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Abstract— In this paper, the possibility and necessity of multi- how to identify opportunities for closing loop, how to clabe

step trajectory planning in Extended Kalman Filter (EKF) based  |oop and when to stop following the loop for the grid-based
SLAM is investigated. The objective of the trajectory planning FastSLAM framework.

here is to minimize the estimation error of the robot and
landmark locations subject to a given time horizon. We show In the case when SLAM is the sole robot exploration
that the problem can be regarded as an optimization problem objective, trajectory planning is also important in obiaina

for a gradually identified model. A numerical method is proposed t timati ar ina | i In b
for trajectory planning using a variant of the nonlinear Model more accurate esimation and/or using 1ess time. In paancu

Predictive Control (MPC). The proposed method is optimal in When the sensor capability is limited (e.g. bearing onlysse)
the sense that the control action is computed using all the a properly planned trajectory will be highly desirable [7].
information available at the time of decision making. Simulation ) . . ) .

results are included to compare the results from the one-step An adaptive motion control technique in SLAM is reported
look-ahead trajectory planning and the proposed multi-step look- in [8]. The robot creates a map and localizes itself simul-

ahead technique. _ _ taneously while making local decisions on where to move
_Index Terms— SLAM, trajectory planning, Extended Kalman eyt in order to maximize the information obtained from the
Filter, model predictive control. . . . . ..
observations. The inverse of the estimation error covaeas
used as an optimization objective. The choice of the datisio
is based on a single-step look-ahead strategy (greedy djetho
Simultaneous localization and mapping (SLAM) is a funda-
mental requirement in robot exploration and has attracted a
of research interest in recent years. Extended KalmaaniIfQ

(EKF) based approaches are frequently used in SLAM (&; djective of the trajectory planning is to minimize the ewsti

[1]-[3]) and the results are mostly satisfactory. tion error Aning in a finite time horizon. Th ntribok
Most of the SLAM algorithms did not take trajectory plan—0 error spa gina € time horizon. 1he co uso

L . : : of this paper include (1) the necessity of trajectory plagni
ning into account. That is, the robot trajectory is predataed T SLAM is analyzed in term of the information gain/loss (2)

or randomly chosen. It is well known that a good robat . : .
. RN . : it is shown that the multi-step look-ahead trajectory plagn
trajectory is critical in robot exploration. Moreover, inost

cases the environment is at least partially unknown andnen-| problem is an optimization problem for a gradually idendfie
trajectory planning is necessary nonlinear model; (3) it is shown that multi-step look-ahésd

When SLAM is regarded as only a part of a robot expl(ﬁoss'ple. when the current estimation error is small be_cause

. . . . it optimizes the mean value of the performance metric (4)
ration task, several trajectory planning strategies hasenb L . . .

: novel optimization strategy is proposed for this trajpcto

proposed. For example, Makarenko et al. [4] considered tﬁF : ; . >
. . o planning problem using a variant of the Model Predictive
integrated exploration problem where the tasks of loctitina ontrol (MPC) [10] with the optimality proven
mapping and motion control are combined together. Multip% P yp '
utility functions are used to evaluate the utilities of the The paper is organized as follows. In Section Il, the SLAM
potential destinations and the destination with the highesgorithm using EKF is briefly reviewed. In Section Ill,
total utility is selected as the next destination. In [5], ¢he multi-step trajectory planning problem consideredhiis t
minimal time motion control technique in SLAM is developegaper is formulated. In Section IV, we analyze the necessary
when the destination is a prescribed location relative ® tlassumptions used in the one-step and multi-step optiraizati
starting point. The robot is required to reach the destimati A novel optimization strategy is proposed and optimality is
within minimal time while keeping the estimation error oforoved in Section V. In Section VI, simulation results are
the robot and landmark locations below a prescribed levekovided to compare the one-step and multi-step look-ahead
Stachniss et. al [6] focused on the active loop closing faptimization techniques. Finally, Section VIl concludde t
FastSLAM in robot exploration. They provided approaches graper.

