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ABSTRACT 
Socio-demographics play a major role in accounting for preference heterogeneity and market 
segmentation in discrete choice models. The use of demographic segments to account for 
heterogeneity in choice models has been proposed by Ben-Akiva & Lerman (1985) and complex 
models such as random coefficients logit have been used to account for unobserved differences 
in preferences. To enter demographics into a repeated choice stated preference model, they must 
be interacted but, due to the complexity of finding and modelling socio-demographic interactions 
(McLelland & Judd 1993), the interactions are often restricted to simple terms that act global 
over the data space. We use MARS to overcome the difficulties associated with detecting and 
integrating socio-demographic interactions in localized areas of the data space. In our study, 
heterogeneity that exists amongst farmers can be accounted for by localized interactions of the 
observable demographics with the experimentally designed choice attributes using basis function 
found by MARS. The MARS basis functions are hybrid into a conditional logit model that 
outperforms a hybrid of the MARS basis functions in a random coefficients logit.  



1.    INTRODUCTION 
In 2006, the Australian Research Council (ARC) funded a study on the purchase behaviour of 
Australia's farming community. To ascertain farmers’ retail purchasing preferences, the 
University of Technology, Sydney (UTS) administered a stated preference (SP) survey to a 
group of 2414 Australian farmers.  The farmers were presented with binary choice sets, wherein 
each set had associated 15 attributes. They were shown 16 choice experiments and asked, based 
on the attributes presented, which of the two alternatives they would purchase. The primary aim 
of the study was to identify a valid basis for local segmentation and target marketing of 
Australia's farming community, based on their stated preference choice behaviour and individual 
characteristics. The study also sought to develop and test a staged approach for inferring market 
segments and interactions by utilising a hybrid discrete choice and data mining method to 
simultaneously account for interactions between individual characteristics and choice behaviour.   

Due to geographic and specific farm type factors, we assumed the presence of localised 
effects but these effects were not known a priori.  Given that the dependent variable in our 
farming data was binary, Rust & Donthu (1995) suggest combining a logistic regression with a 
kernel density estimation to account for localised differences.  In order for kernel density 
estimation to work well, the choice of the kernel needs to be known a priori. Kernel density can 
be inflexible in that it does not allow for easy estimation of non-metric data (Breiman et al. 
1984).  Although we could look for other ways to detect local differences, an additional 
dimension of this study is to account for heterogeneity in individual farmer’s preferences.  A 
popular technique for the analysis of unobserved heterogeneity is a mixed logit model 
(McFadden & Train 2000).  On the other hand, Allenby, Arora and Ginter (1998) argue that in a 
logit mixture model, heterogeneity is difficult to find because a major source of heterogeneity is 
in the consideration set. 

While the consideration set as a source of heterogeneity may be dominating in a revealed 
preference (RP) study, this does not apply to a study based on stated preference (McFadden 
2002).  The reason why stated preference performs better is that RP data does not control for a 
respondent’s choice set formation (Louviere, Hensher & Swait 2000).  Before introducing a new 
product to market, SP is a marketer’s only choice, since no revealed preference/purchase data 
exists.  The use of a stated preference study makes it easier to segment and target customers 
when the structure of observed heterogeneity is known, especially in a pricing variable (Bell et 
al. 1998).  In our study, the pricing variable was experimentally designed into the stated 
preference study. Previous studies (e.g., Kamakura & Russell 1989) showed that price elasticity 
can be an effective segmentation variable.  There is no reason to believe that heterogeneity 
cannot exist in the non-intercept terms of a model (Allenby & Rossi 1998).  Since the attributes 
used in the study were provided by farming focus groups of which we had no prior domain 
knowledge, we assumed that all experimentally designed attributes used in our study were 
potential sources of heterogeneity.  Correctly integrating demographics into a choice model will 
better account for individual sources of heterogeneity (Ben-Akiva & Lerman 1985).   

This study, as in the previous essay, follows the premise that omission of a relevant term 
from a utility function will yield heterogeneity (Swait & Louveire 1993; McFadden 1986).  One 
relevant variable that was not initially used in the UTS rural choice study was “distance to 



retailer”.  Since this variable was observed and relevant to the model, the omission of the 
distance covariate could introduce heterogeneity into the model.  Inclusion of this variable is 
important in a choice model as it can account for unobserved effects (Bronnenberg 2005). 

We will show that by including the proper terms in the choice model, we can correct any 
heterogeneity that is present but unaccounted for.  If there is large taste heterogeneity, taking into 
account interactions between demographics and attributes of the alternatives may be necessary 
(Brownstone, Bunch & Train 2000).  However, one of the challenges in integrating interactions 
into the model is that the structure of these interactions may not be known a priori and are 
difficult to detect if they are localised and have a small sample size (McClelland & Judd 1993).  
Further complicating our choice model is the fact that we need to account for segment and 
interactive differences while simultaneously investigating ways to reduce heterogeneity in the 
model.  In response to these difficulties, we estimated the farming data using a spline regression 
data mining technique called MARS.  Although the MARS model can be used as a stand-alone 
model, in this essay, the data transformations and interactions found by MARS were 
subsequently estimated in a multinomial logit model (MNL).  We have chosen this method 
because the hybrid of MARS-MNL is the best way to ascertain the strength of interactions, 
recover the standard errors for the parameters, and make accurate comparisons to other logistic 
regression methods (Zabaleta et al. 2008).  Although MARS’s predecessor, CART, is very good 
at interaction detection, it does not represent strong linear structure effectively.  CART also lacks 
a smooth prediction surface, making it “rough” in a regression setting.  Moreover, CART has an 
issue in modelling strongly additive and linear structure (Hastie, Tibshirani & Friedman 2001).  
The experimentally designed farming data used in this essay has strong linear structure, and the 
models used GIS data, for which MARS is better suited (Munoz & Felicismo 2004).   

The purpose of the essay was not only to conduct a simple MARS model estimation and 
interpretation, but instead to look at the overall model performance and explanation of 
heterogeneity.  MARS is used in this essay to investigate how a MARS model accounts for 
heterogeneity by correctly determining the covariate interactions within the data structure.  An 
additional advantage of using MARS is that, if needed by the marketing manager, the MARS 
basis functions are transparent and easy to interpret.  To demonstrate this, Appendix 7 shows the 
complete MARS basis function output of all the attributes used in the rural choice study. 

This essay uses a hybrid MARS-MNL model to correctly identify interactivity between 
experimentally designed and demographic variables.  As a comparison, it also models a mixed 
logit (MIXL), and shows that the MARS-MNL model hybrid accounts for all observed as well as 
unobserved heterogeneity.  A shortcoming of mixed logit is that it can verify the existence of 
heterogeneity but it cannot denote the exact structure of the heterogeneity.  Some recent attempts 
to perform a posterior analysis of mixed logit have been proposed (Hess 2007), but a model that 
simultaneously accounts for heterogeneity and other issues is optimal (Bhat & Guo 2004).  By 
including the proper attributed interaction and transformations, we show that the MARS-MNL 
hybrid model will significantly help the marketing manager in that it increases the predictive 
strength of farming choice data, resulting in better targeting of rural customers.   

The remainder of this essay is organised as follows:  



Section 2 describes the dataset and looks at some previous studies that explored   the 
correct form of socio-demographics in a choice model.  Section 2 also describes the MARS 
algorithm; 

Section 3 explains the set-up of the datasets as well as the use of MARS and mixed logit 
to investigate heterogeneity in the model; 

Section 4 is a simulation of known spline basis function interactions and tests if MARS 
finds these basis functions in the presence of slightly noisy data; 

 
Section 5 examines and analyses the results of MARS, Mixed Logit, and the hybrid of 

MARS with a choice model and mixed logit; 

Section 6 summarises our findings.  



2.  DATA DESCRIPTION 
2.1 Description of Data 
In mid-2006, we pre-screened all postcodes in Australia using the Australian Bureau of Statistics 
(ABS) farming data to see which postcodes would be suited to a study on rural purchase 
behaviour.  Since we were interested in specific types of farming projects with sufficient 
numbers of respondents, postcodes in the central area of Australia, as well as urban centres, were 
excluded.  Initially, we planned to perform a web-based survey but the percentage of farmers in 
rural Australia with internet access was low at the time of the survey.  After determining the 
postcodes to be used, potential respondents were recruited for the UTS study by a research 
agency specialising in rural respondents.  Starting in late 2006, the research agency called the 
potential respondents and conducted a CATI interview to see if they were amenable to being part 
of a rural research study.  During the CATI interview, potential respondents were asked about 
their awareness of specific farm products and rural retailers to determine their appropriateness to 
be included in the study.  Suitable respondents were asked if they would like to complete a mail 
survey and receive a $50 voucher upon completion.  In the end paper questionnaires were mailed 
to a total of 4,662 CATI respondents. 

The mail questionnaire consisted of a best/worst preference task of farming and rural 
merchandising, ratings scale opinions of farming practices and products, and 16 stated preference 
choice questions.  The stated preference questions used 14 attributes with binary and multiple 
levels.  Initially, the retailer’s brand name was collected as the choice (dependent) variable, but 
brand name was actually an attribute of the alternative, so it was included as a 15th attribute in 
the analysis.  The resulting dataset was set up with the dependent variable being which of the two 
alternatives the respondent would choose to buy.  There were 48 versions of the stated preference 
survey to control for version effects, if any.  A 49th version of the questionnaire was sent to 
randomly selected respondents to ascertain preferences for farmers going directly to a supplier 
for products instead of through a rural retailer.  At the end of each mail questionnaire 
demographic information was collected.  Of the 4,662 questionnaires mailed out, 2,414 were 
returned with complete information before the deadline of mid-2007.  A sample of one of the 
survey choice tasks can be found in Appendix 5. 

