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Abstract 

Forward osmosis (FO) is an emerging low-energy technology. Much effort was given on 

developing a new membrane material and engineering membrane structure to improve the 

performance of FO membranes. The performances of two newly developed polyamide based thin 

film composite (TFC) FO membranes were tested and compared with the commercially available 

cellulose triacetate (CTA) FO membrane.  The intrinsic properties of the two TFC FO membranes 

determined in RO experiments indicate superior performance of the membranes. When tested in 

FO experiments, TFC membranes delivered consistent results, confirming their outstanding 

permeability and selectivity properties. The study shows that future studies on membrane fouling 

will be necessary to have a better understanding of membrane performance and to further 

optimize membrane properties.  

1. Introduction 

Forward osmosis (FO) process, driven only by the osmotic gradient between two 

solutions of different osmotic concentrations, is a promising low energy desalination 

technology. In addition, FO holds high potentials in other applications, including 

emergency drinks from brackish or sea water [1], power generation[2], landfill leachate 

treatment[3], liquid foods treatment [4], and irrigation [5-7]. Although the concept of the 

process is well documented, one of major drawbacks of the process that still presents a 

challenge is concentration polarization (CP) phenomenon. Internal CP or ICP is a unique 
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process in FO process and is mainly responsible for resulting in lower water flux than the 

expected flux based on the bulk osmotic concentration gradient between the draw 

solution (DS) and the feed solution (FS) [8, 9]. Internal CP (ICP) is particularly 

challenging because it occurs within the membrane support layer and cannot be simply 

mitigated by hydrodynamic operating conditions as for external CP (ECP) [10].  

A lot of effort was put on improving the FO performance by modifying the structural 

properties of the membrane, particularly the support layer to reduce the ICP effects. 

Cellulose triacetate (CTA) asymmetric membrane was the first tailored membrane 

commercialized for FO applications by Hydration Technology Innovations Inc (Albany, 

OR, USA). Although this CTA membrane has been widely used for many FO application 

studies, its water flux remains lower than the pressure-driven membranes at the same 

bulk osmotic pressure gradient and moreover, it has a limited range to pH tolerability (pH 

4.0 – 8.0). CP effects remain a significant challenge that limits the FO process efficiency, 

and thus more innovative breakthrough is required to solve the CP issues, to improve the 

process efficiency and make the process more competitive to the existing desalination 

technology.  

Most research currently focus on synthesizing reliable thin film composite (TFC) 

membranes comprising polyamide (PA) active layer on top of thick microporous 

polysulfone support layer[11-14]. TFC membranes are promising candidates because 

they historically have better membrane performance in RO applications. Recently, two 

different proprietary polyamide (PA) TFC membranes were synthesized by two 

independent membrane companies for FO applications. The objective of the study is to 

evaluate the performances of the membranes and to compare them with that of commonly 

studied commercial TCA FO membrane. The performance of each membrane has been 

measured in terms of water flux and rejection in RO mode and in terms of water flux and 

reverse solute flux in FO mode of operation. 

 

2. Materials and Methods 
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2.1 Membranes and draw solutions 

Two different types of proprietary flat sheet TFC FO membranes designated as TFC-1 

and TFC-2 were used and compared with the commercially available cellulose triacetate 

(CTA) FO membrane supplied by Hydration Technologies Innovation, (HTI, Albany, OR, 

USA). TFC-2 membrane was supplied by Woongjin Chemicals (Korea) while the source 

for TFC-1 is withheld for commercial interest at behest of the supplier. Both the 

membranes were polyamide-based thin film composite membranes as disclosed by the 

supplier. The detail chemistry of the TFC membrane has not been performed and 

therefore not included within the scope of this study. Few basic data as provided by the 

supplier are enlisted in Table 1. The properties of the CTA membrane have been reported 

in many other studies [15-17]. 

Despite the limited tolerance to chlorine attack, PA based TFC membranes are known to 

offer more advantages in terms of membrane performance and durability, such as wider 

operating pH and temperature ranges [11]. The data also shows that the contact angles of 

PA TFC membranes are smaller, indicating higher degree of hydrophilicity. Hence, water 

should be able to permeate more easily, and higher water flux will be expected from 

those membranes.  The overall physical thickness of the two virgin membranes measured 

using digital micrometer (Model 293-330 Mitutoyo, Japan) indicates that TFC-2 

membrane is the thickest (142±2 µm) than the TFC-1 and CTA FO membranes. 

