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Abstract— This paper investigates the efficacy of the genetic-

based learning classifier system XCS, for the classification of 
noisy, artefact-inclusive human electroencephalogram (EEG) 
signals represented using large condition strings (108bits). EEG 
signals from three participants were recorded while they 
performed four mental tasks designed to elicit hemispheric 
responses. Autoregressive (AR) models and Fast Fourier 
Transform (FFT) methods were used to form feature vectors 
with which mental tasks can be discriminated. XCS achieved a 
maximum classification accuracy of 99.3% and a best average of 
88.9%. The relative classification performance of XCS was then 
compared against four non-evolutionary classifier systems 
originating from different learning techniques. The experimental 
results will be used as part of our larger research effort 
investigating the feasibility of using EEG signals as an interface 
to allow paralysed persons to control a powered wheelchair or 
other devices. 
 

Index Terms— Learning classifier systems (LCSs), XCS, 
evolutionary computation, genetic-based machine learning 
(GBML), electroencephalogram.  

I. INTRODUCTION  
LASSIFICATION of human electroencephalographic 
(EEG) signals is a difficult problem due to the high-

dimensional and noisy nature of EEG data. Several studies 
have used a variety of frequency-band representations where 
features are extracted from the spectral density estimates of 
the EEG frequency domain signal [1]. Kiern [2] used spectral 
density estimates, calculated from the FFT to form asymmetry 
ratios for a specific frequency band. The asymmetry ratios 
were calculated for all right-to-left combinations of six EEG 
channels and for each EEG band: delta (0-3Hz), theta (4-7Hz), 
alpha (8-13Hz) and beta (14-20Hz). 

Another representation technique, models the EEG signal as 
a random process using a zero-mean autoregressive (AR) 
process of order p [3], where the representation was composed 
primarily of scalar AR model coefficients. This paper 
compares the representation of EEG signals using a 
frequency-band method and three autoregressive methods, 
namely Burg, Covariance and Modified Covariance.  

XCS is a recent and major development in learning classifier 
systems (LCSs) research that improves on several deficiencies 
of traditional LCSs, which were introduced by Holland [4]. In 
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the literature, XCS is commonly applied to data which is non-
noisy, artefacts-free and represented using small condition 
lengths (<70bits). To the best of our knowledge, the 
classification of noisy and artefact-inclusive EEG signals, 
represented using condition lengths greater than 100bits is a 
unique application of XCS to a ‘real-world’ EEG 
classification problem. The promising experimental results 
demonstrate the competence of XCS in this difficult 
classification task. 

Section II provides a brief description XCS, Section III 
describes the methodology for mental tasks and EEG data 
acquisition. Section IV describes EEG signal representation 
and feature vector encoding. Section VI presents the results 
and Section VII summarises conclusions. 

II. DESCRIPTION OF XCS 
XCS [5, 6] is an accuracy-based classifier system. It exploits 

a reinforcement learning method [7] coupled with the robust 
and global search capability of a steady-state genetic 
algorithm [4, 8] to produce a population of classifiers. The 
classifiers tend to form an accurate and maximally general 
knowledge representation of the target problem in single- and 
multi-step environments.  

XCS evolves a population [P] of classifiers, where each 
classifier consists of a rule and three main parameters 
estimating the quality of the rule. Each rule consists of a 
condition and an action pair [ condition action→ ], encoded in 
binary. The condition part of the rule {0,1,#}LC ∈ specifies the 
input states the classifier is capable of matching. The symbol # 
is called “don’t-care” and allows formation of generalisations 
in the condition part of a rule. The action part of the rule 
specifies the action a A∈ or class for which a payoff is 
predicted, that is, when the condition is satisfied. 

