each pair of xi and yi, that is, the l-th 
minimum of |xi - yi| (i=1..d). Therefore, ε≤∞ ),()( YXMSD l  means that 
X and Y are in a hyper-rectangle with edge of ε  in l dimensions and 
without any limits in other dimensions. Therefore, the above similarity 
measure provides an effective measure for hyper-rectangular clusters in 
subspaces. 



With the help of the above minimal subspace distance, it will be easier 
to discover clusters in subspaces. For two objects, it finds the subspace 
in which they are the most similar or nearest to each other. Assume that 
L∞-norm is used. For example, if the minimal 4-D subspace distance 
between two objects is 7, it means that the two objects are within a 4-D 
hyper-rectangle with edge length of 7. 
Minimal subspace distance measures the similarity between objects in 
the subspace where objects are nearest to each other, so it is effective to 
find subspaces where clusters exist and then discovers clusters in these 
subspaces. With the new definition of similarity measure, our algorithm 
is capable of finding projected clusters and subspaces automatically 
when the average dimensionality of subspaces is given. The 
effectiveness of the new similarity measure will be shown in our 
experiments. 

3.3. Adapted K-Means Algorithm 

Based on the above minimal subspace distance, we adapt the well-
known k-means algorithm for discovering clusters in subspaces. 
Traditional k-means algorithm cannot discover subspace clusters 
because it uses full-dimensional distance measure to compute the 
similarity between points. In most cases, different clusters usually exist 
in different subspaces and the dimensions of subspaces also vary from 
cluster to cluster. Therefore, subspaces should also be discovered while 
clustering data. Our idea is to use minimal subspace distance to 
discover the subspace implicitly when measuring the similarity 
between points. First, we run k-means algorithm with low-dimensional 
minimal subspace distance and the clusters in low-dimensional 
subspaces are discovered. Then, by clustering with increasingly higher-
dimensional minimal subspace distance, the clustering gets refined. The 
algorithms for adapted k-means are shown in Figures 2 and 3. 
If running k-means with minimal 1-D distance at first, and increasing 
the dimension of subspace by one at each step, it will be very costly 
when the dimension of data is high. Moreover, it is usually meaningless 
to discover a very low dimensional (say 3D) cluster in high 
dimensional (say 500D) data. Therefore, the minimal dimension of 
clusters minl is set as a start point and users can set the value of minl 
according to the specific dataset  and application. In addition, maxl, the 
maximal dimension of clusters, is also provided to set a limit to the  



maximal dimension of subspaces. The default values of minl and maxl 
are respectively 1 and d (the dimension of dataset), if it is difficult to 
set appropriate values for them. For very high-dimensional data, it is 

Algorithm: MSD, which computes the minimal l-D 
distance between two points p and q 
Input: point p and q, dimension l 
Output: the minimal l-D distance between p and q 
 
Set diffi (i=1..l) to be the minimal l values of  
|pi-qi| (i=1,2…d); 

dist = ∑=

l
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2
; 

RETURN dist; 

Fig. 3. MSD algorithm

Algorithm: Adapted k-means
Input: dataset X, cluster number k 
Output: k centroids C={ci} and cluster IDs 
 
Decide minl, maxl, and stepl for clustering; 
l = minl; 
prevSumDist = Infinity;  
Randomly select k points from X as C;  
WHILE TRUE 
    FOR each pair of point pi and centroid cj     
        dist(pi,cj) = MSD(pi,cj, l); /*minimal l-D  
            distance, see Figure 3 for detail*/ 
    ENDFOR 
    FOR each point pi  
        clusterId(i) = t if dist(pi,ct)=minj{dist(pi,cj)}; 
    ENDFOR 
    sumDist =  sum of point to centroid distances; 
    IF sumDist < prevSumDist 
        prevSumDist = sumDist; 
        prevClusterId = clusterId; 
        FOR i=1 TO k 
            ci=the mean of those points in cluster i; 
        ENDFOR 
    ELSE 
        l = l + stepl;  
        If l > maxl 
            break; 
        ENDIF 
    ENDIF 
ENDWHILE 
RETURN C and prevClusterId; 

Fig. 2. Adapted k-means algorithm 



computing expensive to increase l by one at each step. Furthermore, the 
clustering at the next step gets little refined when increasing l to l+1. 
Hence, another parameter, stepl, is used as the increasing stride of l and 
the default value of stepl is ⎡ ⎤10/)( minlmaxl − . That is, the traditional 
k-means algorithm will run for 10 times. With the introduction of stepl, 
the algorithm runs less iterations and the efficiency gets improved. 

