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Abstract  1 

The effect of duration-matched concurrent exercise training (CET) (50% resistance [RET] and 50% 2 

endurance [EET] training) on physiological training outcomes in untrained, middle-aged men remains 3 

to be elucidated. Forty-seven men (48.1±6.8y; 30.4±4.1kg∙m2) were randomized into 12-wks EET 4 

(40-60min cycling), RET (10 exercises; 3-4 sets×8-10 repetitions), CET (50% serial completion of 5 

RET and EET) or control condition. Intervention-based changes in fitness and strength; abdominal 6 

visceral adipose tissue (VAT), total body fat (TB-FM) and fat-free (TB-FFM) mass; plasma cytokines 7 

(CRP, TNFα, IL-6); muscle protein content of p110α and GLUT4; mRNA expression of GLUT4, 8 

PGC1α/β, cytochrome C oxidase (COX), hexokinase II (HKII), citrate synthase (CS); oral glucose 9 

tolerance and estimated insulin sensitivity were determined. CET promoted commensurate 10 

improvements of aerobic capacity and muscular strength, and reduced VAT and TB-FM equivalently 11 

to EET and RET (P<0.05), yet only RET increased TB-FFM (P<0.05). Although TNFα and IL-6 were 12 

reduced after all training interventions (P<0.05), CRP remained unchanged (P>0.05). EET reduced 13 

area-under-the curve for glucose, insulin and c-peptide, whilst CET and RET respectively reduced 14 

insulin and c-peptide, and c-peptide only (P<0.05). Notwithstanding increased insulin sensitivity 15 

index after all training interventions (P<0.05), no change presented for GLUT4 or p110α total protein, 16 

nor chronic mRNA expression of the studied mitochondrial genes (P>0.05). In middle-aged men, 12-17 

wks duration-matched CET promoted commensurate changes in fitness and strength, abdominal VAT, 18 

plasma cytokines and insulin sensitivity, and an equidistant glucose tolerance response to EET and 19 

RET; despite no change of measured muscle mechanisms associative to insulin action, glucose 20 

transport and mitochondrial function.  21 

Keywords: combined exercise; visceral obesity; interleukin; oral glucose tolerance; GLUT4; PGC1α.   22 
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Introduction 28 

Skeletal muscle mass declines at the rate of ~5% per decade after the age of 30, and is further 29 

accelerated in advancing age and with declining physical activity levels (Drummond, Dreyer et al. 30 

2008). Accompanying this atrophy, are concomitant reductions in mitochondrial and metabolic 31 

functioning, and increases of whole-body adipose, which in men, typically accumulate as visceral 32 

adipose tissue (VAT) in the abdominal region. Importantly, these age- and inactivity-related changes 33 

preclude subclinical abnormalities such as insulin resistance and atherosclerosis, and their clinical 34 

sequelae in type II diabetes (T2D) and cardiovascular disease (CVD) (Benton, Wright et al. 2008; 35 

Evans 2010; Parr, Coffey et al. 2012). Currently, middle-aged populations are advised to engage in 36 

resistance exercise training (RET) to offset atrophic processes and promote gains in muscle mass; and 37 

endurance exercise training (EET) for the augmentation of mitochondrial oxidative capacity and 38 

associated metabolic functioning, and reduction of total-body adipose and abdominal VAT (Haskell, 39 

Lee et al. 2007; Donnelly, Blair et al. 2009; Ismail, Keating et al. 2011; Ross, Hudson et al. 2012).  40 

The serial completion of RET and EET, known as concurrent exercise training (CET), is reported to 41 

offer the respective benefits of RET and EET; however, previous studies of CET have involved 42 

addition of the full respective RET and EET interventions (Glowacki, Martin et al. 2004; Sigal, 43 

Kenny et al. 2007; Sillanpää, Häkkinen et al. 2009; Slentz, Bateman et al. 2011; Libardi, De Souza et 44 

al. 2012; Willis, Slentz et al. 2012). Thus, the metabolic and cardiovascular training outcomes 45 

reported in these studies may have presented due to an exacerbated dose-response rather than the 46 

effects of CET per se (Ross, Hudson et al. 2012). Notably, a recent acute study on untrained middle-47 

aged men showed that duration-matched CET (50% RET + 50% EET) stimulated equivalent 48 

respective increases of myofibrillar and mitochondrial muscle protein synthesis as isolated RE or EE 49 

(Donges, Burd et al. 2012). Given this finding, and that the completion of a full RET plus EET 50 

program may not be temporally nor physically appropriate for initially untrained or time-deficient 51 

middle-aged cohorts, it is important to determine whether duration-matched CET offers comparable 52 

metabolic and cardiovascular health outcomes as completion of isolate RET or EET .   53 
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Specifically, health outcomes that are derivable from exercise training and which reflect a reduction in 54 

risk for T2D and CVD, include: 1) enhanced body composition, as evidenced by reduced abdominal 55 

VAT and total-body fat mass (TB-FM), and increased fat-free mass (TB-FFM) (Donnelly, Smith et al. 56 

2004; Alberti, Zimmet et al. 2005; Ismail, Keating et al. 2011); 2) reduced chronic systemic low-grade 57 

inflammation, as indicated by systemic reductions of C-reactive protein (CRP), and the pro-58 

inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6), and increases of 59 

cytokine receptors such as  TNF-R1, TNF-R2, IL-6R, and IL-1 receptor antagonist (IL-1ra) 60 

(Steensberg, Fischer et al. 2003; Balducci, Zanuso et al. 2010; Libardi, De Souza et al. 2012); 3) 61 

increased insulin sensitivity and glucose uptake, as facilitated via the principal skeletal muscle 62 

glucose transporter 4 (GLUT4) (Goodyear and Kahn 1998; Hawley and Lessard 2008); and 4) 63 

increased mitochondrial functioning and oxidative capacity as reflected by chronically up-regulated 64 

mRNA expression of the mitochondrial co-transcription factors peroxisome proliferator–activated 65 

receptor-γ coactivator-1α (PGC1α) and β (PGC1β), and key mitochondrial and metabolic genes 66 

including cytochrome C oxidase (COX), hexokinase II (HKII), and citrate synthase (CS) (Arany, 67 

Lebrasseur et al. 2007; Tarnopolsky, Rennie et al. 2007; Wright, Han et al. 2007).  68 

Notwithstanding the abovementioned training-induced alleviators of T2D and CVD risk, the literature 69 

lacks information pertaining to the effects of training mode on the aforesaid outcomes in untrained, 70 

overweight middle-aged men. As evidence, a recent meta-analysis of the effects of training mode on 71 

VAT reported that only EET was effective in reducing VAT (Ismail, Keating et al. 2011). However, 72 

this conclusion was drawn despite a large section of data being derived from EET (57%) or female-73 

based studies (F=17; M=5), with only one male-based study comparing an alternate mode of training 74 

(RET) (Ismail, Keating et al. 2011). Furthermore, the literature indicates that cytokine profile may be 75 

improved (decreased TNFα-IL-6-CRP, and increased receptor presence) via reduced abdominal VAT 76 

after EET, or reduced TNFα after RET (Griewe, Cheng et al. 2001; Nicklas and Brinkley 2009; Lavie, 77 

Church et al. 2011); though, CET remains relatively unexamined, with inconsistent findings further 78 

existing for EET and RET (Lakka, Lakka et al. 2005; Nicklas and Brinkley 2009; Febbraio, Rose-79 