The SEM micrographs of TFC-2 membrane are shown in Figure 1. The top view of the 

active layer appears continuous with a ridge-and-valley morphology, indicating potential 

of good selectivity property. Cross-sectional SEM micrographs show that the polysulfone 

support layer spans along the membrane with finger-like morphology. Near the top of the 

support layer, the morphology appears denser, which is critical for the formation of thin 

active layer. No change in membrane morphology was observed after the membrane was 

compacted after the experiments. 
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Table 1: Physical and chemical properties of membranes as provided by the manufacturer 

for TFC FO membranes and from various literature for CTA membrane. 

Sample Active 

layer 

material 

Contact angle (°) Zeta potential at 

pH 6 (mV) 

Operating 

pH 

Membrane 

thickness  

Ref 

active 

layer 

support 

layer 

active layer (mm) 

CTA cellulose 

triacetate 

76.6 81.8 -2.1 3-8 93±3 [18] 

TFC-1 polyamide 45 45 86 2-12 116±1  

TFC-2 polyamide 15 15 69 2-12 148±6  

Draw solution (DS) was prepared by dissolving different concentrations of potassium 

chloride (KCl, Chem Supply, Australia) in deionized (DI) water. The feed solution (FS) 

used consisted of either deionized (DI) water or sodium chloride (NaCl, Sigma Aldrich, 

Australia) solution prepared in DI Water. KCl was chosen due to its well-established 

thermodynamic properties [19, 20], high osmotic pressure and excellent performance as 

draw solution for forward osmosis fertigation application [5, 6]. NaCl solution (5000 

mg/L) has been used as model brackish water FS since the majority of solutes present in 

the brackish water consists of Na+ and Cl- ions. 

 

2.2 Measurement of membrane intrinsic separation properties in Reverse osmosis 

mode 

The pure water permeability coefficient A, salt rejection,  and the solute permeability 

coefficient B were evaluated using laboratory-scale crossflow reverse osmosis (RO) unit 

with the active layers of the membrane facing the feed. A laboratory-scale RO cell with 

channel dimensions of both channels were 7.7 cm in length, 2.6 cm in width, and 0.3 cm 

in depth, providing an effective membrane area of 20.02 cm2 was used for experiments in 

RO mode to test the pure water permeability and the salt rejection properties of the 

membranes. The feed solution was supplied at a volumetric flow rate of 400 ml/min. 

Temperature of the feed solution was maintained at 25±1°C using a water bath controlled 
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by heater/chiller. To measure water flux, the experiment was timed and the volume of 

permeate collected was measured. The pure water flux was measured for each trans-

membrane pressure (2-10 bar) at a constant temperature of 25±1°C.  The flux 

measurements was then plotted against the applied pressure and fitted by least-squares 

linear regression to obtain the permeability coefficient.  

For salt rejection, brackish water (5000 mg/L NaCl solution) was used with the applied 

pressure at 10 bar. The concentrations of NaCl in the feed Cf and permeate Cp were 

determined by conductivity measurement. Salt rejection R was calculated according to 

the equation: 

𝑅 = (1 −
𝐶𝑝

𝐶𝑓
) × 100%            (1) 

The solute (NaCl) permeability B of each membrane was determined by a linear fitting of 

water permeability and salt rejection under different applied pressures according to the 

equation [21]: 

1−𝑅

𝑅
=

1

(Δ𝑃−Δ𝜋)𝐴
𝐵                              (2) 

where 𝛥𝜋 is the osmotic pressure difference between the feed and permeate. 

 

2.3 Forward osmosis experimental setup and FO performance evaluation 

A laboratory-scale FO cell with dimensions similar to that of RO cell but with channel on 

both sides of the membrane was used for all FO experiments.  The feed and draw 

solutions were supplied at volumetric crossflow rates of 400 ml/min using two variable 

speed peristaltic pumps (Cole-Palmer, Illinois) in co-current mode to minimize strain on 

the suspended FO membranes [22]. The temperature of the feed and draw solutions was 

maintained at 25±1°C using a water bath controlled by heater/chiller. 
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Each experiment was carried out for minimum 4h duration with initial volumes of the 

feed and draw solutions were 2 liters. Experimental runs were carried out in batch mode 

in which case the DS and FS were continuously recycled back to their respective tanks. 

The performance of the membrane was evaluated in terms of water flux, reverse solute 

flux (RSF), and specific reverse solute flux (SRSF).  Water permeate flux Jw was directly 

measured by connecting DS to a digital mass scale interfaced with a computer. When DI 

Water was used as FS, RSF was determined by using a multimeter (CP-500L, ISTEK) to 

measure the electrical conductivity (EC) of the feed solution at the end of the each 

experiment.  

