
PHYSICAL REVIEW A 87, 012337 (2013)

Removing measurements from quantum walks

Shenggang Ying* and Mingsheng Ying
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China, and Centre for Quantum Computation and
Intelligent Systems (QCIS), Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia

(Received 11 October 2012; published 31 January 2013)

Quantum walks are very useful tools in designing quantum algorithms. Amplitude amplification is a key
technique to increase the success probability of a quantum-walk-based algorithm, and it is quadratically faster
than classical probabilistic amplification. However, amplitude amplification only applies to quantum walks with
one-shot hitting time, where no measurements except a final one are performed, and not to quantum walks with
concurrent hitting time, where measurements happen or absorbing boundaries exist at each step. In this paper,
we propose a procedure to modify quantum walks with concurrent hitting time by removing measurements from
them. This procedure enables us to use amplitude amplification to design algorithms based on the modified
quantum walks which are faster than those based on the original walks with a concurrent hitting time and more
robust than those based on the corresponding walks with a one-shot hitting time.

DOI: 10.1103/PhysRevA.87.012337 PACS number(s): 03.67.Lx, 05.40.Fb, 03.67.Ac

I. INTRODUCTION

Classical random walks are widely employed in developing
probabilistic algorithms, such as the famous Schöning algo-
rithm for k-satisfiability (k-SAT) [1]. Essentially, the success
probability and time complexity (average success time) of
these probabilistic algorithms are just the hitting probability
and hitting time of the underlying random walks, respectively.
To increase the success probability, the probability amplifica-
tion technique is frequently used in the design of probabilistic
algorithms: if an algorithm A of complexity O(f (n)) with
input size n has a success probability p, then a new algorithm
B of complexity O(f (n)/p) with success probability O(1)
can be derived by repeating A O(1/p) times.

A discrete-time quantum walk was defined in [2] as
the quantum extension of a classical random walk, and its
universality in quantum computation was examined in [3]. A
class of quantum search algorithms provides typical examples
of quantum-walk-based algorithms. Usually, quantum search
algorithms have at least quadratic speedup over their classical
counterparts; a representative example is Grover’s algorithm
[4], which can find the unique desired element in an unordered
database of N elements in time O(

√
N). It was shown that

quantum-walk-based search algorithms can perform as well
as Grover’s algorithm [5], and some even better than it in
certain situations where Grover’s algorithm does not work well
[6]. Recently, several other quantum-walk-based algorithms
rather than search have also been proposed; for example,
quantum-walk algorithms for element distinctness [7] and for
the triangle problem [8]. It is worth noting that in some cases,
quantum walks can even be exponentially more powerful
than classical random walks, that is, quantum walks will hit
the target position exponentially faster than classical random
walks [9,10].

As in the classical case, the success probability and hitting
time of quantum walks are two key factors in the analysis of

*yingshenggang@gmail.com

quantum-walk-based algorithms. The methods of analyzing
success probability can be relatively easily generalized from
classical random walks to quantum walks. For example, a
quantum type of amplification technique, namely, amplitude
amplification, was introduced by Brassard et al. [11]: a
quantum algorithm B with success probability O(1) can be
derived by repeating a quantum algorithm A with probability
p O(1/

√
p) times, where no measurements except the final

one are performed.
Analyzing the hitting time of quantum walks is much more

difficult than in the classical case. Indeed, the notion of the
hitting time of a random walk splits into two variants in the
quantum setting: the one-shot hitting time and the concurrent
hitting time [10,12]. Roughly speaking, the one-shot hitting
time is the hitting time of quantum walks without absorbing
boundaries (measurements), and the concurrent hitting time
is the hitting time of quantum walks with absorbing bound-
aries (measurements). The hitting times with and without
boundaries are the same for classical random walks, but
they do not coincide in quantum walks because quantum
measurement will change the state of the measured systems.
Usually, a quantum-walk-based algorithm can employ an
oracle-controlled coin operator to get a desired one-shot hitting
time [5,6,13]. Furthermore, we are able to use amplitude
amplification to improve the performance of the quantum
algorithms in which only one-shot hitting time is considered.
However, only classical amplification can be directly used
to increase the success probability of quantum algorithms
with the concurrent hitting time because the intermediate
measurements will alter the amplitudes of the involved
systems.

In this paper, we present a novel approach to quantum walks
so that amplitude amplification technique can also be used to
speed up the concurrent hitting time of quantum walks. The
basic idea is as follows: for a given quantum walkW , we find a
new quantum walk W ′ that employs no measurements except
the final output and has the same concurrent hitting time as the
original quantum walk W . Then amplitude amplification can
be applied to W ′ instead of W , leaving the behavior of W ′
outside the target states the same as that of W .

012337-11050-2947/2013/87(1)/012337(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.012337

SHENGGANG YING AND MINGSHENG YING PHYSICAL REVIEW A 87, 012337 (2013)

The paper is organized as follows: Sec. II contains neces-
sary preliminaries, including quantum walks, their absorbing
boundaries, and their hitting times. Our main idea of removing
measurements from quantum walks is explained in Sec. III, and
some applications are presented in Sec. IV. The advantages of
our approach to quantum walks are further discussed in Sec. V.

II. PRELIMINARIES

In this section, we recall some necessary definitions of
quantum walks and fix the notations used in the subsequent
sections. For more details, we refer to [5,6,10–14].

