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ABSTRACT 

The Long-Term Evolution (LTE) network is a new radio access technology (RAT) 

proposed by the Third Generation Partnership Project (3GPP) to provide a smooth 

migration towards the fourth generation (4G) network. Long Term Evolution-Advanced 

(LTE-A) is a major enhancement of the LTE standard proposed by the 3GPP to meet 

the 4G mobile communication standards.  

Handover is one of the key components in cellular network mobility management. 

Handover is a mechanism that transfers an on-going call or data session from one base 

station (BS) to another BS or one sector to another sector within the same BS. Hard 

handover has been adopted in LTE and LTE-A systems by 3GPP due to the flat IP-

based architecture and the lack of a centralized controller. The use of hard handovers 

reduces the complexity of the handover mechanism and minimizes the handover delay. 

However, the hard handover approach causes call drops that may result in lost data 

during a session. The objective of this thesis is to provide the basis for improving 

handover performance in the LTE and LTE-A systems. 

A C++ system level simulator that can dynamically model the large and complex 

downlink LTE and LTE-A was developed as part of this research work followed by a 

proposed handover parameters optimization method. The simulation results show that 

the handover parameters optimization method can effectively minimize the unnecessary 

number of handovers while maximizing the system throughput. 

Under an initial assumption of an ideal mobile cellular channel (i.e. the mobile cellular 

channel is not subject to any impairment), this thesis proposes a new handover 

algorithm in the LTE system and three new Coordinated Multiple Transmission and 

Reception (CoMP) handover algorithms in the LTE-A system. The simulation results 

show that the proposed handover algorithm outperforms well-known handover 

algorithms in the LTE system by having less number of handovers, shorten total system 

delay whilst maintaining a higher total system throughput. The performance of the 

proposed CoMP handover algorithms are evaluated and compared with open literature 

CoMP handover algorithm via simulation. It is shown via simulation that the proposed 
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CoMP handover algorithms can improve the system throughput and minimize the 

system delay in a saturated system scenario in the LTE-A system. 

A more practical LTE-A system where the mobile cellular channels are subject to 

impairments is considered for performance testing of selected CoMP handover 

algorithms. The impairments for a practical LTE-A system are assumed to be in two 

scenarios: outdated feedback and missing feedback. It is shown via computer 

simulations that the system throughput and system delay are very sensitive against 

outdated Channel Quality Information (CQI) feedback and missing CQI feedback. 

Furthermore, a handover failure caused by an inappropriate feedback increases the 

number of unnecessary handovers which require additional resources in the network 

and may significantly degrade the system performance. 
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A further step in the 3G mobile cellular system evolution was introduced as High-Speed 

Downlink Packet Access (HSDPA) system. HSDPA was able to provide a more 

efficient and reliable quality of communications using Adaptive Modulation and Coding 

(AMC), packet scheduling and Hybrid Automatic Repeat Request (HARQ). Further 

enhancement of the HSDPA system was made for the uplink. High-Speed Uplink 

Packet Access (HSUPA) was standardized in the 3GPP Release 6 standard, High-Speed 

Packet Access + (HSPA+) was standardized in the 3GPP Release 7 and Release 8 

standards.  

Figure 1.3 shows the evolution from 2G towards Fourth Generation (4G) mobile 

cellular systems. Three different organisations: 3GPP, 3GPP2 / Qualcomm, and Institute 

of Electrical and Electronics Engineers (IEEE) dominate the evolution of the mobile 

cellular systems shown in Figure 1.3. In the evolution of the mobile cellular systems, 

3GPP plays the role of upgrading the mobile cellular systems based on the 2G GSM 

networks whereas 3GPP2 upgrades the mobile cellular systems based on the 2G 

cdmaOne networks. IEEE joined the evolution of the mobile cellular systems with 

introduction of the Worldwide Interoperability for Microwave Access (WiMAX) 

standard that provides the delivery of last mile wireless broadband access as an 

alternative to cable and DSL for high-speed multimedia services. Based on GSM 

network achievement as the most commercially successful 2G mobile cellular system in 

the world, 3GPP family is consider as the world’s leading mobile cellular systems.  

The 3G Universal Terrestrial Radio Access Network (UTRAN) network has evolved 

into the Long-Term Evolution (LTE) network, also known as Evolved UTRAN 

(EUTRAN). This is a new radio access technology (RAT) proposed by the 3GPP to 

provide a smooth migration towards fourth generation (4G) network. The first LTE 

network was launched by TeliaSonera in Oslo and Stockholm on December 14, 2009 

[9]. Several key requirements of the LTE standardization include: 

1. Ensure competitiveness of the 3GPP family over a long time frame [3] 

2. Improve performance and radio spectrum efficiency [10] 

3. Reduce the cost of deployment and multimedia delivery [11] 
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condition needs to be avoided in the UE side. Therefore, SC-FDMA technology was 

selected because it provides a more efficient usage of the battery in the UE is better 

suited for the uplink LTE.  

1.1.4 Resource Block (RB) 

The smallest transmission unit in the downlink LTE-A system is known as a physical 

resource block (PRB) which consist of a pair resource blocks (RB) [34]. A PRB has a 

bandwidth of 180 kHz (12 sub-carriers) and a duration of 1ms (TTI) and a RB has a 

bandwidth of 180 kHz and a duration of 0.5ms. A downlink time slot has a duration of 

0.5 ms and contains either 6 or 7 OFDM symbols depending on the usage of long or 

short CP, respectively. A Resource element is the basic unit of Physical Resource in 

LTE [35]. Each RB contains 72 resource elements (REs) when long CP is used, while 

84 RE when normal CP is used. The graphical representation of the downlink RB in 

LTE and available downlink bandwidth with associated number of RBs in LTE is 

shown in Figure 1.10 and Table 1.1, respectively. 
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1.1.5 Quality of Service (QoS) 

The QoS differentiation in the LTE is provided in the EPS bearer introduced by the 

3GPP organisation [10]. An EPS bearer can either be Guaranteed Bit Rate (GBR) or 

Non-GBR bearer based on its QoS requirements. Each EPS bearer contains bearer level 

QoS parameters with QoS Class Identifiers (QCIs), allocation retention priority, the 

GBR and the maximum data rate [37]. The complete list of the QCI configuration and 

the QoS parameters for LTE is shown in Table 1.2.  

