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Prior-knowledge Assisted Fast 3D Map Building of Structured
Environments for Steel Bridge Maintenance

Stephan Sehestedt1, Gavin Paul2, David Rushton-Smith3 and Dikai Liu4

Abstract— Practical application of a robot in a structured,
yet unknown environment, such as in bridge maintenance,
requires the robot to quickly generate an accurate map of the
surfaces in the environment. A consistent and complete map is
fundamental to achieving reliable and robust operation. In a
real-world and field application, sensor noise and insufficient
exploration oftentimes result in an incomplete map. This paper
presents a robust environment mapping approach using prior
knowledge in combination with a single depth camera mounted
on the end-effector of a robotic manipulator. The approach has
been successfully implemented in an industrial setting for the
purpose of steel bridge maintenance. A prototype robot, which
includes the presented map building approach in its software
package, has recently been delivered to industry.

I. INTRODUCTION

Advances in robotics and sensor technology increasingly
enable complicated tasks to be automated. In order to per-
form many robotic tasks in complex three dimensional (3D)
environments, a geometrically accurate and reliable map is
required - particularly when a robot must plan online the
precise motions for a given workspace.

In areas of automation such as car manufacturing, tasks
are performed in a fully known, carefully structured and
controlled environment. However, in a less controlled envi-
ronment the environment’s basic geometry may still be pre-
dicted, even where the exact location of individual elements
is unknown. Noisy and incomplete sensor data may mean that
even after exploring an environment the geometry cannot be
determined with sufficiently high accuracy. In the case where
partial or noisy sensor data is gathered by a robot, precise
templates of individual elements could still be located in the
environment based upon this sensor data - thus leading to a
geometrically accurate map of the environment.

One task requiring an accurate map in a field environment
is when using an assistive robot to grit-blast steel bridges
[1]. Historically, the vital task of grit-blasting to remove
rust and old paint for steel bridge maintenance has posed
a high risk of injury to workers. Grit-blasting requires a
worker to handle a heavy hose and significant reaction
forces due to grit exiting the nozzle at high velocity. In this
physically strenuous job, accidents can cause severe injury.
Moreover, on many bridges the paint contains lead and thus
the dust produced by grit-blasting poses a serious health and
environmental risk. Nevertheless, paint and rust removal is a
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vital process when maintaining the steel bridges that are an
essential part of modern infrastructure. Assistive robotics is
being introduced as a way to reduce the risk to workers.

The Grit-blasting Assistive Device (GAD) is designed
to autonomously perform grit-blasting on an industry part-
ner’s bridges with minimal operator remote interaction. The
project’s goal is to minimize the need for humans to perform
grit-blasting and instead utilize a 6 Degree Of Freedom
(DOF) robotic manipulator. Employees will only be required
to remotely supervise the robot’s operation and to blast the
surfaces that are outside the manipulator’s work envelope.

Although a steel bridge environment is often structurally
repetitious due to being built using defined elements (e.g.
I-beams, trusses, girders), in practice the exact location
of a robot cannot be known in advance. This is due to
the temporary nature of the maintenance site installation,
where scaffolding, containments and the robotic system are
setup manually. Moreover, variations can exist in structural
members that are cut to size. With these challenges in mind,
there are four goals for a mapping system in this practical
application. (a) Efficiency: complete mapping efficiently so
that the system’s productivity is not negatively impacted
(e.g. less than 1 minute). (b) Safe exploration: although
the 6 DOF manipulator has no suitable sensors for collision
avoidance, exploration must be completed safely and quickly
(e.g. within 2 minutes). Hence only a limited number of safe
viewpoints can be considered and the environment cannot be
explored completely. (c) Reliability: the workers operating
the robot cannot debug a complex robotic system, so the map
generated must be correct, even when there is spurious sensor
data. (d) Geometrical accuracy: representing the geometry
of a complex 3D environment accurately is fundamental
to achieving high-quality grit-blast results in corners, along
edges, and on curved surfaces and rivet heads.

There is significant research interest in automating ever-
more complex tasks in industrial applications [2], [3]. One
challenge that has received attention in the literature is a
robot’s inability to perceive the environment for tasks where
the tasks’ parameters cannot be defined statically, such as in
automated drilling for manufacture [4] and robotic welding
in the field [5]. In order for a robot to perform tasks which
demand adaptability, the robot must possess the fundamental
ability to effectively sense the workspace and identify the
elements of interest. Grit-blasting on steel bridges, requires
that a workspace is observed to identify the elements to
blast [1], and the areas to avoid during autonomous blast
planning [6], [7]. Thus, a geometric map of surfaces in the
environment needs to be generated.