John et al. 2010; Lavie, Church et al. 2011). Further, a meta-analysis of T2D participants reported that 80 
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CET was as effective as EET or RET in improving glucose control (Snowling and Hopkins 2006); 81 

although, EET interventions were primarily included (60%), and only one study concomitantly 82 

compared an alternate mode of training (Snowling and Hopkins 2006). Irrespective, the effect that 83 

CET has on glucose tolerance, insulin sensitivity and associative muscle mechanisms (GLUT4, 84 

p110α, PGC1α/β, HKII, CYTC, and CS) remains to be elucidated in untrained, middle-aged men.  85 

The purpose of the present study was to concomitantly compare the effects of duration-matched CET, 86 

to RET and EET, in addition to a non-exercising control condition, for changes in known risk factors 87 

that are prognostically indicative of T2D and CVD. Given the recent finding of an equivalent acute 88 

response of duration-matched CET to RET and EET, we hypothesized that CET would promote 89 

commensurate training outcomes for the abovementioned training outcomes as RET or EET. 90 

Methods 91 

Participants 92 

Forty-seven middle-aged (40-65y) men volunteered for this study (baseline participant data is 93 

presented in Table 1). Participants were sedentary at study baseline, which was defined as no regular 94 

pattern of planned or incidental exercise or physical activity >1d∙ wk-1 in the preceding 12 months. A 95 

physician overviewed participants medical history and pre-intervention data for pre-existing or new 96 

diabetes (fasting plasma glucose 7.0 mmol∙L-1; 2 h post-challenge plasma glucose >11.1 mmol∙L-1), 97 

cardiovascular disease, renal or hepatic disorders, immunological irregularities, abnormal leukocyte 98 

sub-populations, rheumatoid or osteo-arthritis, periodontal disease, chronic obstructive pulmonary 99 

disease, and any other condition associated with systemic inflammatory responses. Participants 100 

confirmed as having these conditions, or those taking lipid-lowering, anti-hypertensive, anti-101 

inflammatory, or other potentially confounding medications were not involved in this study. 102 

Participants were provided with written and verbal information pertaining to testing and training 103 

procedures, and provided written informed consent prior to becoming involved in this study, which 104 

was approved by the institutional ethics committee and conformed to standards for the use of human 105 

subjects in research as outlined in the fifth revision of the Declaration of Helsinki. 106 
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Study Overview 107 

After pre-screening and recruitment, all study participants attended an information seminar where all 108 

procedures were explained and discussed, including the maintenance of pre-intervention dietary 109 

patterns and avoidance of additional physical activity. Participants then attended a familiarization 110 

session where all aspects of testing and training were explained, demonstrated and rehearsed. After 111 

familiarization, participants attended two testing sessions in which the first test session involved 112 

computed tomography (CT) of the abdominal AT compartments, collection of a muscle biopsy from 113 

m. vastus lateralis, and a 2h 75g oral glucose tolerance test (OGTT). One week later, participants 114 

underwent a supine dual-energy x-ray absorptiometry (DXA) scan, followed by body mass, height, 115 

and waist and hip girth measurements, and further completed graded exercise and strength testing. 116 

Participants were then randomized into endurance (EET; n=13), resistance (RET; n=13) or combined 117 

(CET; n=13) exercise training or a non-exercising control condition (CON; n=8). Participants in the 118 

exercise groups completed 12-wk, 3∙d ∙wk-1 fully supervised, periodized and progressive programs, 119 

while the CON group maintained diet and physical activity patterns. After the 12-wk study period, 120 

participants returned to the laboratories, and in a standardized manner repeated all testing procedures.  121 

Restriction of Dietary and Physical Activity Alterations  122 

During the pre-study information seminar, all control and exercise group participants were verbally 123 

(and in writing via provided study information booklets) informed of the importance of maintaining 124 

their recent previous dietary and physical activity patterns. Accordingly, all participants were required 125 

to maintain food and beverage type, macronutrient composition, cooking preparation, portion size, 126 

consumption time, etc. as closely as possible to pre-study patterns during the 12-wk study period. 127 

Regarding physical activity control, although completely sedentary at study baseline, control 128 

participants were required to not engage in any additional planned or incidental physical activity, nor 129 

reduce any incidental activity. Participants in the exercise interventions were also requested to 130 

maintain their recent previous incidental physical activity patterns and to not engage in any additional 131 

planned or incidental physical activities during the 12-wk study period. 132 

Exercise Interventions 133 
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Endurance Exercise Training  134 

EET participants completed a program consisting primarily of cycle ergometry (CE) (828E, Monark 135 

Exercise AB, Varburg, Sweden) with elliptical cross training (XT) included mid-session to enhance 136 

training variety and adherence. Training started at 40min∙session (15minCE:10minXT:15minCE) for 137 

wks 1-4, and increased to 50min∙session (20CE:10XT:20CE) and 60 min∙session (20CE:20XT:20CE) 138 

for wks 5-8 and 9-12, respectively. EET participants exercised at 75% and 80% of age-predicted 139 

maximal heart rate (HRmax) (INBAR, OREN et al. 1994) for wks 1-4, and 5-12, respectively. 140 

Resistance Exercise Training  141 

RET participants completed a whole-body training program including chest and shoulder press, seated 142 

rows, lat pulldown, leg press, leg curls, lunges, machine squats, and deadlifts. Participants completed 143 

3×10 of each exercise at 75% of predicted 1RM  for wks 1-4 (as described previously; (Donges, 144 

Duffield et al. 2010); and 4×8 at 80% 1RM for wks 5-12. In the first session of wks 5 and 9, 1RM was 145 

assessed and training resistance was altered accordingly. Participants completed a 5min warm-up on a 146 

rowing ergometer (Model D, Concept II, Morrisville, VT, USA), and subsequently completed the 147 

prescribed exercises in an alternating manner from upper- to lower-body, and completed compound 148 

multi-joint exercises (machine squats, deadlifts) prior to isolation exercises (leg curl, shoulder press). 149 

Combined Exercise Training  150 

CET participants serially completed 50% of the RET and 50% of the EET sessions. CET participants 151 

performed the same exercises on the same equipment, at the same relative intensity, and in the same 152 

order as RET and EET participants. For wks 1-4, 1.5 ×10 of each RE were completed at 75% 1RM, 153 

and was followed by 20min of EET at 75% HRmax (7.5CE:5XT:7.5CE). The second half set (5 154 

repetitions) was completed at the same absolute resistance as the first set (10 repetitions) as to avoid 155 

having participants lift at a greater percent of RM for the second set (made possible due to reduced 156 

repetitions). For wks 5-8 and 9-12, participants completed 2×8 of RE at 80% 1RM, with 25 and 157 

30min of EE at 80% HRmax (10CE:5XT:10CE) being respectively completed post-RE. As per RET, 158 

1RM was assessed in wks 5 and 9 and lift resistance was altered accordingly. 159 
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Pilot RPE and VO2 Consumption Testing of Exercise Modes  160 

Despite the matching of modes for session duration, it is well accepted that matching EET and RET 161 

for their respective “energy costs”, as is typically verified via VO2 measurement, may be tenuous 162 

(Gaesser and Brooks 1984). Given that participants were sedentary at baseline, we chose to match the 163 

training programs according to session duration and session rating of perceived exertion (s-RPE), 164 

recorded 10min post-exercise. Pilot VO2 data (K4b2, Cosmed, Rome, Italy) were collected from a 165 

“representative” mid-program (wk-6) session, and included: EET = 50min cycle ergometry at 75% 166 

