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A Statistical Approach for Uncertain Stability
Analysis of Mobile Robots

Mohammad Norouzi, Jaime Valls Miro and Gamini Dissanayake

Abstract—Stability prediction is an important concern for
mobile robots operating in rough environments. Having the
capacity to predict areas of instability means pro-actively being
able to plan safer traversable paths. The most influential tip-over
stability measures are based on two criteria, the robot’s center of
mass (CM) and the supporting polygon (SP) defined by the convex
area spanned between the ground contact-points. However, there
is significant uncertainty associated with many parameters in
the planning pipe-line: the actual robot kino-dynamic model, its
localisation in the ground, and the terrain models, particularly
in uneven terrain. This article proposes a statistical analysis
of stability prediction to account for some of the uncertainties.
This is accomplished using the force angle (FA) stability measure
for a reconfigurable multi-tracked vehicle fitted with flippers, a
manipulator arm and a sensor head. Probability density function
(PDF) of contact-points, CM and the FA stability measure are
numerically estimated, with simulation results performed on
the open dynamics engine (ODE) simulator based on uncertain
parameters. Two techniques are presented: a conventional Monte
Carlo scheme, and a structured unscented transform (UT) which
results in significant improvement in computational efficiency.
Experimental results on maps obtained from a range camera
fitted on the sensor head while the robot traverses over a ramp
and a series of steps are presented that confirms the validity of
the proposed probabilistic stability prediction method.

I. INTRODUCTION

Mobile vehicles are frequently employed in unstructured
environments where high levels of mobility are required.
These systems have been performing a significant role in
field environments missions such as search and rescue [1],
agricultural vehicle, mobile manipulators [2] and planetary
surface exploration [3]. In such missions, avoiding tip-over is
a major concern because it often results in collateral damage
to the robot and the general surrounding environment [4].

Stability prediction is an important task to successfully plan
safe paths on challenging terrain. Robot’s tip-over stability is
a function of the robot configuration, environment geometry
and the position of robot over the terrain. For an articulated
robot as the iRobot Packbot shown in Fig. 1 in a mock-up
Urban Search and Rescue (USAR) arena, moving on-board
arm attached to the robot, significantly impacts the position of
CM. Moreover, swinging the flippers (the two small front sub-
tracks) can generally lead to changes in the SP of the robot,
defined by the contact-points of the robot on the terrain.

Several tip-over stability measures have been proposed in
the literature to evaluate the stability of a robot and predict
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Fig. 1: The iRobot Packbot robot with additional sensor head
on a mock-up USAR arena.

unstable conditions. The three most common stability metric
algorithms were verified on the packbot tracked robot in [4],
the same platform used in this paper for validation of the
analysis hereby proposed. FA was proven to be one of the most
effective stability measures, and is generally more widely used
as it exhibits a more simplistic geometric interpretation [1].
An alternative real-time tip-over stability criteria for a recon-
figurable tracked mobile platform on slopes was derived in [5]
on the basis of load transfers by judging the supporting forces
generated at the concerned tracked-terrain contact-points. The
algorithm considered the contact-points to be fixed under
the sprockets in order to describe the interactions between
tracks and terrain. This is a strong assumption for the case
of highly unstructured terrains, such as those featuring rubble,
or for tracked robots in general, where contact-points can lay
anywhere along the tracks, even more so if reconfigurability
is also present (e.g. via flippers).