4. Experiments 

The algorithm is implemented with Matlab and our experiments are 
performed on a PC with 256MB RAM and an Intel Pentium IV 1.6GHz 
CPU. These experiments show the superiority of our algorithm over 
traditional k-means algorithm for discovering clusters in subspaces. 

4.1. Synthetic Data Generator 

We use the nngenc(X,C,N,D)1 function from Matlab2 to generate 
clusters of data points, where X is a R×2 matrix of cluster bounds, C is 
the number of clusters, N is the number of data points in each cluster, 
and D is the standard deviation of clusters. The function returns a 
matrix containing C×N R-element vectors arranged in C clusters with 
centers inside bounds set by X, with N elements each, randomly around 
the centers with standard deviation of D. The range is set to [0, 100]. 
To generate subspace clusters, we set the values in some dimensions 
for some clusters to be of uniform distribution, and the subspaces vary 
from cluster to cluster.  Since k-means algorithm partitions the whole 
dataset into k clusters and cannot eliminate noises, no noise is 
generated in the datasets. 

4.2. Evaluation Criterion 

Conditional Entropy (CE) and Normalized Mutual Information (NMI) 
are employed to measure the quality of clustering, since the clusters are 
known before hand and can be used to judge the clustering quality. 
Compactness [9] is also widely used to measure the quality of 
                                                 
1 Detailed information can be found in “.\toolbox\nnet\nndemos\nngenc.m” in Matlab v7.0.1. 
2 http://www.mathworks.com/ 



clustering, but it favors sphere-shaped clusters since the diameter is 
used. CE and NMI have been used to measure the quality of clustering 
by Strehl et al [8] and Fern et al [3], and detailed description of the two 
measures can be found in the above two papers. Conditional entropy 
measures the uncertainty of the class labels given a clustering solution. 
For one clustering with m clusters and another with k clusters, the 
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solution, nj is the size of cluster j in the second clustering solution, pij is 
the probability that a member of cluster i in the first clustering belongs 
to cluster j in the second clustering, and n is the size of dataset. The 
value of CE is a non-negative real number. The less CE is, the more the 
tested result approaches the standard result. The two results become the 
same when CE is zero.  
For two clustering solutions X and Y, the normalized mutual 

information is defined as 
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entropies of X and Y. The value of NMI lies between zero and one. 
Contrary to CE, the larger the value of NMI is, the better is the 
clustering. If NMI is one, then the two clustering solutions are exactly 
the same. The values of CE and NMI between the actual clustering and 
the discovered clusters are used to judge the clustering accuracy. 
Therefore, a better clustering solution is of greater NMI and less CE. 

4.3. Experimental Results 

A 20D dataset with four clusters in 16D subspaces is used in the first 
experiment. There are 1000 points in the dataset, with 250 points in 
each cluster. The four actual clusters in generated dataset are show with 
parallel coordinates in Figure 4, and the number above each subfigure 
is the count of points in the cluster. Minl and maxl are respectively set 
to 1 and 16, and stepl is set to 1. The clusters discovered by our 



algorithm and traditional k-means algorithm are shown in Figure 5 and 
6, respectively. From Figure 4 and 5, the four clusters discovered by 
our algorithm are nearly the same as those actual clusters, except for 
only one point in cluster 2 which is wrongly assigned to cluster 4. From 
Figure 4 and 6, cluster 3 in Figure 4 is wrongly split into two clusters 
(clusters 1 and 4 in Figure 6), while clusters 2 and 4 in Figure 4 are 
wrongly merged into one cluster (cluster 2 in Figure 6) by traditional k-
means algorithm. The confusion matrixes for the above clustering 
results are shown respectively in Table 1 and 2. In the two tables, 
columns C1-C4 stand for actual clusters, while rows D1-D4 stand for 
the clusters discovered. The numbers in the table are the counts of 
points in the joint part of the two corresponding clusters. The CE values 
of traditional and adapted algorithms are respectively 0.3466 and 
0.0065, while the NMI values of them are respectively 0.8022 and 
0.9953, which also validates that our algorithm is superior to traditional 
k-means algorithm for discovering clusters in subspaces. 
The second experiment is conducted on synthetic data of 1000 points 
and the dimensions range from 20 to 800. The standard deviation is set 
to 0.12 for generating all these datasets. There are four equal-sized 
clusters in each dataset, and the clusters exist in different subspaces. 
The dimensions of the clusters are set to be 0.3 times the dimensions of 
datasets. There is no noise generated in the datasets. Minl is set to 1, 
maxl  is set to the dimensionality of subspace clusters, and stepl is set to 
the default value, ⎡ ⎤10/)( minlmaxl − . Ten datasets are generated for 
each dimensionality and each algorithm runs for 20 times on each 
dataset. The average experimental result is shown in Figure 7. There 
are nine groups in the figure, and groups 1-9 stand for the results on 
20D, 40D, 60D, 80D, 100D, 200D, 400D, 600D and 800D data, 
respectively. The four bars in each group from left to right denote 
tradCE (CE of traditional k-means clustering), tradNMI (NMI of 
traditional k-means clustering), adptCE (CE of adapted k-means 
clustering) and adptNMI (NMI of adapted k-means clustering).  
From Figure 7, it is clear that adptCE is less than tradCE and adptNMI 
is greater than tradNMI in most conditions, especially for datasets of 
higher dimensions. Therefore, our adapted k-means algorithm is more 
effective than traditional k-means algorithm for discovering clusters in 
subspaces and our adapted algorithm performs better than the 
traditional k-means algorithm for high-dimensional datasets. We can 
also see from the figure that, with the increase of dimension, tradCE 