HRmax; RET = 10 exercises, 4×8 at 75% 1RM; CET = 25min cycle ergometry at 75% HRmax + 10 167 

exercises of 2×8 at 75% 1RM. Despite the matching of duration and s-RPE between modes, 168 

significant differences in VO2 were evident between EET (VO2 mean = 24.6 ml∙kg-1∙min-1; VO2 AUC 169 

= 4917 ml∙kg-1∙min-1) and RET (VO2 mean = 12.3 ml∙kg-1∙min-1; VO2 AUC = 2457 ml∙kg-1∙min-1), 170 

with CET showing an equidistant VO2 response between the EET and RET modes (VO2 mean = 19.4 171 

ml∙kg-1∙min-1; VO2 AUC = 3874 ml∙kg-1∙min-1 P<0.05). Notwithstanding that the above exercise 172 

training methodology may represent appropriate training stimuli for initially untrained, overweight 173 

cohorts; subsequent training outcomes should be interpreted according to the abovementioned 174 

differences in the session-based VO2 response.  175 

Measures 176 

Computed Tomography 177 

Participants presented in lightweight clothing, voided the bladder, and were positioned as central as 178 

possible in the gantry regarding vertex-pubis symphysis alignment. An anterior-posterior scanogram 179 

(scout radiograph) of the lower abdomen and pelvis was conducted using a 64-slice multi-detector CT 180 

(Toshiba Aquilion, Toshiba Medical Systems, Tokyo, Japan). A volume acquisition compartment 77 181 

mm in length was obtained (120 kv, 50 mA and 0.5 sec tube rotation) cephalically from the superior 182 

end-plate of L4 during suspended inspiration. After scanning, eleven 7.0 mm contiguous axial images 183 

were reconstructed in a maximal display field of view (500 mm) for volume calculation with an 184 

attenuation range of -180 to -30 Hounsfield units, and the total (TAT), VAT and subcutaneous (SAT) 185 

compartments were determined as described previously (Couillard, Bergeron et al. 1999). 186 
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Muscle Biopsy Collection 187 

After CT scan procedures, participants underwent procedures for the collection of a muscle biopsy 188 

from m. vastus lateralis at a site ~ 15cm superior to the patella. After administration of a local 189 

anaesthetic (2% plain Lignocaine), a 5mm Bergstrom needle modified with suction was inserted 190 

into an incision site for collection of a specimen which upon excision was promptly blotted on 191 

filter paper, removed of visible fat or connective tissue, frozen in liquid nitrogen, and stored at -192 

80°C for ensuing Western blot and real-time polymerase chain reaction (RT-PCR) analyses. 193 

OGTT and Venous Collection 194 

After biopsy procedures, participants promptly underwent a 2h OGTT. For 3 days prior, participants 195 

had avoided physical activity and consumed >200 g∙day-1 carbohydrate to help promote saturation of 196 

hepatic/muscular glycogen stores (Matsuda and DeFronzo 1999). During the 3 day period, diet was 197 

documented, and was checked for conformity by the research team, and replicated prior to the post-198 

intervention OGTT. In the 24h prior to each OGTT, participants abstained from alcohol, and for 10h 199 

prior, had remained fasted, consuming only small amounts of water. After arrival, a catheter was 200 

inserted into an antecubital vein and a baseline blood sample (~20 mL) was drawn. Participants then 201 

ingested a 75g glucose beverage (Lomb Scientific, Thermo Fischer Scientific, NSW) in <5 min. 202 

Further blood samples (~10 mL) were drawn at 30min intervals post-ingestion. The trapezoidal rule 203 

was applied in calculating AUC for glucose, insulin and c-peptide (Le Floch, Escuyer et al. 1990).  204 

Dual-Energy X-ray Absorptiometry and Anthropometry  205 

Participants presented for test session two in a fasted (10h overnight) state in lightweight clothing free 206 

of metal-based accessories, and underwent dual-energy x-ray absorptiometry (DXA) to begin 207 

procedures. Participants were positioned centrally on the table of the DXA machine (Norland XR800, 208 

Cooper Surgical Company, Turnbull, CT, USA) and a supine total-body scan was carried out in which 209 

scanning resolution and speed were set at 6.5×13.0 mm and 260 mm∙sec-1, respectively. Analysis of 210 

the scan (Illuminatus DXA, version 4.2.0, Turnbull, CT, USA) resulted in FM and FFM, reported 211 

both in absolute (0.1 kg) and relative (0.1 %) terms. Following scanning procedures, nude body mass, 212 

height, and waist and hip girth measurements were further obtained for each participant. 213 
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Exercise Testing  214 

After DXA procedures, participants then completed a submaximal graded exercise test (GXT) on an 215 

electronically-braked cycle ergometer (LODE Excalibur Sport, LODE BV, Groningen, The 216 

Netherlands). The GXT commenced at 25W, and increased by 25W∙min-1 until telemetry-based heart 217 

rate (Vantage NV, Polar, Finland) reached 80% of HRmax (Donges, Duffield et al. 2010). During the 218 

GXT, pulmonary gas exchange was measured by determining O2 and CO2 concentrations and 219 

ventilation to calculate VO2 consumption using a calibrated metabolic gas analysis system (TrueOne 220 

2400 metabolic system; Parvomedics; Sandy, Utah, USA). After ~30 min passive rest, and a 5 min 221 

light intensity warm-up on a rowing ergometer (Model D, Concept II, Morrisville, VT, USA ) 222 

participants underwent 5 repetition-maximum (5RM) strength testing of the lower- and upper-body on 223 

a 45° leg press and seated chest press machine, respectively (Pannatta Sport, Apiro, Italy). 224 

Participants completed a set with light resistance to ensure machine adjustment (documented and 225 

standardized for post-testing). 5RM testing normally required 2 to 3 attempts (2 to 3 sets) with each 226 

attempt separated by ~3 min rest. 5RM strength testing procedures were utilized to identify strength 227 

whilst also minimizing soreness (due to participant’s sedentary condition). As described previously, 228 

measured 5RM enabled approximation of the initial training resistance (Donges, Duffield et al. 2010). 229 

Blood Analysis 230 

Collected venous blood samples were aliquoted into fluoride oxalate tubes for analysis of glucose; 231 

lithium heparin tubes for analysis of insulin and c-peptide; EDTA tubes for cytokines; and SST for 232 

analysis of CRP, total cholesterol, high- and low-density lipoprotein cholesterol, and triglycerides. 233 

Samples were centrifuged at 3,500 rpm for 15 min at 4°C and stored at -80°C. All analytes were 234 

analysed according to the manufacturer instructions of the respective kits (Dade Behring Dimension 235 

Xpand, Siemens Diagnostics; Bio-Rad Variant HPLC, Sydney, Australia) as previously described in 236 

detail elsewhere (Donges, Duffield et al. 2010). Intra- and inter-assay co-efficient of variation (CV) 237 

were less than 5.2% for all measured analytes. Cytokines were analyzed in duplicate according to 238 

manufacturer’s instructions with commercially available enzyme-linked immunosorbent kits 239 

(Quantikine®, R&D Systems, Minneapolis, MN). Intra- and inter-assay CV (highest CV is reported) 240 
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for the kits were: <4.6 % for TNFα (DTA00C); <3.7 % for TNF-R1 (DRT100); <3.5 % for TNF-R2 241 

(DRT200); <8.0 % for IL-1ra (DRA00B); <3.3 % for IL-6 (D6050); <4.2 % for IL-6R (DR600). 242 

Western Blot and RT-PCR Analysis 243 

For Western blot procedures, powdered muscle was homogenized in ice-cold lysis buffer and 244 

extracted proteins were quantified using a BCA protein assay kit (Pierce, Auckland, New Zealand) 245 