A. Discrete-time quantum walks

Let G = (V,E) be a d-regular graph, where V is the set
of vertices and may be finite, say a hypercube, or infinite,
say a lattice, and E is the set of edges. The Hilbert space of
a quantum walk on this graph is defined as H = Hp ⊗ Hc,
where

Hp = span{|x〉 : x ∈ V }
stands for the position space, and

Hc = span{|i〉 : i = 1, . . . ,d}
stands for the coin space. A single step of the walk is described
by the unitary evolution U = S · C, where

S =
∑
i,x

|ni(x)〉〈x| ⊗ |i〉〈i|,

ni(x) maps a node x to its ith adjacent node, C = (Ip ⊗ C0), Ip

is the identity operator on Hp, and C0 is an unitary operator on
Hc, called the coin operator. Denote the initial state |φ0〉 ∈ H.
Then after t steps, the state of the walk is |φt 〉 = Ut |φ0〉.

B. Absorbing boundary

The quantum walks considered in the previous subsections
contain no absorbing boundaries. Now we see how the
behavior of walks is changed when absorbing boundaries
are inserted. An absorbing boundary is often defined by a
projective measurement [14,15]. More precisely, if we set an
absorbing boundary at position v ∈ V , then at each step, we do
the measurement {P1 = |v〉〈v|,P0 = I − P1} in the position
space after the evolution operator U is applied. If the outcome
is 1, this means we find the particle at position v, then the walk
stops. Otherwise it continues. Let

Ũ = (P0 ⊗ Ic)U = [(Ip − |v〉〈v|) ⊗ Ic]U, (1)

where Ic is the identity operator on the coin space Hc. The
probability that the particle is absorbed at time t is

pt = ||(|v〉〈v| ⊗ Ic)UŨ t−1|φ0〉||2, (2)

while the state left at time t becomes

|φ̃t 〉 = Ũ t |φ0〉. (3)

Note that here |φ̃t 〉 is not normalized and |||φ̃t 〉||2 is the
probability that the outcomes of the first t measurements are
all 0.

C. Hitting time

Two definitions of hitting time were introduced by Kempe
in [10]. The first one is for quantum walks without absorbing
boundaries.

Definition 1: One-shot hitting time. Consider a quantum
walk with single-step evolution U . We say that the walk has
a (T ,p) one-shot (|φ0〉,|v〉) hitting time if the probability of
measuring state |v〉 at time T starting in |φ0〉 is not smaller
than p, that is, ||〈v|UT |φ0〉||2 � p.

The second notion of hitting time is defined for quantum
walks with absorbing boundaries.

Definition 2: Concurrent hitting time. Consider a quantum
walk with single-step evolution U . We say that this walk has a
(T ,p) concurrent (|φ0〉,|v〉) hitting time if the walk with initial
state |φ0〉 and absorbing boundary at position |v〉 has a prob-
ability � p of stopping at time t � T , that is,

∑
t�T pt � p,

where pt is defined by Eq. (2).

D. Quantum-walk-based search algorithms

There are mainly two kinds of quantum-walk-based al-
gorithms, one without measurements and the other with
measurements. The basic idea to use a quantum walk without
measurements to search the desired state is to replace the
original coin operator C with a target-state-controlled coin
operator,

C ′ = (Ip − |v〉〈v|) ⊗ C0 + |v〉〈v| ⊗ C1,

where v is the target state, and C1 is usually taken as −C0 or
−I . The operator C ′ can be implemented by using an oracle
(see [5]). After t steps of evolution U ′ = S · C ′, the state of
the walk is |φt 〉 = U ′t |φ0〉. Then we can measure the position
space to get an answer with a certain probability p.

In applications, a step number T is usually preset and then
the success probability depending on T can be computed. For
example, for the algorithm presented in [5], we have T =√

Nπ/2 and p = 1 − O(1/n), where N = 2n; and for the
algorithm in [6], T = O(

√
N log N), p = �(1/ log N), and

thus after amplitude amplification, the target can be found
with probability O(1) and complexity O(

√
N log N).

Another kind of quantum-walk-based algorithm performs
measurements at each step to see if the desired element is
found (e.g., see [10]). In a sense, the first kind is based on
quantum walks with a one-shot hitting time, and the second is
based on those with a concurrent hitting time.

E. Amplitude amplification

Amplitude amplification is a technique for increasing the
success probability by iterations. Let us divide the position
Hilbert space Hp of a quantum walk into the direct sum of two
subspaces: the good space

H1 = span{|x〉 : f (x) = 1}
and the bad space

H0 = span{|x〉 : f (x) = 0},
where f is the solution function, that is,

f (x) =
{

1 x is a desired position, i.e., a solution,
0 otherwise. (4)

012337-2

REMOVING MEASUREMENTS FROM QUANTUM WALKS PHYSICAL REVIEW A 87, 012337 (2013)

We further set S0 = −2|0〉〈0| + I and Sf = −IH1 + IH0 . The
following very useful theorem was proved in [11].

Theorem 1 Amplitude amplification. Let A be a quantum
algorithm without measurements, with initial state |φ0〉 = |0〉
and success probability p. Let D = −AS0A−1Sf and m =
�π/4θp	, where sin2(θp) = p and θp ∈ [0,π/2]. If we measure
DmA|0〉, then we can get the solution with success probability
max{p,1 − p}.