and adptCE decrease, while tradNMI and adptNMI increase. It seems 
that both traditional and adapted k-means algorithm performs better 
with the increase of dimension. The reason lies in that the points in a 
cluster tend to become more compact with the increase of dimension 
when the standard deviation remains unchanged. 
Experiments are also conducted on datasets with the dimensions of 
clusters respectively 0.2, 0.4, and 0.5 times the dimensions of datasets. 
Each algorithm runs for 20 times with each dataset and the average 
experimental results are shown in Figure 8-10. The same conclusion 
can be drawn as that from the second experiment. In addition, by 
comparing Figures 7-10, we can see that, when the dimension of data 
space remains unchanged, our algorithm performs better if the 
dimension of subspace clusters is higher. 

4.4. Experiment on Real Data 

The dataset of Wisconsin Diagnostic Breast Cancer from UCI machine 
learning repository (http://www.cs.uci.edu/~mlearn) is used in the 
experiment. The dataset is of 569 distances and 32 attributes. The first 
attribute is the ID of instance. The second attribute is the diagnosis 
class and there are two classes, “malignant” and “benign”, in the 
dataset. The following 30 attributes are real-valued features. The first 
two attributes are removed before clustering and the diagnosis class is 
used only to check the accuracy of clustering. By setting the minl, maxl 
and stepl to 20, 30 and 1 respectively, two clusters are always 
discovered effectively. We run the algorithm for 30 times and the 
average accuracy is 97.3%, which shows the effectiveness of our 
algorithm. 

Table 2. Confusion matrix of the clustering 
result of traditional k-means. C2 and C4 are 
clustered into one group D2, while C3 is 
split into two groups, D1 and D4. 

 C1 C2 C3 C4 
D1 0 0 137 0 
D2 0 250 0 250 
D3 250 0 0 0 
D4 0 0 113 0 

Table 1. Confusion matrix of the clustering 
result of adapted k-means. The four clusters 
discovered are the same as those in the 
original dataset, except for only one point 
from C4. 

 C1 C2 C3 C4 
D1 250 0 0 0 
D2 0 0 0 249 
D3 0 0 250 0 
D4 0 250 0 1 



 

Fig. 6. Four clusters discovered by traditional k-
means. The above cluster 3 is corresponding to 
cluster 1 in Fig. 4. Cluster 2 is the union of 
clusters 2 and 4 in Fig. 4, while clusters 1 and 4 
are two parts of cluster 3 in Fig. 4. 
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Fig. 4. Actual clusters. The four subfigures 
show the actual clusters in the dataset. 
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Fig. 5. Four clusters discovered by adapted k-
means. The above clusters 1-4 are 
corresponding to clusters 1, 4, 3, 2 in Fig. 4, 
respectively. 

Fig. 7. Experimental result I. Groups 1-9 
stand for 9 datasets with increasing 
dimensions and the four bars in each 
group from left to right denote tradCE, 
tradNMI, adptCE and adptNMI. The 
dimensions of clusters are 0.3 times the 
dimensions of datasets. 
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Fig. 8. Experimental result II. The 
dimensions of clusters are 0.2 times 
the dimensions of datasets. 
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Fig. 9. Experimental result III. The 
dimensions of clusters are 0.4 times 
the dimensions of datasets. 
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5. Conclusion 

We designed a new similarity 
measure to discover clusters in 
subspaces and our proposed 
algorithm runs k-means clustering 
with increasing subspace dimensions. 
The experiments show that our 
algorithm performs better than 
traditional k-means algorithm for 
discovering clusters in subspaces and 
that the superiority of our algorithm 
becomes greater with the increase of dimension of data. 
Our future work includes analyzing the characteristics and distribution 
of minimal subspace distance and applying it to other existing 
clustering algorithms for discovering subspace clusters. 
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Fig. 10. Experimental result IV. The 
dimensions of clusters are 0.5 times 
the dimensions of datasets. 
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