Eye-in-hand manipulator setups have been used to observe
the object or environment of interest [6]. The time required
for an eye-in-hand system to generate an accurate map has
historically been a challenge [11], coupled with the need
to ensure the map is complete [12]. Currently, selected
objects can be mapped from only one viewing direction by
relying upon a high-resolution point cloud [13], [14] and
making the assumption that shape primitives like cylinders
are always sufficient to model an object. Methods exist that
fit geometric models to point cloud data such as [15] and
[16]. In [17] and later [18] the Random Sample Consensus
algorithm was proposed to fit point cloud data to a model.
The main shortcoming of such methods is their restriction to
basic geometric shapes, which is not generally sufficient in
a complex automation scenario where multifaceted objects
must be dealt with. These algorithms, however, remain
powerful tools for the segmentation of point clouds.

Geometric maps that are generated by a robot will gen-
erally contain uncertainty due to noisy and incomplete
observations, unpredictable positioning of the robot and a
potentially cluttered workspace. Mapping under uncertainty
has been a focus of the robotics community for many
years. Many approaches build maps during mobile robot
navigation, such as to reconstruct the 3D geometry from a
sequence of segmented 2.5D range images [19]. In partic-
ular, Simultaneous Localisation And Mapping (SLAM) has
received attention for both small and large scale map building
[8]. In SLAM, the consistency of a resulting map is a
mandatory requirement [9], [10], but the geometric accuracy
and completeness on the small local scale are often only
desirable requirements. Object mapping and reconstruction
algorithms can achieve good geometrical accuracy at the
expense of necessitating many observations of an object.
This is problematic as the number of safe viewpoints may be
limited and time constraints may be enforced in a practical
automation environment.

Prior knowledge about structural elements in a workspace
can conceivably be exploited, so that even when there are
variations in the environment (e.g. scaffolding, workspace
configurations, and incomplete sensor data), a robot can still
identify the structural elements relative to its location. We
propose a mapping approach which uses an eye-in-hand
sensor configuration and prior knowledge encoded in a set
of templates to achieve geometrically accurate mapping of
a robot’s workspace in a complex steel bridge maintenance
environment to achieve an accurate geometric map. Further-
more, the time required for the exploration and mapping pro-
cesses is kept short by restricting the number of viewpoints
and utilising templates to fill in missing information.

The remainder of this paper is organized as follows.
Section II describes the proposed approach to 3D template
mapping, then formulates the approach as a finite state
machine. Section III presents experimental results using data
collected both in our laboratory and from a steel bridge
maintenance site. Finally, Section IV provides conclusions.

II. MAPPING

In this section, a mapping approach is presented to satisfy
the requirements for the automation of tasks where geomet-
rical accuracy and usability are of paramount importance
while ensuring a system’s productivity is not significantly
impacted. It is assumed that exploring the entire workspace
is not always feasible because of limitations in both the
safe workspace and the time available. The use of prior
knowledge about the work environment is often possible
as digital models may be available or are easy to produce.
Such information could be used to achieve a highly accurate
geometric representation of particular elements of the envi-
ronment in the presence of noisy sensor readings. Further-
more, if the prior knowledge can be successfully associated
with the sensor data, unobserved regions could be filled
in. The usability requirement refers to having no operator
intervention during the mapping process, since operators are
expected to have limited robotics experience. Usability is
achieved by the implementation of the mapping procedure
as a finite state machine with fault detection and recovery.
The mapping research challenges exist in real automation
environments, such as the GAD, for steel bridge maintenance
using a robot and digital models of particular structural
elements.

A. Exploration

The GAD, shown in Fig. 1, consists of a 6 DOF manipu-
lator and an Asus Xtion sensor at its end-effector. The robot
is moved into its workspace on rails and begins its operation
by exploring its surroundings with the sensor. So as to avoid
collisions, the manipulator is restricted to a defined safe area
during environment sensing.

Fig. 1. The GAD robot in a test environment.