. INTRODUCTION

In this paper, we analyze the possibility and necessity of
ulti-step look-ahead trajectory planning in SLAM. Thelpro
m addressed here is similar to that of [8]. In particulag t



Il. SLAM USING EXTENDED KALMAN FILTER where

In this section, we briefly review the estimation-theoretic Kiy1 = Pk+1|,€H1T,€S,;11, ®8)
SLAM algorithm using the Extended Kalman Filter (EKF) Skr1 = HuPrppnHy, + Riga,

(see, e.g. [2], [8]).
Let the robot’s state be denoted ly = [z,,y,, ¢,]T and
the dynamic model for the robot be given by H, = Vxhk+1|ﬁk+1lk. 9

andH;y, is the Jacobian o, evaluated ak; ;. That is,

Xy = F(Xpp, ug, dy), 1) [1l. M ULTI-STEPSTRAJECTORYPLANNING PROBLEM

whereuy, is the control input at timé:, dy is the Gaussian A. The need for trajectory planning in SLAM

process noise with covarian The exact formula of func-  Trajectory planning is definitely very important in SLAM
tion f depends on the types of the robot and the process noigecause the robot needs to explore new area in order to
The landmarks (features) are assumed to be stationary &aye a better knowledge of the environment. Suppose there
we usex; to denote the state of all the landmarks. Let thig no particular destination or direction that the robotdsee
state vectorx = [x}f,xﬂT contain both the robot states. to follow, is trajectory planning still necessary to redube

and the landmark states;, then the process model can bestimation error of the landmark and robot locations?
written as ' When trajectory planning is considered in SLAM, there

is a trade-off between information gain obtained from the
f(XTk,llk,dx) . . . ..
Xpt+1 = F(Xp, ug,dy) = X (2) observations and information loss arising from the process
f noise. In the following, we would like to comment that
The observation model at time+ 1 is changing the observing location is critical to obtain more
information if the process noise is relatively small.
Zi+1 = Bep1 (X)) + dgrrn), 3) By the Extended Information Filter approach [9], [11], the
where hy.; is the nonlinear observation vector functioninformation obtained from the observatiap., is a matrix
d,(.+1) is the Gaussian observation noise vector with covari- Iﬁji _ H?kREilHlk’ (10)

anceR;;. Notice that the formulation of the observation

function and the dimension of the noise depend on the sengdtereHy,, is given in (9).

model as well as the group of beacons that can be observed duppose the information matrix before the observations is

time k+1 (e.g. field of view). Since the group of beacons thdt. (I is approximaterP,;jllk), then the information matrix

can be observed highly depends on the relative locatiortseof @fter the observation is

robot and landmarks at the time of observation, the obdervat o k1l T -1

functionhy.; and the noisel,, 1, are both time dependent. Lot =Te 4 Dncy = e & Hi Ry Hage (11)
The estimation-theoretic SLAM algorithm is based on the Note that the matriX;;, is generally not full rank (if the

work of Smith et al. [1]. It uses the EKF algorithm to optinyall robot observen beacons with range and bearing sensor, then

estimate the state vectarand the associate error covariancéhe rank ofH;; is at most2m, but the dimension ol is

matrix 3 + 2mg where mg is the total number of the beacons in
_ P.. Py the state vectox), hence the information matrik**! is not
P PT P . 4 . . . Lew .
rf ff full rank. If the robot is kept stationary while observingeth

Suppose at step, the estimation of the states of the roboB@Me group of beacons, there will be an upper limit on the
and landmarks i, and the error covariance matrix® ;. minimal eigenvalue of the total information matrix minimal
The EKF algorithm proceeds recursively in two stages: eigenvalue (the minimal eigenvf';llue is inversely 'propm?llo

(1) Predict the current states of the robot and the landmaisthe length of the longest axis of the uncertainty ellipse)

%4411 Using the process model, and compute the state eg{pwever,.|f thg robot moveks Eo a new observation position, a
mate error covariance matriy, new matrix (different froml** 1) can be added td; and the

upper limit on the minimal eigenvalue of the total infornaeti
Xpr1e = F(Xgg, ux,0) ®) matrix may be further increased.