Obviously, if p is small, then θp = �(
√

p) and the iteration
number m = O(1/

√
p).

III. REMOVING MEASUREMENTS
FROM QUANTUM WALKS

As shown in Theorem 1, one can use the amplitude am-
plification technique to improve the performance of quantum
algorithms without measurement. But amplitude amplification
cannot directly apply to quantum walks with absorbing
boundaries because certain measurements occur between their
different steps. The aim of this section is to remove these
measurements, leaving the concerned performance of the
walks unchanged.

A. Design

Given a quantum walk with position space Hp, coin
space Hc, single-step evolution U , and absorbing boundary at
position |v〉, we first enlarge the Hilbert space of the quantum
walk by adding the step counting space Hs so that the whole
state space is

H = Hs ⊗ Hp ⊗ Hc,

where Hs = span{|i〉 : 0 � i � T }, and T is a presumed
bound of the step number. The unitary of a single step of
the walk becomes

V = |0〉〈0| ⊗ U + (Is − |0〉〈0|) ⊗ Ip,c, (5)

where Ip,c = Ip ⊗ Ic, and Is , Ip, and Ic are identity operators
on Hs , Hp, and Hc, respectively. At each step, after V is
applied, we perform an additional controlled unitary on Hs :

W = P ⊗ Q ⊗ Ic + Is ⊗ (Ip − Q) ⊗ Ic, (6)

where P is a permutation matrix,

P = |0〉〈T | +
T −1∑
i=0

|i + 1〉〈i|,

and Q is the projector onto the target subspace of Hp, i.e., the
good space H1 = span{|x〉 : f (x) = 1}. The circuit for W · V

is displayed in Fig. 1, and it can be further realized by using an
oracle, as shown in Fig. 2. In Fig. 2, the oracle Uf is defined

FIG. 1. Circuit of the modified walks.

FIG. 2. Circuit of the modified walks for implementation.

by

Uf : |x〉|y〉 → |x〉|y ⊕ f (x)〉, (7)

as in [12], where f (x) is defined by Eq. (4).

B. Evolution

Now the original walk with state spaceHp ⊗ Hc and single-
step unitary U is modified to a walk in Hilbert space Hs ⊗
Hp ⊗ Hc whose single-step evolution is WV . If the modified
walk starts in initial state |ψ0〉, then its state after t steps is
|ψt 〉 = (WV)t |ψ0〉. Denote

Ũ = (Ip,c − Q ⊗ Ic)U = (Ip,c − |v〉〈v| ⊗ Ic)U. (8)

It is an operator on Hp ⊗ Hc.
Lemma 1. Let the initial state |ψ0〉 = |0〉|φ0〉, where |φ0〉 ∈

Hp ⊗ Hc. Then for any t � T , the state of the modified walk
after t steps is

|ψt 〉 = |0〉(Ũ t |φ0〉) +
t∑

i=1

|i〉(Q ⊗ Ic)UŨ t−i |φ0〉. (9)

Proof. We proceed by induction on t . First, we have the
induction basis:

|ψ1〉 = WV |0〉|φ0〉
= W (|0〉〈0| ⊗ U + (Is − |0〉〈0|) ⊗ Ip,c)|0〉|φ0〉
= (P ⊗ Q ⊗ Ic + Is ⊗ (Ip − Q) ⊗ Ic)|0〉(U |φ0〉)
= |1〉((Q ⊗ Ic)U |φ0〉) + |0〉((Ip,c − Q ⊗ Ic)U |φ0〉)
= |1〉((Q ⊗ Ic)U |φ0〉) + |0〉(Ũ |φ0〉).

Now we suppose that Eq. (9) is true for t = m, that is,

|ψm〉 = |0〉(Ũm|φ0〉) +
m∑

i=1

|i〉(Q ⊗ Ic)UŨm−i |φ0〉.

We observe that

WV |i〉|φ〉 = W (|0〉〈0| ⊗ U + (Is − |0〉〈0|) ⊗ Ip,c)|i〉|φ〉
= (P ⊗ Q ⊗ Ic + Is ⊗ (Ip − Q) ⊗ Ic)|i〉|φ〉
= |i + 1〉|φ〉

if 0 < i < T and (Q ⊗ Ic)|φ〉 = |φ〉. Therefore, if m + 1 � T ,
it holds that

|ψm+1〉 = WV |ψm〉

= WV (|0〉(Ũm|φ0〉) +
m∑

i=1

|i〉(Q ⊗ Ic)UŨm−i |φ0〉)

= |1〉((Q ⊗ Ic)U (Ũm|φ0〉)) + |0〉(Ũ (Ũm|φ0〉))

012337-3

SHENGGANG YING AND MINGSHENG YING PHYSICAL REVIEW A 87, 012337 (2013)

+
m∑

i=1

|i + 1〉((Q ⊗ Ic)UŨm−i |φ0〉)

= |0〉(Ũm+1|φ0〉) +
m+1∑
i=1

|i〉(Q ⊗ Ic)UŨm+1−i |φ0〉.

So, Eq. (9) is also true for t = m + 1, and we complete the
proof.

Now we are able to show that outside the target subspace,
the behavior of the modified walk is the same as that of the
original walk with absorbing boundaries.

Proposition 1. For any t � T , we have

Is ⊗ (Ip − Q) ⊗ Ic|ψt 〉 = |0〉|φ̃t 〉,
where |φ̃t 〉 is given by Eq. (3).