A study of the influence of a variable CM and the shape
of the SP to plan safe traversable paths for the case of recon-
figurable robots was also proposed in [1], where known local
terrains and robot poses were assumed. Given uncertainties in
the various parameters involved, a number of works have been
developed in the literature. A motion planning algorithm for a
wheeled mobile robot model that included some arbitrary fixed
uncertainties in the terrain measurements and rover localisation
was presented in [6]. A statistical method for planetary surface
exploration focused their efforts on incorporating uncertainty
in two deformable soil parameters, cohesion and internal
friction angle is presented in [3]. The mobility prediction
for the wheeled robot was performed via calculating wheel-
terrain interaction forces and vehicle dynamic motions. A



Fig. 2: 3D Force Angle stability for i = 3 (CM’s position has
been shifted up and vectors scaled for easier visualisation).

stochastic response surface method (SRSM) was used as a
functional approximation technique to obtain an equivalent
system model with reduced complexity. The computational
efficiency of SRSM was confirmed through comparison with
a standard Monte Carlo (SMC) method [7], and the Latin
hypercube sampling Monte Carlo method.

More recently, two polynomial chaos approaches for mobile
robot dynamics prediction given uncertainty in obstacle’s
height, vehicle mass and surface type was presented in [8]. A
ground vehicle simulator based on the ODE [9] was utilised
to compare the results from the experiments conducted with
a wheeled (P3-AT) mobile robot. The accuracy of these
polynomial chaos approaches methods were validated through
a baseline reference with the results obtained from the SMC
approach. The robot was made to traverse over step obstacles
and to compute the inclination of the robot, under the strong
assumption that the wheels always remained in contact with
the terrain, not necessarily the case for more unstructured
environments, e.g. rubble, steps, etc.

The majority of the tip-over stability criteria mentioned
above is predicated on the position of the CM and the SP.
While there are propositions that take into account the un-
certainties associated to some parameters, most rely on deter-
ministic analysis that assume precise knowledge of the terrain
physical model, robot pose and vehicle true configurations.
Yet generally only sparse (often occluded) uncertain terrain
model estimates can be drawn from sensors such as point-
cloud cameras, vision or three-dimensional (3D) lasers while
operating in realistic unstructured environments. Moreover,
localisation in ruggedised 3D environments is significantly
more challenging and uncertain than in well-known structured
areas. Also, robot configuration may not be accurately known
given controller residuals due to noisy feedback data from the
robot joints and mechanical play. There is little research that
explicitly addresses the challenges of robot stability analysis
in uneven terrain while considering a wider range of the
parametric uncertainties involved.

In this paper, a statistical framework for stability prediction
using the FA criteria is presented that takes into account a
realistic set of the uncertainties that can be expected to be

present when planning in unstructured domains. Through an
iterative dynamics simulation process, it will be shown how
a probabilistic representation of the contact-points prediction
and the stability metric can be derived. Simulation and exper-
imental results of a multi-tracked robot (fitted with flippers,
a manipulator arm and local (up to 5m) terrain data obtained
from a ranging camera) while traversing over a ramp and a
hill step-field are presented to validate the effectiveness of the
proposed statistical approach.

II. THE FA STABILITY METRIC

Mobile robots usually move slowly over uneven terrains and
a quasi-static stability analysis are shown to be appropriate for
such scenarios [6]. Given location of contact-points and CM of
robot in global coordinate frame, the FA stability measure can
be computed as described in [2]. The n out-most contact-points
pi, i = {1, ...,n} are numbered in counterclockwise order as
depicted in Fig. 2. The tip-over axes ai are defined as the
segments that join the ground contact-points, and the set of
the resulting convex polygon will be referred to as the SP.
The vectors that intersect CM with each ai are referred to
as li. Under quasi-static assumption, the net force fr acting
on the system’s CM will come from the gravitational loading
term. Then for a given tip-over axis ai, the components of
fr which acts about the tip-over axis is calculated as fi. The
stability angle θi is computed as the angle between fi and the
tip-over axis normal li. Critically, the FA stability measure is
also sensitive to di, the minimum length vector from ai to fi,
hence defining the ith stability measure βi as:

βi = θi ‖di‖ ‖fi‖, i = {1, ...,n} (1)

The example in Fig. 2 shows these derivations for n = 4
and i = 3. The overall robot’s FA measure β is defined as:

β = min(βi), i = {1, ...,n} (2)

III. CONTACT-POINTS PREDICTION

The robot-terrain prediction algorithm is based on the
mathematical description of robot model in ODE, a widely
used physical rigid body dynamics simulator, and a 3D model
of the terrain obtained from the depth ranging information.
The scheme is predicated on calculating the projection of the
robot’s geometric underside on the points defining the terrain
underneath so as to derive the contact-points.