For the considered environment, a set of 8 viewpoints has
been chosen between which safe trajectories are available.
Given the manipulator’s joint configuration, the instanta-
neous location and orientation of the sensor can be obtained
with reference to a 3D coordinate system, located at the
base of the robot manipulator. Given a manipulator pose,
~Q = [q1, q2, . . . q6]

T that describes the angular position
of each manipulator joint, and using forward kinematics,
it is possible to compute the position and orientation of
the manipulator’s end-effector where the sensor is mounted.



A position and orientation combination of an end-effector
can be expressed in the 4 × 4 rotation and translation
homogeneous transformation matrix, 0Tf ( ~Q), by performing
transformations based upon the manipulator model and the
manipulator joint angles qi for i ∈ {1, . . . 6} as,

0Tf ( ~Q) =

6∏
i=1

i−1Ti(qi). (1)

The transformation matrix between the end-effector and
the sensor is denoted as fTs. Together these two matrices
describe the viewpoint in the manipulator base coordinate
frame, 0Ts( ~Q) = 0Tf ( ~Q)fTs. Since the position and orien-
tation of the sensor is known for each viewpoint, the resulting
point clouds can be fused together using forward kinematics
to acquire a map.

Consider the environment in Fig. 1 which consists of
the structural elements: panel, top I-beam, beam and roof.
Exploring the workspace produces a 3D point cloud,

Vworkspace = Vp ∪ Vr ∪ VI ∪ Vo (2)

containing 3D points belonging to the known structural ele-
ments panel (Vp), roof (Vr), top I-beam (VI ) and outliers (Vo)
which belong to structural and non-structural elements that
are presently disregarded. Fig. 3 shows the resulting point
cloud, where it can be seen that there are a large number
of outliers as well as a significant number of unobserved
regions.
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Fig. 2. A scan of a mock-up structure. Color encodes the 3D point’s
Y-value.

B. Template Mapping

Given Vworkspace is sufficient to identify the elements
of interest, and a rough knowledge of the robot’s position
in the workspace, it is possible to segment the data in a
process of successively narrowed bounding boxes, which
define relevant Regions Of Interest (ROI). If this can be done
successfully, templates can be matched to the data using a
variant of the Iterative Closest Point (ICP) algorithm [20].
An intuitive approach is to identify a part of the workspace
that is distinct and can be identified with relative ease. In the
given example this could be the sidewall’s panel as it is large
and distinct from other structural elements. Henceforth, the

basic procedure of template mapping will be presented using
the sidewall’s panel as an example.

Extract points inside a coarse ROI: Since ICP variants
are vulnerable to outliers because of convergence to local
minimums [21], the point cloud is initially segmented in
order to remove outliers. One segmentation approach is to
identify a basic element which is easily separated in the data
as defined in Equation 2. For the considered environment
the sidewall satisfies this criterion as sidewalls are large and
spatially separated to a sufficient degree from other structural
elements. Hence, a coarse ROI can be defined to acquire a
point cloud which mostly consists of the points,

Vsw = Vp ∪ V ∗
o ,with V ∗

o ⊆ Vo (3)

that belong to a sidewall. This ROI will include the panel
we want to locate as shown in Fig. 3a.

(a) (b) (c)

Fig. 3. (a) The points inside a coarse ROI. (b) Points extracted using
RANSAC to find the sidewall. This set of points does not include the flanges
and webs of the panel. (c) Using the results from the previous step, the ROI
could be narrowed significantly.

Determine a narrower ROI: since Vsw may still contain
a significant quantity of points not belonging to the sidewall.
The popular Random Sampling Consensus (RANSAC) algo-
rithm [17] is used to remove those outliers since RANSAC
robustly fits a model to given data even when there are a
significant numbers of outliers.

In the considered scenario, the result is a set of points
belonging to the largest flat surface of the sidewall, Vsw as
shown in Fig. 3c. This result can be used to define a very
narrow ROI to include the flanges of the panel as illustrated
in Fig. 3b, resulting in

Vsw = Vp ∪ V ∗∗
o ,with V ∗∗

o ⊆ V ∗
o . (4)

Template matching using ICP: The final step of the map-
ping approach is to find the correct homogeneous transforma-
tion matrix to locate the panel’s template in the workspace.
At this stage the problem is reduced to registering a point
cloud with several outliers to a given template.