Py = FulPyFl, + FopXFL Let us use a simple example to illustrate this. Suppose there
is only one beacon at positig, 0), and the current informa-

whereF;;, andF,; are the Jacobians & with respect tax . - .
1k 2k b tion on the robot and beacon locatiops, .., ¢, z, yf|” is

andd, evaluated atxy;, ux,0), respectively. That is,
Fix = ViF|3 00,0 For = Va,Flz,u0-  (6)

(2) Update the estimation using the observatiQn:

I, = diag[100, 100, 100, 1, 1]. (12)

If the robot is stationary at the positiofb,5) and keeps

observing the beacon (range and bearing observation with

Rpt1lhe1 = kk+1|k+Kk+1(Zk+l*hk+1(kk+1|k))7 opservation covariance .matridiafq[O.Z,O.l]), the minimal

Piiijpt = Pk-+1|k_Kk+1Sk+1K£+1a eigenvalue qf the total information matrix can .n.ot exceed
(7) 2.9038. But if the robot moves to another positiof7,0)



later on and keeps observing the beacon at the new positiblence at time), the EKF model (5)-(9) can not be uniquely
then the minimal eigenvalue of the total information matridetermined. However, a more precise model can be obtained
can be increased t80.5 if there is no process noise (whengradually. For example, we know; at time 1, we know
process noise idiag[0.2,0.2,0.2], the minimal eigenvalue is z, at time 2, and so on. Therefore, the Trajectory Planning
3.4986, when process noise iBag[0.5,0.5,0.5], the minimal Problem is an optimization problem with a gradually ideatifi
eigenvalue is1.9605 which is worse than keeping stationary)(nonlinear) model.

When the observations are range only or bearing only obser-
vations, trajectory planning is more critical because #ekr
of I¥+1 is even lower. Certainly, the necessity of trajectory
planning in SLAM is highly depended on the process and In this section, we will state clearly the basic assumptions
observation model and it is formidable for a detailed arialysrequired in the one-step and multi-step optimization fa th
without the true models. Trajectory Planning Problem.

Another conclusion can be obtained by further analyzin
equation (11): In order to find the best movement such that
the total information at next step (e.g. the minimal eigéuwa At step0, Xqo and Pgo are known. By (6),F1o, Fyo are
of I;,1) is maximized, the whole current information matrixunctions of the control inputi,. Hence by (5)x;o andP
I, is needed. If only a quantity measureIafis known (e.g. are functions ofuy.
the minimal eigenvalue or the determinant), it is impossiol ~ Notice that the observation modhl and the observation
decide which position is the best to make further obsermationoised, ;) depend on the true position of the robot and the
(a different observation position results in a differddii,). true positions of the beacons, that is, the true stateBut in
Hence, a trajectory planned by using any information qiyantipractice, the true state is not available. At tilyave can only
(e.g. entropy) is only sub-optimal. use the predictior, |, to obtain an approximate model bf

Feder et.al [8] provided an adaptive motion control tectandd, ).
nique that using the whole error covariance mat;, to Assumption |. For any possible contral,, the group of
choose the control at timé. This is a one-step look aheadbeacons that are predicted to be observed at finage the
optimization method. A nature question to ask is whetheame as those that will be really observed at time
the multi-step look-ahead optimization is needed or noe Th Assumption | implies that there will be no new beacon to be
purpose of this paper is to address this question. observed at timd. Under Assumption |, the estimated model
B. The multi-step trajectory planning problem h; is the same as the t'rue model. Now we can say Hat

' _ _ _ _ and hencet, are functions ofug, s0 S;,K; and P, are

The multi-step trajectory planning problem considered iglso functions ofi, (Notice thatP,|; does not depend on the
this paper is the following. observationz; thoughx;|; does). Thus we can perform the

Trajectory Planning Problem. Consider the finite time following one-step look-ahead optimization to fing.
horizon [0_7 N] .whereN is a given integer. Suppose at time  QOne-Step Optimization Problem Given o0 and Py,

0, the estimation of the locations of the robot and landmark$poseu, to minimize trace(Py),) whereP,, is given by
is X0 and the error covariance matrix By,. Choose the

IV. ASSUMPTIONS ON ONESTEP AND MULTI-STEP
OPTIMIZATION

One-step optimization — Greedy method

control P1|0 = F10P0|0F{0 + FQOZFgO,
Ug, Uy, ,UN_1, X110 = F(Xpj0,u0,0)
: . Hyo = vxh1|$(1‘0 (13)
such that the trace of the error covariance matrix at tishe Si = HiPyoH], + Ry,
trace(Pyn), K, = P1|0H1Tosl_1>
Pyi = Pypo—-KiSiKT{.