Under the assumption of quasi-static equilibrium, the in-
fluence of gravitational forces for a given robot pose and
configuration can be calculated as an iterative process. To that
end, the vehicle is first assumed to be sitting on a hypothetical
plane with no pitch or roll at a given position and orientation
in world coordinates. The 2D robot position (rx,ry,yaw) in the
global reference frame and the angle of the arm and flippers
joints (φA,φF) constitute the input variables. From these set
of initial conditions, the ODE simulator can determine the
final pose of the non-convex polygon defining the robot on
the terrain (rz,roll, pitch), the location of the CM, plus a
list of contact-points between the robot and the terrain. The
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(a) Standard robot stability analyser.

(b) Uncertain robot stability analyser.

Fig. 3: High-level pipe-line of the robot stability analyser.
input: Robot model (φA,φF), Robot Pose (rx,ry,yaw) and
meshed 3D Terrain Model.

Fig. 4: The robot frame and sections (2× 16) considered in
this work in the stability analysis.

outermost points to form a convex polygon will become the
contact-points needed to represent the SP of the vehicle when
sitting on the terrain at that location. For more details on these
derivations, the reader is referred to [1].

IV. THE NEED FOR A PROBABILISTIC APPROACH

A block diagram of the traditional robot stability analysis
pipeline can be seen in Fig. 3a. If the input parameters can
be assumed to be known deterministically, the stability criteria
can be computed as described in Section II. In this work we
argue there is a need to further introduce a mechanism to
account for the uncertainty inherent in the key parameters that
play a role in this analysis, e.g.:

1) Robot Configuration. Variations in φA and φF , mainly due
to mechanial wear-and-tear and encoder resolution, are
assumed to be represented by a normal random distri-
bution with variance of 3 ◦, as indicated in the technical
documentation of the robot.

2) Robot Pose. The noise associated with the robot’s 2D
pose is dependent on the accuracy of the localisation
node. In this work, the study of stability analysis is
restricted to the local terrain in front of the robot, up
to 5m in length. Hence, a conservative variance estimate
of 1 cm per meter in x and y - linearly increasing with
distance up to 5 cm, and 2 ◦ in orientation are assumed.

3) Terrain Model. The terrain, shown in Fig. 5 has been
modelled by irregular triangulation 1 of 3D point-cloud
data obtained with an MS-Kinect [10] range camera.
The model was built off-line by 3D ICP applied to the
depth-image logs of the robot when manually navigating

1It should be noted that the proposed algorithm would work equally with
regular triangulation meshes, height maps or other meshing techniques.

over the terrain at low speeds. The uncertainty values
employed in this work are derived from [10], where it
has been shown how the MS-Kinect sensor model error
in the observed depth measurements increases quadrati-
cally with increasing distance, and reaches 4 cm at the
maximum range of 5 meters.
The z components of the vertices that describe the local
section of the terrain where the robot may be located
will be shifted up/down at the same time to analysed
the effect of noise in the terrain model. For tracked
vehicles such as the iRobot Packbot, contact-points are
almost invariably located under the tracks. Hence, the
proposition is for the robot to be divided into sections
and the effect of variations in the terrain underneath be
considered. Experiments were conducted with various
sections until finer selections made little difference in
the output of the contact-point predictions, settling for
two sections in latitude, and 16 sections in the longitude
direction as depicted by Fig. 4.

V. UNCERTAINTY ANALYSIS METHOD

To state the general problem, we have an n-dimensional
vector random variable x with known mean x̂ and covariance
Pxx and would like to predict the mean ŷ and covariance Pyy of
a m-dimensional vector random variable y, where y is related
to x by the non-linear transformation

y = g[x] (3)

This is represented by Fig. 3b in the context of the rescue
robot problem presented in this paper, and described in more
detail later in Section VII.

