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Abstract— In this paper, the possibility and necessity of multi-
step trajectory planning in Extended Kalman Filter (EKF) based
SLAM is investigated. The objective of the trajectory planning
here is to minimize the estimation error of the robot and
landmark locations subject to a given time horizon. We show
that the problem can be regarded as an optimization problem
for a gradually identified model. A numerical method is proposed
for trajectory planning using a variant of the nonlinear Model
Predictive Control (MPC). The proposed method is optimal in
the sense that the control action is computed using all the
information available at the time of decision making. Simulation
results are included to compare the results from the one-step
look-ahead trajectory planning and the proposed multi-step look-
ahead technique.

Index Terms— SLAM, trajectory planning, Extended Kalman
Filter, model predictive control.

I. I NTRODUCTION

Simultaneous localization and mapping (SLAM) is a funda-
mental requirement in robot exploration and has attracted alot
of research interest in recent years. Extended Kalman Filter
(EKF) based approaches are frequently used in SLAM (e.g.
[1]–[3]) and the results are mostly satisfactory.

Most of the SLAM algorithms did not take trajectory plan-
ning into account. That is, the robot trajectory is predetermined
or randomly chosen. It is well known that a good robot
trajectory is critical in robot exploration. Moreover, in most
cases the environment is at least partially unknown and on-line
trajectory planning is necessary.

When SLAM is regarded as only a part of a robot explo-
ration task, several trajectory planning strategies have been
proposed. For example, Makarenko et al. [4] considered the
integrated exploration problem where the tasks of localization,
mapping and motion control are combined together. Multiple
utility functions are used to evaluate the utilities of the
potential destinations and the destination with the highest
total utility is selected as the next destination. In [5], a
minimal time motion control technique in SLAM is developed
when the destination is a prescribed location relative to the
starting point. The robot is required to reach the destination
within minimal time while keeping the estimation error of
the robot and landmark locations below a prescribed level.
Stachniss et. al [6] focused on the active loop closing for
FastSLAM in robot exploration. They provided approaches on

how to identify opportunities for closing loop, how to closethe
loop and when to stop following the loop for the grid-based
FastSLAM framework.

In the case when SLAM is the sole robot exploration
objective, trajectory planning is also important in obtaining a
more accurate estimation and/or using less time. In particular,
when the sensor capability is limited (e.g. bearing only sensor),
a properly planned trajectory will be highly desirable [7].

An adaptive motion control technique in SLAM is reported
in [8]. The robot creates a map and localizes itself simul-
taneously while making local decisions on where to move
next in order to maximize the information obtained from the
observations. The inverse of the estimation error covariance is
used as an optimization objective. The choice of the decision
is based on a single-step look-ahead strategy (greedy method).

In this paper, we analyze the possibility and necessity of
multi-step look-ahead trajectory planning in SLAM. The prob-
lem addressed here is similar to that of [8]. In particular, the
objective of the trajectory planning is to minimize the estima-
tion error spanning in a finite time horizon. The contributions
of this paper include (1) the necessity of trajectory planning
in SLAM is analyzed in term of the information gain/loss (2)
it is shown that the multi-step look-ahead trajectory planning
problem is an optimization problem for a gradually identified
nonlinear model; (3) it is shown that multi-step look-aheadis
possible when the current estimation error is small because
it optimizes the mean value of the performance metric (4)
a novel optimization strategy is proposed for this trajectory
planning problem using a variant of the Model Predictive
Control (MPC) [10] with the optimality proven.

The paper is organized as follows. In Section II, the SLAM
algorithm using EKF is briefly reviewed. In Section III,
the multi-step trajectory planning problem considered in this
paper is formulated. In Section IV, we analyze the necessary
assumptions used in the one-step and multi-step optimization.
A novel optimization strategy is proposed and optimality is
proved in Section V. In Section VI, simulation results are
provided to compare the one-step and multi-step look-ahead
optimization techniques. Finally, Section VII concludes the
paper.