 To increase the precision of our model, we used an orthogonal OMEP designed stated 
preference data.  Repeated observations were made on each responding farmer, as multiple 
observations are needed in a mixed logit to account for unobserved variation in the model (Bhat 
2000).  To find the variables that pertain to all rural choice scenarios is extremely difficult as 
some variables may be available in some localities but not in others.  Linkages in farming 
purchase behaviour are difficult since there are many omitted variables in most farming models 
(Roe & Stockberger 2004).   The stated preference questions used in the study came from focus 
groups conducted by UTS-CenSoc.  The most prominent features that came up during the focus 
groups were used as attributes in the choice model and the nature of the stated preference study 
forces the respondents to trade-off only the attributes that are presented in their survey. 

Distance from a supplier is an important covariate in a respondent’s purchase decision.  
Until recently, geographic information systems (GIS) data has been difficult and costly to obtain.  
The availability of commercial software (e.g., MapInfo, Maptitude, Esri) has made calculation of 



distance from respondent to supplier easier to obtain.  Using distance in an urban setting is 
valuable in retailer purchase decisions but only mildly predictive in a choice model since 
competing retailers are within similar distances.  In a rural setting, distance from retailer carries 
much more significance and some respondents in our study travelled in excess of 150km to 
purchase their supplies.  Distance was not asked in the survey and had to be calculated from the 
GIS coordinates of the respondent’s farm to the rural retailer they told us they had purchased 
from.  The 15 experimentally designed attributes of purchase and the distance from retailer 
attribute are listed in Table 16.  The mixture of data scales makes analysis difficult and the 
presence of categorical data complicates the data space (Breiman 2001).  To help alleviate any 
issues, any non-numeric data was effects coded with the highest value of the variable set as the 
effects code base level. 

  



TABLE 1: SUMMARY STATISTICS OF RURAL CHOICE SURVEY ATTRIBUTES 

Scale Variable Value Label 
Nominal (ATTR1) Retailer 1 CRT 
  2 Landmark 
  3 Elders 
Ordinal (ATTR2) Staff product knowledge 1 No real product knowledge 
  2 Limited product knowledge 
  3 Moderate product knowledge 
  4 Extensive product knowledge 
Binary (ATTR3) Staff professionalism 1 Not consistently professional in appearance & manner 
  2 Consistently professional in appearance & manner 
Binary (ATTR4) Independence of advice 1 Unsure whether advice may be biased 
  2 Trusted to provide unbiased advice 
Ordinal (ATTR5) Opening days 1 5 days only 
  2 5.5 days (close at midday Sat) 
  3 6 (closed Sun) 
  4 7 days 
Ordinal (ATTR6) Opening hours 1 8am to 5pm 
  2 7am to 5pm 
  3 7am to 7pm 
  4 7am to 9pm 
Binary (ATTR7) Store presentation 1 No investment in store presentation 
  2 Significant investment in store presentation 
Binary (ATTR8) Store branding 1 No external store branding 
  2 Easily recognized external store branding 
Binary (ATTR9) Product range 1 Limited range of brands 
  2 Wide range of brands 
Binary (ATTR10) Stock availability 1 Often stock has to be ordered in 
  2 Stock nearly always available 
Binary (ATTR11) On farm delivery 1 No free delivery 
  2 Free delivery 
Ordinal (ATTR12) Professional advisory service 1 No on-farm professional advisory service 
  2 On farm advice paid for in product margin 
  3 On farm advice paid for as separate fee 
  4 Free on-farm professional advisory service 
Ordinal (ATTR13) Payment terms 1 1.2% discount for < 30 days 
  2 30 days 
  3 60 days 
  4 90 days 
Binary (ATTR14) Late payment fee 1 Late payment fee 
  2 No late payment fee 
Ratio (ATTR15) Price -0.15 15% less 
  -0.10 10% less 
  -0.05 5% less 
  -0.02 2% less 
  0.00 About Average 
  0.02 2% more 
  0.05 5% more 



  0.10 10% more 
  0.15 15% more 
Ratio (Distance) Distance from Retailer - - 

 

2.2 Previous findings of geographic-demographics on choice 
In retailer choice, where to shop can explain up to 70% of the variance in a model (Bell et al. 
1998).  Bayer and Timmins (2005) mention the fact that demographic interactions tend to act 
well in geographically localised regions. Previous models of farming choice behaviour have not 
investigated non-linearity nor localised interactive behaviour as it is difficult to ascertain which 
geographic regions result in different parameter estimates (Rust & Donthu 1995).  Much of the 
literature using distance for retailer purchase behaviour is aggregated at the county or postcode 
level (Fisher & Hanemann 1998). For example, Archer & Lonsdale (1997) used a one-way 
ANOVA analysis of value per hectare (a proxy for income) of farmland by postal code and 
found significant differences between postcodes.  They also investigated a two-way ANOVA, 
which showed a high degree of interactivity, but this analysis was not pursued further.   

As the size of a farm gets larger, the likelihood of a farmer buying locally from a retailer 
diminishes (Roe & Stockberger 2004).  Since there is likely to be localised utility maximisation 
when using spatial data (Xue & Brown 2002), using “distance to retailer” as one of our attributes 
allowed us to geographically disaggregate the data to increase the precision of our estimates.  
Figure 11 shows an empirical distribution of purchase probability against distance from rural 
retailer in our data.  This graph can be thought of as demand for a retailer as a function of 
distance from the retailer.  If standard gravity models are correct, creating different strata based 
on different price discounts should create a series of parallel lines (Sullivan 1990).  As can be 
seen in Figure 11, the lines are not parallel, but cross at 23 km from the retailer.  This graph 
clearly implies that other variables are moderating the effect of price over distance, or there is 
heterogeneity in the distance variables which needs to be accounted for.  Although the difference 
in pricing discounts as a function of distance is never more than 8%, the point of Figure 11 is to 
graphically show that the pricing levels, as a function of distance, are not parallel, as they should 
be if there was no interaction.  An extremely large random coefficients model might be needed to 
account for spatial heterogeneity; hence, a parsimonious way to model this heterogeneity is 
warranted (Bhat & Guo 2004).   

 



FIGURE 1: EFFECTS OF PRICE DISCOUNT ON DISTANCE FROM RETAILER 

 

2.3 Introduction to MARS 
MARS is a non-parametric regression technique that builds flexible regression models using 
splines.  MARS creates splines for all variables and data points, then finds the best group of 
splines based on variance-bias tradeoffs.  The MARS algorithm creates a series of ‘basis 
functions’ (BFs), which are regression splines defined between points in the data called knots.  
At each knot point ‘t’ in the data, MARS creates two basis functions (Xk -t) if Xk >t, 0, otherwise 
and one for (t- Xk) when Xk<t, 0 otherwise.  MARS looks at every knot split point t and every 
variable Xk, so there are 2*Xk*t possible basis functions.  MARS only has two scales: ordinal 
and categorical.  All non-categorical data is treated as ordinal so any split point from a 
continuous variable will come from a point in the dataset or between any two points.  MARS 
creates internal mutually exclusive dummy variables for categorical variables just as any 
standard regression technique.  However, the basis functions for categorical variables in MARS 
are created differently than standard regression dummy variables in that the basis functions are a 
collection of the categorical levels.  For instance, a categorical variable with levels A, B, C, D, 
and E could result in a MARS basis function that contains “A, B and D” or “B and E”.  In our 
analysis, we do not discuss how MARS handles categorical data since all categorical data is 
effects coded in the rural choice dataset to ensure accurate comparisons across modelling 
techniques. MARS is a forward stepping linear regression which has the functional form: 
f(x)=β0+Σβmhm(x), where hm(x) is a function of one or more basis functions (Hastie, Tibshirani & 
Friedman 2001).  The dependent variable (y) in the MARS model is usually continuous, but a 
binary dependent variable is still estimable as a linear probability model (LPM).  Although the 



βm parameters are estimated by minimising the residual sum of squares (RSS) Σ(y-f(x))², 
estimation of the correct Hm(x) is tricky since it can be a function of the variable itself or an 
interaction with previously existing basis functions.  The first parameter estimated by MARS is 
always the constant in the form of h0(x)=1.  After the constant, terms that decrease the training 
error the most are added to the model .  Two forms of the split at knot point t are created for 
variable Xk that are split into a pair of basis functions and parameterised as B1(Xk-t) + B2(t-Xk).  
Whereas MARS’s predecessor CART will continue to partition the data space until it exhausts 
the data, MARS will create pairs of basis functions up to the point that the number of basis 
function hits a predetermined limit.  The final model at this limiting point is usually overfitted, so 
a back pruning mechanism that assesses the model on test error is necessary.  A generalised 
adjusted penalty is used by MARS to determine this best set of basis functions to include in the 
model.  Not only do generalised procedures perform well in model selection, but using 
generalised degrees of freedom performs even better when the data matrix used is orthogonal 
(Ye 1998).  For computational ease, MARS uses the generalised cross validation (GCV) criteria 
GCV(λ)=RSS/(1-λ/N).  What makes MARS more robust is that λ, which is traditionally 
estimated as 1 degree of freedom per parameter in standard LPM where λ=k, is a function of the 
number of basis functions, split points and user’s domain knowledge such that λ=f(BFs, split 
points, user specified penalty) in MARS.  Friedman (1991) suggests a user specified penalty of 
2-5 degrees of freedom per basis function but Steinberg et al. (2001) suggest using more than 5 
based on empirical findings. 