Proof. It can be immediately derived from Eq. (9) by a step
of direct calculation.

On the other hand, the next theorem clarifies the relationship
among the concurrent hitting time of the the original walk, the
one-shot hitting time of the modified walk, and the concurrent
hitting time of the modified walk

Theorem 2. The following three statements are equivalent
to each other.

(1) The original walk has a (T ,p) concurrent (|φ0〉,|v〉)
hitting time.

(2) The modified walk has a (T ,p) one-shot (|0〉|φ0〉,|v〉)
hitting time.

(3) The modified walk has a (T ,p) concurrent (|0〉|φ0〉,|v〉)
hitting time.

Proof. Put Q = |v〉〈v|. It suffices to show that all clauses,
1, 2, and 3, are equivalent to∑

t�T

pt � p. (10)

Equivalence between Clause 1 and Eq. (10) is simply by
definition.

Now we prove that Clause 2 ⇔ Eq. (10). From Lemma 1,
the one-shot hitting probability of the modified walk at time T

is

p{T } = ||Is ⊗ Q ⊗ Ic|ψt 〉||2

=
∥∥∥∥∥

T∑
i=1

|i〉(Q ⊗ Ic)UŨT −i |φ0〉
∥∥∥∥∥

2

=
T∑

i=1

‖(Q ⊗ Ic)UŨT −i |φ0〉‖2

=
T∑

i=1

pT −i+1 =
T∑

i=1

pi,

where pi is defined as in Eq. (2). Thus from the definition, we
have that Clause 2 ⇔ ∑

t�T pt � p.
Finally, we show that Clause 3 ⇔ Eq. (10). Since

(Is ⊗ (Ip − Q) ⊗ Ic)WV = (Is ⊗ (Ip − Q) ⊗ Ic)V

and V |0〉|φ〉 = |0〉 ⊗ U |φ〉, we have

(Is ⊗ (Ip − Q) ⊗ Ic)V |0〉|φ〉 = |0〉 ⊗ Ũ |φ〉.

Thus, by induction, it is easy to show that the probability that
the particle of the modified walk is found at time t is just pt ,
defined in Eq. (2), if the initial state is |ψ0〉 = |0〉|φ0〉, and
there is an absorbing boundary at position v. Consequently,
Clause 3 ⇔ Eq. (10).

Finally, we are ready to present the main result of this
section, showing how the amplitude amplification technique
can be employed to speed up the algorithms based on quantum
walks with a concurrent hitting time. Suppose that W is a
quantum walk with absorbing boundaries and has a (T ,p)
concurrent (|0〉,|v〉) hitting time. The number of evolution
steps is up to T . Repeating W O(1/p) times will lead to a
algorithm with success probability O(1) and time complexity
O(T/p).

Theorem 3. Let A denote the unitary evolution of the walk
modified from W . Then a new algorithm B = DmA|0〉 with
time complexity O(T/

√
p) and success probability O(1) can

be derived, where D, m are defined as in Theorem 1.
Proof. From Proposition 1 and Theorem 2, we see that

the modified walk has a (T ,p) one-shot hitting time, while
its behavior outside the target subspace is the same as that
of the original walk with absorbing boundaries. Since no
measurement, excluding the final one, is performed on the
modified walk, we can employ amplitude amplification to
speed up the algorithm based on the modified walk, and
algorithm B can be derived.

IV. APPLICATIONS

In this section, we present some applications of the modified
quantum walks to show how the main result from the last
section works.

A. One-dimensional quantum walks with absorbing boundaries

We first consider one-dimensional quantum walks with
absorbing boundaries [14,15]. Let the position space Hp =
span{|i〉:i ∈ Z} and the coin space Hc = span{|R〉 = |0〉,
|L〉 = |1〉}. The unitary evolution of every step is defined as
U = S · (Ip ⊗ C0), where the coin operator

C0 =
(√

a
√

b√
b −√

a

)
, (11)

a,b ∈ [0,1], a + b = 1, and the shift operator

S =
∑

|x + 1〉〈x| ⊗ |R〉〈R| +
∑

|x − 1〉〈x| ⊗ |L〉〈L|.
(12)

The absorbing boundary is set at the origin, i.e., Q = |0〉〈0|.
The eventual absorbing probability can be calculated by the
method of generating function; for details, we refer to [15].

Now let Algorithm A0 stand for the algorithm directly based
on this quantum walk: Algorithm A0 runs Ũ again and again
until the the target |v〉 is found, where Ũ is obtained from U

and |v〉 according to Eq. (1). On the other hand, we apply the
amplitude amplification to derive a new algorithm based on
the walk modified from the above walk. This new algorithm is
described as follows.

012337-4

REMOVING MEASUREMENTS FROM QUANTUM WALKS PHYSICAL REVIEW A 87, 012337 (2013)

Algorithm A1. We set A = (WV)T , where W and V

are defined by Eq. (6) and Eq. (5), respectively. The one-
step evolution in V is U = S(Ip ⊗ C0), where C0 is given
by Eq. (11), and S by Eq. (12). We further set S0 =
−2|ψ0〉〈ψ0| + I in Theorem 1, where I is the identity operator
on Hs ⊗ Hp ⊗ Hc and |ψ0〉 is the initial state. Finally, the
algorithm can be expressed by B = DmA|ψ0〉, where D and
m are defined as in Theorem 1. A routine calculation yields
m = π/(4 arcsin

√
Prob0), where Prob0 denotes the success

probability of A|0〉, i.e., p in Theorem 1 and Theorem 3.
Obviously, Prob0 and m are dependent on T , |ψ0〉, and a in
C0, in the above algorithm.