II. SLAM USING EXTENDED KALMAN FILTER

In this section, we briefly review the estimation-theoretic
SLAM algorithm using the Extended Kalman Filter (EKF)
(see, e.g. [2], [8]).

Let the robot’s state be denoted byxr = [xr, yr, φr]
T and

the dynamic model for the robot be given by

xrk+1
= f(xrk

,uk,dx), (1)

whereuk is the control input at timek, dx is the Gaussian
process noise with covarianceΣ. The exact formula of func-
tion f depends on the types of the robot and the process noise.

The landmarks (features) are assumed to be stationary and
we usexf to denote the state of all the landmarks. Let the
state vectorx = [xT

r ,xT
f ]T contain both the robot statesxr

and the landmark statesxf , then the process model can be
written as

xk+1 = F(xk,uk,dx) =

[

f(xrk
,uk,dx)
xf

]

. (2)

The observation model at timek + 1 is

zk+1 = hk+1(xk+1) + dz(k+1), (3)

where hk+1 is the nonlinear observation vector function,
dz(k+1) is the Gaussian observation noise vector with covari-
anceRk+1. Notice that the formulation of the observation
function and the dimension of the noise depend on the sensor
model as well as the group of beacons that can be observed at
time k+1 (e.g. field of view). Since the group of beacons that
can be observed highly depends on the relative locations of the
robot and landmarks at the time of observation, the observation
functionhk+1 and the noisedz(k+1) are both time dependent.

The estimation-theoretic SLAM algorithm is based on the
work of Smith et al. [1]. It uses the EKF algorithm to optimally
estimate the state vectorx and the associate error covariance
matrix

P =

[

Prr Prf

P
T
rf Pff

]

. (4)

Suppose at stepk, the estimation of the states of the robot
and landmarks iŝxk|k and the error covariance matrix isPk|k.
The EKF algorithm proceeds recursively in two stages:

(1) Predict the current states of the robot and the landmarks
x̂k+1|k using the process model, and compute the state esti-
mate error covariance matrixPk+1|k:

x̂k+1|k = F(x̂k|k,uk,0)
Pk+1|k = F1kPk|kF

T
1k + F2kΣF

T
2k,

(5)

whereF1k andF2k are the Jacobians ofF with respect tox
anddx evaluated at(x̂k|k,uk,0), respectively. That is,

F1k = ∇xF|(x̂k|k,uk,0), F2k = ∇dx
F|(x̂k|k,uk,0). (6)

(2) Update the estimation using the observationzk+1:

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − hk+1(x̂k+1|k)),
Pk+1|k+1 = Pk+1|k − Kk+1Sk+1K

T
k+1,

(7)

where

Kk+1 = Pk+1|kH
T
1kS

−1
k+1,

Sk+1 = H1kPk+1|kH
T
1k + Rk+1,

(8)

andH1k is the Jacobian ofhk+1 evaluated at̂xk+1|k. That is,

H1k = ∇xhk+1|x̂k+1|k
. (9)

III. M ULTI -STEPSTRAJECTORYPLANNING PROBLEM

A. The need for trajectory planning in SLAM

Trajectory planning is definitely very important in SLAM
because the robot needs to explore new area in order to
have a better knowledge of the environment. Suppose there
is no particular destination or direction that the robot needs
to follow, is trajectory planning still necessary to reducethe
estimation error of the landmark and robot locations?

When trajectory planning is considered in SLAM, there
is a trade-off between information gain obtained from the
observations and information loss arising from the process
noise. In the following, we would like to comment that
changing the observing location is critical to obtain more
information if the process noise is relatively small.