is minimized, whereP v is given by (5)-(9). o _ _ _ _

We usetrace(P y|y) as the quantity measure of the final Similarly, at timel, the obseryauom is available and can
estimation error (the approach proposed in this paper will e used to update the new estimatg, andP, ;. The above
the same if another measure is used). Note thate(P ) One-Step optimization method can be used again to compute
depends not only onrac(Pg), it depends on the whole - The procedure repeats until tlm— 1, where the set of
matrix Pyjo as well as some other information. So we cafontrolug, uy,---,uy_; are all obtained.

not only usetrac(Pyo) to decide the optimal trajectory. B. Multi-step optimization

C. Optimization problem with a gradually identified model |t is very easy to find out in the control and optimization
Recall equations (5)-(9), the observation is required to literature, that one-step optimization solution may tutn

compute the state estimation ;. S0x;);,%,; andH;; can be far inferior from multi-step optimal solution.

not be decided for giveniy,u; until the real observation Since the observatiom,;(k = 0,---,N — 1) is not

z1 IS made at timel. In other words, at time), we can available at time0, it seems impossible to perform a multi-

not obtain a clear relationship between the variables (costep optimization. However, in the EKF implementation, we

trol up,--- ,ux_1) and the objective functiotrace(P y|x). always assume that the distribution of the true locatiops,



is Gaussian with mea, ;. By this we can say that at Also note that as new observations are made, part of the
time 0, the innovationszy 1 — hy11(X441)%) are all random true model (5)-(9) becomes available and the state vector is
variables with zero mean. So we can perform the multi-steypdated by adding the new observed beacons. So it is not wise
optimization assuming that the innovations at all the stmgs to keep using the previously obtained control when the model

Zero.

Assumption II. For ¥ = 0,---,N — 1, the group of

has changed significantly.
In the next subsection, we will provide an optimization

beacons that are predicted to be observed at fimel (the strategy taking into account this concern.

predictions are made using onk|o, Poo and the possible
control lawuy, - - - ,uy_1) are the same as those that will b

really observed at timé + 1. ) X i ; Y . .
Assumption Ill. Fork = 0,--- , N — 1, the innovations at information available at the time of decision making to avki
. 9 ) 1

any timek + 1 are zero, i.e.

Zpy1 — hpp1 (Rpqqe) =0

(14)

forall k=0,--- ,N —1.

Under Assumption Il and Assumption I, by (7) we havey,

X 1)k+1 = Xkt 1[ks (15)

B. The new optimization strategy

e

The idea of our optimization strategy is to use all the

the goal (minimizetrace(P |y )). The detail of the decision
making is the following.
At time 0: Perform anN step look-ahead optimization,
obtainud, uf,--- ,u®,_,, but only applyu).
At time 1: Use the observation; to updatex,;|; andP;
y (7), then use them to perform & — 1 step look-ahead
optimization, obtainui,ul,--- ,ul,_,, but only applyul.
The above steps are repeated until

forall k=0, ---, N —1. Hence Assumptions Il and lll imply At time N — 1. Use the updated estimatiofy_n—_1

that no new beacon will be observed and the estimation wiihdP y_;;_; to perform a one-step look-ahead optimization

not be updated after the observations.
Under Assumptions Il and IIl, the multi-step Trajectory In summary, the control actions applied at the time sequence

Planning Problem is equivalent to the following-step op- O,---

timization problem.
N-Step Optimization Problem. Given xq, and Py,

find up,uy,--- ,uy_; such thattrace(P ) is minimized,

whereP vy is given by the following equations:

(greedy), obtainiy 1, apply it to the robot.