Table 1.2: Standardised QCIs for LTE [38] 

QCI Service 
type Priority 

Packet 
delay 

budget 
(ms) 

Packet 
error 
loss 
rate 

Example applications 

1 GBR 
 

2 100 10-2 Conversational voice 

2 4 150 10-3 Conversational video (live streaming) 

3 5 300 10-6 Non-conversational video (buffered 
streaming) 

4 3 50 10-3 Real time gaming 

5 Non-
GBR 

1 100 10-6 IMS signalling 

6 7 100 10-3 Voice, video (live streaming), 
interactive gaming 

7 6 300 10-6 Video (buffered streaming), TCP-
based i.e. www, e-mail, chat, ftp, p2p 
file sharing, progressive video, etc.) 8 8 

9 9 

1.1.6 LTE-A Key Features 

There are a number of key features introduced in LTE-A, including carrier aggregation, 

downlink and uplink spatial multiplexing enhancement, coordinated multipoint point 

(CoMP) transmission and reception, relaying nodes, and heterogeneous networks 

compatibility [39].  

Carrier aggregation permits an eNodeB to group several distinct channels into one 

logical channel [40]. This results in a high peak data rate of 1 Gbps in downlink and 500 

Mbps in uplink being achieved with bandwidth extension from 20 MHz to 100 MHz in 
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The CQI is reported by each active UE to the eNodeB to estimate its channel quality. A 

channel-aware packet scheduler is permitted by this CQI report to schedule a user on its 

favourable RB based on the user’s channel quality [50-54]. 

A simple illustration demonstrating the idea of a general packet scheduling model for 

downlink LTE system is in Figure 1.15. Figure 1.15 shows that the packet scheduler 

makes the decision of the downlink packets queued at the eNodeB buffer to be 

transmitted by assigning the most appropriate PRBs for each competing users based on 

the CQI report and the packet scheduling algorithm. 

 

 

Figure 1.15:  A generalised model of downlink LTE packet scheduling [55] 

A Transport Block (TB) is a group of packets that are transmitted to a user in one TTI. 

The data rate for packets transmission which is determined by the size of the TB 

depends upon the Modulation and Coding Scheme (MCS) on each RB that is assigned 

to the user. Figure 1.16 shows a transport block in a sub frame of 10 ms radio frame in 

LTE. 
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1.4 Motivation and Objectives 

Handover mechanisms in LTE and LTE-A systems are relatively new area of research 

in future wireless networks. The scarcity of the radio resources, the dynamic nature of 

propagation environment, the variety of user mobility as well as maximizing the 

possible system throughput and minimizing the system delay are the major challenges 

that need to be addressed when researching the handover mechanisms in LTE and LTE-

A systems. Given that a LTE-A system is a major enhancement of the LTE system, the 

feasibility of the LTE handover mechanisms on LTE-A system needs to be studied. 

CoMP technology is expected to improve the cell-edge throughput and/or system 

throughput with multiple data transmissions in LTE-A compared with the LTE system. 

In coordinated multipoint networks, multiple base stations send information in a 

coordinated manner to the mobile station, the current existing handover algorithms in 

LTE network are not applicable for CoMP networks [63]. Furthermore, existing CoMP 

technologies in LTE-A system could lead to system capacity overload and saturated 

system throughput issues within a highly congested network. Therefore, new handover 

algorithms which can support CoMP technology and take system capacity into 

consideration in the LTE-A system is focused in this thesis. 

The mobile cellular channels are subject to various impairments due to interference, 

multi-path fading, shadowing, and imperfect channel feedback reports. These 

impairments may cause severe performance degradation especially for handover 

algorithms that rely on an accurate RSRP report. The mobile cellular channel 

impairments of the CoMP handover algorithms due to impairment environments in a 

practical LTE-A cellular network are taken into considerations in our performance 

analysis. 

Given the challenges, five questions to be highlighted in this research are: 

1. Given the current handover algorithms in multi-carrier systems, can one improve 

the performance of the current algorithms by minimizing system delay and 

maximizing the system throughput in a multi-cell scenario? 
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2. Given a set of handover algorithms in LTE, can one evaluate these algorithms 

based on the simulation performance analysis? 

3. How suitable are LTE handover mechanisms for LTE Advanced? 

4. Given that current existed handover algorithms in LTE network are not 

applicable for CoMP networks, can one design a handover algorithm that 

support CoMP technology and take system capacity into consideration in LTE-A 

system? 

5. Given that handover algorithms rely on an accurate RSRP report to perform 

optimized performance, what is the performance impact of CoMP handover 

algorithms due to impairment environments in a practical LTE-A cellular 

network? 

1.5 Thesis Overview 

A number of contributions are made in this thesis to address the LTE and LTE-A 

handover challenges outlined in Section 1.4. The contributions and brief descriptions of 

remaining chapters of this thesis are given below: 

Chapter 2: Modelling and Simulation of LTE and LTE-A 

This chapter describes a general downlink LTE and LTE-A system model including 

topology model, mobility model, radio propagation model, and traffic model. The 

modelling of the CQI, Reference Signal Received Power (RSRP), handover mechanism, 

packet scheduling and Hybrid Automatic Repeat Request (HARQ) are discussed. The 

traffic characteristics and performance metrics that are used to evaluate the system 

performance are introduced. Moreover, relevant underlying assumptions that are used 

throughout the thesis are summarized in this chapter.  