By the Extended Information Filter approach [9], [11], the
information obtained from the observationzk+1 is a matrix

I
k+1
new = H

T
1kR

−1
k+1H1k, (10)

whereH1k is given in (9).
Suppose the information matrix before the observations is

Ik (Ik is approximatelyP−1
k+1|k), then the information matrix

after the observation is

Ik+1 = Ik + I
k+1
new = Ik + H

T
1kR

−1
k+1H1k. (11)

Note that the matrixH1k is generally not full rank (if the
robot observem beacons with range and bearing sensor, then
the rank ofH1k is at most2m, but the dimension ofIk is
3 + 2m0 where m0 is the total number of the beacons in
the state vectorx), hence the information matrixIk+1

new is not
full rank. If the robot is kept stationary while observing the
same group of beacons, there will be an upper limit on the
minimal eigenvalue of the total information matrix minimal
eigenvalue (the minimal eigenvalue is inversely proportional
to the length of the longest axis of the uncertainty ellipse).
However, if the robot moves to a new observation position, a
new matrix (different fromI

k+1
new) can be added toIk and the

upper limit on the minimal eigenvalue of the total information
matrix may be further increased.

Let us use a simple example to illustrate this. Suppose there
is only one beacon at position(0, 0), and the current informa-
tion on the robot and beacon locations[xr, yr, φr, xf , yf ]T is

I0 = diag[100, 100, 100, 1, 1]. (12)

If the robot is stationary at the position(5, 5) and keeps
observing the beacon (range and bearing observation with
observation covariance matrixdiag[0.2, 0.1]), the minimal
eigenvalue of the total information matrix can not exceed
2.9038. But if the robot moves to another position(7, 0)



later on and keeps observing the beacon at the new position,
then the minimal eigenvalue of the total information matrix
can be increased to50.5 if there is no process noise (when
process noise isdiag[0.2, 0.2, 0.2], the minimal eigenvalue is
3.4986, when process noise isdiag[0.5, 0.5, 0.5], the minimal
eigenvalue is1.9605 which is worse than keeping stationary).

When the observations are range only or bearing only obser-
vations, trajectory planning is more critical because the rank
of I

k+1
new is even lower. Certainly, the necessity of trajectory

planning in SLAM is highly depended on the process and
observation model and it is formidable for a detailed analysis
without the true models.

Another conclusion can be obtained by further analyzing
equation (11): In order to find the best movement such that
the total information at next step (e.g. the minimal eigenvalue
of Ik+1) is maximized, the whole current information matrix
Ik is needed. If only a quantity measure ofIk is known (e.g.
the minimal eigenvalue or the determinant), it is impossible to
decide which position is the best to make further observations
(a different observation position results in a differentH1k).
Hence, a trajectory planned by using any information quantity
(e.g. entropy) is only sub-optimal.

Feder et.al [8] provided an adaptive motion control tech-
nique that using the whole error covariance matrixPk|k to
choose the control at timek. This is a one-step look ahead
optimization method. A nature question to ask is whether
the multi-step look-ahead optimization is needed or not. The
purpose of this paper is to address this question.

B. The multi-step trajectory planning problem

The multi-step trajectory planning problem considered in
this paper is the following.

Trajectory Planning Problem. Consider the finite time
horizon [0, N ] whereN is a given integer. Suppose at time
0, the estimation of the locations of the robot and landmarks
is x̂0|0 and the error covariance matrix isP0|0. Choose the
control

u0,u1, · · · ,uN−1,

such that the trace of the error covariance matrix at timeN ,

trace(PN |N ),

is minimized, wherePN |N is given by (5)-(9).
We usetrace(PN |N ) as the quantity measure of the final

estimation error (the approach proposed in this paper will be
the same if another measure is used). Note thattrace(PN |N )
depends not only ontrac(P0|0), it depends on the whole
matrix P0|0 as well as some other information. So we can
not only usetrac(P0|0) to decide the optimal trajectory.