As a result of this methodology, the regression surface is built parsimoniously using non-
zero basis functions locally and only where they are needed (Hastie, Tibshirani & Friedman 
2001).  For the inclusion of interactions in the model, MARS will only build a higher interaction 
if one of the lower order interaction variables already exists as a basis function.  This assumption 
may not be always true and sometimes a significant interactive region may come from two or 
more insignificant main effects.  However, Friedman (1991) considers the method of interactions 
coming from existing significant basis functions in MARS as a reasonable assumption. 

  



3.  METHODOLOGY 
3.1 Data pre-processing and set up 
The MARS or mixed logit algorithm will only estimate the choice model parameters correctly if 
the data is properly set up.  We assume that the utility function is linear in parameters but not 
necessarily linear in attributes and that the respondents are using random utility theory (RUT) to 
make their retailer choice.  RUT assumes that farmers choose an alternative based on attributes 
of the alternative and some random error (McFadden, 1986; Ben-Akiva & Lerman 1985).  RUT 
assumes the utility U of a choice is a combination of systemic V and random error ε as follows:  
U = V + ε.  We assume the systemic component V is a matrix of experimentally designed 
attributes of alternatives and observed demographics X with a parameter vector β and can be 
expressed as: V = Xβ.  The choice model based on RUT is set up such that alternative one is 
chosen over alternative two is if U1>U2 and we can express this as U1 - U2 ≥ 0 ≥ V1 + ε1 – (V2 + 
ε2).  Substituting the observed attributes X into the equation, we have U1 - U2 ≥X1β - X2β + (ε1 – 
ε2), which can be reduced to U1 - U2 ≥ (x1 - x2)β + (ε1 – ε2).  In a choice model, the term Xβ is set 
up as the difference in the attributes of an alternative (x1n – x2n)β and the utility of choice is 
denoted as U= Xβ + ε. 

In the farming choice survey, the respondent had to choose from two different retailers 
(see Appendix 5).  The survey is a forced choice survey, in that it did not contain a “no choice” 
option.  To reduce this model to a generic rather than an alternative specific model, we included 
the brand name as one of the attributes of the alternatives.  The inclusion of distance from retailer 
as an attribute of an alternative was not as straightforward.  Usually, the distance from a retailer 
is a geo-demographic variable that does not change over a respondent’s dataset.  Since this study 
used multiple choice sets per respondent, this would tend to make the effect of distance 
insignificant across choice sets.  However, in the choice experiment UTS administered, different 
retailers were used in each of the respondent’s choice sets, so it was determined that distance 
could be included as an experimentally designed variable rather than as a geo-demographic.   

As part of the pre-processing of the data used in this essay, we estimated an LPM and 
MNL model on all the attributes from the farming study, shown in Table 16.  The pre-processing 
models showed that all variables exhibited effects that were strongly, but not perfectly, linear.  In 
the LPM and MNL pre-processing models, variables ATTR8 (store branding) and ATTR14 (late 
payment fee) were insignificant and thus were removed from all further analyses.  Although the 
two removed variables could be potentially used as interactions, not including insignificant main 
effect variables is appropriate when higher order interactions are not going to be estimated 
(Taverna, Urban & McDonald 2004).  The price and distance variables were numeric but all 
other experimentally designed variables were ordinal, and these were included in the models as 
effects coded variables.  Although MARS can handle missing data, in order to make accurate 
comparisons between mixed logit and MARS models, we had to remove all missing data from 
the analysis (Howieson 1991).   Each table of estimation results in Section 5 builds upon the 
model results from the previous table.  For instance, Table 20 is an improvement to the model in 
Table 19.  This culminates in our final model results in Table 22 of Section 5. 

3.2 MIXL models for unobserved heterogeneity 



A popular technique used to check if there is heterogeneity in a model is to use a mixed logit, 
which will allow for random preference variation.  This model allows taste variation across 
individuals in the utility function, as well as parameters that are individual specific.  In the 
previous section, we assumed the farmer’s preferences were fixed and denoted the utility of 
choice as: 

U= βX + ε. 

To denote the fixed β parameter choice for alternative i and person n: 

Uin = βnXn +  εn 

Following McFadden & Train (2000), in a mixed logit context, we assume that βn is 
random, so the utility of alternative i is specific to person n as follows: 

Uin = βnXin +  εn 

βn~ f (β|Θ,Ω); Θ is the mean of the βn’s and Ω is the covariance matrix of the βn’s 

In our mixed model of farming behaviour, we specified that the mixing distribution 
f(β|Θ,Ω) is distributed normally.  For choice analytics, the standard logistic specification still 
applies to the mixed logit model but the likelihood function is more complicated and is estimated 
numerically.  If there is significant heterogeneity across respondents, we would expect the 
random parameters estimated by the mixed logit model (MIXL) to be significant.  The mixed 
logit models were estimated in two stages using the farming data: first, estimation of a MIXL for 
the experimentally designed attributes only, and second, estimation of a MIXL using 
experimentally designed attributes with the demographic characteristics of the respondents 
included.  In the first MIXL model all included parameters were estimated as random parameters 
except for the constant term.  In the second MIXL model, we did not estimate random 
parameters for the constant nor for the demographics.  In both MIXL models we accounted for 
panel data effects in the estimates. 

Even though both MIXL are choice models, we included the constant to make consistent 
and accurate comparisons between the MIXL models and the MARS models, which must 
contain a constant since it utlises OLS.  We estimated the MIXL models using 2500 random 
draws on 22 parameters in the R statistical software program.  Many articles prefer Halton draws 
as they cover a multidimensional space more evenly (Bhat 2001).  However, our 2500 random 
draw models converged in a reasonable time and the model performance should be about the 
same as 1000 Halton draws (Hess & Polak 2003).  We estimated two LPMs using the same 
structure as the two MIXL models to directly compare our results to MARS models.  To verify 
the impact of heterogeneity on the parameters in the model, we estimated MNL models with the 
same structure as the two MIXL models mentioned previously.  We would expect the mixed 
logit estimates to be larger than MNL estimates, since MIXL incorporates unobserved attributes 
into the parameter estimates (Revelt & Train 1998).   



  



3.3 MARS-MNL Model for observed heterogeneity 
The ‘basis functions’ created by MARS assume that the parameters in the utility function can be 
multiple functions and transformations of the same independent variables, which include 
interactions that are functions of these independent variables.  As MARS is a series of functions 
of the independent variables, it can be thought of as a generalised additive model (GAM) with 
the form of utility: 

U=β0 + ∑ 𝑓𝑘(𝑋)𝛽𝑘𝑘
1  

What differentiates the MARS model from GAM models is that it uses piecewise splines and, 
more importantly, the interactions are detected automatically in a MARS model and do not have 
to be specified a priori.  The automatic detection of interactions in MARS is an important 
distinction because other stepwise logistic regression models eliminate variables that MARS 
finds to be jointly significant (Kuhnert, Do & McClure 2000).   The MARS choice model is a 
series of basis function (BF) transformations of the alternative attribute differences X as well as 
respondents’ demographics Z as follows:  

Y = f(X,Z) =  BF0 + BF1 + BF2 + BF3 + BF4 +... BFk 
In a MARS model, the dependent variable (Y) can be continuous or discrete.  In the rural 

choice study, the dependent variable was ‘0’ if the respondent chooses not to buy or ‘1’ if the 
respondent chooses to buy.  Since the dependent variable is two-level discrete, the resultant 
MARS model is a Linear Probability Model (LPM).  The BF data transformations need to be 
integrated into a MNL choice model to recover the standard errors of the transformed parameters 
and to ensure the predicted response stays in the [0,1] interval.  The transformation of the BFs 
into the log-odds space makes the MARS-MNL model directly comparable to a mixed logit.  
Unlike a CART-MNL hybrid, a MARS-MNL hybrid can be easily re-parameterised into MNL as 
the probability space is the same for all the data (Friedman 2010).  Using the binary farming 
choice data, the transformations found by MARS were integrated into a binary choice model as 
follows: 

Ln 𝑃
(1−𝑃)

= 𝑩𝑭θ 

Where BF denotes the series of basis functions found by MARS, P represents the 
probability of the respondent choosing retailer 1, and Θ are the parameters of the basis functions.  
Three MARS models were estimated: a LPM MARS model, a MARS-MNL hybrid and a 
MARS-Mixed Logit hybrid.  The MARS mixed logit model was estimated to verify to what 
extent the MARS BF transformations accounted for preference heterogeneity.  The estimation of 
the MARS mixed logit accounted for the panel effects of multiple choice sets from the same 
individuals.  The MARS-MIXL hybrid should show no significant random component 
parameters if MARS does in fact account for both observed and unobserved heterogeneity.  The 
MARS models in this essay were estimated using Salford Systems’ implementation of the 
MARS algorithm (Steinberg et al. 2001).  The hybrid models of MARS with MIXL were 
estimated in the R statistical software program (version 2.13). 