, N — 1 are respectively

0 ,.1 N-1

Ug,uy, -, Uy a7)

The strategy is similar to the nonlinear Model Predictive
Control (Receding-Horizon Optimal Control) [10], the éiff
ence is that in the nonlinear Model Predictive Control, the

— T T L. . . . . .
PII\O = FlQPO\OFlo + FooXFy, optimization horizon is fixed at any time step, but here the
X0 = F(Xoj0,u0,0) optimization horizon is changing.
Hip = Vxhilg,, o
Si = HyP,oH] + Ry, C. Optimality
K, = PMOHlTOSl‘l, Now we address the issue of optimality for the proposed
Pi1 = Pyo—KiSiKT, strategy.
X1 = Xio, Suppose we have obtained three controllers (i) greedy con-
troller obtained by solving the one-step optimization peof
(16) : . i ;
p ¥ p FT at each time step, (ii) controller obtained by solving tNe
NIN-1 LN NN -1 (v -1) step optimization problem, and (iii) controller obtainegthe
R +F:2(N—1>EF2(N71)’ proposed new optimization strategy.
Xnin—1 = FEy_in-1,un-1,0) We use P%’le]f,dy,P%f]ﬁfp and P7¢% to denote the final
Hiv-1) = Vihnlgyn, . covariance matrix by applying the three controllers. Nabiat t
Sy = Hyw-nyPyn-1Hiy_ ;) + Ry, P, P%f]tfp andP7y% depend on the true observations.
Ky = PN|N_1H1T(N_1)SR,1, he following thr(_ee_ Iemmas provide some comparison
Pyy Pyivo1 — KySyKY. among the three optimization strategtes.

V. A NOVEL OPTIMIZATION STRATEGY

A. Feasibility of the multi-step optimization

Assumptions Il and Il are the only possible assumptionta}sjn
we can make at time) if we want to look multi-steps

new N ste
Lemma 1 trace(PN%) < trace(PyP). .
SupposeN = 2, let U denote the set of all the possible
control actions. Denote the one step greedy controller’as
d the two-stepN = 2) optimal control law asaJ”*, u",

en the controller obtained by the proposed new strategy is
opt gre

ahead because we have no idea about where the estim >

location is deviated from the true location. However, thisge
assumptions are very conservative. When they do not h
the model (16) is different from the model (5)-(9) and it i§

()

roof of Lemma 1. For the proposed MPC method and the
Yﬁ/o-step optimization method, the control actions at tiheee

& same —ug”", so the models of the optimization problems

fa queStion Wheth?r the optimization reS_U|ts Obta!ned by anyye only provide a brief proof of these lemmas for the cAse= 2. The
inaccurate model is close to the real optimal solution ot nogeneral case can be proved by induction.



at time1 (after the observation and update) are the same. Sinoegeal time. In this case, more effective SLAM algorithme ar

the proposed MPC method uses the optimal contralféf at required (e.g. [11], [3], [12]).

time 1, it is better than usingl‘l’pt (which is optimal for the ~ When the time horizonV is too large, it is impossible

old model but may not be optimal for the updated model). to perform theN-step optimization directly. In this case, we
Lemma 2 Under Assumption Il, if we regard the in-suggest to select a suitable receding hori2gnaccording to

novations as Gaussian random variables with zero medme computation capacity and to perform the optimization as

and small variances, thetmce(szjﬁfp) is also a random follows:

variable, its mean value israce(PY x"), whereP%fﬁf” is (1) From stepd to N — Ny, perform Ny-step optimization

the final covariance matrix obtained by (16) applying tNe and apply the first control action (typical nonlinear MPC)

step optimal controller. (2) From stepN — Ny to N — 1, perform the variant of
Proof. When a random variablgis Gaussian with meapp, MPC optimization strategy.

and a small variance, any nonlinear functigy) can also be  Certainly, the optimality is not guaranteed in this caset Bu

regarded as Gaussian with m%@o) providedy iS C|Ose to this iS. the best we can do based on the limited Computation

yo (because Taylor Expansion approximation can be applie@fPacity.

Since the innovatiom; — h; (%)) is a random variable with

zero meanx; is a random variable with meax, ;. Hence

H,, in (9) is a random variable with mean being equal t§. The Model

the Hy; in (16). Now we can conclude tha®)5*” is a  The process model (rotate/translate with control —

random variable with mean being equal to fRg, in (16) [v, 7]T and actuator noise, = [Jv, 57]T) is given by (2)

and hencérace(PY5'?) is also a random variable with meanwhere

VI. SIMULATION — (NEAR) BEARING ONLY SLAM

2|2
trace(Pé\lf;mp). 2, + (v + 0v)T cos|p, + (v + 57)T]
Lemma 3. Under Assumptions Il and IIItrace(P’]’i,j’g‘(,) =  f(x,u,dy) = | v+ (v+v)Tsin[e, + (v + 69)7T)
trace(P%Tf\;ip) < trace(P%ljsdy). ¢r + (v +09)T
Proof. It is easy to see when Assumptions Il and Il hold, 18)