Chapter 3: Handover Algorithms  

This chapter studies the fundamental handover mechanism, the standard handover 

procedure in LTE, and a number of handover algorithms developed for LTE system. An 

optimization method is introduced to minimize the number of handovers and maximize 

the system throughput in a multi-cell scenario. Furthermore, a handover algorithm in 

LTE is proposed to minimize unnecessary handovers while maintaining the same 
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channel quality. The performance of selected handover algorithms in LTE are optimized 

and compared in this chapter. 

Chapter 4: Advanced LTE-A CoMP Handover Algorithms 

The CoMP technology is expected to enhance the LTE-A system throughput and reduce 

the packet loss ratio (PLR) compared with the LTE system. However, this could lead to 

system capacity overload and saturated system throughput issues within a highly 

congested network. To address this situation, this chapter describes three proposed 

CoMP handover algorithms for the LTE-A system. These algorithms take one or more 

decision information (i.e. instantaneous RSRP, instant/historical PRB usage) into 

consideration so as to increase system capacity. System performance of each proposed 

CoMP handover algorithm is evaluated and compared with open literature handover 

algorithm via simulation.  

Chapter 5: Performance Testing of CoMP Handover Algorithms with Various 

Traffics in LTE-A  

A performance testing of selected CoMP handover algorithms with various traffics in 

LTE-A system is discussed in this chapter. The simulation results are provided 

including the handover parameters optimization of each CoMP handover algorithm 

under different speed scenarios and followed by the discussion of the performance 

testing for real-time (RT) traffic, non real-time (NRT) traffic, and mixed RT and NRT 

traffic in the LTE-A system. 

Chapter 6: Performance Testing of CoMP Handover Algorithms for Practical 

LTE-A Cellular System 

A practical LTE-A cellular system with mobile cellular channel impairments is 

considered in this chapter for performance testing of CoMP handover algorithms. The 

impairments for a practical LTE-A system are assumed to be in two scenarios: outdated 

feedback and missing feedback. A constantly feedback delayed channel is assumed in 

the outdated feedback scenario while a missing feedback environment is assumed in the 

missing feedback scenario. The performances of each CoMP handover algorithm for 
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perfect feedback scenario, outdated feedback scenario, and missing feedback scenario in 

a practical LTE-A system are individually evaluated and discussed in this chapter. 

Chapter 7: Conclusions and Future Research Directions 

This chapter summarises the thesis contributions and recommends some studies relevant 

for future research.  

1.6 Contributions 

Majority of the contributions included in this thesis appear in peer reviewed journal and 

conference papers. They are outlined as following: 

Journal Articles 

 
C.-C. Lin, K. Sandrasegaran, H.A.M. Ramli, and R. Basukala, “Optimized Performance 

Evaluation of LTE Hard Handover Algorithm with Average RSRP Constraint” in 

International Journal of Wireless and Mobile Networks (IJWMN), vol. 3, no. 2, April 

2011, pp. 1-16. 

C.-C. Lin, K. Sandrasegaran, X. Zhu, and Z. Xu, "Limited CoMP Handover Algorithm 

For LTE-Advanced," Journal of Engineering, vol. 2013, p. 9, 2013. 

Z. Xu, K. Sandrasegaran, B. Hu, and C.-C. Lin, "A Study of WLAN RSSI Based 

Distance Measurement Using EEMD," International Journal of Advanced Research in 

Computer Science and Software Engineering, vol. 3, p. 6, 2013. 

Y. Wang, K. Sandrasegaran, X. Zhu, C.-C. Lin, A. Daeinabi, "Packet Scheduling in 

LTE with Imperfect CQI," International Journal of Advanced Research in Computer 

Science and Software Engineering, vol. 3, issue 6, July 2013. 

Conference Papers 

 
C.-C. Lin, K. Sandrasegaran, H. A. M. Ramli, and M. Xue, "Requirement of Handover 

Modeling in the Downlink 3GPP Long Term Evolution System," in IEEE 24th 
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International Conference on Advanced Information Networking and Applications 

Workshops (WAINA) 2010, pp. 305-310. 

M. Xue, K. Sandrasegaran, H. A. M. Ramli, and C.-C. Lin, "Performance Analysis of 

Two Packet Scheduling Algorithms in Downlink 3GPP LTE System," in the IEEE 24th 

International Conference on Advanced Information Networking and Applications 

Workshops, Perth, Australia, 2010. 

L. Wu, K. Sandrasegaran, M. Elkashlan, and C.-C. Lin, "Performance Evaluation on 

Common Radio Resource Management Algorithms," presented in the IEEE 24th 

International Conference on Advanced Information Networking and Applications 

Workshops, Perth, Australia, 2010. 

H.A.M. Ramli, K. Sandrasegaran, R. Basukala, R. Patachaianand, M. Xue, and C.-

C.Lin, “Resource Allocation Technique for Video Streaming Applications in the LTE 

System”, in Proceeding of the 19th Annual Wireless and Optical Communications 

Conference (WOCC), Shanghai, China, May 2010, pp. 1-5. 

L. Chen, K. Sandrasegaran, R. Basukala, F. M. Madani, and C.-C. Lin, "Impact of soft 

handover and pilot pollution on video telephony in a commercial network," in 16th 

Asia-Pacific Conference on Communications (APCC) 2010, pp. 481-486. 

K. Sandrasegaran, R. Patachaianand, F. M. Madani, and C.-C. Lin, "Analysis of 

opportunistic contention-based feedback protocol for downlink OFDMA," in 

Australasian Telecommunication Networks and Applications Conference (ATNAC) 

2010, pp. 72-77. 