In XCS, a steady-state genetic algorithm (GA) is responsible 
for improving the set of rules. The genetic search attempts to 
discover new classifiers which contribute to the existing 
knowledge and delete classifiers that do not offer improved 
contributions. Application of the GA takes place in the action 
set [A] if and only if the average time since the last GA 
application in [A] exceeds a constant threshold given by GAθ . 
Firstly, the GA selects two parental classifiers from the 
current action set [A] with probability proportional to F. The 
parental classifiers undergo uniform crossover with 
probability χ  and single-bit free mutation with probability 
μ per allele. Finally, the two resulting offspring classifiers are 
inserted into the population to compete with their parents. 
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Figure 1: Block Diagram of the XCS Classifier System for single-step 
environment. It shows the classifier sets of [P], [M], [A] and the classifier 
condition/action pair (c:a). Also shown are the main parameters that estimate 
the quality of each classifier, namely prediction (ρ), prediction error (ε), 
fitness (F) and numerosity (n). The parameters (ρ, ε, F) are updated using the 
Widrow-Hoff Delta Rule.  

III. MENTAL TASKS AND DATA ACQUISITION 

A. Mental Tasks 
Participants performed four mental tasks, chosen to invoke 

changes in brainwave activity across different hemispheres 
and across different electrodes. Each task was performed for a 
continuous period of 10 seconds and repeated for 10 
independent trials during a single EEG recording session. 
Participants were asked to remain still, not make any overt 
movements or vocalise any task to minimise muscular 
artefacts. The four tasks studied in this paper were performed 
with eyes opened and include the following: Mental Counting 
(MC): The counting of consecutive numbers, Figure Rotation 
(FR): Visualise a complex object being rotated about one of 
its axis, Mental Arithmetic (MA): Perform non-trivial and non-
repeating multiplication problems, Letter Composition (LC): 
Mentally compose a letter to a friend. 

B. Data Acquisition and Pre-processing 
The BiosemiTM Active-Two System (www.biosemi.com) 

was used in this study for recording EEG signals from each 
participant. Raw data was acquired using 32-channels at a 
sampling rate of 1024Hz with 24-bit digital resolution per 
channel, using the biopotential measurement system and 
active electrodes. The EEG electrode montage was adapted 
from the extended 10-20 electrode system[9] and all 32 
channels were referenced to electrically-linked electrodes 
located on the ear lobes of each participant.  

The recording of the EEG signals was conducted in a 
dedicated temperature controlled research laboratory. 
Artefacts such as eye and muscle movements, which are non-
cerebral in origin, were not removed from the recorded EEG 
data. The number of channels was reduced to 6-channels. As 
in previous research work [2, 3], this study focused on EEG 
channels (O2, P4, C4) for the right hemisphere (R) and (O1, P3, 

C3) for the left hemisphere (L). In a preliminary analysis of a 
single participant, poor classification results were achieved 
using 2- and 4-channels asymmetrically.  

The remaining 6 channels were down-sampled to 256Hz, 
removing frequencies not typically found in human EEG 
signals, which can range from 0.1Hz to 100Hz. Then, each 10 
second recording was reduced to either 9.0 or 8.0 seconds 
(depending on the segment size, described next), by removing 
0.5 or 1.0 seconds of data from the beginning and end of the 
EEG data. This provides EEG data that does not contain any 
transitional effects introduced prior or following each 
recording experiment as a participant initiates the mental task 
or concludes early.  

Finally, the remaining time-domain EEG data was 
partitioned into individual segments or blocks of length 0.5, 
1.0 or 2.0 seconds, which corresponds to 128, 256, and 512 
samples for each segment respectively. So, for independent 
ten experiments this produced a total of 40, 90, or 180 time-
domain instances based on 2.0, 1.0 and 0.5 second segments 
respectively, for each mental task.  

The study was approved by the institutional research ethics 
committee and participants were only entered into the study 
after informed consent. 

IV. EEG SIGNAL REPRESENTATION 

A. Parametric Methods for EEG Signal representation 
Parametric methods assume a description of an EEG signal 

can be devised from a time-series model of a random process. 
As such, parametric methods can model fixed segments of 
EEG data as the output of a linear filter of order p driven by a 
Gaussian white noise sequence with zero-mean Ch6,[10]. The 
output for such a filter is a pth order autoregresssive (AR) 
process or maximum entropy method (MEM), given by 

( ) ( ) ( ) ( )
1

p

k
k n k nx n a x u

=
−= − +∑ , where, x(n) is the stationary 

time-series output sequence that models the fixed segment of 
EEG data, a(k) are the AR coefficients and u(n) is a Gaussian 
white noise input driving sequence.  