In order to see that Algorithm A1 can speed up the success
process, we compare it with Algorithm A0 as well as the
following algorithm.

Algorithm A2. This algorithm runs the original walk with an
absorbing boundary at the origin up to T steps. If the particle
is not found, we restart the walk. To state it explicitly, we set
Ũ as in Eq. (1) and run Ũ on the initial state |ψ0〉 T times.
Then we reset the state to be the initial state and apply Ũ T

times again. We repeat this process until the particle is found.
The success probabilities versus the number of oracle calls

are plotted in Figs. 3–8. A part of Fig. 8 is enlarged as Fig. 9
so that it can be seen more clearly. In each figure, the red line
is the success probability of Algorithm A1; in other words, it
is the success probability of finding the particle at the origin, if
we perform a measurement at that step. The dashed (blue) line
with crosses is that of the success probability of Algorithm
A2, and the dashed (green) line with circles is the success
probability of Algorithm A0.

It is worth noting that the solid (red) lines are plotted every
two steps, since each step of Algorithm A1 costs two oracle
calls, and in contrast, every step of Algorithm A2 or Algorithm
A0 only costs one oracle call. Furthermore, B = DmA|ψ0〉

FIG. 3. (Color online) The success probability versus the number
of oracle calls. The initial conditions are a = 0.5, |ψ0〉 = |03R〉, and
T = 3. Thus the initial success probability Prob0 = 0.125 and m = 2.
The solid (red) line, dashed (blue) line with crosses, and dashed
(green) line with circles are, successively, success probabilities of
Algorithm A1, Algorithm A2, and Algorithm A0, respectively. The
dashed (green) line with circles is plotted as a scale. The solid (red)
line is indeed the success probability of finding the particle at the
origin, if we perform a measurement at that step. The solid line
reaches 0 at some steps because the original walk (before amplitude
amplification applies to it) only reaches the origin once, i.e., T = x,
where x is the initial position. This will occur again in some other
figures. This figure shows that Algorithm A1 can perform as well as
Algorithm A2 when m is small.

FIG. 4. (Color online) Success probability versus number of
oracle calls. Initial conditions are a = 0.01, |ψ0〉 = |03R〉, and
T = 20. Thus Prob0 = 0.018688, and m = 5. Lines are as in Fig. 3.

employs totally 2m + 1 times of A or A−1. Therefore, the
total number of oracle calls in Algorithm A1 is 4mT + 2T .

From Figs. 3–8, m increases from 2 to 466, while Prob0

decreases. We observe from these figures that Algorithm
A1 works well. Whenever Prob0 is small, Algorithm A1 is
much faster. It can reach a success probability close to 1,
while Algorithm A2 can only reach a success probability of
1 − (1 − Prob0)4m+2 = �(

√
Prob0). This clearly shows that

the modified walk and amplitude amplification can work well
together.

B. Speeding up algorithms based on quantum walks
with a concurrent hitting time

If a quantum walk has a (p(n),1/q(n)) concurrent hitting
time, it will take O(q(n)) times of classical amplification to
reach a success probability of O(1), which leads to a total
complexity of O(p(n)q(n)). With Theorem 2, we are able to
speed up such an algorithm through amplitude amplification.
Let us consider an example from [10]. Suppose that G is an
n-dimensional hypercube with N = 2n nodes. The task is to
travel from one corner to its opposite corner. A quantum-
walk-based algorithm is as follows: the coin space is Hc =
span{|1〉, . . . ,|n〉}, and the shift operator

S =
∑

x

n∑
i=1

|ni(x)〉〈x| ⊗ |i〉〈i|, (13)

FIG. 5. (Color online) Success probability versus number of
oracle calls. Initial conditions are a = 0.01, |ψ0〉 = |04R〉, and
T = 16. Thus Prob0 = 0.00123, and m = 22. Lines are as in Fig. 3.
In this and subsequent figures, the dashed (blue) line with crosses and
dashed (green) line with circles are close to the bottom. Algorithm
A1 becomes considerably faster than Algorithms A2 and A0.

012337-5

SHENGGANG YING AND MINGSHENG YING PHYSICAL REVIEW A 87, 012337 (2013)

FIG. 6. (Color online) Success probability versus number of
oracle calls. Initial conditions are a = 0.01, |ψ0〉 = |03R〉, and
T = 3. Thus Prob0 = 9.9 × 10−5, and m = 78. Lines are as in Fig. 3.
Here, it is obvious, Algorithm A1 is much faster than Algorithms A2
and A0.

where ni(x) is x’s ith adjacent node, the coin operator

C = Ip ⊗ G = Ip ⊗ (D − Ic), (14)

and D is the matrix (dij)n×n with dij = 2/n for all 1 � i,j � n.
The walk starts in the initial state

|φ0〉 = |�0〉
∑

i

1√
n
|i〉.

The target node is the opposite vertex �1 of the initial vertex �0.
Then this walk has a (π

2 n,�(1
n log2 n

)) concurrent hitting time.
After the amplifications for achieving the success probability
O(1), the total complexity is O(n2 log2 n).