(full procedural description is provided elsewhere (Donges, Burd et al. 2012). 50 μg of protein was 246 

then boiled and vortexed at 99°C for 7 min, loaded, separated by SDS-PAGE, and transferred to 247 

polyvinylidene difluoride membranes. After subsequent blocking procedures, membranes were 248 

incubated overnight at 4°C on a rocker with polyclonal antibodies (1:1000; Cell Signaling 249 

Technologies [CST], Auckland, New Zealand) specific for GLUT4 and p110α total protein and α-250 

tubulin as a loading control. Detection with secondary antibodies (1:2000; horseradish peroxidase-251 

conjugated goat anti-rabbit; Dako, Carpinteria, CA, USA) and enhanced chemiluminescence (ECL-252 

Plus; Amersham Biosciences, Auckland, New Zealand) was made using a phosphorimager (FLA 253 

4000, Fujifilm, Valhalla, NY, USA), and quantified by densitometry (Multi-gauge v3.0, Fujifilm, 254 

Valhalla, NY, USA). Pre- and post-intervention samples related to each person were run in adjacent 255 

lanes on the same gel.  256 

 For RT-PCR procedures (full procedural description is provided elsewhere; (Donges, Burd et 257 

al. 2012), powdered muscle was homogenized, and RNA isolated with TRIzol®Plus reagent 258 

(Invitrogen, Carlsbad, CA, USA) and chloroform, respectively. Isolated RNA was then mixed with 259 

glycogen in DEPC-tx H2O and 1-Propanol in order to precipitate the RNA, which was tested for 260 

concentration and purity with a spectrophotometer (NanoDrop 1000 UV-Vis, NanoDrop® 261 

Technologies, New Zealand), and tested for size and density using an Agilent 2100 Expert 262 

Bioanalyser with the RNA 6000 Nano LabChip kit (Agilent technologies, Palo Alto, California, 263 

USA). Mean RNA integrity number (RIN) of RNA included in the study was 8.8±0.4; range of RIN: 264 

7.4-9.2. RNA were then subsequently treated with DNase 1 (Invitrogen, Carlsbad, CA, USA), 265 

reverse-transcribed using a TaqMan® SuperScript™ VILO cDNA synthesis kit (Invitrogen, Carlsbad, 266 

CA, USA). TaqMan® Universal PCR Master Mix™ and TaqMan® Gene Expression assays (Perkin-267 
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Elmer Applied Biosystems, Foster City, CA, USA) were then used to analyze mRNA of GLUT4 268 

(Hs00168966_m1); PGC1α (Hs01016722_m1); PGC1β (Hs00991677_m1); COX (Hs02574374_s1); 269 

HKII (Hs00606086_m1); CS (Hs01588973_m1); and glyceraldehyde-3-phosphate dehydrogenase 270 

(Hs99999905_m1). All samples for each participant were simultaneously analyzed in triplicate in one 271 

assay run. PCR was performed using a7900HT Fast Real-Time PCR System and SDS 2.3 software 272 

(Perkin-Elmer Applied Biosystems, Foster City, CA, USA). Measurements of the relative distribution 273 

of each target gene were performed for each participant, then a cycle threshold (CT) value was 274 

obtained by subtracting GAPDH CT values from the respective target gene CT values, and the 275 

expression of the target gene was then evaluated by the ΔΔCT algorithm (Pfaffl, Horgan et al. 2002).   276 

Calculations 277 

Insulin-sensitivity composite index (ISIcomp) was calculated according to the method of  Matsuda and 278 

DeFronzo (Matsuda and DeFronzo 1999) as: 10000 / √ (Glu0 × Ins0 × Glumean × Insmean), where Glumean 279 

and Insmean respectively represent mean plasma glucose and insulin concentrations during the OGTT 280 

(0-120 min inclusive). 281 

Statistical Analysis 282 

Data are presented as mean ± standard error of mean (SEM). One-way analysis of variance (ANOVA) 283 

tests were employed to examine baseline differences between groups. Subsequent to this, repeated 284 

measures two-way ANOVA (condition × time) tests were conducted to examine pre- to post-285 

intervention changes within and between groups for aerobic capacity, muscular strength, body 286 

composition, plasma cytokines, muscle protein content, mRNA expression, glucose tolerance and 287 

insulin sensitivity. Tukey’s HSD tests were applied post-hoc to determine the source of significance, 288 

which was set a priori P≤0.05. Data were checked and confirmed for normality of distribution via 289 

plotted analysis of change scores and baseline values (within-group), and Mauchley’s sphericity tests 290 

(between group). Graphpad Prism© software and the trapezoidal rule were used to determine area 291 

under-the-curve (AUC) for the hormonal responses to the OGTT, with repeated measures ANOVA 292 

tests used to compare pre- and post-intervention differences within and between groups. All other 293 

statistical analyses were conducted with PASW Statistics (version 18.0 SPSS Inc, Chicago, IL).  294 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00168966_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=GLUT4&kwdropdown=all_GE&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
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Results 295 

Intervention Compliance, and Aerobic Capacity and Muscular Strength Changes 296 

All participants in the EET, RET, and CET groups attended and completed no fewer than 30 of the 36 297 

supervised training sessions, with mean session attendance and completion rates of 33 of 36 sessions 298 

(92%±7%) for all three groups. Aerobic capacity and muscular strength data are presented in Table 2. 299 

At baseline there were no differences of aerobic capacity between groups (P>0.05); although the CON 300 

had greater lower-body strength than the RET group (P<0.05). There was no change of aerobic 301 

capacity or muscular strength after the CON intervention (P>0.05). In contrast, the EET intervention 302 

increased VO2 (L∙min-1 and ml∙kg-1∙min-1), time taken to reach 80% HRmax, and workload at 80% 303 

HRmax. The CET intervention also increased the abovementioned aerobic capacity measures (P<0.05), 304 

though no differences were evident following RET (P>0.05). Between-group comparisons revealed 305 

that EET increased VO2 (L∙min-1 and ml∙kg-1∙min-1) and workload at 80% HRmax more than the CON 306 

group (P<0.05); whereas CET increased these same measures greater than the CON and also the RET 307 

group (P<0.05). Following RET and CET, both upper- and lower-body strength were increased in 308 

each group (P<0.05); whilst only lower-body strength was increased after EET (P<0.05). 309 

Nevertheless, between-group analyses revealed that both the upper- and lower-body strength increases 310 

by the RET and CET groups were greater than that of both the EET and CON groups (P<0.05). 311 

Total-Body Composition and Abdominal AT Compartmental Changes 312 

Total-body (TB) composition and abdominal AT data are presented in Table 3. At study baseline, the 313 

EET group had greater body mass and absolute TB-FM compared to the CET group (P<0.05); yet, no 314 

other differences existed between groups (P>0.05). After the CON intervention, only a reduction of 315 

absolute TB-FFM was evident (P<0.05). In contrast, the EET intervention reduced body mass (P<0.05 316 

vs. RET), with a reduction of absolute TB-FM (P<0.05 vs. CON), as well as a trend towards reduction 317 

of TB-FFM (P=0.07). In contrast, the RET intervention did not alter body mass (P>0.05); however, 318 

absolute TB-FFM increased (P<0.05 vs. EET), promoting an increase of relative TB-FM (P<0.05) 319 

despite no change of absolute TB-FM (P>0.05). The CET group concomitantly decreased and 320 

increased absolute TB-FM and TB-FFM (P<0.05), thus resulting in an increase of relative FM 321 
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(P<0.05 vs. CON). All three training interventions reduced abdominal VAT and SAT post-training 322 