4.  SIMULATION 
4.1 Simulation Dataset up 

For the known basis function simulation, we used continuous data and two multi-level 
categorical variables.  The generated “X” data was experimentally designed using an orthogonal 
main effects plan (OMEP) by Dr. John Rose.  The generated data tried to mimic the same data 
structure in the rural choice study, so the only variable that was interval scaled was price.  
Variables for distance and demographics were added later to the data matrix.  Since many of the 
simulation variables had more than two levels, a fold over could not be used. 

Two demographics covariates for MARS simulated respondents were generated from the 
distributions in Table 17.  In all cases, the values were truncated to the nearest non-negative 
integer.  Even though it was continuous, the simulated AGE demographic was binned into 6 
levels (i.e. under 25, 25-35, 35-45, etc.)  STATE was also binned into 6 levels.  Both 
demographic variables were effects coded for the simulation. 

TABLE 2:MARS  SIMULATION DEMOGRAPHIC LEVEL DESIGN 

Demographic Variable Distribution 
AGE Normal (45,5²) 

STATE Uniform(1,6) 

 

Out of the 15 variables possible, we randomly selected four continuous variables and 
added one of the two demographic covariates.  Of the four continuous variables selected, three 
were randomly picked to be two-way interacted with each other.  The dependent variable Y is 
binary and set to 0 if the simulated consumer chooses not to buy and 1 if the consumer chooses 
to buy.  The binary dependent variable makes the MARS model a LPM.  Since we are testing the 
effects of different amounts of knots per variable, there are three MARS simulation models that 
are based on the following model: 

Y = f(X) =  BF0 + BF1 + BF2 + BF3 + BF4+ BF5 = β’X 

In the above “base” model BF0 is the constant, BF1 is a transformed continuous variable, 
BF2, BF3, and BF4 are two-way interactions of continuous variables and BF5 is a randomly 
selected effects coded categorical variable.   

Since every MARS basis function is only a one knot transformation or an interaction of 
two basis functions, when we test 2 or 3 knots per variable in the simulation, we need to include 
extra basis functions.  Even though we are using the same four variables, they are being 
transformed twice when using two knots, so we need three additional basis functions in the base 
model.  If there are three knots per variable, we need 6 additional basis functions for the base 
model.  

A uniform random variable (URV) with values between 0 and 1 was created with a 
choice heuristic to construct a dependent choice variable as Choice=1 if β’X > URV; 0 



otherwise.  The purpose of the simulation was to see if MARS can see where the true knot 
locations are.  There were 72 scenarios per simulated respondent and 1,000 simulated 
respondents.  To test if MARS can detect the correct location of the knot points in a LPM model, 
the simulation was performed per the following steps:   

MARS Simulation Procedure 

The following simulation procedures were followed: 

1. Using the simulated data, randomly pick a data point to insert a knot point and create a 
basis function before or after the knot point. 

2. Create beta weights for all the basis functions (we will set the constant basis function to 
β0=.5).   

3. Using a uniform random error, create a dependent/choice variable in the following 
manner using all basis functions 

if (β'X>error) Choice=1, otherwise Choice=0 ; 
4. Take the existing X variables and randomly add a normal error to them so they are away 

from the true basis function line  
5. Estimate an MARS model 
6. Record the position that MARS believe the knot point is located 
7. Steps 1-6 should be run 100 times for 1 knot, 100 times for 2 knots, and 100 times for 3 

knot simulations. 
8. Run Steps 1-7 using 1%, 5%, 10% and 20% error for the error in Step 4. 
 

4.2 Simulation Results 
The results of the 1,200 simulations are shown below in Table 18.  Given the large 

amount of data and two error structures within the simulation, we assumed a knot point was 
“correct” if MARS detected it within one standard error of its true location.  Even though the 
models with more parameters fit better, and had a higher R² value, the purpose of the simulation 
was to see if MARS detected the correct knot location. 

TABLE 3: MARS KNOWN BASIS FUNCTION SIMULATION RESULTS 

Random  Knots  
Error 1 2 3 

1% 95% 92% 88% 
5% 95% 90% 85% 

10% 93% 85% 81% 
20% 88% 77% 65% 

 

As expected, MARS performed worse as more error was entered into the data.  
Furthermore, finding a greater number of basis functions proved problematic for the MARS 
simulation.  When there are multiple knots per variable, if the true knot locations are too close to 



each other, MARS may have a hard time seeing one knot after finding the other knot. This 
problem should be addressed in future simulation research.  In the original MARS article, 
Friedman (1991) suggests that a minimum span should exist between data points for MARS to 
more effectively find knot points.   

 

5.  ANALYSIS AND RESULTS 
5.1.1 Mixed Logit Model with ED variables 
Table 19 shows the estimation results from a LPM, MNL and mixed logit models of the 
experimentally designed data only. 
TABLE 4: MIXED LOGIT AND MNL MAIN EFFECTS ESTIMATED  

Attribute LPM 
Estimate 

S.E. MNL 
Estimate 

S.E. MIXL 
Estimate 

S.E. SD of 
MIXL 

S.E. 

Constant 0.490 0.007 -0.045 0.037 -0.106 0.085 - - 
ATTR1E1 0.021 0.005 0.083 0.025 0.223 0.072 0.779 0.233 
ATTR2E1 -0.049 0.009 -0.245 0.044 -0.612 0.157 0.756 0.276 
ATTR2E2 -0.041 0.009 -0.195 0.047 -0.420 0.131 0.456 0.315 
ATTR2E3 0.031 0.009 0.151 0.043 0.311 0.118 -0.024 1.112 
ATTR3E1 -0.015 0.004 -0.092 0.022 -0.209 0.066 0.541 0.206 
ATTR4E1 -0.029 0.004 -0.145 0.022 -0.335 0.084 0.478 0.211 
ATTR5E1 -0.025 0.008 -0.105 0.042 -0.183 0.099 -0.419 0.353 
ATTR5E2 0.017 0.009 0.075 0.043 0.109 0.097 -0.487 0.332 
ATTR5E3 -0.003 0.008 -0.024 0.042 -0.055 0.095 -0.423 0.382 
ATTR6E1 -0.022 0.009 -0.124 0.043 -0.243 0.102 -0.050 1.099 
ATTR6E2 0.002 0.009 0.008 0.044 0.047 0.101 0.299 0.485 
ATTR6E3 0.020 0.008 0.117 0.043 0.202 0.100 0.358 0.420 
ATTR7E1 -0.012 0.004 -0.066 0.022 -0.130 0.054 0.374 0.228 
ATTR9E1 -0.034 0.004 -0.167 0.022 -0.336 0.085 0.456 0.205 

ATTR10E1 -0.061 0.004 -0.289 0.022 -0.656 0.142 0.629 0.206 
ATTR11E1 -0.022 0.004 -0.115 0.022 -0.282 0.076 -0.224 0.335 
ATTR12E1 -0.013 0.009 -0.066 0.047 -0.240 0.120 -0.616 0.308 
ATTR12E2 -0.022 0.010 -0.099 0.049 -0.162 0.116 -0.638 0.309 
ATTR12E3 -0.020 0.009 -0.098 0.046 -0.151 0.105 0.520 0.322 

ATTR15 -1.153 0.061 -5.460 0.322 -14.454 3.007 14.514 3.342 
Distance -0.002 0.001 -0.004 0.001 -0.010 0.003 -0.018 0.007 

   LL -2346 LL -2281   
Highlighted coefficients significant at α=.05 level 

 

In Table 19, 50% of the parameters estimated with random effects in the mixed logit 
model had significant heterogeneity.  Price (ATTR15) has significant preference heterogeneity, 



which was to be expected (Bell et al. 1998).  Some effects coded levels of the variable ATTR12 
(Professional Advisory Service) were barely significant.  We could not remove one level of the 
effects coded variables because they would form a grouping which meant all effects codes had to 
be included or all excluded (Hensher et al. 2005).  In this essay, the mixed logit models assumed 
normal distributions for the random components.  Since the normal distribution is symmetric 
about 0, it can have positive or negative values.  In some cases, this will lead to the standard 
deviation of the random coefficient having a negative value (Glasgow et al 2001).  This “wrong” 
sign can be corrected by using a distribution that has only positive values in the mixed logit 
estimation process.  A log-normal distribution should be used if the response parameter must be 
specifically non-negative (Hensher & Greene, 2002), but we had no a priori reason to assume 
non-negativity. 

  



5.1.2 Mixed Logit Model with ED variables and demographics 
Table 20 shows the results of an estimation of a LPM, MNL, and MIXL.  In this table, the 
models included the experimentally designed data as well as the demographics.  Since the 
functional form of the demographics was not known a priori, they were entered into the model as 
main effects. 

TABLE 5: MIXED LOGIT AND MNL ESTIMATED WITH DEMOGRAPHICS 

Attribute LPM 
Estimate 

S.E. MNL 
Estimate 

S.E. MIXL 
Estimate 

S.E. SD of 
MIXL 

S.E. 