u!™ is the same am‘l’pt (at least they result in the same Assume that there an@ beacons and the robot can observe

objective function value). The greedy controller is justeon?!l the beacons at any time step. Let the range and bearing
possible controller, certainly it is not as good as the Optimobservanon for théth beacon be; and#; with sensor noises

one. or; anddd;. We denote
Lemma 1 says that the proposed MPC optimization strategy z = [r, 01, -, T, 6m}T7
is better than theV-step optimization strategy. Lemma 2 says d, = [0r1, 861, -, brp, 86 }T (19)

that when Assumption Il holds and the innovations are small, _
the N-step optimization strategy is satisfactory because then in the observation model (3),
optimizes the mean of the true objective function. Lemma 3

02 — 02
says under Assumptions Il and Ill, the new MPC strategy Vg yrz/f:y(:ﬁfl )
results in the same objective as thé-step optimization arctan | Z-—-- —or
strategy, they are both optimal and better than the greedy p, 1(x) = : , (20)
strategy. — n —3
In conclusion, under the assumptions in Lemma 2, at any VYt yrgf :Exfm )
time step, the proposed optimization strategy always make u | arctan (g ) —dr

of all the information available to optimize the mean value,. . . . .
S - ; : . Which is time independent. We also assume thatis much
of the true objective in the finite horizon trajectory plampi

problem. From this point of view, it is optimal. larger thant;.

D. Scalability B. Simulation results

Scalability i Kev i in multi-st timization. Th Simulations are conducted for the cases of 1) a circular, path
calabiiity 15 a K€y Issue uiti-step op ation. %) path planned by the greedy approach and, 3) the proposed

computational complexity increases exponentially when "R/IPC approach. Fig. 1(a) - 1(c) show the robot path and the

crea_sing the optimizati_on horizqn. Singe the infor_matiol%ndmark estimation uncertainty ellipses. It is observeat t
obtained from observations at slightly different obsdprat the paths followed by the robot are different for the greedy

e o and th proposed PC approaches
Y P P 9 The optimization objective valuésare recorded in Table |

within the fixed com_putanon cap_a_cny. with different approaches (Sit)) choices of the number of
Another problem in the scalability is caused by the numb?a{ndmarks (Mrk) and control discretization (Ctr)
of beacons in the map. When the number of beacons is ’

large, the multi-step optimization procedure becomes timeesyits are calculated by-ace(P)/M, M=no. of states
consuming and it is almost impossible to obtain the solution®o=circular path, 1=greedy planner, 2=proposed MPC planner



Robot Workspace Plot Robot Workspace Plot Robot Workspace Plot

y-coordinate

o ~
y-coordinate

o ~
y-coordinate

° ~

2 [ 2 -2 &
-4 @ @ 0 10} 4 -4 @ ’v; ® 9
» Q Yol " c A 6
6 4 -2 0 2 4 6 -6 -4 - 0 2 4 6 -6 -4 0 4 6
x—coordinate x-coordinate x-coordinate
(a) Circular path (b) path by Greedy planning (c) path by the proposed MPC planning

Fig. 1. Robot path and landmark uncertainties

TABLE |

advantage of multi-step trajectory planning and the ingdlv
RESULTS FROM THE THREE APPROACHES

computational cost is an important future research topic.

Sim [ Loop | Mrk | Ctr | Result [ Loop | Mrk | Ctr | Result
0 50 3 | NA | 0.0325] 50 7 | NA [ 0.0197 ACKNOWLEDGMENT
0 | 500 | 3 | NA | 00047| 500 | 7 | NA | 0.0016 This work is supported by the ARC Centre of Excellence
1 50 3 3 | 0.0232| 50 7 7 | 0.0210 . )
1 | 500 | 3 3 | 00024| 500 | 7 | 7 | 0oo1a| Programme, funded by the Australian Research Council (ARC)
2 50 3 3 | 00225 50 7 7 | 0.0181| and the New South Wales State Government.
2 500 3 3 | 0.0023| 500 7 7 | 0.0013
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