The Burg, Covariance1 (COV) and Modified Covariance 
(MCOV) are three AR parameter estimation algorithms used 
in this study. Each AR method operates on a fixed segment of 
time samples to recursively yield a pth order AR model of 
parameter estimates, a(k). It is the AR coefficients that are 
used to describe the EEG signal opposed to the estimate of the 
spectral density. Selection of the AR model order (p) for real 
signals represents a trade-off between increased resolution and 
decreased prediction variance of AR coefficients. Model order 
determination was performed for using a random selection of 
ten 2 second EEG segments from four mental tasks of each 
participant. The Akaike information criterion (AIC) [10] 
method was used to determine optimal AR model order. The 
AIC determines the model order by minimising the 
information theoretic function of the form: 

( )ˆAIC[ ] ln 2pp N pρ= + , where, p is the model order, N is the 

 
1 This terminology is based on historical usage in speech processing and is 

not justified by the statistical definition of the term. 
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number of data samples given by the EEG segment size 
multiplied by the sampling frequency, and ˆ pρ is the variance 
estimate of the white noise input to the AR model for order p. 
The model order was incrementally increased from p=1 to 
p=50 and the AIC curves tended to approach a minimum 
within a range of orders 5 ≤ p ≤ 10. The AR models used for 
all experiments were implemented with order p=6. 

B. Frequency-Band Method for EEG Signal representation 
Representation of EEG signals based on its frequency 

content have been commonly applied in EEG classification 
literature [2, 11]. These approaches are based on early 
observations that the human EEG spectrum is primarily 
characterised by four frequency bands: delta (0.1-3Hz), theta 
(4-7Hz), alpha (8-13Hz) and beta (14-20Hz). In this paper, an 
extended beta range (14-40Hz)2 was also defined providing 
additional spectral information for the degree of brain wave 
activity over the cerebral cortex. 

An FFT extracted the frequency components from each 
time-domain instance of the EEG signal and the spectral 
density relating the magnitude at each integer frequency was 
calculated for each separate EEG band. A 128-, 256-, 512-
point FFT was applied to 0.5, 1.0 and 2.0 second segments 
respectively. The trapezoidal numerical integration technique 
was used to calculate the area under the spectral density curve 
(AUC) for each EEG frequency band ( , , ,δ θ α β ) of each EEG 
channel (O2, P4, C4, O1, P3, C3). In a similar approach used in 
[2], the asymmetry ratio for each EEG frequency band was 
also determined. The asymmetry ratio is given by the 
following iterative formula: (Li – Rj) / (Rj + Li). Where Rj is the 
AUC value of the right hemisphere channel, j={O2, P4, C4} 
and Li is the AUC value for the left hemisphere channel, 
i={O1, P3, C3}. Consequently, the asymmetry ratio method 
produces a total combination of (# Channels / 2)2 AUC ratios 
for each EEG frequency band. So, for the six EEG channels 
used in this study there are nine corresponding AUC ratios for 
each EEG band. 

C. Feature Vector Encoding 
The production of feature sets was the final stage of 

transforming raw EEG signals into a form that was amenable 
to the XCS environment. Separate training and testing sets, 
containing multiple feature vectors were created to train XCS 
and test classification accuracy, specificity and sensitivity. 

 In the first approach a single feature vector (instance) was 
encoded from the six AR coefficients that represent a single 
EEG segment (0.5, 1.0, or 2.0 seconds) for each EEG channel 
(O1, P3, C3, O2, P4, C4). The final feature vector for a single 
EEG segment was created from the concatenation of the six 
EEG channels containing the six AR coefficients represented 
as 3-bit binary strings. Thus, a single instance was represented 
by a 108-bit binary string and a class label (L, F, C, A) 
corresponding to the four mental tasks. 