C. Optimization problem with a gradually identified model

Recall equations (5)-(9), the observationz1 is required to
compute the state estimation̂x1|1. So x̂1|1, x̂2|1 andH11 can
not be decided for givenu0,u1 until the real observation
z1 is made at time1. In other words, at time0, we can
not obtain a clear relationship between the variables (con-
trol u0, · · · ,uN−1) and the objective functiontrace(PN |N ).

Hence at time0, the EKF model (5)-(9) can not be uniquely
determined. However, a more precise model can be obtained
gradually. For example, we knowz1 at time 1, we know
z2 at time 2, and so on. Therefore, the Trajectory Planning
Problem is an optimization problem with a gradually identified
(nonlinear) model.

IV. A SSUMPTIONS ON ONE-STEP AND MULTI-STEP

OPTIMIZATION

In this section, we will state clearly the basic assumptions
required in the one-step and multi-step optimization for the
Trajectory Planning Problem.

A. One-step optimization – Greedy method

At step 0, x̂0|0 andP0|0 are known. By (6),F10,F20 are
functions of the control inputu0. Hence by (5),̂x1|0 andP1|0

are functions ofu0.
Notice that the observation modelh1 and the observation

noisedz(1) depend on the true position of the robot and the
true positions of the beacons, that is, the true statex1. But in
practice, the true state is not available. At time0, we can only
use the prediction̂x1|0 to obtain an approximate model ofh1

anddz(1).
Assumption I. For any possible controlu0, the group of

beacons that are predicted to be observed at time1 are the
same as those that will be really observed at time1.

Assumption I implies that there will be no new beacon to be
observed at time1. Under Assumption I, the estimated model
h1 is the same as the true model. Now we can say thath1

and henceH10 are functions ofu0, so S1,K1 andP1|1 are
also functions ofu0 (Notice thatP1|1 does not depend on the
observationz1 though x̂1|1 does). Thus we can perform the
following one-step look-ahead optimization to findu0.

One-Step Optimization Problem. Given x̂0|0 and P0|0,
chooseu0 to minimize trace(P1|1) whereP1|1 is given by

P1|0 = F10P0|0F
T
10 + F20ΣF

T
20,

x̂1|0 = F(x̂0|0,u0,0)
H10 = ∇xh1|x̂1|0

S1 = H10P1|0H
T
10 + R1,

K1 = P1|0H
T
10S

−1
1 ,

P1|1 = P1|0 − K1S1K
T
1 .

(13)

Similarly, at time1, the observationz1 is available and can
be used to update the new estimatex̂1|1 andP1|1. The above
one-step optimization method can be used again to compute
u1. The procedure repeats until timeN − 1, where the set of
control u0,u1, · · · ,uN−1 are all obtained.

B. Multi-step optimization

It is very easy to find out in the control and optimization
literature, that one-step optimization solution may turn out to
be far inferior from multi-step optimal solution.

Since the observationzk+1(k = 0, · · · , N − 1) is not
available at time0, it seems impossible to perform a multi-
step optimization. However, in the EKF implementation, we
always assume that the distribution of the true locationsxk+1



is Gaussian with mean̂xk+1|k. By this we can say that at
time 0, the innovationszk+1 − hk+1(x̂k+1|k) are all random
variables with zero mean. So we can perform the multi-step
optimization assuming that the innovations at all the stepsare
zero.

Assumption II. For k = 0, · · · , N − 1, the group of
beacons that are predicted to be observed at timek + 1 (the
predictions are made using onlŷx0|0, P0|0 and the possible
control lawu0, · · · ,uN−1) are the same as those that will be
really observed at timek + 1.

Assumption III. For k = 0, · · · , N − 1, the innovations at
any timek + 1 are zero, i.e.

zk+1 − hk+1(x̂k+1|k) = 0 (14)

for all k = 0, · · · , N − 1.
Under Assumption II and Assumption III, by (7) we have

x̂k+1|k+1 = x̂k+1|k, (15)

for all k = 0, · · · , N −1. Hence Assumptions II and III imply
that no new beacon will be observed and the estimation will
not be updated after the observations.