RSF was determined using DI water as the feed according to the following formula: 

                                             

 
tA

VC
Jw

m

F 


2
                                                   (3) 

where Js is the reverse solute flux through the FO membrane, Am is the effective 

membrane surface area, CF is the final feed solute concentration at the end of the 

experiment and ΔV is the volume of the water that has passed through the membrane 

from feed to DS over an operating period of t. 

SRSF was then calculated as the ratio of the reverse solute flux to the water flux Jw by: 

𝑆𝑅𝑆𝐹 =
𝐽𝑠

𝐽𝑤
                                                        (4) 

 

3 Results and Discussions 

3.1 Intrinsic properties of the membrane tested in RO mode 

The A, R, and B values of FO membranes were determined in the crossflow RO operation 

as described in earlier section.  It is well-known for any polymer, membranes with high 

water permeability can be obtained by sacrificing the salt rejection, or vice versa. Table 2 

shows that both TFC membranes have higher water permeability and better NaCl 
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rejection than CTA membrane indicating that polyamide is a more superior material for 

membrane separation performance. TFC-2 in particular exhibits the highest water 

permeability, approximately 25 times higher than that of CTA membrane, and decent salt 

rejection. Although, a significant increase in salt rejection can be obtained at higher 

operating pressures [23] however, we avoided high operating pressure in order to prevent 

the membrane from being damaged as the membrane appears more fragile when handling 

in comparison to CTA FO membrane. 

The ratio B/A was also calculated to compare the selectivity of different membranes. It is 

highly desirable to obtain low B/A ratio (i.e. high selectivity) to minimize solute reverse 

diffusion from DS [24] during the FO process, decrease the membrane susceptibility to 

fouling [25], and improve the contaminant rejection [26] . TFC-2 was observed to exhibit 

the lowest B/A ratio, followed by TFC-1 and CTA, indicating improved selectivity and 

more superior separation properties of the TFC membranes. 

Table 2: Intrinsic properties of the three FO membranes. Pure water permeability was 

determined using DI water as feed in RO mode at applied pressures ranging from 2 to 10 

bars at 2 bar interval. Salt rejection was tested using simulated brackish water (5,000 mg/l 

NaCl) at applied pressure at 10 bar.  

Sample Pure water permeability A NaCl Rejection 

R (%) 

Salt permeability B  

(10-7m/s) 

B/A  

(102 kPa) 

l m-1h-1bar-1 10-12 m/s Pa 

CTA 0.64±0.03 1.8 60±4 9.8 3.7 

TFC-1 2.4±0.08 6.9 86 ±5 6.5 1.4 

TFC-2 15±1.12 43 69±5 29 0.7 

 

3.2 Performance of TFC membranes in the FO process 

Figure 2 shows the performances of the three membranes in terms of water fluxes in FO 

mode of operation (support layer facing DS) at various DS concentrations with DI water 

as feed (Figure 2a) and simulated brackish water (5,000 mg/l of NaCl) as feed (Figure 2b) 
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while Figure 3 shows the permeate water flux in PRO mode of operation (active layer 

facing the DS) As expected, operating the FO process at higher DS concentration resulted 

in higher water permeate flux because of the higher net osmotic gradient that drives the 

water flux across the membrane. This was true for all cases both in Figures 2 and 3. With 

DI water as feed, TFC-2 exhibits the highest permeate water flux, followed by TFC-1 and 

CTA membranes (Figure 2a). The same trend is also observed when brackish water is 

used as feed as shown in Figure 2b, and consistent with the RO experiment result for the 

water permeability coefficients. TFC membranes have characteristically higher water flux 

due to their fabrication procedure that enables property optimization of membrane 

support layer and rejecting layer. It is important to notice that permeate flux through TFC 

membranes is slightly higher at low DS concentration, and it seems to level off at a 

higher DS concentration. This is most likely due to more ICP effects that occurs within 

the support layers of the TFC membranes [27]. The effect of CP on CTA FO membrane, 

however, is less pronounced on CTA FO membrane as shown by linear increase of water 

flux throughout the DS concentration. 

 

Figure 3 shows the comparative performances of the three membranes in PRO mode of 

operation (active layer facing the DS and the support layer facing the feed water) with DI 

water as feed (Figure 3a) and brackish water as feed water (Figure 3b). Comparing Figure 

2 and Figure 3, it is clear that the water permeate flux in PRO mode of operation is 

considerably higher than the FO mode of operation. Similar order of permeate flux 

noticed in FO mode is again observed in PRO mode: TFC-2 > TFC-1 > CTA. At high DS 

concentration (3 M KCl), the permeate flux performance of TFC membranes decreases 

due to contribution of the concentrative ICP within the membrane support layer in 

addition to the dilutive ECP already present on the active layer side of the membrane 

facing the DS. This signifies the role of ICP (whether dilutive or concentrative). The non-

linearity in the water flux with the DS concentration is also an indication that the ICP and 

ECP effects are more pronounced when higher DS concentration used for FO process.  