C.-C. Lin, K.Sandrasegaran, H.A.M. Ramli, R. Basukala, R. Patachaianand, L. Chen 

and T.S. Afrin, “Optimization of Handover Algorithms in 3GPP Long Term Evolution 

System”, in Proceeding of the International Conference on Modeling, Simulation and 

Applied Optimization (ICMSAO 2011), April 2011, pp. 1-5. 

C.-C. Lin, K. Sandrasegaran, and S. Reeves, "Handover algorithm with joint processing 

in LTE-advanced," in 9th International Conference on Electrical 
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Engineering/Electronics, Computer, Telecommunications and Information Technology 

(ECTI-CON) 2012, pp. 1-4. 

C.-C. Lin, K. Sandrasegaran, X. Zhu, and Z. Xu, "Performance evaluation of capacity 

based CoMP handover algorithm for LTE-Advanced," in 15th International Symposium 

on Wireless Personal Multimedia Communications (WPMC) 2012, pp. 236-240. 

C.-C. Lin, K. Sandrasegaran, X. Zhu, and Z. Xu, "On the performance of capacity 

integrated CoMP handover algorithm in LTE-Advanced," in 18th Asia-Pacific 

Conference on Communications (APCC) 2012, pp. 871-876. 
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Chapter 2  

MODELLING AND SIMULATION OF DOWNLINK LTE 

AND LTE-A 

There are a number of methods that can be used for evaluating the performance of a 

mobile cellular network. These methods include test bed, theoretical analysis, and 

computer simulation.  

A test bed is a platform for experimentation of development projects and researches. A 

typical test bed could include software, hardware, and networking components [64]. 

Emulab offers researchers a wide range of environments in which to develop, debug, 

and evaluate their systems [64]. Considerable financial, labour, and hardware resources 

are required for test bed methods [65, 66]. Test bed results are difficult to analyse 

because they are heavily influenced by the test environment [67].  

Theoretical analysis is an approach that identifies the origins of a theory, examines the 

meaning of the theory, analyses the logical adequacy of the theory, determines the 

usefulness of the theory, define the degree of generalizability and the parsimony of the 

theory, and determines the testability of the theory [68]. Theoretical analysis is a 

complex method that depends on the model being built and it is a time consuming 

method for evaluating accurate result due to the steps involved. 

Computer simulation is a less expensive and complex method that makes modelling and 

studying a large scale mobile cellular system more practical [69]. Researchers can 

design and analyse a number of mobile cellular scenarios easily by using computer 

simulation. A computer simulation of a cellular network was used for performance 

evaluation in this thesis because it is less expensive and less complex to study when 

compared to theoretical analysis and test bed methods. 
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A number of LTE simulators are available in the literature: a MATLAB-based downlink 

physical-layer simulator for LTE [70], an OFDMA wireless system using WM-SIM 

platform [71], 4G Evolution Lab - LTE and LTE-Advanced Toolbox and Blockset for 

MathWorks MATLAB® and Simulink® [72], LTE eNodeB Software Framework [73], 

a MATLAB computationally efficient LTE system level simulator [74] [70-76], and 

LTE-Sim [75]. However, these simulators do not support handover protocols. A 

MATLAB-based downlink physical-layer simulator for LTE [70], an OFDMA wireless 

system using WM-SIM platform [71] and 4G Evolution Lab – LTE and LTE-Advanced 

Toolbox and Blockset for MathWorks MATLAB® and Simulink® [72] focus more on 

the Physical (PHY) Layer aspects. LTE eNodeB Software Framework [73] is not 

accessible for public research communities. LTE-Sim [75] is an open source framework 

which supports well-known packet scheduling strategies such as Proportional Fair (PF), 

Modified Largest Weighted Delay First (MLWDF), and Exponential Proportional Fair 

(EPF), frequency reuse techniques, and PHY layer models. However, LTE-Sim does not 

support handovers. Therefore, a C++ system level simulator based on [77] that can 

dynamically models the large and complex downlink LTE was developed as part of this 

research work. The simulator consists of the following models:  

1. System Model 

2. Topology Model 

3. User mobility model 

4. Radio propagation model including Path Loss, Shadow Fading, Multi-path 

Fading, and Signal-to-Interference-plus-Noise-Ratio (SINR) computation 

5. CQI reporting 

6. Reference Signal Received Power (RSRP) computation 

7. Handover Model 

8. Packet Scheduling Model 

9. Hybrid Automatic Repeat Request (HARQ) Model 

10. Traffic Model 

The system model of the C++ system level simulator is inherited from [77]. The 

Topology is expanded from single cell in [77] to seven hexagonal cells. The wrapped-

around function in the user mobility model in this thesis was redesigned and enhanced 
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based on the work in [77] in order to overcome an unrealistic outcome. The radio 

propagation model (including Path Loss, Shadow Fading, Multi-path Fading, and SINR) 

and CQI reporting were inherited from [77] with six more computations for six more 

cells in the simulation. The RSRP computation and handover model were newly 

implemented for handover protocols. The packet scheduling model and HARQ model 

were inherited from [77]. However, the HARQ model in each cell was enhanced for the 

CoMP requirements in LTE-A system. The constant stream traffic in traffic model in 

this thesis was newly implemented for modelling various type of traffic. 

This chapter is structured as follows: Section 2.1 describes a general downlink LTE and 

LTE-A system model implemented within the system level simulator. A topology 

model, a mobility model, and a radio propagation model will be discussed in Section 2.2, 

Section 2.3, and Section 2.4, respectively. Section 2.5 describes the modelling of the 

CQI while Section 2.6 presents the modelling of the RSRP. Section 2.7, Section 2.8, 

and Section 2.9 present the modelling of handover, packet scheduling, and HARQ, 

respectively. A description of RT and NRT traffic characteristics is discussed in Section 

2.10 followed by the performance metrics discussion in LTE and LTE-A in Section 2.11. 