Under Assumptions II and III, the multi-step Trajectory
Planning Problem is equivalent to the followingN -step op-
timization problem.

N -Step Optimization Problem. Given x̂0|0 and P0|0,
find u0,u1, · · · ,uN−1 such thattrace(PN |N ) is minimized,
wherePN |N is given by the following equations:

P1|0 = F10P0|0F
T
10 + F20ΣF

T
20,

x̂1|0 = F(x̂0|0,u0,0)
H10 = ∇xh1|x̂1|0

S1 = H10P1|0H
T
10 + R1,

K1 = P1|0H
T
10S

−1
1 ,

P1|1 = P1|0 − K1S1K
T
1 ,

x̂1|1 = x̂1|0,
...

PN |N−1 = F1(N−1)PN−1|N−1F
T
1(N−1)

+F2(N−1)ΣF
T
2(N−1),

x̂N |N−1 = F(x̂N−1|N−1,uN−1,0)
H1(N−1) = ∇xhN |x̂N|N−1

SN = H1(N−1)PN |N−1H
T
1(N−1) + RN ,

KN = PN |N−1H
T
1(N−1)S

−1
N ,

PN |N = PN |N−1 − KNSNK
T
N .

(16)

V. A N OVEL OPTIMIZATION STRATEGY

A. Feasibility of the multi-step optimization

Assumptions II and III are the only possible assumptions
we can make at time0 if we want to look multi-steps
ahead because we have no idea about where the estimated
location is deviated from the true location. However, thesetwo
assumptions are very conservative. When they do not hold,
the model (16) is different from the model (5)-(9) and it is
a question whether the optimization results obtained by an
inaccurate model is close to the real optimal solution or not.

Also note that as new observations are made, part of the
true model (5)-(9) becomes available and the state vector is
updated by adding the new observed beacons. So it is not wise
to keep using the previously obtained control when the model
has changed significantly.

In the next subsection, we will provide an optimization
strategy taking into account this concern.

B. The new optimization strategy

The idea of our optimization strategy is to use all the
information available at the time of decision making to achieve
the goal (minimizetrace(PN |N )). The detail of the decision
making is the following.

At time 0: Perform anN step look-ahead optimization,
obtainu

0
0,u

0
1, · · · ,u0

N−1, but only applyu0
0.

At time 1: Use the observationz1 to updatex̂1|1 andP1|1

by (7), then use them to perform anN − 1 step look-ahead
optimization, obtainu1

1,u
1
2, · · · ,u1

N−1, but only applyu1
1.

The above steps are repeated until
At time N − 1: Use the updated estimation̂xN−1|N−1

andPN−1|N−1 to perform a one-step look-ahead optimization
(greedy), obtainuN−1

N−1, apply it to the robot.
In summary, the control actions applied at the time sequence

0, · · · , N − 1 are respectively

u
0
0,u

1
1, · · · ,uN−1

N−1. (17)

The strategy is similar to the nonlinear Model Predictive
Control (Receding-Horizon Optimal Control) [10], the differ-
ence is that in the nonlinear Model Predictive Control, the
optimization horizon is fixed at any time step, but here the
optimization horizon is changing.

C. Optimality

Now we address the issue of optimality for the proposed
strategy.

Suppose we have obtained three controllers (i) greedy con-
troller obtained by solving the one-step optimization problem
at each time step, (ii) controller obtained by solving theN -
step optimization problem, and (iii) controller obtained by the
proposed new optimization strategy.

We use P
greedy

N |N ,P
Nstep

N |N and P
new
N |N to denote the final

covariance matrix by applying the three controllers. Note that
P

greedy

N |N ,P
Nstep

N |N andP
new
N |N depend on the true observations.