 

TFC-2 not only exhibited the highest water flux but also showed the lowest SRSF as 

shown in Figure 4 despite having descent salt rejection data in the RO mode (Table 2). 
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The performance of TFC-1 membrane either in FO or RO process is behind TFC-2, but is 

consistently better than that of CTA. The superior properties of TFC-2 are mainly 

attributed to highly hydrophilic active layer which allows water to permeate easily.  All 

results agree with the prediction based on a model developed using independently 

determined membrane transport coefficients, stating that SRSF is related to the ratio of 

B/A by the relationship[28]: 

𝐽𝑤

𝐽𝑠
≈

𝐴

𝐵
𝑛𝑅𝑔𝑇                                                   (5) 

where n is the number of dissolved species created by draw solute, Rg the ideal gas 

constant, and T the absolute temperature. It is however worthwhile to note that if the 

experimental SRSF values were to be compared with B/A ratio in Table 2, the solute 

permeability constants B would have to be determined using KCl solution as feed in RO 

experiments whereas the reported values in this study were of NaCl.  

These results indicate that, the performance of the two PA-based TFC membranes 

evaluated in this study need further reengineering and optimization in their support 

structure since the ICP was observed to play a significantly limiting role in decreasing the 

water flux when tested in FO and PRO mode of operation. The high salt rejection 

properties of TFC-1 membrane in RO mode did not translate into lower SRSF in FO 

process also showing other unknown phenomenon taking place within the support 

structure of the current TFC membranes. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 1. SEM micrographs of TFC-2 displaying (a) the top surface of the polyamide 

active layer, (b) membrane cross section, and (c) a magnified view of the sponge-like 

support layer near the active layer.  
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(a) 

 

(b) 

Figure 2. Comparison of water permeate flux with (a) DI water as feed and (b) brackish 

water (5000 mg/l NaCl) as feed for the three membranes. Experiments were carried out 

with KCl solution as DS with concentration ranging from 0.5 – 3 M at temperature of 

25±1°C and volumetric crossflow rates of 400 ml/min with membrane active layers 

facing DS (FO mode).  
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(a) 

 

 

(b) 

Figure 3. Permeate water fluxes of the three membranes in PRO mode of operation. 
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Figure 4. Performance of the three FO membranes in terms of specific reverse solute flux 

with KCl as DS and DI water as FS 

 

4 Conclusions 

Membrane performances for three FO membranes (CTA, TFC-1, and TFC-2) were 

investigated and compared in RO and FO operations. The membrane intrinsic properties 

obtained from RO experiments demonstrated that TFC membranes are more superior due 

to their excellent active layer water permeability and salt rejection properties. Their 

superior properties are confirmed when tested for FO process both in FO mode and PRO 

mode of operation at lab-scale level. TFC-2 is of a particular interest in the study, and the 

effect of membrane orientation was further investigated to obtain more insights on 

permeability-selectivity trade-off as well as the effect of ICP. When the active layer faced 

the feed solution (FO mode), water flux generated was less than the case where the active 

layer faced the draw solution (PRO mode). However, the reverse solute permeation 

observed in FO mode was also lower, demonstrating the coupling between solute and 

solvent permeation and/or greater ICP effects. Further investigations such as fouling 
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studies, particularly on TFC membranes, would be necessary to have a better 

understanding of membrane properties and characteristics to tailor and fabricate 

membranes for certain applications.  
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Nomenclature 

A water permeability coefficient (m3/m2sPa) 

Am effective membrane surface area (m2) 

B solute permeability coefficient (m/s) 

CF final solute concentration in feed solution (mol/l) 

Cf salt concentration in feed solution (mol/l) 

Cp salt concentration in permeate solution (mol/l) 

Js reverse solute flux (l/m2h) 

Jw water flux (l/m2h) 

n number of dissolved species (mol)  

R salt rejection (%) 

Rg ideal gas constant = 8.3144621 m3Pa/Kmol  

SRSF specific reverse solute flux (g/l) 

T absolute temperature (K) 

t operating time (s) 

V volume of water (l) 

 

 

Greek letters 

Δ difference operator 

π osmotic pressure (bar) 
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