Section 2.12 summarises all assumptions listed in previous sections and Section 2.13 

gives a summary of this chapter.  
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2.1 System Modelling 

A system bandwidth of 5 MHz with 25 PRBs and 2 GHz carrier frequency with normal 

cyclic prefix (7 OFDM symbols over a slot of 0.5 ms duration) is used in this thesis. 

Each eNodeB transmits  at 43.01 dBm [11] and each PRB is assumed to be transmitted 

with equal power. The total amount of 25 PRBs are available to be shared among all the 

users within a cell. Table 2.1 summarises the simulation parameters and these 

parameters are compatible with the LTE specifications 3GPP Technical Report 25.814 

[30]. The number of sub-carriers per PRB is 12 which gives a bandwidth of (12 x 15 

kHz) 180 kHz for each PRB. 

Table 2.1: Main downlink LTE system parameters 

System Parameters Values Reference 

Cellular layout Hexagonal grid, wrap 
around (reflect), 7 cells NA 

Radius 100 NA 

Bandwidth 5 MHz [30] 

Carrier frequency 2 GHz [30] 

Mode of operation FDD [30] 

Number of PRBs 25 [30] 
Number of sub-carriers 

per PRB 12 [30] 

Total Number of Sub-
carriers 300 25 x 12 

Sub-carrier spacing 15 kHz [30] 

Scheduling interval (TTI) 1 ms [11] 

Number of OFDMA 
symbols per TTI 14 (Normal CP) [30] 

Total number of REs 168 14 x 12  

Total eNB transmit power 43.01 dBm [11] 
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considered as one of the most accurate path loss model in mobile communications. Hata 

model can be expressed in the following equations: 

))((log*))(log*55.69.44()(
)(log*82.13)(log*9.333.46)(

1010

1010

tdishha
hftpl

ibm

bi

 

 

(2.3) 

)8.0)(log*56.1(*)7.0)(log*1.1()( 1010 fhfha mm (2.4) 

)1()()( tloctloctdis iii  (2.5) 

where pli(t) is the path loss (in dB) of user i at time t, |disi(t)| is the distance (in meter) of 

user i from eNB at time t, loci(t) is the location (complex number) of user i at time t, f is 

the frequency of the transmission (in MHz), hb is the height of the eNB (in meter), hm is 

the height of the user terminal (in meter), and a(hm) is the mobile antenna correction 

factor. 

2.4.2 Shadow Fading 

Shadow fading refers to the variation in the field strength of a radio signal that is caused 

by reflection, diffraction and shielding phenomenon from obstructions such as building, 

trees and rocks [82]. The shadow fading gain in this thesis was modelled and computed 

using a Gaussian lognormal distribution with a 0 dB mean and a 8 dB standard 

deviation [83]. Two equations expressed below are used to determine the shadow fading 

gain: 

)1(*)1(1*)1(*)1()( 2 tGtttt iiii  
(2.6) 

0

)1(
exp)1(

d
tv

t i
i  

(2.7) 

where G(t-1) is a Gaussian random variable of user i at time t-1, i(t-1) is the shadow 

fading autocorrelation function, vi(t-1) is the speed of user i at time t-1,  is the shadow 

fading standard deviation, and d0 is the shadow fading correlation distance. 
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2.4.3 Multi-path Fading 

Multi-path fading is caused by reflection and/or scattering of an electromagnetic signal. 

It results in the addition of electromagnetic signals received from multiple paths. In this 

thesis, the multi-path fading was modelled based on a frequency flat Rayleigh Fading 

Model [84]. The statistical based frequency flat Rayleigh fading is modelled by a 

complex Gaussian random process and widely used for signal propagation modelling 

and has the following equation:  

3,2,1)2cos()(_
1

,,, itfctap
iN

n
nininii  

(2.8) 

i
ni N

c 2
0,  

(2.9) 
 

)
2

sin(max, nni ff  
(2.10) 

where i,n is the Doppler phase of process i of the nth sinusoid, fi,n is the discrete 

Doppler frequency of process i of the nth sinusoid, ci,n is the Doppler coefficient of 

process i of the nth sinusoid, Ni  is the number of sinusoids of process i, _api(t) is the 

approximated uncorrelated filtered white Gaussian noise with zero mean of process i at 

time t, 0 is the variance (mean power), n is uncorrelated filtered white Gaussian noise 

with zero mean of the nth sinusoid, and fmax is the maximum Doppler frequency. 

Figure 2.4 shows a block diagram representation of the frequency flat Rayleigh fading 

( (t)) at time t based on Equation (2.8), Equation (2.9), and Equation (2.10). 
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In this thesis, it is assumed that the CQI is reported to the eNB on each PRB by a UE. A 

practical downlink LTE and LTE-A is considered to have a 10% BLER threshold [87]. 

The practical downlink system is assumed that: 

1. All eNBs in the system constantly use the latest correctly received CQI 

whenever the last CQI report is not available. 

2. All eNBs in the system are able to detect any error within the CQI report. 

3. The erroneous CQI report is discarded and the latest correctly received CQI 

is used for packet scheduling [88-90]. 

4. All eNBs use an outdated CQI reported by UEs directly. 

CQI report is used for making a scheduling decision at eNB and the Modulation and 

Coding (MCS) scheme used for UE data transmission. Table 2.2 presents the efficiency 

of bits per RE in CQI table for 10% BLER threshold. It can be observed in Table 2.2 

that a higher order MCS results in a higher efficiency. 