The well known ICP approach consists of the two steps of
finding nearest neighbor point pairs and minimizing a given
error metric:

1) Compute nearest neighbor pairs of points in the scan
data Vsw and template data Msw. That is, find the
nearest point m(j)

sw ⊆Msw to v(i)sw ⊆ Vsw for all j:

d(v(i)sw,Msw) = min
1≤j≤K

d(v(i)sw,m
(j)
sw) (5)



with K being the number of points in Msw. The
number of points in Vsw and Msw is commonly not
equal and some regions do not overlap. Hence, the
resulting number of points N in the set of point pairs
may be of different size to Vsw and Msw.

2) Compute transform T which minimizes a chosen dis-
tance metric between all point pairs.

Here, two variants are considered for step 2. In the first
one, nonlinear least squares optimization is used to calculate
T so that the error,

εpoint =
1

N

N∑
i=1

‖T · v(i)sw −m(i)
sw‖ (6)

is minimized. Henceforth, this implementation will be re-
ferred to as ICPpoint.

The second variant implements point to plane matching
[22], where the distance between a scan point and the
template surface is minimized along the surface normal. The
error function is

εplane =
1

N

N∑
i=1

‖η(i) · (T · v(i)sw −m(i)
sw)‖ (7)

where η(i) denotes the surface normal. This approach has
gained popularity for its robustness and accuracy [23].
Henceforth, this variant will be referred to as ICPplane. It
is possible to supply a transform T0 as an initial guess for
ICP. The ICP algorithm is summarized in Algorithm 1.

Data: Scan points V , Template M , initial transform T0
Result: Transform T , Root Mean Square Error (RMS)
if T0 was supplied then

Apply T0 to M ;
end
while ε shrinks do

Search nearest neighbor point pairs as Equation 5;
Compute T to minimize ε as in Equation 6 or 7;
Apply T to M ;

end
Algorithm 1: Iterative Closest Point Algorithm

C. The Mapping Approach State Machine

The proposed mapping approach is implemented in a finite
state machine, as illustrated in Fig. 4. Once the data from the
exploration is available, mapping starts by parsing a given
set of configurations. For each structural element that is to
be located, one configuration is supplied. The configuration
parameters are: Template ID; Initial transform (optional);
ROI in scan data (one or more); Dependence of the ROI
on a previous template ID; RANSAC model (one or more);
RANSAC tolerance; Compute narrower ROI (true/false).

The template ID determines which template is to be used
for the ICP step. An initial transform can also optionally be
supplied. One or more ROIs can be supplied, where each
given ROI will be used in order to target the template’s
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Fig. 4. The mapping approach is modeled as a state machine.

location in the sensor data. Furthermore, it is possible to
let RANSAC look for one or more models in the scan data
(e.g. the panel consists of flanges and webs which could be
detected as individual planes using RANSAC several times).
Additionally, the output of RANSAC could be used to narrow
the ROI before proceeding with ICP.

Currently, the top I-beam may be in one or both of two
locations in the workspace. Therefore, several ROIs can
be given for each parameter set and the state machine is
facilitated to execute mapping accordingly. The sanity checks
in the state machine use historical data (i.e. expected number
of points) to allow for the Error Handling state. This can
either rerun a previous state to try to rectify the error, or
cause the exploration and mapping process to restart.

III. EXPERIMENTS

All presented experiments were conducted using the GAD
robot shown in Fig. 1. The robot is designed to perform
the complex task of grit-blasting on steel bridges. In this
application the robot must first explore its environment to
build a map. This map is used to plan the blasting motion
which is then executed with the sensor turned off. It is
necessary to turn off and protect the sensor as environment
sensing is currently not feasible during grit-blasting due to
the dense dust in the air.

Experiments were conducted in a laboratory mock-up
structure and on a real-world steel bridge maintenance site.
The mock-up structure closely mimics the bridge mainte-
nance site in order to simulate realistic conditions. The
mapping performance is considered separately for the side-
wall, roof and top I-beam as there are different challenges
involved. First, the sidewall needs to be mapped using a ROI
that is as wide as possible because this element is used to
determine the locations of the other elements. Then the roof
and top I-beam are extracted from the scan data. However,
due to the limited field of view and limited time available
for exploration, those elements are scanned incompletely and
hence mapping must be equipped to process incomplete data
sets.