(P<0.05), without differences between training groups or to the CON group (P>0.05). 323 

CRP and Inflammatory Cytokine Changes  324 

CRP and inflammatory cytokine data are presented in Table 4. At study baseline, differences were 325 

evident for basal concentrations of the studied cytokines (Table 4). Despite these baseline differences, 326 

no changes of CRP or inflammatory cytokine concentrations were observed after the CON period 327 

(P<0.05). Further, CRP, TNF-R1, IL-6R and IL-1ra concentrations remained unaltered in response to 328 

the training interventions (P>0.05). Conversely, all training interventions reduced IL-6 and TNFα 329 

concentrations (P<0.05), whilst EET promoted an increase of TNF-R2 concentration (P<0.05). 330 

OGTT AUC Blood Chemistry Changes  331 

Mode-specific AUC responses for glucose, insulin and c-peptide are presented in Figure 1. At study 332 

baseline, total AUC for insulin was greater in the EET group than the CON group (P<0.05). After the 333 

12-wk period, there was no change of total AUC observed for the CON group (P>0.05). Conversely, 334 

the EET intervention resulted in reduced total AUC for glucose, insulin, and c-peptide post-training 335 

(P<0.05), while the CET intervention resulted in reduced total AUC for insulin and c-peptide 336 

(P<0.05). However, the RET intervention promoted reduced total AUC for c-peptide only (P<0.05).  337 

Total Protein Content, mRNA Expression and Estimated Insulin Sensitivity 338 

Representative blots for total protein of GLUT4, p110α and α-tubulin (A) and fold-change data for 339 

mRNA expression of GLUT4, PGC1α, PGC1β, COX, HKII, and CS (B) are presented in Figure 2; 340 

whilst estimated insulin functioning data are presented in Figure 3. There was no change of total 341 

protein content of GLUT4 or p110α, or chronic mRNA expression of any of the studied genes after 342 

training in any exercise mode (P>0.05). ISIcomp was significantly greater after all training modes 343 

(P<0.05), without differences between groups for these increases (P>0.05). 344 

        345 
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Discussion 346 

In contrast to previous research that has investigated RET, EET and CET (Glowacki, Martin et al. 347 

2004; Sigal, Kenny et al. 2007; Sillanpää, Häkkinen et al. 2009; Libardi, De Souza et al. 2012), the 348 

current study employed a design in which CET participants serially completed 50% of a RET and an 349 

EET session, rather than a full session of each mode (i.e. double the dose). Even so, in the current 350 

study despite 50% less EET in each session, CET increased aerobic capacity to a similar extent as 351 

EET (based on the heart rate and VO2 responses to graded exercise testing). In addition, no 352 

differences existed between CET and RET for gains in upper-body or lower-body muscular strength. 353 

These findings of equivalent conditioning-based responses of CET are analogous to previous post-354 

training outcomes in isolated modes (Glowacki, Martin et al. 2004; Libardi, De Souza et al. 2012); 355 

however, the current data demonstrates for the first time that concurrent completion of both a full 356 

RET and a full EET session is not obligatory for equivalent induction of isolate-mode conditioning 357 

responses in initially untrained, overweight middle-aged men.  358 

The findings of this study also provide favourable evidence for the effects of duration-matched CET 359 

on TB-FM; where unlike EET and RET, CET promoted equal reduction of absolute and relative FM. 360 

However, an important distinction between CET and RET, is that RET promoted changes of FFM that 361 

were not observed in CET. Previously we have shown in untrained middle-aged men that duration-362 

matched CET promotes acute myofibrillar FSR to the same extent as RET (Donges, Burd et al. 2012). 363 

Collectively, the acute FSR and above finding imply that the RET component of CET may preserve 364 

increases of FFM during EET-induced reductions of FM (considering a trend for reduction of FFM 365 

after EET). Furthermore, despite not reducing absolute TB-FM to the extent of CET (-6.1%) or EET 366 

(-4.5%), RET (-2.8%) promoted equivalent reduction of abdominal VAT. Accordingly, these results 367 

provide information for the first time that the extent of FM reduction (in a 12-wk, 3d/wk program) 368 

may not accurately reflect underlying effects on abdominal VAT. Thus, our data corroborate with a 369 

recent meta-analysis (Ismail, Keating et al. 2011) in that whilst a dose-response relationship between 370 

energy expenditure and weight loss appears reasonable, corresponding effects on TB-FM and VAT 371 

may not be associated. This finding is supported by other randomized controlled trials that have also 372 
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reported VAT reduction without corresponding weight loss (Slentz, Aiken et al. 2005; Johnson, 373 

Sachinwalla et al. 2009). Additional research is needed to elucidate responsible mechanisms for the 374 

VAT reduction after RET; although, evidence indicates that intensity-derived lipolytic hormones such 375 

as growth hormone and hormone sensitive lipase may play a role (Beauregard, Utz et al. 2008). 376 

Previous investigations have reported abdominal VAT to be an important contributor to circulating 377 

plasma concentrations of IL-6 and TNFα (Mohamed-Ali, Goodrick et al. 1997; Fried, Bunkin et al. 378 

1998; Berg and Scherer 2005). Given that IL-6 and TNFα can stimulate and induce hepatic synthesis 379 

of CRP; a reduction of these markers would liken a reduction of basal CRP concentration (Yudkin, 380 

Stehouwer et al. 1999; Berg and Scherer 2005), and thus reduce prospective T2D (Pradhan, Manson 381 

et al. 2001) and CVD (Ridker, Hennekens et al. 2000) risk. Despite reduced abdominal VAT, and 382 

plasma IL-6 and TNFα concentration after all modes, no corresponding effects on CRP concentration 383 

were evident. Previously, Lakka et al. (Lakka, Lakka et al. 2005) reported no effect of EET on CRP 384 

concentration in participants with low (<1.0 mg∙L-1) or moderate (1.0-3.0 mg∙L-1) baseline 385 

concentrations; yet, a reduction was reported in participants with high concentrations (>3.0 mg∙L-1). 386 

Moreover, we have previously observed a reduction of CRP (3.6 mg∙L-1 to 2.4 mg∙L-1) after 10-wk 387 

RET, and a trend (P=0.06) for EET to do the same (3.6 mg∙L-1 to 3.0 mg∙L-1) (Donges, Duffield et al. 388 

2010). As the participants in our previous and current studies were similar with respect to age, body 389 

composition and physical conditioning, the lower baseline concentration of 1.6-2.3 mg∙L-1 of 390 

participants in this study provides additional credence for the notion postulated by Lakka et al. 391 

(Lakka, Lakka et al. 2005) of a “regression towards a mean” effect (25); whereby CRP concentrations 392 

further elevated from the mean may be reduced to a greater extent. As such, despite reductions of 393 

systemic drivers of CRP synthesis and release (TNFα and IL-6), training did not reduce CRP 394 

concentration, owing to the prospect that concentrations were not elevated to a great enough extent 395 

(>3.0 mg∙L-1) to warrant reduction within the studied 12-wk period. 396 

Limited evidence exists for the effects of exercise training on concentrations of receptors capable of 397 

binding and inactivating pro-inflammatory cytokine activity (Febbraio, Rose-John et al. 2010). 398 
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Importantly, receptors such as TNF-R1 and TNF-R2, IL-6R, and IL-1ra, are suggested to offer 399 

respective anti-inflammatory properties via maintenance of reduced basal chronic TNFα, IL-6 and IL-400 