Table 2.2: CQI table (10% BLER threshold) [87] 

CQI 
Minimum 

SINR 
(dB) 

MCS Efficiency 
(Bits/RE) Modulation Approximate 

code rate 
0 <-6.936 Out of range -- -- 
1 -6.936 QPSK  0.0762 0.1523 
2 -5.147 QPSK 0.1172 0.2344
3 -3.18 QPSK 0.1885 0.3770
4 -1.253 QPSK  0.3008 0.6016 
5 0.761 QPSK  0.4385 0.8770 
6 2.699 QPSK 0.5879 1.1758 
7 4.694 16 QAM 0.3691 1.4766 
8 6.525 16 QAM 0.4785 1.9141 
9 8.573 16 QAM 0.6016 2.4063 
10 10.366 64 QAM 0.4551 2.7305 
11 12.289 64 QAM 0.5537 3.3223 
12 14.173 64 QAM 0.6504 3.9023 
13 15.888 64 QAM 0.7539 4.5234 
14 17.814 64 QAM 0.8525 5.1152 
15 19.829 64 QAM 0.9258 5.5547 
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It is assumed in this thesis that the total REs within an PRB in a practical LTE and LTE-

A are limited to 148 for the 10% BLER threshold due to the fact that REs are used for 

control and signalling purposes [11]. Given the CQI table in Table 2.2 and the total 

number of REs specified for downlink data transmission, the instantaneous data rate of 

user i on PRB j at time t (ri,j(t)) can be calculated as follows: 

TTI
RE

tEfficiencytr data
jiji *)()( ,,  

(2.13) 

where Efficiencyi,j(t) is the efficiency (in bits/RE) of PRB j of user i at time t and REdata 

is the total number of REs specified for downlink data transmission. 

2.6 Reference Signal Received Power (RSRP) 

RSRP is expressed as the received signal strength without the sum of thermal noise and 

inter-cell interference. Similar to SINR, RSRP experienced by a UE varies in each 

timeslot and on each PRB. The RSRP on a PRB was computed on a sub-carrier located 

at the center frequency of the PRB. Furthermore, an average RSRP among total number 

of PRBs can be further obtained from the sum of the RSRP on each PRB divided by the 

total number of PRBs in the simulation. In this thesis, an average RSRP is used for 

determine the most appropriate target eNB. The RSRP (RSRPi,j(t)) experienced by user 

i on PRB j at time t and the average RSRP ( )(tRSRP i ) experienced by user i at time t is 

computed as follows respectively [91]: 

)(*)( ,, tgainPtRSRP jitotalji  (2.14) 

J

tRSRP
tRSRP

J

j
ji

i
1

, )(
)(

 

(2.15) 

Where RSRPi,j(t) is the RSRP (in dBm) of user i on PRB j at time t, gaini,j(t) is the 

channel gain from Equation (2.12) of user i on PRB j at time t, Ptotal is the total eNB 

transmit power (in dBm), )(tRSRP i is the average RSRP (in dBm) of user i among all 

PRBs at time t, and J is the total number of PRBs. 
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gateway/mobile management entity (MME). Each part consists of three phrases as this 

is the standard format of handover procedure in LTE [92]. 

A. User Equipment (UE) 

In preparation phase, the measurement report sent from the UE is a major basis for the 

eNodeB to make a decision. It consists of three input values, and three output values to 

the serving eNodeB as shown in Figure 2.8. Figure 2.8 shows the basic concept of the 

input/output of a measurement report. 

 

Figure 2.8: The input/output of a measurement report 

Inputs: 

1. The priority of each applicable frequency of each applicable RAT. 

2. Neighbouring cell status (i.e. whether neighbouring cell is congested or 

reserved). 

3. A distance value (x,y, and z co-ordinate) between a UE and source eNodeB.  
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Outputs in the measurement report: 

1. The SINR value calculated by the UE. 

2. Cell availability. 

3. The priority of each applicable frequency of each applicable RAT. 

In the execution phase, 

1. The UE needs to perform a random access procedure on the Random 

Access Channel (RACH) in the target cell. In order to simulate the 

handover behavior, it is assumed in this thesis that this RACH selection 

will be successful each time the UE connects to the target eNodeB. 

2. The UE needs to get uplink time alignment assigned for target eNodeB. 

3. The UE needs to get UL / DL resources scheduled in order to be able to 

commence user data transmission. 

4. The UE needs to send a HANDOVER COMPLETE message in the target 

cell. 

In the completion phase, there is only one step involved in the UE side; the UE needs to 

be performed the tracking area update (TAU) back to the MME. 
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B. eNodeB 

In preparation phase, 

1. A hysteresis value of RSRP in source eNodeB should be setup for triggering the 

handover procedure. The formula of the handover triggering is as follow [93], 

OffOcsOfsMsHysOcnOfnMn  (2.16) 

where Mn is the measurement result of the neighbouring cell, Ofn is the frequency 

specific offset of the neighbour cell frequency, Ocn is the cell specific offset of the 

neighbour cell, Hys is the hysteresis parameter for a handover event, Ms is the 

measurement result of the serving cell, Ofs is the frequency specific offset of the serving 

cell frequency, Ocs is the cell specific offset of the serving cell, and Off is the offset 

parameter for this event. 

2. A HANDOVER REQUEST message sent from source to target eNodeB is required. 

Two modes can be selected by the source eNodeB in this request, either lossless or 

seamless mode. 

3. Target eNodeB has the rights to accept or deny this handover request by self-

checking the capacity of its own. 

4. Target eNodeB starts preparing buffer and paging for the incoming UE. 

5. A HANDOVER REQUEST ACK message sent from target to source eNodeB is 

required. Two modes can be accepted in this ACK, either lossless or seamless mode. 

If the target eNodeB accepts the handover request in Step 2, do Step 5. Otherwise 

ignore Step 5. 

6. A HANDOVER COMMAND message sends to the UE from source eNodeB, if the 

source eNodeB receives the HANDOVER REQUEST ACK message from Step 5, 

do Step 6, otherwise ignore Step 6. 
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In execution phase, 

1. The source eNodeB starts sending user plan data to target eNodeB by X2 interface, 

the data forwarding process. 