If g[.] is a continuous and differentiable function, it is
usually feasible to approximate it by a first-order Taylor series
expansion about the point x̂, but when the transformation is
highly non-linear or a deterministic analytical function doesn’t
exist, linear approximation methods are not valid and another
statistical approaches should be employed. For instance a well
known algorithm for estimating PDF of a general system’s
output response from a large set of repeated random inputs is
the SMC method. The results of SMC will be more accurate as
the size of input set increases, and the distribution of the pool
is closer to the assumed pattern. This tendency to bigger set
of inputs generally makes SMC computationally expensive, so
other structured sampling techniques such as Latin hypercube
sampling or importance sampling can be used to improve
computational efficiency.

To speed up the transformation of means and covari-
ances, [11] introduces UT filter to smaller set of input
data. This technique suggests that rather than approximate
the Taylor series to an arbitrary order, we can approximate
the first three moments of the prior distribution accurately
using a set of samples. Generally this method superficially
resembles the SMC method, yet the samples are not drawn at
random. Rather, the samples are deterministically chosen so
that they capture specific information about the distribution.
This filter is significantly easier to implement because it does



not involve any linearisation steps, eliminating the derivation
and evaluation of Jacobian matrices.

The n-dimensional random variable x with mean x̂ and
covariance Pxx is approximated by 2n+ 1 weighted samples
or sigma points selected by the algorithm

X0 = x̂
W0 = k/(n+ k)

Xi = x̂ +
(√

(n+ k)Pxx

)
i

Wi = 1/(2(n+ k))

Xi+n = x̂ −
(√

(n+ k)Pxx

)
i

Wi+n = 1/(2(n+ k))

i = {1, . . . ,n}
(4)

where
(√

(n+ k)Pxx

)
i

is the ith row or column of the
matrix square root of (n+ k)Pxx and Wi is the weight that
is associated with the ith point. k ∈ R, can be any number
(positive or negative) providing that (n+k) 6= 0. For Gaussian
distribution, a useful heuristic is to select n+k = 3 to minimise
the difference between the moments of the standard Gaussian
and the sigma points up to the fourth order [11].

Given the set of samples generated by Eq. 4, the transfor-
mation of means and covariances procedure is as follows:

1) Each sigma point is instantiated through the process
model to yield a set of transformed samples

Yi = g[Xi], i = {0, . . . ,2n} (5)

2) The transferred mean is computed as

ŷ =
2n

∑
i=0

Wi Yi (6)

3) The transferred covariance is computed as

Pyy =
2n

∑
i=0

Wi {Yi− ŷ}×{Yi− ŷ}T (7)

The mean and covariance are calculated using standard
vector and matrix operations, which means that the algorithm
is suitable for any choice of process model, and implementa-
tion is convenient because it is not necessary to evaluate the
Jacobian matrixes, as in e.g. an Extended Kalman Filter.

VI. THE ROBOT MODEL

The robot platform used in the simulations and experiments
in this work is the multi-tracked iRobot Packbot, depicted in
the USAR mock-up arena in Fig. 1. It consists of a skid-
steer vehicle base, two small flippers in front of robot and a
manipulator arm attached via a 1 Degree of Freedom (DoF)
shoulder joint. It carries a 2-DoF pan-and-tilt unit equipped

Fig. 5: Whole 3D USAR test arena and robot model at four
locations (HS, DS, ramp and stairs).

with several sensors, lights and cameras including a MS-
Kinect and an infrared camera. The robot’s CM with respect
to local frame is defined by:

CM =
∑ j pmass j m j

mtot
= [CMx CMy CMz]

T (8)

where m j is the jth lumped mass at location pmass j in the
robot frame and mtot is the total robot mass. As depicted in
Fig. 4, X is the robot’s roll axis, Y the pitch axis and Z the
direction normal to the platform, or yaw axis. The robot’s
coordinate frame origin is assumed to be located at the center
of the support rectangular polygon formed when the robot’s
body is parallel to the horizontal plane. The weight of the base
of robot and sensor head are 21.6kg and 3.8kg respectively. It
is 69cm long and 41cm wide. The width of the main tracks is
7.5 cm. These parameters, the geometries of the robot model
and their kinematic constraints are described in the ODE with
a set of fixed joints for non-moving parts, and two moving
joints for the arm and the flippers.