Constant 0.529 0.073 0.160 0.361 0.051 0.714 - - 
ATTR1E1 0.021 0.005 0.084 0.025 0.182 0.055 0.805 0.189 
ATTR2E1 -0.048 0.009 -0.241 0.044 -0.467 0.112 0.587 0.202 
ATTR2E2 -0.042 0.009 -0.199 0.047 -0.398 0.106 0.405 0.234 
ATTR2E3 0.030 0.009 0.150 0.043 0.275 0.095 -0.104 0.437 
ATTR3E1 -0.015 0.004 -0.091 0.022 -0.187 0.052 0.422 0.165 
ATTR4E1 -0.029 0.004 -0.144 0.022 -0.282 0.061 0.389 0.168 
ATTR5E1 -0.025 0.008 -0.106 0.042 -0.175 0.090 -0.017 0.393 
ATTR5E2 0.017 0.009 0.077 0.043 0.073 0.089 0.428 0.273 
ATTR5E3 -0.003 0.008 -0.024 0.042 -0.033 0.084 0.431 0.264 
ATTR6E1 -0.022 0.009 -0.123 0.043 -0.214 0.088 0.015 0.451 
ATTR6E2 0.002 0.009 0.008 0.045 0.055 0.091 0.257 0.317 
ATTR6E3 0.020 0.008 0.117 0.043 0.173 0.089 -0.203 0.322 
ATTR7E1 -0.012 0.004 -0.066 0.022 -0.087 0.045 0.276 0.185 
ATTR9E1 -0.034 0.004 -0.168 0.022 -0.289 0.060 0.488 0.158 

ATTR10E1 -0.061 0.004 -0.291 0.022 -0.618 0.103 0.585 0.163 
ATTR11E1 -0.022 0.004 -0.115 0.022 -0.273 0.062 0.172 0.201 
ATTR12E1 -0.013 0.009 -0.066 0.047 -0.215 0.100 0.639 0.251 
ATTR12E2 -0.022 0.010 -0.099 0.049 -0.150 0.099 0.413 0.256 
ATTR12E3 -0.019 0.009 -0.098 0.046 -0.110 0.091 0.373 0.256 

ATTR15 -1.151 0.061 -5.464 0.323 -12.411 1.943 12.372 2.186 
Distance -0.002 0.001 -0.004 0.001 -0.009 0.002 0.009 0.005 
Sec4Q2 -0.003 0.007 -0.020 0.036 0.008 0.071 - - 
Sec4Q5 -0.003 0.004 -0.012 0.018 -0.020 0.036 - - 

Sec4Q10 0.003 0.002 0.016 0.012 0.031 0.024 - - 
Sec4Q14 -0.001 0.004 -0.001 0.020 -0.004 0.037 - - 
Sec4Q17 -0.003 0.002 -0.016 0.010 -0.031 0.020 - - 
StateE3 -0.039 0.015 -0.191 0.075 -0.324 0.152 - - 

   LL -2341 LL -2278   
Highlighted coefficients significant at α=.05 level 

 



Table 20 shows that the addition of all but one of the demographic variables was 
insignificant.  Although many demographic variables were available for inclusion in the models 
(see Appendix 8), to ensure accurate comparison of model results, we only included the 
demographic variables that were determined to be significant in Table 22.  The addition of 
demographics in the mixed logit model in Table 20 reduced the number of significant random 
parameters from ten in Table 19 to eight.  This indicates that the addition of demographics in a 
model, albeit as main effects, accounts for some of the heterogeneity in the mixed logit (Gupta & 
Chintagunta 1994).  The heterogeneity in distance was slightly insignificant at the 5% level when 
the demographics were included, so distance may have been a proxy for something in the 
demographics. This result leads us to suspect there may be interactive effects in the 
demographics.   

The effects coded variable StateE3 is the only significant demographic variable. Unlike 
other effects coded variables, State is categorical so we can use an individual effects code level.  
The variable StateE3 is the effect of purchasing in South Australia (SA) relative to Western 
Australia (WA).  The negative coefficient indicates that people in South Australia are less likely 
to purchase from a rural retailer relative to people in Western Australia.  What makes this 
information useful for the marketing manager is that these states are contiguous and the farm size 
in these two states is large compared to the rest of Australia.  Given these characteristics, one 
could purchase in WA as easy as SA, so the difference in retailer choice may not be due to 
geographic factors as much as macro environmental issues (e.g., if taxes in South Australia are 
higher than in Western Australia).   

  



5.2.1 MARS ED data model 
Table 21 contains the estimation results of three models using experimentally designed data only 
in MARS.  The LPM model shows the results of a MARS model itself.  The MNL model below 
is a hybrid of the MARS basis functions estimated in an MNL model (MARS-MNL).  The final 
MIXL-MARS hybrid shows the results of the MARS basis functions estimated in a mixed logit 
with random parameters for all non-constant MARS basis functions. 

 

TABLE 6: MARS MAIN EFFECTS WITH TRANSFORMATIONS AND INTERACTIONS 

MARS Attribute 

Function 

LPM 

Estimate 

S.E. MNL 

Estimate 

S.E. MIXL 

Estimate 

S.E. SD of 

MIXL 

S.E. 

Constant 0.627 0.055 0.636 0.281 1.030 0.439 - - 

Basis Function 2 1.749 0.302 8.503 1.568 9.342 2.508 -3.519 1.148 

Basis Function 3 -0.142 0.011 -0.705 0.061 -0.878 0.103 0.037 0.434 

Basis Function 4 -0.108 0.010 -0.549 0.051 -0.700 0.081 0.087 0.414 

Basis Function 5 -0.170 0.036 -0.918 0.187 -1.288 0.302 -0.341 1.676 

Basis Function 6 -0.062 0.016 -0.297 0.081 -0.419 0.112 0.021 1.140 

Basis Function 7 0.091 0.014 0.491 0.072 0.578 0.107 -0.207 0.371 

Basis Function 11 0.029 0.006 0.140 0.032 0.185 0.045 0.009 0.987 

Basis Function 12 -0.052 0.009 -0.276 0.048 -0.359 0.080 0.442 0.214 

Basis Function 14 0.016 0.003 0.082 0.013 0.103 0.019 0.093 0.033 

Basis Function 17 -0.004 0.001 -0.022 0.006 -0.030 0.010 -0.013 0.013 

Basis Function 19 -0.195 0.062 -0.922 0.318 -1.561 0.572 1.791 1.814 

Basis Function 20 -0.014 0.003 -0.077 0.017 -0.089 0.027 0.121 0.078 

Basis Function 21 -0.138 0.034 -0.638 0.178 -0.769 0.269 0.342 1.770 

Basis Function 22 -1.059 0.327 -4.853 1.721 -6.040 2.286 -0.383 86.079 

Basis Function 24 0.029 0.009 0.133 0.046 0.165 0.062 0.223 0.216 

Basis Function 26 -0.117 0.037 -0.641 0.197 -0.843 0.343 1.554 0.802 

Basis Function 28 -0.055 0.020 -0.302 0.099 -0.356 0.172 -0.688 0.583 

Basis Function 30 0.131 0.052 0.571 0.267 1.060 0.445 -0.004 9.562 

Basis Function 33 0.319 0.061 1.678 0.320 2.255 0.576 -0.230 5.551 

Basis Function 34 0.048 0.014 0.272 0.068 0.338 0.133 0.305 0.414 

Basis Function 35 0.014 0.004 0.078 0.019 0.114 0.029 -0.003 0.613 

Basis Function 36 0.465 0.083 2.405 0.432 0.996 1.196 -5.589 2.158 

Basis Function 37 0.173 0.055 0.808 0.284 0.875 0.429 -0.104 6.203 

Basis Function 42 -1.902 0.411 -10.220 2.115 -16.035 5.102 11.312 12.336 

Basis Function 44 0.432 0.077 2.190 0.404 2.638 0.619 -0.119 8.269 

Basis Function 46 -0.006 0.001 -0.028 0.007 -0.027 0.012 -0.017 0.029 

Basis Function 48 -0.010 0.003 -0.048 0.016 -0.051 0.022 0.036 0.165 

   LL -2285   LL -2253 

Highlighted coefficients significant at α=.05 level 

 



The 27 non-constant parameters in Table 21 are transformations and interactions of the 
experimentally designed data.  Since no demographics were used in this MARS-MIXL model, 
the results in Table 21 are directly comparable to the MIXL in Table 19.  The localised fitting of 
the MARS model makes all of the MARS-LPM coefficients significant at the 5% level.  Even 
when the MARS basis functions are hybrid into a MARS-MNL model, all the parameters are 
significant at the 5% level.  When the MARS functions are estimated in a mixed logit, only four 
of the random parameters have significant heterogeneity.  The MARS-MIXL estimates for the 
basis functions are all significant except for basis function 36.  Basis function 36 has the 
following form and is a function of the price of a product and the availability of stock: 

BF36 = max( 0, DIFF_ATTR15 - 0.05) * max( 0, DIFF_ATTR10E1 + 2) 

The positive coefficient indicates that people will pay more if the stock is available.  Although 
farmers will get larger discounts purchasing from a nationwide retailer, the farmer is willing to 
pay more when the local retailer has the product in stock (Gustafson & Nganje 2006).  There is 
significant heterogeneity in this parameter so the addition of demographics or another 
experimentally designed data interaction in the MARS models can account for this 
heterogeneity. 

 

  



5.2.2 MARS ED data and Demographics model 
Table 22 contains the estimation results for three models using experimentally designed data and 
demographics in MARS.  The LPM model is the results of MARS itself and the MNL and MIXL 
are the results of MARS basis functions being hybrid into the multinomial logit and mixed logit 
(MARS-MNL and MARS-MIXL respectively). 