In the second approach, feature vectors were created 
separately for each EEG frequency band, containing the AUC 
of the spectral density coupled with the asymmetry ratio. 
Instances were randomly inserted into training and testing sets 
 

2 Gamma (fast-beta) is usually defined for frequencies above 24Hz. 

for the seven different representations (Burg, COV, 
MCOV, , , ,δ θ α β ). Training and test sets contain 40, 90 or 180 
randomly selected instances corresponding to the 0.5, 1 or 2 
second time-domain EEG segments respectively. This 
approach provided 50% of the data for the training phase and 
the remaining 50% for the testing phase.  

V. CLASSIFICATION ENVIRONMENT  
This section describes the comparative classifier schemes 

and XCS parameters used for each classification experiment. 

A. Non-Evolutionary Classifier Schemes 
The primary aim of this paper was to explore the efficacy of 

using the genetic-based XCS learning classifier system for the 
classification of human electroencephalogram signals using 
AR and FFT representations. A secondary aim was to 
compare the relative classification performance of XCS with 
other classifier systems. The non-evolutionary classifier 
systems selected for the comparison originate from different 
learning techniques, namely Naïve Bayes [12] which is based 
on Bayes rule of conditional probabilities, SMO [13] which 
implements the sequential minimal optimisation algorithm for 
training a support vector classifier, IBk [14] which uses the k-
nearest-neighbour method and PART [15] which combines the 
divide-and-conquer strategy for decision tree learning with the 
separate-and-conquer scheme for rule learning. 

All the non-evolutionary algorithms were obtained from the 
Weka machine learning workbench [16]. They were executed 
in classification mode using the default parameters provided 
by Weka, unless stated otherwise. 

B. XCS Parameter Settings 
All experiments were performed using the C-code 

implementation of XCS v1.2 [17]. The XCS parameter 
settings remained constant during all experiments, except 
population size (N=2000, 4000, 8000). The XCS parameters 
were set as follows [5, 6]: α=0.1, β=0.2, δ=0.1, εo=0.01, ν=5, 
θGA=25, θmna= #actions, χ=0.9, μ=0.004, θdel=100, θsub=100, 
P#=0.86, doGAsubsumption=1, doASsubsumption=0, 
Pexplore=1, reward = 1000/0, toursize=0.4, 
crossover_type=uniform,  initpop=0, 
fitness_reduction=1,force_different_in_tournament=0, 
elect_tolerance=0.001, do_mam=1, general_mutation=0,  
niche_mutation=0,  pI =10, εI =0.0, fI =0.01. 

A total of 30 independent experiments were performed for a 
maximum of 20000 explore iterations each. All remaining 
parameters were set to default values. 

VI. RESULTS  
Table I, lists the average classification accuracy and 

standard deviation for the classification of two mental tasks 
using XCS for the three participants represented by 
autoregressive method. The EEG segment size was 2.0seconds 
and the classifier population size was N=8000. From Table I, 
classification accuracy tends to vary between participants and 
between mental tasks for the same participant. We hypothesise 
this was a result of the representation of EEG signals in AR-
space, which can produce similar class boundaries for 
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different mental tasks. This may restrict the ability of XCS to 
distinguish between different classes using its hyper-rectangle 
representation. This may be overcome by increasing AR-order 
or the encoding length of AR feature vectors. There was no 
statistically significant improvement or degradation between 
the three AR methods according to a paired t-test at a 99.5% 
confidence level.  

TABLE I 
CLASSIFICATION RESULTS FOR AR COEFFICIENT METHOD 

PARTICIPANT   

1 2 3 AVG 
Burg 98.3±1.6 77.5±4.4 81.8±5.4 85.9±3.9 
Cov 98.8±1.1 75.6±4.5 82.0±4.7 85.5±3.5 

FR 
v 

MC MCov 99.3±0.7 76.6±4.8 79.2±3.0 85.0±2.7 
Burg 88.8±2.8 66.0±4.4 89.2±4.1 81.3±3.8 
Cov 90.9±3.2 68.7±5.0 87.3±3.9 82.3±4.0 