VII. SIMULATION RESULTS

The simulation aims to estimate the distributions of contact-
points and stability measure β under the assumption of a
Gaussian model distribution of uncertainty in the robot config-
uration, environment geometry as well as the position of the
robot over the terrain. The distribution of the contact-points is
not really necessary for the uncertainty analysis, yet it is pro-
vided here to quantify the validity of the UT calculations. The
result of SMC is compared with the more efficient structured
sampling approach UT explained in Section V. The dimension
of x in Eq. 4 is considered as n = 3+2+2×16 = 37, i.e. 3
DoF for the robot’s 2D position (rx,ry,yaw), 2 for the robot’s
configuration (φA,φF) and 16 for the number of sections in
longitude direction as shown in Fig. 4. The robot was placed
in four different terrain topologies including a ramp, stairs
and two reconfigurable wooden cubic obstacles arranged in
diagonal step-field (DS) and hill step-field (HS) arrangements.
The 3D model of of USAR test arena and the four robot
positions for this experiment is shown in Fig. 5.

In each position, the uncertainty analysis of contact-points
and β are first carried out with the well known SMC technique
with 1000 iterations, while UT requires only 75 iterations. As
depicted in the examples of Fig. 6 and Fig. 7, the “ideal”
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Fig. 6: The distribution of contact-points over HS (x and y in robot frame, z in global frame), (k = 1).

cp1 cp2 cp3 cp4 CM β mean
HS 2.639 4.410 4.061 2.040 1.888 1.127 2.694
DS 2.342 3.826 3.148 2.056 1.763 2.331 2.577

ramp 2.705 4.006 3.790 4.559 1.455 3.004 3.253
stairs 1.582 2.464 4.475 3.828 0.710 2.600 2.610

TABLE I: The rms errors(%) between UT and Monte Carlo
samples with k = 1 (average = 2.7080%).

cp1 cp2 cp3 cp4 CM β mean
HS 3.884 5.310 3.918 3.543 5.504 2.743 4.150
DS 4.442 5.332 5.004 1.905 2.697 2.918 3.716

ramp 3.296 3.084 4.901 5.284 3.518 3.013 3.849
stairs 2.191 2.628 1.419 3.110 5.911 3.830 3.181

TABLE II: The rms errors(%) between UT and Monte Carlo
samples with k =−34 (average = 3.7244%).

PDF using the resulting SMC mean and covariance values
are plotted in Red. The original SMC samples are plotted in
dashed Blue around this PDF for comparison purpose.

The mean and covariance was then extracted using the UT
method, with k = 3−n =−34 as suggested in [11]. When k is
negative, it is possible that the predicted covariance will not
be positive semi-definite. In such cases, the resulting PDFs
don’t follow closely the SMC samples, and trial-and-error is
recommended to evaluate the covariance about the projected
mean [11]. As suggested, simulations were repeated to find
a more suitable value for k, with a positive value of k = 1
significantly improving the rms error over a range of values.

Given space limitations, only distributions of contact-points
for the HS test position and k = 1 are depicted in Fig. 6. The
PDF using covariance and mean obtained from UT are plotted
in Black. The average rms error of each contact-point and β

in the four positions are summarised in Tables I and II for
k = 1 and k = −34 respectively. The PDFs of β s in the four
positions are displayed in Fig. 7 for k = 1.