TABLE 7: MARS MAIN EFFECTS AND DEMOGRAPHICS WITH TRANSFORMATIONS AND INTERACTIONS 

MARS Attribute 

Function 

LPM 

Estimate 

S.E. MNL 

Estimate 

S.E. MIXL 

Estimate 

S.E. SD of 

MIXL 

S.E. 

Constant 0.695 0.038 0.867 0.206 1.031 0.274 - - 

Basis Function 2 1.469 0.174 7.646 0.978 9.054 1.411 2.845 1.003 

Basis Function 3 -0.102 0.006 -0.484 0.034 -0.577 0.050 -0.007 1.074 

Basis Function 4 -0.172 0.018 -0.846 0.094 -0.995 0.120 -0.011 1.628 

Basis Function 6 -0.082 0.012 -0.396 0.061 -0.459 0.089 -0.005 1.816 

Basis Function 8 4.979 0.605 24.795 3.227 28.646 4.494 -2.694 6.904 

Basis Function 10 0.035 0.008 0.180 0.039 0.193 0.051 0.251 0.092 

Basis Function 11 0.066 0.008 0.329 0.039 0.400 0.051 0.021 0.619 

Basis Function 12 -0.039 0.008 -0.200 0.041 -0.225 0.055 -0.177 0.250 

Basis Function 14 0.017 0.002 0.079 0.012 0.095 0.015 0.049 0.035 

Basis Function 16 -0.908 0.174 -4.629 0.932 -5.284 1.704 -0.894 16.630 

Basis Function 17 -0.007 0.001 -0.038 0.008 -0.047 0.013 0.006 0.043 

Basis Function 18 -1.083 0.275 -4.502 1.400 -7.756 5.213 -12.927 12.839 

Basis Function 19 -0.285 0.066 -1.332 0.345 -1.697 0.505 -0.126 10.365 

Basis Function 20 -0.023 0.006 -0.121 0.031 -0.138 0.045 0.098 0.135 

Basis Function 22 -0.011 0.003 -0.058 0.015 -0.071 0.020 -0.008 0.572 

Basis Function 24 -0.019 0.005 -0.101 0.028 -0.122 0.034 0.086 0.105 

Basis Function 25 -0.140 0.027 -0.738 0.148 -0.958 0.234 0.269 1.008 

Basis Function 26 -0.132 0.038 -0.647 0.202 -0.737 0.281 0.546 1.212 

Basis Function 29 0.047 0.010 0.233 0.053 0.268 0.082 -0.267 0.162 

Basis Function 31 -1.390 0.229 -6.260 1.181 -6.569 1.433 0.118 13.823 

Basis Function 32 0.044 0.012 0.200 0.061 0.232 0.074 -0.009 1.930 

Basis Function 33 0.038 0.012 0.181 0.059 0.179 0.075 -0.258 0.160 

Basis Function 36 -0.023 0.009 -0.113 0.047 -0.123 0.058 0.017 1.577 

Basis Function 38 -0.093 0.034 -0.500 0.184 -0.654 0.297 0.345 2.181 

Basis Function 40 0.002 0.001 0.010 0.003 0.130 0.077 -0.004 1.795 

Basis Function 41 0.005 0.002 0.025 0.010 0.025 0.015 -0.035 0.038 

Basis Function 45 -0.022 0.006 -0.119 0.034 -0.137 0.042 0.037 0.552 

Basis Function 47 -1.440 0.234 -6.592 1.202 -7.345 1.544 1.941 1.559 

Basis Function 53 -0.009 0.002 -0.045 0.011 -0.049 0.014 0.000 0.601 

Basis Function 57 0.005 0.002 0.026 0.008 0.031 0.018 0.002 0.317 

Basis Function 59 -0.018 0.005 -0.089 0.026 -0.095 0.033 0.075 0.102 

   LL -2250   LL -2228 

Highlighted coefficients significant at α=.05 level 



 

The results in Table 22 represent the definitive models used in this essay.  The MARS-
MNL model results include demographics, experimentally designed variables, and the 
transformations and interactions of those demographics and experimentally designed variables.  
Although all demographics were included in the models (see Appendix 8), MARS used only six 
of the demographic variables available.  The results of the MARS-MNL model show that all 
parameters are significant and that the model accounts for observed heterogeneity.  To verify the 
heterogeneity reduction, the MARS basis functions were hybrid into a mixed logit to see if there 
was any residual unobserved heterogeneity in the model.  No MARS-MIXL basis functions that 
included demographics contained any significant unobserved heterogeneity.  In the MARS-
MIXL model, only two basis functions have significant random parameter values: BF2, which is 
a transformation of the main effect of price only, and BF10, which is an interaction of the 
experimentally designed variables ATTR2 (Staff Product Knowledge) and ATTR4 
(Independence of Advice).  ATTR2 and ATTR4 were already shown to contain heterogeneity in 
Table 19 and Table 20.  Since the MARS basis function two-way interaction of these variables 
did not eliminate their heterogeneity, this implies that a higher order interaction (i.e., three or 
four way) is needed to account for the heterogeneity. 

Economic theory says that the demand for a product has a negative relationship with 
price and that the price effect should be monotonically decreasing (Varian 1992).  Figure 12 
shows the relationship between percentage of price increase on the horizontal axis and the 
probability of purchase on the vertical axis.  This plot is produced from MARS and shows the 
main effect of price conditioning on all variables that were interacted with price.  There are clear 
moderation effects on price, which may be the reason why price has such a high degree of 
heterogeneity.  The interactive effects with price are so strong that the response to price is 
actually positive when the price increase is 30% in Figure 12. 

  



FIGURE 2: EFFECT OF PRICE VARIABLE WITH LINEARITY ASSUMED 

 

In Figure 13, we see that the distance variable acts as we expect and is downwards 
sloping as distance from retailer increases (Sullivan 1990).  One of the advantages of using 
MARS is that the basis function knot points can easily show the analyst where the variable’s 
effect changes independently of it being interacted with other variables.  In Figure 13, MARS 
finds that the negative sloping distance effect does not start until a retailer is 50km closer and has 
no effect when a retailer is more than 240km away from a respondent.  We only plotted the 
quantitative variables because plots of categorical outcome variables are not helpful (Rutter & 
Elashoff 1994). 

FIGURE 3: EFFECT OF DISTANCE VARIABLE WITH LINEARITY ASSUMED 

 

 

  



As shown in Table 18, the heterogeneity in price is quite significant and large compared 
to the MNL estimates.  In Table 20, BF2 is a simple transformation of price (ATTR15): the 
linear effect of price has a change in slope when the difference in the retailers’ prices is less than 
13%.  Although there is still heterogeneity in BF2, the ratio of the MIXL price parameter to the 
MNL price parameter of BF2 is much less in Table 20 than the ratio of MIXL price to MNL 
price in Table 18.  This indicates that MARS transformations are improving the explanation of 
observed heterogeneity in the model.   

The complete list of characteristics of the MARS basis functions used in Table 20 are in 
Table 22 of Appendix 7.  Although MARS data mining will find structure in the data that is 
statistically correct, a check of all the basis functions should be made to ensure they fit in with 
social theory.  Basis function 8 is a transformed function of the price attribute.  In BF17, the 
price transformation from BF8 is interacted with distance as follows: 

BF17 = max (0, DIST + 232.499) * max( 0, ATTR15 + 0.05) 
 

The resulting coefficient on BF17 is - 0.038, which indicates that people are less likely to 
purchase when they have to travel far and pay a higher price.  Figure 14 graphically shows the 
interactions between distance to retailer and price discount.   For instance, when the difference in 
retailer’s price (ATTR15) is 20% higher, the probability of purchase increases only when the 
more expensive retailer is at least 100km closer than the alternative retailer.  As the price 
difference becomes less, the effect of distance is not as pronounced.  If higher order interactions 
were included in our MARS model, we would expect that the price-distance interaction would 
have a demographic interaction, since travelling long distances has socio-demographic 
components (Limtanakool et al. 2006). 

  



FIGURE 4: INTERACTION OF PRODUCT PRICE AND DISTANCE 

 

 

Basis Function 26 in Table 22 is an interactive region of a ‘fee for expert advice’ and 
price.   

BF26 = max( 0, ATTR12E2 + 1) * max( 0, 0.13 - ATTR15) 
 

The negative coefficient on BF26 in the MARS-MNL model indicates there is a threshold 
on how much people will pay for this for advice.  Bennet, Bratton & Robson (2000) found that 
people will travel farther and pay more for expert advice in a B2B, but they did not verify that 
there is a threshold to this moderation, which was found by the MARS model.  Some 
demographic variables that are theoretically assumed to exist were made available to MARS but 
not used in the final analysis.  For instance, it is suggested that farm ownership and tenure of 
renters has an effect on farm purchasing and probability (Barry et al. 2001), but the demographic 
covariate for own/rent was not found to have an effect on purchase behaviour substantial enough 
to be included in the final MARS model.  

In order to be of benefit to the retailers, the attributes that are important can be 
determined by using their contribution to the explained sum or squares, regardless if the attribute 
is interacted or not.  Once the explained sum of squares is computed for each variable, the 
variable with the highest explained sum of squares is set to 100 and all the other variables are 



scaled accordingly.  The variable importance graphic included in Table 23 below shows the 
results of important attributes for the MARS Basis Functions in Table 21. 