1β concentrations (Ostrowski, Rohde et al. 1999; Febbraio, Rose-John et al. 2010). Our data revealed 401 

no effect of training on TNF-R1, IL-6R or IL-1ra concentrations; with only TNF-R2 being increased 402 

after EET. It has been postulated that increased presence of the TNF receptors permits greater binding 403 

and inhibitory activity of TNFα, thus endearing an anti-inflammatory effect within systemic 404 

circulatory tissues (Ostrowski, Rohde et al. 1999; Pai, Pischon et al. 2004). Given that TNFα was 405 

reduced more so after EET (-26%), than RET (-12%) or CET (-16%), it may be that an increased 406 

presence of TNF-R2 was influential in this response. Similarly, it has been postulated that increased 407 

systemic circulatory presence of IL-6R offers anti-inflammatory properties, where increased IL-6R 408 

presence is indicative of increased IL-6 binding, thus offering suppression of pro-inflammation as 409 

indicated via reduced basal IL-6 concentration (Keller, Penkowa et al. 2005; Febbraio, Rose-John et 410 

al. 2010). In this study, we observed IL-6 reductions after all training modes; yet there was no 411 

corresponding increase in IL-6R presence. Thus, our findings are not congruent with the aforesaid 412 

physiological affiliation and suggest a need for further research in elucidating the effects of exercise 413 

training on inflammatory cytokines and their associated receptors. 414 

The effect that differing modes of training have on glucose tolerance in non-diabetic, overweight 415 

middle-aged men remains limited and inconsistent in the current literature. Of the previously 416 

mentioned studies investigating EET, RET or CET (Glowacki, Martin et al. 2004; Sigal, Kenny et al. 417 

2007; Libardi, De Souza et al. 2012), none investigated glucose tolerance. The current study revealed 418 

that EET offered the greatest reduction in glucose, insulin and c-peptide AUC. Given the beneficial 419 

EET response, the lack of effect of RET on glucose and c-peptide AUC responses suggests that it was 420 

likely the EET, more so than the RET component of CET, that promoted the observed c-peptide and 421 

insulin AUC responses to CET. Other studies have reported decreased glucose and insulin AUC after 422 

EET or RET, and similar to the data here, with no between-group differences for AUC changes 423 

(Smutok, Reece et al. 1994; Rice, Janssen et al. 1999). Of these studies, one investigated EET and 424 

RET changes in combination with calorie restriction (Rice, Janssen et al. 1999), whilst the other 425 
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incorporated a notable difference in training frequency and session duration (EET = 5 d∙wk-1 [60min] 426 

vs. RET [30min] = 3 d∙wk-1) (Smutok, Reece et al. 1994). Consequently, these methodological 427 

discrepancies make it difficult to respectively determine the isolated effect of EET (Rice, Janssen et 428 

al. 1999), or the dose-specific response (Smutok, Reece et al. 1994) from these studies. In a recent 429 

study of EET, RET and CET on glucose tolerance in middle-aged men (Sillanpää, Häkkinen et al. 430 

2009), CET participants completed both the full EET and RET programs; however, there was no 431 

reduction of glucose or insulin AUC (Sillanpää, Häkkinen et al. 2009). As such, the data from the 432 

current study provides novel information regarding duration-matched effects of all three training 433 

modes on glucose, insulin and c-peptide AUC in middle-aged men; with EET promoting the greatest 434 

reductions in AUC, while CET demonstrated a greater effect than RET alone. 435 

Whilst not separating peripheral from central insulin resistance, ISI (comp) provides estimation of 436 

whole-body insulin sensitivity in the context of both hepatic and peripheral tissues, considers insulin 437 

sensitivity in the basal state, and is reported to correlate highly with corresponding euglycaemic-438 

insulin clamp results (Matsuda and DeFronzo 1999). In the current study, all modes significantly 439 

increased ISI (comp), with no differences between modes for these increases. Improvements in insulin 440 

action in skeletal muscle is mediated through facilitation of insulin signalling via the PI3K catalytic 441 

sub-unit p110α, GLUT4-mediated trafficking of cytosolic glucose, and enhanced glucose utilization 442 

and turnover in response to augmented mitochondrial function (Goodyear and Kahn 1998; Hawley 443 

and Lessard 2008). However, a surprising finding here is the lack of change in these skeletal muscle 444 

measures post-training. Whilst not measured here, the improvement in glucose tolerance (considering 445 

no change in GLUT4 membrane/cytosolic content) may be partly attributed to an increase in glucose 446 

effectiveness, which can account for up to 50% of glucose transport/uptake (Sakamoto, Higaki et al. 447 

1999). We recently demonstrated that compared to EE, duration-matched CE was equally effective in 448 

acutely increasing mitochondrial FSR, and acutely up-regulating and expressing PGC1α and PGC1β 449 

mRNA (Donges, Burd et al. 2012). However in this study, phosphorylation and mRNA expression of 450 

GLUT4 remained unaltered post-exercise; furthermore, HKII mRNA expression was acutely up-451 

regulated after EE (though not RE or CE), whilst COX and CS mRNA expression did not change 452 
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(Donges, Burd et al. 2012). Collectively, these acute and chronic findings from an analogous middle-453 

aged cohort highlight similarities in GLUT4/COX/CS responses with no change of phosphorylation 454 

status/mRNA expression after a single bout (Donges, Burd et al. 2012); thus lending credence to the 455 

finding of no change in chronic levels of protein content/expression as reported here. Thus, in future 456 

studies of untrained middle-aged populations, it may be difficult, though more pertinent to measure 457 

GLUT4 translocation and associated PI3-kinase activity, rather than GLUT4 and p110α abundance.  458 

In consideration of the above acute and chronic responses, why PGC1α/β/HKII expression was 459 

increased acutely in previous research of these modes (Donges, Burd et al. 2012), yet remained 460 

unchanged with respect to chronic expression here, remains unclear. Although speculative, it may be 461 

that single exercise bouts in untrained, overweight, middle-aged men, provide acute stimulation of 462 

mitochondrial FSR and PGC1α/β suggesting initiation of mitochondrial biogenesis (Donges, Burd et 463 

al. 2012). However, the chronic expression of  PGC1α/β and further mitochondrial adaptation may be 464 

inhibited or down-regulated by other factors pertaining to age and genetic time-course i.e. increased 465 

calpain and caspase expression (Chen, Gong et al. 2000). Furthermore, age-related deleterious 466 

processes regarding mitochondrial dysfunction, such as up-regulated nuclear factor kappa β 467 

expression or reduced expression of longevity factors such as sirtuin 1 may also contribute to the lack 468 

of post-training mitochondrial marker expression (Lagouge, Argmann et al. 2006; Kramer and 469 

Goodyear 2007). Nonetheless, further corroboration of acute and chronic molecular muscle responses 470 

in middle-aged cohorts is warranted to elucidate the potential skeletal muscle molecular pathways 471 

responsible for the dose-specific adaptations to glucose regulation and insulin sensitivity noted earlier. 472 

Whilst this study provides novel integrated adiposity, inflammation and glucose regulation data that 473 

are absent from the current literature, there are several limitations that should be considered when 474 

interpreting the study data. As reported earlier, it was not an exclusive purpose of this study to match 475 

the training modes for metabolic cost; although, our pilot VO2 data did evidence differences between 476 

exercise modes, which may represent a bias in assumed energy expenditure and therefore related 477 

training outcomes (i.e. body composition, glucose tolerance, etc.). In addition, although VO2 478 
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consumption was measured during a representative exercise bout, it may be ensuing post-exercise 479 