VIII. EXPERIMENTAL RESULTS

To validate the results, the robot was made to traverse over
the actual ramp and HS following a straight trajectory and
constant reduced speed. A localiser using odometry and 2D
range data from an auto-levelled laser scanner was employed
to derive an estimate of the robot pose (rx,ry,yaw) with a
previously built 3D mesh of the arena, depicted in Fig. 5. As
the platform has no suspension and the terrain is rigid, pitch
and roll measurements from an on-board IMU can be assumed
to be a fair reflection of the vehicle’s attitude when sitting on
the terrain. The robot’s configuration (φA,φF) was recorded
from the actual on-board encoders during the experiments. The
data from these tests was then analysed off-line to calculate the
statistical properties of contact-points and stability measures.

The inclination of the ramp illustrated in Fig. 5 is 30◦. The
results of the ramp experiment are illustrated in Fig. 8a and
Fig. 8c (roll is mostly kept constant around zero during the
motion, hence not displayed as variations are insignificant).
As shown in Fig. 8a, real inclination data is very close to
that inferred by the simulator. The stability measure from a
single simulation and mean value driven using UT in each
point is depicted in Black and Red in Fig. 8c respectively.
Also the standard deviation σ (68%) and 2×σ (95%) around
the mean are depicted in dashed Red and Blue. The measured
β and its mean value up to σ is always positive which shows
a convenient stability.

HS is an example to simulate common block obstacles, like
rubble or unlevelled floors. The HS set-up illustrated in Fig. 5
is composed of three successive 10 cm steps, two traversed



(a) HS (b) DS

(c) ramp (d) stairs

Fig. 7: The distribution of β s in different positions (k = 1).

“up”, and one “down”. The results of the experiment over
the HS are illustrated in Fig. 8b and Fig. 8d in the same
way as was earlier depicted for the ramp (roll’s variations are
insignificant, thus not shown). As can be seen in Fig. 8b, the
real inclination data is also closely captured by the simulator
except at around 8s and 17s, when the robot tipped-over and
had to be manually handled and returned to the HS to prevent
a fatal crash. Although the calculated mean value for β can
be seen to be just positive over the path at those instances,
σ uncertainty analysis shows the robot tipping-over at those
instances (when the crossing over the steps takes place).

Comparing these two examples shows that despite of the
smaller inclination in the HS configuration, in comparison
with ramp, robot is still more stable over the ramp than HS.
Assuming a fixed SP and calculating stability based on IMU
data (like the approach in [4]) will lead to apparent stability,
yet that is not the case. The traditional deterministic stability
analysis method with variable SP can be regarded as fairly
reliable over simple topologies like ramps, but can’t predict
instability over more challenging obstacles like HS where
the uncertainty in the input parameters can have a significant
influence on the output stability metric.

Another interesting observation can be seen in Fig. 7d,
where on the stairs β mean is only marginally stable, yet in
the real experiments the robot was more often than not tipping
over, vindicating once again the need to plan for the margins
of the stability that this work advocates for.

IX. CONCLUSIONS

Mobile robots are frequently employed in ruggedised envi-
ronments where stability prediction is critical to the success
of the mission. The most influential tip-over stability measures
are based on two criteria, the CM and the SP. This paper argues
that in uneven terrain, significant uncertainties are associated
with the robot model, localisation and terrain parameters which
need to be taken into account. A statistical method for stability
prediction using the well known FA stability measure has been
presented which can take into account these uncertainties.
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Fig. 8: Experimental and simulation results over ramp and HS.

PDF of contact-points, CM and FA stability measure have
been estimated, with simulation results from the uncertain
parameters performed on the ODE. The proposed method has
been validated with two techniques: a conventional standard
Monte Carlo scheme, and a structured sampling approach
which shows significant improvement in computational effi-
ciency. Experimental results of a multi-tracked robot fitted
with flippers and a manipulator arm travelling over a ramp
and a hill step-field have been presenteded that confirm the
utility of the proposed statistical stability prediction method.
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