2. The target eNodeB has to measure on the UL transmission of the UE (on the 

RACH). 

3. Determine the timing advance that the UE has to use for its UL transmissions. This 

timing advance is used for arrival time synchronization of multiple UEs at the target 

eNB. 

4. When target eNodeB receives the HANDOVER COMPLETE message from the UE, 

it needs to trigger the variation procedure to check the identifier of this UE has the 

rights to access this cell or not. 

5. The target eNodeB starts sending DL data to the UE. 

In completion phase, 

1. The target eNodeB needs to send the PATH SWITCH REQUEST message to the 

MME/GW. 

2. Target eNodeB sends out the RELEASE RESOURCE message to the source 

eNodeB. 

2.8 Packet Scheduling 

Packet Scheduling schedules the user data packets arriving at the eNB by segmenting 

them into fixed smaller packet size, time-stamped and place them in the user buffer at 

the eNB queued for transmission based on a First-In-First-Out (FIFO) basis. In this 

thesis, each user’s packet in the eNB was assumed as fully buffered throughout the 

simulation. The packet delay is the total waiting time of each user packet stays in the 

eNB buffer until it has been transmitted. There is no packet delay computation 

considered in this thesis if the packets that have been discarded by the eNB or correctly 

received by the UEs in the simulation. The packet delay is mathematically expressed as: 
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packets belong to a TB are removed from the transmission buffer in the eNB if any of 

these requirements below is satisfied: 

1. An ACK Acknowledgement feedback associated with the TB is received. 

2. The associated TB reaches the maximum number of retransmissions. 

3. A radio link control (RLC) message indicating the expiry timer is received. 

Otherwise all user data packets are stored into a transmission buffer in the eNB up on 

transmission [94-96]. Furthermore, all user data packets of a TB are removed from the 

transmission buffer if the delays of the user data packets exceed the buffer delay 

threshold. Three packet scheduling algorithms are modelled in this thesis: Maximum 

Rate (Max-Rate) algorithm, Round Robin (RR) algorithm, and Proportional Fair (PF) 

Algorithm. Each of these algorithms will be described below in details. 

2.8.1 Maximum Rate (Max-Rate) Scheduling Algorithm 

Maximum Rate (Max-Rate) [97] algorithm always selects the user with the best channel 

quality for transmission the packets on a radio resource. This algorithm maximises 

system throughput as it transmits packets to the users with the best channel quality at 

that time. However, it is less likely to have any transmission opportunity to a user with a 

poor channel quality. The users with a poor channel quality are always ignored in the 

favour of the users in better channel conditions. The users with a poor channel quality 

will not be scheduled unless their channel conditions are improved. Therefore Max-Rate 

is not capable of guaranteeing fairness among the users. Max-Rate algorithm can be 

expressed in the following: 

)()( trt ii  (2.18) 

where i(t) is the priority of user i at scheduling interval t and ri(t) is the instantaneous 

data rate (across the whole bandwidth) of user i at scheduling interval t. 

2.8.2 Round Robin (RR) Algorithm 

Round Robin (RR) algorithm allocates equal segment of packet transmission time and 

resource to each user in a cyclic fashion. RR algorithm achieves the best fairness 
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performance without taking the channel quality of each user into consideration. Since 

RR does not consider the channel condition for each user as a factor in the algorithm, it 

results in a comparatively lower throughput performance than other packet scheduling 

algorithms. 

2.8.3 Proportional Fair (PF) Algorithm 

Proportional Fair (PF) algorithm [98] provides a better trade-off between throughput 

maximization and fairness guarantee. PF algorithm schedules packets of a user in each 

scheduling interval as expressed below: 

)(
)()(
tR
trt

i

i
i  

(2.19) 

)1(*1*)1()(11)1( tr
t

tItR
t

tR i
c

ii
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(2.20) 
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tervalschedulingatscheduledareiuserofpacketsif
tI i

(2.21) 

where i(t) is the priority of user i at scheduling interval t, ri(t) is the instantaneous data 

rate (across the whole bandwidth) of user i at scheduling interval t, Ri(t) is the average 

throughput of user i at scheduling interval t, Ii(t+1) is the indicator function of the event 

that packets of user i are selected for transmission at scheduling interval t+1 and tc is a 

time constant.  

The tc value provides a control between throughput maximisation and fairness guarantee 

in the PF algorithm. The PF performance is comparable to the Max-Rate at a higher tc 

and comparable to the RR algorithm at a lower tc. A tc value of 1000 ms [98] is used in 

this thesis to provide a better trade-off between throughput and guaranteed fairness. 

2.9 Hybrid Automatic Repeat Request (HARQ) 

Each TB in LTE and LTE-A is encoded prior to transmission or retransmission [99]. 

Three kinds of bits are included in an encoded TB: information bits, parity bits, and 

CRC bits. The CRC bits are used for checking the correctness of the encoded TB 

received by a user. The user feeds back an ACK or NACK indicating a TB is correctly 

decoded or not (i.e. not all packets are correctly decoded), respectively. While a NACK 
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Table 2.3: Web browsing parameters [33] 

Information 
types Distribution and parameters PDF 

Main object size 
(SM)  

Truncated lognormal  
Mean = 10710 bytes 

Standard deviation (std. dev.) 
= 25032 bytes 

Minimum = 100 bytes 
Maximum = 2 Mbytes

0
2

lnexp
2
1

2

2

xx
x

f x
 

=1.37,μ=8.35 

Embedded 
object size (SE) 

Truncated lognormal  
Mean = 7758 bytes 

Std. dev. = 126168 bytes 
 (Minimum =50 bytes 
Maximum =2 Mbytes 

0
2

lnexp
2
1

2

2

xx
x

f x
 

=2.36,μ=6.17 

Number of 
embedded 

objects per page 
(Nd) 

Truncated Pareto 
Mean=5.64 
Max= 53 

mxk
x

kf x 1
 

mx
m
kf x

 

=1.1, k=2, m=55 
Note: subtract k from the generated 

random value to obtain Nd. 
Reading time 

(Dpc) 
Exponential 

Mean= 30 sec 
0xef x

x  
=0.033 

Parsing time (Tp) Exponential 
Mean= 0.13 sec 

0xef x
x  

 =7.69 
 

2.10.2 Constant Stream Model 

Constant streaming can be modelled as a sequence of packets that are constantly 

received by users and each packet arrives at a regular time interval. The constant stream 

traffic provides Constant Bit Rate (CBR) to the users for the entire simulation. 