The above quantum-walk-based algorithm is not as good
as the deterministic classical algorithm of complexity �(n2)
given in [9]. Using Theorem 3, however, we can derive a
new quantum algorithm with complexity O(n

√
n log n) and

thus it is better than the classical deterministic one. This new
algorithm is based on the quantum walk modified from the
above one by simply applying the procedure presented in
Sec. III A with T = π

2 n.

C. Developing a new algorithm for spatial search

Our approach can be used not only to speed up the existing
algorithms, but also to design new algorithms. Let us consider
the problem: Find the desired element in a database of

√
N ×√

N elements distributed in a two-dimensional grid. At each

FIG. 7. (Color online) Success probability versus number of
oracle calls. Initial conditions are a = 0.9999, |ψ0〉 = |01R〉, and
T = 1. Thus Prob0 = 1 × 10−4, and m = 78. Lines are as in Fig. 3.
Here, it is obvious, Algorithm A1 is much faster than Algorithms A2
and A0.

FIG. 8. (Color online) Success probability versus number of
oracle calls. Initial conditions are a = 0.0001, |ψ0〉 = |03R〉, T = 20.
Thus Prob0 = 2.84 × 10−6, and m = 466. Lines are as in Fig. 3. The
dashed (blue) line with crosses and dashed (green) line with circles
are both at the bottom. This shows that Algorithm A1, derived from
the modified walk and amplitude amplification, works well, and it
should be a quadratic speedup.

step, we can query the current position or move to an adjacent
node [6,16].

An algorithm of complexity O(
√

N log N) is presented
in [6], and it is based on a quantum walk on the grid with a peri-
odic boundary condition. The shift operator of the walk is dif-
ferent from that defined in Sec. II A. More precisely, let Hp =
span{|i〉|j 〉:0 � i,j �

√
N − 1} with the periodic boundary

conditions |i〉|j 〉 = |i andHc = span{|i〉:i = 0,1,2,3}. Let the
unitary evolution

U1 = Sff C. (15)

The shift operator Sff is defined as

Sff = (I ⊗ Pswap)Sm, (16)

where Sm is the ordinary shift operator

Sm =
∑
i,j,k

|i + xk,j + yk〉〈i,j | ⊗ |k〉〈k|, (17)

and Pswap is a permutation matrix,

Pswap =

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠. (18)

In Eq. (17), (x0,y0) = (1,0), (x1,y1) = (0,1), (x2,y2) =
(0,−1), and (x3,y3) = (−1,0) denote four different directions,
respectively, in the grid. The coin operator is defined as

C = Ip ⊗ G = Ip ⊗ (D − Ic), (19)

FIG. 9. (Color online) Part of Fig. 8.

012337-6

REMOVING MEASUREMENTS FROM QUANTUM WALKS PHYSICAL REVIEW A 87, 012337 (2013)

FIG. 10. (Color online) The solid (red) line is the success
probability p(N), and the dashed (blue) line is 17/

√
N . Comparing

these two lines, we observe that p(N) = �(1/
√

N).

where D is the matrix (dij)2×2 with dij = 1
2 for i,j = 1,2. Let

the initial state be

|�0〉 = 1

2
√

N

∑
|i,j 〉 ⊗ |k〉. (20)

Note that replacing U1 = Sff C with U2 = SmC(Ip ⊗ Pswap)
makes no difference because we have |�0〉 = I ⊗ Pswap|�0〉.
After T = O(

√
N log N) steps of evolution, one measures the

position space. The probability of getting the desired answer is
�(1/ log N). Thus after amplitude amplification, the quantum
walk can find the target state with probability O(1) in time
O(

√
N log N).

Now we can derive a new algorithm simply by setting
T = 5

√
N and replacing the unitary U1 in the above quantum

walk with U2 = Sm · C · (I ⊗ Pswap). Then the new walk has
a (5

√
N,p(N)) concurrent hitting time. It is very hard to

calculate the probability p(N), so we follow [13] and visualize
it as the solid (red) line in Fig. 10. The dashed (blue) line is
17/

√
N , and it is very close to the solid (red) one. This hints

that p(N) = �(1/
√

N). Applying Theorem 3, we know that
the new algorithm has time complexity O(N

3
4) and success

probability O(1). Although the new algorithm is not as fast as
the one developed in [6], it is faster then the classical algorithm
with �(N). Moreover, the new algorithm has its advantages of
robustness, as discussed in Sec. V D.

V. DISCUSSION

We proposed to modify a quantum walk with a concurrent
hitting time by removing measurements from it so that the
amplitude amplification technique can be used to design
quantum algorithms based on it. Some applications of this
approach were presented in Sec. IV. In this section, we further
explain the advantages of our approach.

A. Deferred measurements

It is well known that all the measurements in a quantum
computation can be deferred to the end of the computation [17].
However, if we apply this approach of deferring measurement
to a quantum walk, then t control qubits must be added after t

steps, and thus the following problems will be caused.
(1) The circuit of a single step of the modified walk will

be significantly different from that of the original walk.

(2) After t steps, the complexity of the circuit will
become O(t2). Thus, if the original walk has a (p(n),1/q(n))
concurrent hitting time, then the total complexity of the walk
after amplitude amplification will be O(p2(n)

√
q(n)), which

is really bad whenever p(n) >
√

q(n).
Both of the above problems are serious when a quantum walk
is employed in a quantum algorithm. It is obvious that these
problems do not occur in the modified quantum walks defined
in Sec. III A.