The following three lemmas provide some comparison
among the three optimization strategies.1

Lemma 1. trace(Pnew
N |N ) ≤ trace(PNstep

N |N ).
SupposeN = 2, let U denote the set of all the possible

control actions. Denote the one step greedy controller asu
gre

and the two-step (N = 2) optimal control law asuopt
0 ,u

opt
1 ,

then the controller obtained by the proposed new strategy is
u

opt
0 ,u

gre
1 .

Proof of Lemma 1. For the proposed MPC method and the
two-step optimization method, the control actions at time0 are
the same —u

opt
0 , so the models of the optimization problems

1We only provide a brief proof of these lemmas for the caseN = 2. The
general case can be proved by induction.



at time1 (after the observation and update) are the same. Since
the proposed MPC method uses the optimal controlleru

gre
1 at

time 1, it is better than usinguopt
1 (which is optimal for the

old model but may not be optimal for the updated model).
Lemma 2. Under Assumption II, if we regard the in-

novations as Gaussian random variables with zero mean
and small variances, thentrace(PNstep

N |N ) is also a random

variable, its mean value istrace(P̄Nstep

N |N ), whereP̄
Nstep

N |N is
the final covariance matrix obtained by (16) applying theN -
step optimal controller.

Proof. When a random variabley is Gaussian with meany0

and a small variance, any nonlinear functiong(y) can also be
regarded as Gaussian with meang(y0) providedy is close to
y0 (because Taylor Expansion approximation can be applied).
Since the innovationz1 − h1(x̂1|0) is a random variable with
zero mean,̂x1|1 is a random variable with mean̂x1|0. Hence
H11 in (9) is a random variable with mean being equal to
the H11 in (16). Now we can conclude thatPNstep

2|2 is a
random variable with mean being equal to theP2|2 in (16)
and hencetrace(PNstep

2|2 ) is also a random variable with mean

trace(P̄Nstep

2|2 ).
Lemma 3. Under Assumptions II and III,trace(Pnew

N |N ) =

trace(PNstep

N |N ) ≤ trace(Pgreedy

N |N ).
Proof. It is easy to see when Assumptions II and III hold,

u
gre
1 is the same asuopt

1 (at least they result in the same
objective function value). The greedy controller is just one
possible controller, certainly it is not as good as the optimal
one.

Lemma 1 says that the proposed MPC optimization strategy
is better than theN -step optimization strategy. Lemma 2 says
that when Assumption II holds and the innovations are small,
the N -step optimization strategy is satisfactory because it
optimizes the mean of the true objective function. Lemma 3
says under Assumptions II and III, the new MPC strategy
results in the same objective as theN -step optimization
strategy, they are both optimal and better than the greedy
strategy.

In conclusion, under the assumptions in Lemma 2, at any
time step, the proposed optimization strategy always make use
of all the information available to optimize the mean value
of the true objective in the finite horizon trajectory planning
problem. From this point of view, it is optimal.

D. Scalability

Scalability is a key issue in multi-step optimization. The
computational complexity increases exponentially when in-
creasing the optimization horizon. Since the information
obtained from observations at slightly different observation
points are similar in general, it may be applicable to consider
only finite control options in order to predict a longer horizon
within the fixed computation capacity.

Another problem in the scalability is caused by the number
of beacons in the map. When the number of beacons is
large, the multi-step optimization procedure becomes time
consuming and it is almost impossible to obtain the solution

in real time. In this case, more effective SLAM algorithms are
required (e.g. [11], [3], [12]).

When the time horizonN is too large, it is impossible
to perform theN -step optimization directly. In this case, we
suggest to select a suitable receding horizonN0 according to
the computation capacity and to perform the optimization as
follows:

(1) From step0 to N − N0, performN0-step optimization
and apply the first control action (typical nonlinear MPC)

(2) From stepN − N0 to N − 1, perform the variant of
MPC optimization strategy.

Certainly, the optimality is not guaranteed in this case. But
this is the best we can do based on the limited computation
capacity.