FR 
v 

MA MCov 90.6±2.7 69.6±4.6 90.8±3.6 83.6±3.7 
Burg 75.3±5.1 88.0±3.2 87.2±4.7 83.5±4.3 
Cov 72.1±5.2 86.2±4.0 86.1±3.9 81.5±4.4 

FR 
v 

LC MCov 74.0±5.2 88.8±3.0 87.8±4.5 83.5±4.3 
Burg 82.1±3.4 85.9±3.1 96.8±1.6 88.3±2.7 
Cov 82.0±2.6 88.3±3.8 96.3±4.1 88.8±3.5 

MA 
v 

LC MCov 81.8±3.0 87.3±5.1 97.2±1.0 88.7±3.0 
Burg 88.7±4.6 70.9±5.4 81.5±6.4 80.4±5.5 
Cov 88.4±4.5 75.4±6.0 81.6±6.1 81.8±5.5 

MA 
v 

MC MCov 88.8±3.6 73.0±5.7 80.5±4.8 80.8±4.7 
 
The classification accuracy for the frequency-band method 

(results not shown) was significantly lower for each band 
( ), , ,δ θ α β  compared to the parametric methods in Table I.  

TABLE II 
CLASSIFIER SCHEME COMPARISON - AR METHOD 

 NB SMO IBk PART XCS 
Burg 90.0 ○ 88.3 ○ 85.2  80.0 ● 85.9 
Cov 88.4 ○ 90.0 ○ 86.0  83.7 ● 85.5 

FR 
v 

MC MCov 88.8 ○ 87.2 ○ 83.0 ● 82.5 ● 85.0 
Burg 83.3 ○ 80.8  79.2 ● 80.0  81.3 
Cov 80.0 ● 75.0 ● 76.7 ● 78.3 ● 82.3 

FR 
v 

MA MCov 82.5  83.3  78.3 ● 78.3 ● 83.6 
Burg 86.7 ○ 87.5 ○ 84.2  79.2 ● 83.5 
Cov 85.0 ○ 85.8 ○ 84.2 ○ 66.7 ● 81.5 

FR 
v 

LC MCov 85.0  85.0  82.5  76.7 ● 83.5 
Burg 90.8 ○ 90.0 ○ 84.2 ● 85.8 ● 88.3 
Cov 91.7 ○ 93.3 ○ 85.8 ● 84.2 ● 88.8 

MA 
v 

LC MCov 91.7 ○ 88.3  85.0 ● 86.7 ● 88.7 
Burg 85.0 ○ 81.7  73.3 ● 80.8  80.4 
Cov 85.8 ○ 78.3 ● 72.5 ● 77.5 ● 81.8 

MA 
v 

MC MCov 85.0 ○ 75.8 ● 73.3 ● 80.0  80.8 
Better - Worse 12-1 7-3 1-10 0-12 - 

 
Table II, summarises the average classification accuracy and 

standard deviation rates of the different learning algorithms. 
The XCS results are taken from Table I, (AVG) column. 
Statistical differences are indicated according to a paired t-test 
at a 99.5% confidence level, with the following notation. A 
significant improvement of XCS with respect to another 
learning algorithm is denoted by ● and a significant 
degradation in classification performance by ○. 

VII. CONCLUSION AND FUTURE WORK 
This paper investigated the efficacy of the GBML classifier 

XCS for the classification of noisy, artefact-inclusive, multi-
channel human electroencephalographic signals, that were 

acquired from three participants as they performed four 
different mental tasks. The study also focused on two very 
different methods for representing EEG signals, namely three 
autoregressive parametric methods and a frequency-band 
method. The results indicate the Burg, Covariance and 
Modified Covariance AR methods provide higher 
classification accuracy compared to frequency-band methods.  

This paper also compared the average classification 
accuracy of XCS to four different non-evolutionary 
algorithms, namely Naïve Bayes, SMO, IBk and PART. In 
general, XCS performed significantly better than PART and 
IBk (k=3), it was comparable to SMO, but performed worse 
than Naïve Bayes on the same datasets using the AR 
representation. 
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