VO2 responses that further assist explanation of the study data. Lastly, it should be acknowledged that 480 

although efforts were made by the research team to inform participants of the importance of 481 

maintaining their pre-study dietary habits at baseline and repeatedly throughout the interventions, and 482 

though diet was documented, overviewed by the research team, and replicated by participants prior to 483 

each test session, complete control of diet was not possible.  484 

In conclusion, the data of this study show that duration-matched CET respectively increased measures 485 

of aerobic capacity and muscular strength equivalently to EET and RET. The body composition data 486 

indicate an equivalent effect of training on abdominal VAT; yet, the reduction of VAT in response to 487 

RET is a finding of note, as RET did not reduce absolute TB-FM. Moreover, where EET may show a 488 

tendency for FFM reduction in the wake of FM reduction, CET offers FFM preservation in addition to 489 

FM reduction. Nevertheless, despite VAT and TB-FM reduction, and reductions of TNFα and IL-6, 490 

there was no corresponding reduction of CRP concentration, nor concentrations of cytokine receptors 491 

(TNF-R1, IL-6R, IL-1ra). The OGTT data revealed that EET reduced AUC for glucose, insulin and c-492 

peptide, where CET reduced insulin and c-peptide, and RET reduced c-peptide only. Lastly, all 493 

training modes increased estimated insulin-sensitivity, despite no change of total protein content of 494 

GLUT4 and p110α, nor mRNA expression of GLUT4, PGC1α/β, COX, HKII, or CS, thus 495 

emphasizing a need for further examination of other unstudied skeletal muscle mechanisms.  In 496 

summary, for an identical time investment, duration-matched CET improved physical conditioning, 497 

abdominal VAT, relative TB-FM, plasma TNFɑ and IL-6, and ISI as either full RET or full EET; 498 

however, RET and EET respectively evidenced a greater capacity to increase FFM and reduce the 499 

OGTT hormonal response. 500 
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Table 1. Baseline Subject Characteristic Data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure      EET (1)        RET (2)     CET (3)     CON (4)  

Age (yr) 45.4 ± 1.7  51.7 ± 2.1  46.2 ± 1.4  49.5 ± 2.6  

Height (cm) 179.0 ± 1.4  180.3 ± 1.3  179.0 ± 1.7  176.5 ± 0.01  

Body Mass (kg) 103.1 ± 4.6 ^2 96.4 ± 3.3  96.4 ± 1.7  92.2 ± 6.9  

BMI (kg-1∙m2) 32.0 ± 1.3  29.7 ± 0.9  30.2 ± 0.7  29.6 ± 2.1  

Waist girth (cm) 104.8 ± 3.1  103.3 ± 2.2  101.3 ± 1.9  100.9 ± 4.3  

WHR 0.96 ± 0.02  0.98 ± 0.02  0.96 ± 0.02  0.97 ± 0.02  

Total cholesterol (mmol∙L-1) 5.27 ± 0.27  4.87 ± 0.18  5.76 ± 0.32 ^2 4.83 ± 0.45  

LDL cholesterol (mmol∙L-1) 3.08 ± 0.23  2.92 ± 0.17  3.58 ± 0.26 ^2 2.86 ± 0.38  

HDL cholesterol (mmol∙L-1) 1.30 ± 0.07  1.29 ± 0.07  1.39 ± 0.07  1.26 ± 0.14  

Triglycerides (mmol∙L-1) 2.00 ± 0.39  1.45 ± 0.19  1.69 ± 0.15  1.56 ± 0.31  

Glucose (mg∙dL-1) 5.62 ± 0.14  5.35 ± 0.13  5.53 ± 0.15  5.48 ± 0.19  

Insulin (µIU∙mL-1) 12.8 ± 2.3  11.5 ± 1.8  13.1 ± 2.9  10.4 ± 2.5  

C-peptide (ng∙mL-1) 2.83 ± 0.33  2.64 ± 0.22  2.45 ± 0.19  2.47 ± 0.44  

HbA1c (%) 5.4 ± 0.1  5.3 ± 0.1  5.3 ± 0.1  5.4 ± 0.1  

Data are reported as mean ± standard error of the mean. EET (1), endurance exercise group, n=13; RET (2), 

resistance exercise group, n=13; CET (3), concurrent exercise group, n=13; CON (4), control group, n=8. BMI, 

body mass index; WHR, waist to hip ratio; LDL, low-density lipoprotein; HDL, high-density lipoprotein; HbA1c, 

glycosylated haemoglobin. ^Significant difference to denoted (1-4) group at baseline (P<0.05). 
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Table 2. Aerobic Exercise Capacity and Muscular Strength Data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure     EET (1)       RET (2)     CET (3)    CON (4)  

VO2 at 80% HRmax Pre 2.30 ± 0.14   1.94 ± 0.11  2.01 ± 0.12  2.07 ± 0.20  

(Lmin-1) Post 2.89 ± 0.17 * 2.17 ± 0.15  2.70 ± 0.11 * 2.06 ± 0.19  

 % Δ +27 ± 6 †4 +13 ± 7  +37 ± 7 †2,4 +2 ± 7  

VO2 at 80% HRmax Pre 22.5 ± 1.4   20.3 ± 1.1   21.0 ± 1.3   22.8 ± 2.1   

(mlkg-1
min-1) Post 28.6 ± 1.2  * 22.8 ± 1.6   28.3 ± 1.2  * 22.9 ± 2.5   

 % Δ +30 ± 6 †4 +13 ± 7  +38 ± 6 †2,4 +2 ± 8  

Time to 80% HRmax  Pre 444 ± 20   374 ± 22  401 ± 28   354 ± 42   

(sec) Post 549 ± 35  * 392 ± 28   521 ± 29  * 314 ± 54   

 % Δ +23 ± 5 †4 +6 ± 6  +35 ± 9 †4 -5 ± 17  

Workload at 80% HRmax  Pre 198 ± 9  169 ± 9  179 ± 11  159 ± 17  

(Watts) Post 240 ± 14 * 171 ± 12  227 ± 11 * 144 ± 24  

 % Δ +21 ± 4 †4 +2 ± 7   +30 ± 7 †2,4 -3 ± 17  

Leg press Pre 148 ± 13  130 ± 10  156 ± 11  190 ± 13 ^2 

(kg) Post 186 ± 16 * 258 ± 15 * 267 ± 19 * 183 ± 16  

 % Δ +28 ± 6  +99 ± 10  †1,4 +73 ± 9 †1,4 -4 ± 7  

Chest press Pre 66 ± 3  53 ± 4  67 ± 2  62 ± 5  

(kg) Post 73 ± 4  87 ± 4 * 92 ± 4 * 64 ± 7  

 % Δ +11 ± 5  +68 ± 11 †1,4 +38 ± 2 †1,4 +3 ± 4  

Data are reported as mean ± standard error of the mean. EET (1), endurance exercise group, n=13; RET (2), resistance 

exercise group, n=13; CET (3), concurrent exercise group, n=13; CON (4), control group, n=8. % Δ = mean percent 

change from baseline (pre-intervention). ^Significant difference to denoted (1-4) group at baseline (P<0.05); 

*Significant within-group change from baseline (P<0.05); †Significant between-group change from baseline (P<0.05). 