TABLE 8: VARIABLE IMPORTANCE OF MARS MAIN EFFECTS  

Variable Score  

DIFF_ATTR15 100.00 |||||||||||||||||||||||||||||||||||||||||| 

DIFF_ATTR10E1 62.94 |||||||||||||||||||||||||| 

DIFF_ATTR2E1 42.04 ||||||||||||||||| 

DIFF_ATTR9E1 36.91 ||||||||||||||| 

DIFF_DIST 27.72 ||||||||||| 

DIFF_ATTR1E1 24.67 |||||||||| 

DIFF_ATTR12E3 23.23 ||||||||| 

DIFF_ATTR11E1 17.33 |||||| 

DIFF_ATTR4E1 16.35 |||||| 

DIFF_ATTR6E1 14.74 ||||| 

DIFF_ATTR12E2 13.49 ||||| 

DIFF_ATTR5E3 8.30 ||| 

DIFF_ATTR7E1 8.19 ||| 

DIFF_ATTR5E2 6.61 || 

 

  



The variable importance listing in Table 24 shows how the importance ranking of 
variables changes with additional covariates, using the results from Table 22. 

TABLE 9: VARIABLE IMPORTANCE OF MARS MAIN EFFECTS AND DEMOGRAPHICS  

Variable Score  
DIFF_ATTR15 100.00 |||||||||||||||||||||||||||||||||||||||||| 

DIFF_ATTR10E1 65.85 ||||||||||||||||||||||||||| 
DIFF_ATTR9E1 42.07 ||||||||||||||||| 
DIFF_ATTR2E1 41.52 ||||||||||||||||| 
DIFF_ATTR4E1 33.43 ||||||||||||| 
DIFF_ATTR1E1 27.39 ||||||||||| 

STATEE3 19.59 ||||||| 
DIFF_ATTR2E2 18.97 ||||||| 

SEC4Q5 18.19 ||||||| 
DIFF_ATTR12E3 16.71 |||||| 
DIFF_ATTR5E2 16.54 |||||| 

DIFF_DIST 15.97 |||||| 
SEC4Q14 15.95 |||||| 

DIFF_ATTR5E3 15.09 ||||| 
DIFF_ATTR11E1 12.42 |||| 
DIFF_ATTR12E2 10.07 ||| 

SEC4Q2 9.41 ||| 
SEC4Q17 6.99 || 

DIFF_ATTR7E1 4.83 | 
SEC4Q10 3.52 | 

DIFF_ATTR6E1 2.73  

 

The above tables can be used by the retailers to see which variables are best to 
concentrate on. The non-linearity in the importance ranking indicates that the top 4 variables are 
especially important.  For instance, in Table 23, the variables for ‘price’, ‘having product in 
stock’, ‘more staff knowledge’, and ‘a wide range of products’ are shown, respectively, to be the 
most important features.  The insight given to marketing managers is enhanced when 
demographic covariates are entered into the model, and the resulting variable importance is 
shown in Table 24.  When demographics are entered into the model, ‘wide range of products’ 
becomes more important than ‘more staff knowledge’.  This indicates that respondents’ 
characteristics interact more with ‘wide range of products’ than ‘staff knowledge’, and this can 
help the marketing manager to alter their marketing mix. 

5.3 Comparison of all models 
Table 25 summarises the log-likelihood values of the MNL and MIXL models in Table 20 and 
Table 22.  A series of chi-square tests were conducted to see which of the four models performed 
the best.  The results of the tests show that the MARS-MXL model outperformed all but the 
MARS-MNL model (p-value=.054).  This indicates that the MARS-MNL model in Table 22 



sufficiently accounted for all of the observed heterogeneity.  Since only two of the random 
parameters were significant in the MARS-MIXL model in Table 22, this indicates that any 
unobserved heterogeneity in the model has been better captured by the MARS-MNL model.  
Additionally, the MARS-MNL model has 31 less parameters and, all things considered, the more 
parsimonious model is preferred even if the log-likelihood values were identical (Munoz & 
Felicisimo 2004). 

TABLE 10: ALL MODELS LOG LIKELIHOOD VALUE AND LIKELIHOOD RATIO TEST STATISTICS 

 MNL Mars-MNL MIXL Mars-MIXL 

LL -2346.05 -2250.18 -2280.50 -2227.90 

npar 22 32 43 63 

     
LL ratio test p-values 

 MNL Mars-MNL MIXL Mars-MIXL 

MNL - 0.000 0.000 0.000 

MNL Mars  - n/a 0.054 

MXL   - 0.000 

 

Given that the MARS-MNL model in Table 22 explains all the observed heterogeneity, it 
should be the model used as the final explanatory model. There is no reason to use the MARS-
MIXL model estimates other than as a benchmark against the MARS-MNL.  To quantify the 
amount of residual unobserved heterogeneity in the farming choice model, the MARS basis 
functions from Table 22 were estimated in a mixed logit without accounting for panel data 
effects.  The MARS-MIXL model without panel effects was 4 log likelihood points (-2231.3) 
different from the MARS-MIXL model with panel data effects (-2227.9). The results of the 
estimation of the MARS-MIXL model without panel data effects (see Appendix 9) shows that 
the MARS-MNL accounts for virtually all observed and unobserved heterogeneity. 

Although the MARS-MNL performs better than other models, we want to ensure that the 
model results are stable.  MARS uses cross validation internally to ascertain the best degrees of 
freedom penalty when building basis functions.  However, to ensure predictive accuracy, we 
tested our model on hold out samples.  We did this using k-fold cross validation (CV) since it is 
less likely to lead to overconfidence in parameter estimation (Armstrong 2012).  The rural choice 
study had multiple scenarios per respondent.  To make it a true “hold out” sample, we were 
careful to not include the same respondents in the learn model and the test validation set.   

We used the two most popular values for k: 2 and 10.  In 2-fold CV, half of the data was 
used to learn/build the model and the other half of the data was used to test if the model 
predicted correctly or not.  This process was then reversed and the data used to learn was then 
used to test predictive accuracy.  The results for the two fold CV hold out modelling are in Table 
26. 



TABLE 11: MARS TWO FOLD CROSS VALIDATION HOLD OUT SAMPLE 

CV Set Percent Correct 
1 67.28% 
2 65.61% 

overall 66.45% 

 

The hit rate accuracy of the MARS model in Table 22 is 69%, so the two fold CV does 
well at 66.5%.  The second hold out sample is performed via 10-fold cross validation and the 
results are shown in Table 27.  The 10-fold cross validation performed better than the 2-fold and 
are extremely close to the Table 22 hit rate.  This improved performance of the 10-fold CV is 
expected, since in 10 fold cross-validation, more data is being used in the learn (9/10th of the 
data) than on the test data (1/10th of the data).   

  



 

TABLE 12: MARS TEN FOLD CROSS VALIDATION HOLD OUT SAMPLE 

CV Set Percent Correct 
1 70.82% 
2 66.51% 
3 63.83% 
4 70.96% 
5 67.92% 
6 62.29% 
7 70.07% 
8 71.09% 
9 70.08% 
10 69.37% 

overall 68.29% 

 

Breiman, et. al. (1984) mention in their book that cross validation folds of more than 10 
have negligible improvements in predictive accuracy, so no higher level CV levels were used in 
this essay. 

 

 

  



6.  ANALYSIS AND CONCLUSION 
In interaction detection, which variables should be used to determine interactions and the 
interactive structure are not known a priori; furthermore, interactions of small sample size are 
particularly difficult to detect (McClelland & Judd 1993). This essay used a hybrid MARS-MNL 
model to correctly identify interactions between experimentally designed and demographic 
variables for retailer choices of Australian farmers. The motivation behind our study is that it is 
easier to segment and target customers when you know the structure of observed heterogeneity 
(Bell, Ho & Tang 1998).  Much of the current literature uses a mixed logit model to detect the 
presence of unobserved heterogeneity.  However, the detection of unobserved heterogeneity does 
not fully describe the exact structure of heterogeneity. Few recent attempts to perform a posterior 
analysis of mixed logit have been proposed as a way to look for the structure of heterogeneity 
(Hess 2007).  Observed heterogeneity can be difficult to detect in logit mixture models because a 
major source of heterogeneity is in the consideration set (Allenby, Arora & Ginter 1998).  In this 
essay, we controlled for observed heterogeneity in the consideration set formation by using 
stated preference instead of revealed preference data (McFadden 2002; Louviere, Hensher & 
Swait 2000).  For instance, customers usually have a notional price range in mind for a product.  
To eliminate any heterogeneity present in notional price range, we have set up price as a 
percentage. 

We used a data mining tool called MARS to simultaneously detect non-linearity in the 
main effects of a choice model as well as determine the structure of interactions in the choice 
data.  The MARS model is a spline regression technique that creates an LPM model, which is a 
series of transformations known as “basis functions”.  To make the MARS model directly 
comparable to other mixed techniques, we used the basis functions from MARS to transform the 
choice data so that it can be estimated by a conditional logit.  Parameters for the basis functions 
were estimated from a MNL choice model and these were compared to the results of a mixed 
logit estimation (which we call the MARS-MNL hybrid).  Mixed logit models are based on the 
assumption that heterogonous differences in respondents can be accounted for in the use of 
random parameters.  Our MARS-MNL model shows that heterogeneous differences can be 
accounted for in the proper interactions and function formation of the observed attributes.   