VI. SIMULATION – (NEAR) BEARING ONLY SLAM

A. The Model

The process model (rotate/translate with controlu =
[v, γ]

T and actuator noisedx = [δv, δγ]
T ) is given by (2)

where

f(xr,u,dx) =





xr + (v + δv)T cos[φr + (γ + δγ)T ]
yr + (v + δv)T sin[φr + (γ + δγ)T ]

φr + (γ + δγ)T



 .

(18)
Assume that there arem beacons and the robot can observe

all the beacons at any time step. Let the range and bearing
observation for theith beacon beri andθi with sensor noises
δri andδθi. We denote

z = [r1, θ1, · · · , rm, θm]
T

,

dz = [δr1, δθ1, · · · , δrm, δθm]
T

,
(19)

then in the observation model (3),

hk+1(x) =



















√

(yf1
− yr)2 + (xf1

− xr)2

arctan
(

yf1
−yr

xf1
−xr

)

− φr

...
√

(yfm
− yr)2 + (xfm

− xr)2

arctan
(

yfm−yr

xfm−xr

)

− φr



















, (20)

which is time independent. We also assume thatδri is much
larger thanδθi.

B. Simulation results

Simulations are conducted for the cases of 1) a circular path,
2) path planned by the greedy approach and, 3) the proposed
MPC approach. Fig. 1(a) - 1(c) show the robot path and the
landmark estimation uncertainty ellipses. It is observed that
the paths followed by the robot are different for the greedy
and the proposed MPC approaches.

The optimization objective values2 are recorded in Table I
with different approaches (Sim3), choices of the number of
landmarks (Mrk) and control discretization (Ctr).

2results are calculated bytrace(P )/M , M=no. of states
30=circular path, 1=greedy planner, 2=proposed MPC planner
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(a) Circular path
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(b) path by Greedy planning
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(c) path by the proposed MPC planning

Fig. 1. Robot path and landmark uncertainties

TABLE I

RESULTS FROM THE THREE APPROACHES

Sim Loop Mrk Ctr Result Loop Mrk Ctr Result
0 50 3 NA 0.0325 50 7 NA 0.0197
0 500 3 NA 0.0047 500 7 NA 0.0016
1 50 3 3 0.0232 50 7 7 0.0210
1 500 3 3 0.0024 500 7 7 0.0014
2 50 3 3 0.0225 50 7 7 0.0181
2 500 3 3 0.0023 500 7 7 0.0013

Simulated results indicate that path planning techniques
(greedy or the proposed MPC) perform better than the circular
path. Moreover, the proposed MPC trajectory planner slightly
out-performs the greedy planner. However, the computational
complexity involved may make the approach less attractive
when comparing with the performance gained.

VII. C ONCLUSION AND FURTHER WORK

In this paper, we consider the trajectory planning in Ex-
tended Kalman Filter (EKF) based SLAM. We suppose that
the only objective of trajectory planning in SLAM is to
minimize the estimation error in a fixed time horizon, and
aim at answering the following two questions: (1) Is Multi-
Step Look-Ahead Trajectory Planning possible in SLAM? (2)
Is Multi-Step Look-Ahead Trajectory Planning really needed
in SLAM?

According to the analysis (especially Lemma 2) and simu-
lation results, the answer to the first question is: Yes, provided
that (1) the current estimation error is small, (2) the probability
of observing new beacons is low, and (3) the computation
capability is high.

For the second question, the answer highly depends on the
requirement of the map accuracy and the computation capabil-
ity available. In most of our simulations, the greedy method
performs satisfactorily for trajectory planning in SLAM. In
general, the multi-steps optimization strategy is computation-
ally expensive and it is probably not worth increasing the
computational complexity without any guaranteed rewards.To
find a metric to resolve completely the trade-off between the

advantage of multi-step trajectory planning and the involved
computational cost is an important future research topic.
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