HRmax, heart rate maximum. 
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Table 3 - Body Composition and Abdominal Adipose Tissue Data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure     EET (1)       RET (2)     CET (3)    CON (4)  

Body mass (kg) Pre 103.1 ± 4.6 ^3 96.4 ± 3.3  96.4 ± 1.7  92.2 ± 6.9  

 Post 101.1 ± 4.4 * 96.6 ± 3.4  95.7 ± 1.7  92.3 ± 7.2  

 % Δ -1.9 ± 0.7 †2 +0.2 ± 0.2  -0.7 ± 0.7  +0.1 ± 0.6  

TB-FFM (kg) Pre 72.1 ± 2.6  67.5 ± 1.8  71.0 ± 1.4  67.4 ± 3.7  

 Post 71.5 ± 2.4  68.5 ± 1.9 * 71.7 ± 1.3  66.9 ± 3.7 * 

 % Δ -0.8 ± 0.7  +1.5 ± 0.6 †1 +1.1 ± 0.5  -0.8 ± 0.3  

TB-FM (kg) Pre 29.7 ± 2.5 ^3 27.5 ± 2.0  23.6 ± 1.4  23.2 ± 3.8  

 Post 28.4 ± 2.4 * 26.8 ± 2.0  22.2 ± 1.5 * 23.9 ± 4.1  

 % Δ -4.5 ± 1.6 †4 -2.8 ± 1.1  -6.1 ± 2.4 †4 +2.4 ± 2.5  

TB-FM (%) Pre 27.8 ± 1.3  27.6 ± 1.4  24.0 ± 1.2  23.9 ± 2.2  

 Post 27.0 ± 1.3 * 26.8 ± 1.3 * 22.6 ± 1.3 * 24.4 ± 2.3  

 % Δ -2.8 ± 1.2  -2.9 ± 1.0  -5.6 ± 1.9 †4 +2.2 ± 2.1  

SAT (cm2) Pre 2382 ± 155  2177 ± 122  2144 ± 141  2039 ± 205  

 Post 2263 ± 139 * 2102 ± 133 * 2048 ± 141 * 2071 ± 225  

 % Δ -4.4 ± 1.7  -4.0 ± 1.7  -4.4 ± 1.7  +1.8 ± 1.6  

VAT (cm2) Pre 1371 ± 113  1451 ± 114  1251 ± 133  1383 ± 164  

 Post 1222 ± 100 * 1269 ± 106 * 1100 ± 95 * 1349 ± 145  

 % Δ -10.3 ± 2.3  -12.2 ± 2.6  -8.6 ± 4.2  -0.7 ± 1.5  

Data are reported as mean ± standard error of the mean. EET (1), endurance exercise group, n=13; RET (2), 

resistance exercise group, n=13; CET (3), concurrent exercise group, n=13; CON (4), control group, n=8. % Δ = 

mean percent change from baseline (pre-intervention). ^Significant difference to denoted (1-4) group at baseline 

(P<0.05); *Significant within-group change from baseline (P<0.05); †Significant between-group change from 

baseline (P<0.05). TB-FM, total body fat mass; TB-FFM, total body fat free mass; SAT, subcutaneous adipose 

tissue; VAT, abdominal visceral adipose tissue. 
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Table 4. Plasma CRP and Inflammatory Cytokine Data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measure    EET (1)      RET (2)    CET (3)    CON (4)  

CRP (mgL-1) Pre 2.25 ± 0.37   2.21 ± 0.30  1.88 ± 0.27  1.60 ± 0.09  

 Post 2.33 ± 0.21  2.38 ± 0.31  1.91 ± 0.34  1.89 ± 0.32  

 % Δ +3 ± 13  +8 ± 9  +1 ± 14  +18 ± 19  

TNFα (pgmL-1) Pre 4.42 ± 0.33  7.14 ± 0.43 ^1 5.21 ± 0.66  6.11 ± 0.25 ^1 

 Post 3.29 ± 0.29 * 6.23 ± 0.32 * 4.39 ± 0.41 * 6.19 ± 0.33  

 % Δ -26 ± 10  -12 ± 5  -16 ± 10  +1 ± 7  

TNF-R1 (pgmL-1) Pre 166 ± 8  149 ± 8  140 ± 7  139 ± 12  

 Post 168 ± 8  157 ± 9  133 ± 6  138 ± 11  

 % Δ +1 ± 2  +5 ± 3  -5 ± 3  -1 ± 2  

TNF-R2 (pgmL-1) Pre 320 ± 13 ^3,4 315 ± 18 ^3,4 257 ± 13  247 (72)  

 Post 330 ± 13 * 297 ± 15  262 ± 16  247 (86)  

 % Δ +3 ± 1  -6 ±6  +2 ± 4  +1 ± 3  

IL-6 (pgmL-1) Pre 1.94 ± 0.31  2.74 ± 0.69  2.35 ± 0.31  1.93 ± 0.60  

 Post 1.28 ± 0.26 * 1.84 ± 0.53 * 1.91 ± 0.26 * 1.88 ± 0.94  

 % Δ -34 ± 11  -33 ± 18  -19 ± 6  -3 ± 19  

IL-6R (pgmL-1) Pre 693 ± 48  739 ± 50  743 ± 63  691 ± 71  

 Post 719 ± 48  684 ± 48  674 ± 60  653 ± 83  

 % Δ +4 ± 4  -7 ± 4  -9 ± 1  -6 ± 2  

IL-1ra (pgmL-1) Pre 572 ± 51  484 ± 48  692 ± 36 ^2,4 496 ± 87  

 Post 557 ± 49  474 ± 44  676 ± 55  496 ± 77  

 % Δ -3 ± 7  -2 ± 12  -2 ± 8  +1 ± 15  

Data are reported as mean ± standard error of the mean. EET (1), endurance exercise group, n=13; RET (2), 

resistance exercise group, n=13; CET (3), concurrent exercise group, n=13; CON (4), control group, n=8. % Δ = 

mean percent change from baseline (pre-intervention). ^Significant difference to denoted (1-4) group at baseline 

(P<0.05); *Significant within-group change from baseline (P<0.05); †Significant between-group change from 

baseline (P<0.05). CRP, C-reactive protein; TNFα, tumor necrosis factor α; TNF-R1, TNF receptor one; TNF-

R2, TNF receptor two; IL-6, interleukin 6; IL-6R, IL-6 receptor; IL-1ra, IL-1 receptor antagonist. 
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Figure Legends 

Figure 1. 

Data are total concentration area under-the-curve (AUC) reported as mean ± standard error of mean 

for: (A) glucose; (B) insulin; (C) C-peptide, measured after EET (1), endurance exercise training, 

n=13; RET (2), resistance exercise training, n=13; CET (3), combined exercise training, n=13; CON 

(4), control condition, n=8. ^Pre-intervention difference to EET (P<0.05); *Different to pre-

intervention (P<0.05). 

Figure 2. 

(A) Representative blots of total protein measured pre- and post-intervention following EET, 

endurance exercise training; RET, resistance exercise training; CET, combined exercise training; 

CON, non-exercising control group. GLUT4, glucose transporter 4; p110α, phosphoinositide-3-kinase 

catalytic subunit α. (B) Data are mean ± standard error of mean fold-changes of mRNA expression 

measured pre- and post-intervention following EET, endurance exercise training; RET, resistance 

exercise training; CET, combined exercise training; CON, non-exercising control group. GLUT4, 

glucose transporter 4; peroxisome proliferator–activated receptor-γ coactivator-1 α (PGC1α) and β 

(PGC1β); COX, cytochrome C oxidase; HKII, hexokinase II; and CS, citrate synthase. 

Figure 3. 

Data are relative changes (Δ) of estimated insulin sensitivity composite index (estISI (comp)) reported 

as mean ± standard error of mean, following EET (1), endurance exercise training, n=13; RET (2), 

resistance exercise training, n=13; CET (3), combined exercise training, n=13; CON (4), control 

condition, n=8. *Different to pre-intervention (P<0.05). 

 