Domain knowledge of which respondent’s demographics are important and can help 
explain heterogeneity in a model.  However, in a choice model, demographic covariates must be 
entered interactively, and it is highly unlikely that an analyst, even with domain knowledge, will 
know the precise structure of the interaction. In this essay, ‘domain knowledge’ was incorporated 
in the first step of the hybrid model.  Initially, all attributes available from the rural choice survey 
were used, but two attributes were removed from any further analysis since they were 
statistically insignificant in a LPM model.  In the data mining hybrid step, no domain knowledge 
was included, because we felt that to do so would weaken the presumption that the MARS-MNL 
technique is generalisable. Although the MARS-MNL hybrid works without any a priori 
knowledge, we assume that marketing managers will use their tacit knowledge to enhance the 
data mining models.   

Using farming choice data, we have shown that the MARS-MNL model accounted for 
observed sources of heterogeneity.  No significant residual unobserved heterogeneity could be 



detected when the MARS basis function transformations were included in a mixed logit model 
(Appendix 9).  Since the omission of a relevant term from a utility function will yield 
heterogeneity (Swait & Louveire 1993; McFadden, 1986) and omitted variable bias (Greene 
1993), the inclusion of proper interactive structure detected by the use of our MARS-MNL 
hybrid will correct for these issues.  Although MARS can handle multi-way interactions, the 
MARS models in this essay were confined to two-way interactions.  This was done to make the 
MARS method more easily interpretable, as higher order interactions of a basis function make 
explanation of the effect difficult (King, Tomz & Wittenberg 2000).  By including the proper 
attribute interaction and transformations, we have shown that the MARS-MNL hybrid model can 
have significant positive impacts for the marketing manager who wants to accurately target a 
marketing mix to Australian farmers.  According to Landmark Farm Services (Annual Report 
2008), investigation of ways to segment the farming retailer market is one of their priorities. 

Although there have existed hybrid MARS-Logit models for interaction detection, there 
have not been any attempts at a MARS discrete choice model hybrid. To check the stability and 
external validity of the MARS-MNL hybrid, we would like to investigate the hybrid technique 
on non-farming datasets.  Since the MARS basis functions in this essay can be thought of as 
functions of errors, observed heterogeneity and unobserved heterogeneity, we can formally 
investigate endogeneity in a choice model similar to a control function approach (Petrin & Train 
2010).  Also, since Allenby, Arora and Ginter (1998) propose that a major source of 
heterogeneity is in choice set formation, we would like to use the MARS technique on revealed 
preference data. Some talks with Sydney research agencies are already underway to address this 
issue.  Finally, there is some evidence of confounding between taste preference heterogeneity 
and the error component (Swait & Bernardino 2000; Hess 2007).  This may indicate that the 
mixed logit model is mis-specified, and a GMNL would perhaps be a more suitable model.  We 
would like to run our MARS basis functions in a GMNL to see if the MARS transformations 
work better or worse in a GMNL setting.   



 

APPENDIX 1 – FARMING CHOICE SURVEY QUESTIONNAIRE 

FIGURE 5: FARMING RETAILER CHOICE SURVEY QUESTION 

 

  



APPENDIX 2 – MAP OF AUSTRALIAN FARM RETAILER LOCATIONS 

FIGURE 6: LOCATIONS OF THE THREE MAJOR FARM RETAILER OUTLETS IN AUSTRALIA 

  



APPENDIX 3 – DESCRIPTION OF MARS BASIS FUNCTIONS 

TABLE 13: MARS BASIS FUNCTIONS USED IN FINAL MODEL 

Basis Function Attribute Transformation 
BF2 max( 0, 0.13 - ATTR15) 
BF3 max( 0, ATTR10E1 + 2) 
BF4 max( 0, ATTR2E1 + 1) 
BF6 max( 0, ATTR9E1 - 1.39972e-009) 
BF7 max( 0, 1.39972e-009 - ATTR9E1) 
BF8 max( 0, ATTR15 + 0.05) 
BF9 max( 0, -0.05 - ATTR15) 
BF10 max( 0, ATTR4E1 - 1.94556e-009) * BF4 
BF11 max( 0, 1.94556e-009 - ATTR4E1) * BF4 
BF12 max( 0, ATTR12E3 + 1.05438e-009) * BF7 
BF14 max( 0, ATTR1E1 + 2) * BF3 
BF16 max( 0, -1 - ATTR2E2) * BF8 
BF17 max( 0, DIST + 232.499) * BF8 
BF18 max( 0, ATTR5E3 - 1) * BF8 
BF19 max( 0, 1 - ATTR5E3) * BF8 
BF20 max( 0, SEC4Q14 - 32) * BF9 
BF22 max( 0, ATTR11E1 + 2) * BF7 
BF24 max( 0, 12 - SEC4Q5) * BF6 
BF25 max( 0, SEC4Q5 - 8) * BF8 
BF26 max( 0, ATTR12E2 + 1) * BF2 
BF29 max( 0, 37 - SEC4Q14) * BF8 
BF31 max( 0, 1 - ATTR5E2) * BF8 
BF32 max( 0, ATTR5E2 - 5.78517e-011) * BF4 
BF33 max( 0, 5.78517e-011 - ATTR5E2) * BF4 
BF36 max( 0, ATTR6E1 + 1.38267e-009) * BF7 
BF38 max( 0, ATTR7E1 + 2) * BF8 
BF40 max( 0, 36250 - SEC4Q17) * BF8 
BF41 max( 0, SEC4Q10 + 0.00234259) * BF8 
BF44 max( 0, STATEE3 + 1) 
BF45 max( 0, ATTR2E2 + 1) * BF44 
BF47 max( 0, ATTR5E2 + 1) * BF8 
BF53 max( 0, 27 - SEC4Q14) * BF44 
BF57 max( 0, SEC4Q2 - 59.5) * BF7 
BF59 max( 0, SEC4Q2 - 67.5) * BF44 



APPENDIX 4 – DEMOGRAPHIC PORTION OF FARMING SURVEY 

TABLE 14: DEMOGRAPHIC QUESTIONS ASKED IN FARMING CHOICE SURVEY 

Scale Variable Demographic Question 
Ratio Sec4Q2 Please tell us your age in years 
Ratio Sec4Q5 Please indicate the highest level of education you have completed in years 
Ratio Sec4Q7 Please indicate the number of bedrooms in your house 
Ratio Sec4Q8 Please indicate the number of persons in your household 
Ratio Sec4Q10 Please indicate your average annual household income (including all household 

members) 
Binary Sec4Q12 Please indicate which of the following applies to your farming property [Fully 

owned] / [Being leased] 
Ratio Sec4Q14 Please indicate the average number of hours worked per week on farming 

related activities 
Ratio Sec4Q15 Please indicate the number of persons engaged in full time farming activities at 

the farm you work at 
Ratio Sec4Q16 Excluding tractors, please indicate the total number of vehicles owned 
Ratio Sec4Q17 Please indicate the revenue generated by your total farming activity in the last 

12 months 
Binary Sec4Q19 Please indicate if you have access the internet 

Nominal State State farm is located in (** Effects code base case was Western Australia**) 
Nominal FarmType Farming Type 

Ratio Hectarage Farm Hectarage 

 

  



APPENDIX 5 – MARS-MIXL WITHOUT PANEL DATA EFFECTS 

TABLE 15: MARS-MIXL MODEL WITH NO PANEL EFFECTS 

MARS Attribute Function MXL Estimate S.E. SD of MXL S.E. 

Constant 0.769 0.497 - - 

Basis Function 2 21.713 6.461 -11.694 4.206 

Basis Function 3 -1.060 0.268 0.515 0.282 

Basis Function 4 -1.562 0.430 0.279 1.225 

Basis Function 6 -0.765 0.272 -0.016 6.393 

Basis Function 8 49.097 12.527 0.008 62.783 

Basis Function 10 0.242 0.112 0.422 0.271 

Basis Function 11 0.625 0.160 0.067 1.397 

Basis Function 12 -0.416 0.149 -0.023 5.426 

Basis Function 14 0.162 0.047 0.107 0.126 

Basis Function 16 -10.663 3.896 -11.074 7.493 

Basis Function 17 -0.077 0.025 0.000 0.281 

Basis Function 18 -5.812 4.029 -0.601 111.720 

Basis Function 19 -2.970 1.027 -0.092 31.604 

Basis Function 20 -0.295 0.126 -0.007 3.658 

Basis Function 22 -0.135 0.050 0.004 1.726 

Basis Function 24 -0.282 0.114 0.817 0.346 

Basis Function 25 -1.308 0.454 0.025 10.981 

Basis Function 26 -1.504 0.661 0.031 32.284 

Basis Function 29 0.320 0.286 -1.741 0.842 

Basis Function 31 -9.065 3.174 -0.057 31.748 

Basis Function 32 0.396 0.192 0.111 1.294 

Basis Function 33 0.273 0.156 -0.601 0.348 

Basis Function 36 -0.168 0.099 -0.225 0.633 

Basis Function 38 -1.081 0.464 -0.095 15.044 

Basis Function 40 0.163 0.075 -0.025 1.580 

Basis Function 41 0.041 0.025 -0.085 0.058 

Basis Function 45 -0.280 0.103 0.060 1.333 

Basis Function 47 -10.283 3.082 0.266 19.650 

Basis Function 53 -0.096 0.062 0.008 1.197 

Basis Function 57 0.059 0.029 0.001 1.189 

Basis Function 59 -0.220 0.102 0.006 2.846 

 LL -2231   

Highlighted coefficients significant at α=.05 level 
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