A. Laboratory Experiments

1) Convergence Characteristics for the Panel: Finding the
correct location of the sidewall’s panel is most critical as
the other structural elements’ ROIs will be determined on



that basis. Hence, the first experiment aims to determine if
the procedure can reliably detect the panel. A threshold for
the RMS of 0.02 was experimentally determined to identify
successful matches. If the RMS is above this threshold, this
can results in a rotational error which could impact the
mapping performance for the roof and top I-beam as well
the blasting results.

To determine the region of convergence, scan data was
rotated around the X, Y and Z axes separately. This was
repeated in steps until the mapping approach was found to
fail in 100% of cases. 20 recorded data sets were used to
repeat the procedure 100 times for each rotation. The initial
set of points from one data set is shown in Fig. 6a. The
results in Fig. 5 show that both ICPpoint (straight line)
and ICPplane (dotted line) have a wide enough region of
convergence for the application.
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Fig. 5. The region of convergence for ICPpoint and ICPplane. The
scan data is rotated around the (a) X-axis, (b) Y-axis and (c) Z-axis.

(a) (b)

Fig. 6. Scan data considered in the ICP step using (a) ROI1; (b) ROI2.

Another point of consideration is the size of the ROI.
A larger ROI results in fewer restrictions on the physical
placement of the robot, and thus a simpler setup procedure.
Two ROIs were experimentally determined: the wider ROI1
shown in Fig. 6a and the narrower ROI2 shown in Fig. 6b.

Table I shows in the first two columns the results using
both ROIs and both ICP variants. The mapping was run on 30
data sets to collect the following data: the average RMS and
standard deviation, σRMS , as well as the average time taken
for the mapping process and the standard deviation, σtime.
Although both ICP variants produce good results when using
the narrow ROI2, ICPpoint is not able to produce results
with an RMS < 0.02 using ROI1. Thus, mapping the panel
using ICPplane is the only choice.

2) Mapping the Roof and Top I-beam: The main issue for
the roof and top I-beam is the incomplete scan data due to the

limitations on the exploration process. Based on the panel’s
known location, a narrower ROI can be determined such that
discarding outliers is more effective. Using RANSAC, two
planes can be found which relate to the upper and lower part
of the roof’s corrugation as shown in Fig. 7a. This permits
an accurate ROI for the roof where almost all outliers can
be discarded as shown in Fig. 7b. Nevertheless, in the same
figure it can be seen that there are significant amounts of
data missing which makes template matching more difficult.

(a) (b)

Fig. 7. (a) The upper and lower plane of the corrugated roof can be
found using RANSAC. (b) The points designated as roof after the ROI was
narrowed down.

(a) (b)

Fig. 8. (a) The initial alignment of roof scan and template data. (b)
Typically, ICPplane converges with a small rotational error.

Again, ICPpoint and ICPplane are compared in terms of
their matching performance for the roof. Fig. 8a shows the
initial alignment of the roof’s scan data and the template
data in one test run. The results in columns 3 and 4 of
Table I show that ICPplane experiences difficulty with
the available sensor data. A typical result can be seen
in Fig. 8b, where a visible rotational error exists in the
final transform. In contrast, ICPpoint delivers accurate and
consistent (small σRMS) performance with sufficiently short
computation times of 7.8s on average. Hence, for mapping
the roof, ICPpoint is preferable.

After the panel and roof have been extracted, the focus is
turned to the points belonging to the top I-beam, which is
a support member on top of the sidewall that supports the
roof. Using the same procedure as before, a set of points
is extracted which contains very few outliers as shown in
Fig. 9a. In the figure it can also be seen that not all of the
top I-beam was observed and hence the challenge is again
to match a template to incomplete data. The results in Table
I show that ICPpoint does well in this situation whereas
ICPplane performs poorly such as for the Roof and Top
I-beam. Conversely, ICPpoint produces poor results when
there are too many outlier points such as in the case of the
Panel.

B. On Maintenance Site Experiments

The GAD system has been evaluated on a real bridge
maintenance site shown in Fig. 10, where the robot is
attached to a rail-mounted platform. This trial included an



Panel ROI1 Panel ROI2 Roof Top I-beam
Method ICPpoint ICPplane ICPpoint ICPplane ICPpoint ICPplane ICPpoint ICPplane

Average RMS 0.1413 0.0119 0.0136 0.0125 0.0134 0.5966 0.0084 0.3134
σRMS 0.0041 0.0048 0.0094 0.0021 0.0006 0.5042 0.0002 0.2424
Average Time (s) 19.0788 7.8010 10.772 5.7521 7.8038 48.4875 0.4739 4.6350
σTime 0.6302 0.2433 0.3743 0.6321 0.6488 40.5043 4.5182 0.1575

TABLE I
THE MAPPING PERFORMANCE FOR THE PANEL USING TWO DIFFERENT ROIS.