B. Dimension of HS

An extra Hilbert space Hs is added in the modified walk. If
the dimension dim(Hs) of Hs is too large, then the modified
walk will bring some unacceptable overhead of complexity.
Fortunately, in most applications the additional dimension
dim(Hs) in the modified walk is small. More precisely, when
we consider a quantum-walk-based search algorithm, the
number T of steps is usually smaller than the number N of
vertices in the searching space, and dim(Hs) = O(T). If this is
not the case, i.e., T > N , a quantum algorithm is not essential
because we can simply check all the N possible solutions one
by one to find the answer. For example, in the algorithm in
Sec. IV B, we have dim(Hs) = O(n) = O(log N), and in the
second algorithm, in Sec. IV C, dim(Hs) = O(

√
N). Thus the

spaceHs will bring no additional factor to the time complexity.

C. Quadratic speedup

Theorem 3 shows that amplitude amplification can be
employed for designing algorithms based on quantum walks
with absorbing boundaries, if we modify these walks with
the procedure given in Sec. III A. Suppose that we already
have a quantum walk with a (p(n),1/q(n)) concurrent hitting
time. The classical probability amplification enables us to
design an algorithm based on this quantum walk with time
complexity O(p(n)q(n)). Then we can modify the walk and
use amplitude amplification to derive an algorithm with time
complexity O(p(n)

√
q(n)). Only this quadratic speedup may

not be good enough. Indeed, we have not found any useful
algorithm based on a quantum walk with concurrent hitting,
which is faster than the one based on the same quantum walk
with a one-shot hitting time. Together with the robustness
considered in Sec. V D, however, the quadratic speedup makes
the approach of removing measurements from quantum walks
really interesting.

D. Robustness

Noise in the physical implementation of quantum walks
is inevitable. In this section we consider the robustness of
modified quantum walks against noise and show that replacing
the step evolution U of a modified quantum walk with another
unitary U ′ approximate to U makes only a very small or even
no difference to the time complexities of the algorithm based
on the walk. To this end, let us first compare the two algorithms
in Sec. IV C.

Let Algorithm S1 denote the first algorithm, which is
based on a quantum walk without measurements. As shown
in [6,13], the amplitude or probabilities of this walk at the
target position are periodic. If a small error happens in the

012337-7

SHENGGANG YING AND MINGSHENG YING PHYSICAL REVIEW A 87, 012337 (2013)

FIG. 11. (Color online) Probability at target position of Algo-
rithm S1, before amplitude amplification. The solid (red) line is the
original probability of Algorithm S1 at the target position, while the
dashed (blue) line is probability of Algorithm S1 with error (C ′).
N = 10 000. The horizontal axis is the number of steps, while the
vertical axis is the probability. This figure shows that with error C ′,
the success probability of Algorithm S1 becomes very small. The
success probability at the desired position of the algorithm with error
is still periodic, but the period becomes very different from that
without error and the peaks become very small.

coin operator C, say, C becomes C ′ = I ⊗ (QGQ†), where
Q = diag{1,ω,1,1} and ω = e0.1i ≈ 0.9950 + 0.0998i, then
as shown in Fig. 11, the algorithm does not work. In fact, we
see that the success probability at the desired position of the
algorithm with error is still periodic, but the period becomes
very different from that without error and the peaks become
very small.

Additional evidence is shown in Fig. 12, where the solid
(red) line is the success probability of Algorithm S1 before
amplitude amplification without errors, the solid (magenta)
line with crosses is the success probability after amplitude
amplification without errors, the dashed (blue) line (almost
at the bottom) is the success probability before amplitude
amplification with error (C ′), and the dashed (green) line with
circles is the success probability with error (C ′). The number m

FIG. 12. (Color online) Success probabilities of different cases
depending on N . The horizontal axis is the size of the cases
(problems), while the vertical axis is the success probability. The solid
(red) line is the success probability of Algorithm S1 before amplitude
amplification without errors, the solid (magenta) line with crosses is
the success probability after amplitude amplification without errors,
the dashed (blue) line (almost at the bottom) is the success probability
before amplitude amplification with error (C ′), and the dashed (green)
line with circles is the success probability with error (C ′). The number
m of Algorithm S1 with errors is set to be the same as the original one.
Since the preset value of m is far too small, amplitude amplification
only increases the success probability a little. The eventual success
probability is very small and irregular and, thus, useless.

of Algorithm S1 with errors is set to be the same as the original
one. This is because, before running the algorithm, we might
not be able to know what kind of error would happen and thus
might not be able to change m.

We can see that the success probability before amplitude
amplification decreases considerably, from �(1/ log N) to
nearly 0. In addition, the success probability after amplitude
amplification decreases from O(1) to nearly 0. Although
amplitude amplification still increases the success probability,
the following two facts makes the eventual success probability
small and useless.

(1) First, the success probability before amplitude ampli-
fication [i.e., dashed (blue) line in Fig. 12] becomes nearly
0. Thus the preset value of m is far too small, and amplitude
amplification is not able to enlarge the success probability to
an expected value.

(2) Second, it seems that the solid (red) line and the dashed
(blue) line in Fig. 12 are entirely unrelated to each other. Thus
we are not able to know what the eventual success probability
with error will be.