(a) (b)

Fig. 9. (a) The points extracted for the top I-Beam include few outliers.
(b) Even though the scan data captures less than 50% of the top I-beam, it
can still be successfully matched using ICPpoint.

evaluation of the mapping sub-system during the intended
robot operation as part of the normal bridge maintenance.
There are many additional challenges when working in the
field with this robotic maintenance system. In particular,
time constraints must be adhered to so as not to impede
the progress of the workers. The time available to setup
the robot system is limited to several hours, and after grit-
blasting commences additional setup work cannot be done
easily. Low light levels and the uneven floor make precise
positioning of the rails and platform difficult. Nevertheless,
the setup work must be done only once and with no signif-
icant corrections after the installation is completed in order
to keep to schedule.

(a) (b)

Fig. 10. (a) The GAD robot during onsite bridge maintenance system
evaluations. (b) The workspaces after robotic grit-blasting (compare to the
condition prior to blasting). The good coverage of the workspaces’ elements
is achieved due to the high geometrical accuracy of the maps.

During the trials a total of 16 data sets were recorded, all
of which are presented here. Fig. 10 shows that additional
scaffolding is installed as part of the containment above and
below the sidewall. As shown in Fig. 11a this additional
scaffolding is also apparent in the scan data. This adds a
significant number of outliers, which are not discarded in the

Panel Roof Top I-beam
Method ICPplane ICPpoint ICPpoint

Average RMS 0.0139 0.0116 0.0149
σRMS 0.0013 0.0021 0.0018

TABLE II
THE MAPPING PERFORMANCE FOR THE PANEL, ROOF AND TOP I-BEAM

USING DATA FROM A REAL BRIDGE MAINTENANCE SITE.

processing steps of the mapping approach. This can be seen
in Fig. 11b, where the processed point clouds for the panel,
roof and top I-beam used in the ICP step are shown together.
Furthermore, the initial ROI was determined experimentally
and was chosen to be wider compared to the laboratory
experiments in order to maximize robustness.

Table II shows that the approach is effective for all data
sets with similar RMS values compared to the laboratory
trials, and a high consistency of the results is shown by the
standard deviation σRMS . The processing time is typically
below 30 seconds for an entire workspace which is orders
of magnitude below the time it takes for grit-blasting so that
the productivity will not be significantly impacted. Fig. 11c
shows the mapping result for one workspace with the scan
data being shown in grey and the template data shown in
yellow/red.

IV. CONCLUSIONS

This work deals with the environment sensing and map-
ping by means of a robotic manipulator for steel bridge
maintenance where it is necessary to automate tasks in a
partially-known structured environment. Challenges exist due
to the complexity of many 3D environments, the limited
time available for exploration resulting in incomplete scan
data, and the requirement of a geometrically accurate and
reliable map. The presented approach focuses on mapping
a fundamental element in the workspace of the robot and
subsequently using that knowledge to identify other regions
of interest. This is done by narrowing down ROIs un-
til ICP-based template matching can be executed success-
fully. The use of templates leads to geometrically accurate
maps, even in the presence of incomplete scan data. To
demonstrate the viability of the approach for an industrial
application, experiments were conducted using the GAD
robot. Experiments using a mock-up structure as well as
extensive experiments on an actual steel bridge maintenance
installation have been conducted. The results show that the
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Fig. 11. (a) The complete scan data for one workspace on a real steel bridge maintenance site. The panel of the current workspace is annotated. Scaffolding
for the containment exists above and below the sidewall. (b) The data extracted for mapping. (c) The mapping result for one workspace.

proposed mapping approach consistently delivers high levels
of accuracy with acceptable computation time. Furthermore,
the approach is robust with respect to imprecise positioning
making it suitable for real-world usage. This robustness
stems from the segmentation process which initially makes
few assumptions and then gradually narrows down ROIs.
Future work will improve the efficiency of the approach
and more closely integrate the approach with the workspace
exploration process.
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