The case of the second algorithm with the modified quan-
tum walk is quite different: the algorithm with error still works.
Let Algorithm S2 denote this algorithm. Its performance is
shown in Fig. 13. In this figure, the lines are the success
probabilities of Algorithm S2 in different cases with different
N ’s, as in Fig. 12. And the (red) line with crosses is half of the
solid (red) line. From this figure, we can see that the success

FIG. 13. (Color online) Success probability of different cases
depending on N . The horizontal axis is the size of the cases
(problems), while the vertical axis is the success probability. The solid
(red) line is the success probability of Algorithm S2 before amplitude
amplification without errors, the solid (magenta) line with crosses is
the success probability after amplitude amplification without errors,
the dashed (blue) line is the success probability before amplitude
amplification with error (C ′), and the dashed (green) line with circles
is the success probability with error (C ′). The number m of Algorithm
S2 with errors is set to be the same as the original one. At about
N = 800, the dashed (green) line with circles and the solid (magenta)
line with pluses increase suddenly, because m increases from 0 to 1.
The dashed (blue) line shows that the success probability before
amplitude amplification with error C ′ is half the original one. Thus
after amplitude amplification, it is still �(1). This is also shown by the
dashed (green) line with circles. It will first coincide with the dashed
(blue) line for m = 0, then become bigger than the solid (magenta)
line with crosses for m = 1 and big initial success probability p, and
bigger than half the (magenta) line with crosses for m = 1 and small
success probability p [solid (red) line]. (Note that in this figure m = 0
or m = 1.) Therefore this error has only a small or even no influence
on Algorithm S2.

012337-8

REMOVING MEASUREMENTS FROM QUANTUM WALKS PHYSICAL REVIEW A 87, 012337 (2013)

probability before amplitude amplification without error is
nearly half that with error. Thus after amplitude amplification,
the success probability is �(1), and the time complexity
O(N

3
4) still holds. This can be verified by a simple calculation

from Eq. (8) in [11]. Indeed, it follows from Eq. (8) in [11]
that the eventual success probability is sin2 ((2m + 1)θp). If the
initial success probability becomes p′ ∼ p/2 and m remains
unchanged, sin2 ((2m + 1)θp′) will first become p′ for m = 0,
then bigger than sin2 ((2m + 1)θp) for m = 1 and big p,
bigger than 0.5 times sin2 ((2m + 1)θp) for m = 1 and small
p, and, finally, similar to sin2(π/2

√
2) ∼ 0.8 for very small

p. Numerical evidence is also shown in Fig. 13: the dashed
(green) line with circles is �(1), as well as the (magenta) line
with crosses. Therefore, Algorithm S2 is much more robust
than Algorithm S1.

It is reasonable to imagine that with some other small
errors, Algorithm S2 still works well but Algorithm S1 does
not. Moreover, the algorithms in [5,6,13] are very similar to
Algorithm S1, and the time T to perform a measurement for
them must be known exactly. Thus, if there are some errors
in their evolution unitary, then these algorithms do not work.
However, we can improve them with modified walks so that
they become much more robust than quantum walks with
one-shot hitting-time-based algorithms.

ACKNOWLEDGMENTS

We are grateful to Dr. Yuan Feng, Dr. Runyao Duan, and
Dr. Tao Zhou for helpful discussions.

[1] U. Schöning, in Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, FOCS’99
(IEEE Computer Society Press, New York, 1999), pp. 410–414.

[2] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,
1687 (1993).

[3] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon,
Phys. Rev. A 81, 042330 (2010).

[4] L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, STOC’96 (ACM Press,
New York, 1996), pp. 212–219.

[5] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67,
052307 (2003).

[6] A. Ambainis, J. Kempe, and A. Rivosh, in Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’05 (ACM Press, New York, 2005), pp. 1099–1108.

[7] A. Ambainis, SIAM J. Comput. 37, 210 (2007).
[8] F. Magniez, M. Santha, and M. Szegedy, SIAM J. Comput. 37,

413 (2007).
[9] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and

D. A. Spielman, in Proceedings of the Thirty-Fifth Annual ACM

Symposium on Theory of Computing, STOC’03 (ACM Press,
New York, 2003), pp. 59–68.

[10] J. Kempe, Probab. Theory Relat. Fields 133, 215
(2005).

[11] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum
Comput. Quantum Inform. Sci., AMS Contemp. Math Ser.
Millen. 305, 53 (2002).

[12] S. E. Venegas-Andraca, arXiv:1201.4780.
[13] N. Lovett, D. Mosby, D. Stockton, and V. Kendon,

arXiv:1010.4705.
[14] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and

H. Watrous, in Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, STOC’01 (ACM Press,
New York, 2001), pp. 37–49.

[15] E. Bach, S. Coppersmith, M. P. Goldschen, R. Joynt, and
J. Watrous, J. Comput. Syst. Sci. 69, 562 (2004).

[16] A. Ambainis, SIGACT News 35, 22 (2004).
[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

012337-9

http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.81.042330
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1137/S0097539705447311
http://dx.doi.org/10.1137/050643684
http://dx.doi.org/10.1137/050643684
http://dx.doi.org/10.1007/s00440-004-0423-2
http://dx.doi.org/10.1007/s00440-004-0423-2
http://arXiv.org/abs/1201.4780
http://arXiv.org/abs/1010.4705
http://dx.doi.org/10.1016/j.jcss.2004.03.005
http://dx.doi.org/10.1145/992287.992296