Generally, the packet size and the data rate remains constant at all time. In this thesis, a 

constant 1 Mbps data rate stream is considered for the constant stream model. A sample 

of constant stream packet arrivals for 1 Mbps data rate for 1000 ms simulation is shown 

in Figure 2.12. 
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Figure 2.12:  A sample of constant stream for 1 Mbps data rate for 1000 ms simulation 

2.11 Performance Metrics 

A number of metrics such as system throughput, service PLR (Packet Loss Ratio), 

system delay, RB utilisation and number of handovers are used in this thesis to evaluate 

packet scheduling and handover performance. These metrics can be divided into three 

categories: LTE, LTE-A, and both LTE and LTE-A defined as follows. 

2.11.1 LTE 

System throughput in bits per second is an indication of the size of the transmission pipe 

between eNB and UE. It is defined as the total size of successfully transmitted packets 

at all users in the downlink divided by the simulation time. It can be mathematically 

expressed as: 

N

i
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t
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T
throughputsystem

1 1
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(2.22) 

where prxi(t) is the total size of correctly received packets (in bits) of user i at time t, T 

is the total simulation time and N is the total number of users. 

PLR is an indication of the percentage of correctly received data (in bits) at receiver. It 

is defined as the ratio of total size of discarded packets to the total size of all packets 

arriving into the eNodeB buffer. The PLR has to be maintained below a threshold 
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during the simulation in order to satisfy the QoS requirement of a service. The PLR 

value should be as low as possible to ensure to a better performance. The expression for 

PLR is given in the following equation: 

service

service

N

i

T

t
i

N

i

T

t
i

tservicepsize

tservicepdiscard
PLRservice

1 1

1 1

)(_

)(_

 

(2.23) 

where service PLR indicates the PLR of a certain type of service (either RT or Non-RT 

service), pdiscard_servicei(t) is the total size of discarded packets (in bits) of user i of a 

service at time t, psize_servicei(t) is the total size of all packets (in bits) that have 

arrived into the eNB buffer of user i of a service at time t, Nservice is the total number of 

users of a service and T is the total simulation time in millisecond. 

System delay is an indication of the average waiting time of packet before transmission. 

It is defined as average system Head-of-Line (HOL) delay or queuing delay. A HOL 

delay is defined as the time duration from the time of arrival of the HOL packet at the 

eNodeB buffer to current time. The system delay needs to always be kept at a minimum 

value. The HOL packet of a user is the packet that has stayed in its buffer at the eNB for 

the longest time. 

buffereNBinpacketsltDPtW ili )(max)( ,  (2.24) 

where Wi(t) is the delay of the HOL packet of user i at time t and DPl,i(t) is the delay of 

the lth packet of user i at time t. Both Wi(t) and DPl,i(t) are in millisecond. 

The average system delay is mathematically expressed as follows: 

T

t

N

i
i tW

NT
delaysystemaverage

1 1
)(11
 

(2.25) 

where Wi(t) is the delay of the HOL packet of user i at time t (Equation (2.24)), N is the 

total number of users and T is the total simulation time. 
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2.11.2 LTE-A 

The LTE-A system throughput is defined as the total transmitted packets per second and 

can be mathematically expressed as: 

iCTPctptransmit
T

throughputsystem
T

t

N

i
ic

1 1
_ )(1

 

(2.26)
 

where N is the total number of UEs, T represents the total simulation time, and 

ptransmitc_i(t) denotes the number of transmitted bits of cell c whichever earlier 

received by UE i at time t.  Cell c belongs to CoMP Transmission Point (CTP) of UE i. 

PLR gives the percentage of discarded packets. A packet is discarded once the delay of 

the packet goes beyond the delay deadline. PLR can be mathematically expressed as: 
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where N is the total number of UEs, T represents the total simulation time, and 

pdiscardc_i(t) and psizec_i(t) denotes the total discarded packet size and total packet size 

of cell c whichever earlier received by UE i at time t, respectively. Cell c belongs to 

CTP of UE i. 

The average system delay is mathematically expressed as follows: 
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(2.28) 

where Wi(t) is the delay of the HOL packet of cell c for the earliest received packet by 

UE i at time t (Equation (2.24)), N is the total number of users and T is the total 

simulation time. Cell c belongs to CTP of UE i. 

2.11.3 Both LTE and LTE-A 

RB utilization is an indication of how well the available PRBs are used in a LTE system. 

It is defined as time average of the proportion of total used PRBs to total PRBs in each 

cell. It can be expressed as: 
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(2.29) 

where PRBusec(t) denotes the total PRBs being used in cell c at time t and PRBmaxc 

denotes the total PRBs in cell c. A high RB utilization value indicates the cell is in a 

highly saturated state at current time instant. When UEs are going to be handed over to 

a cell with high RB utilization, handover requests have to be rejected. On the other hand, 

when the cell is having a low RB utilization value, it seems the cell is more capable of 

accommodating more incoming UEs. 

The total number of handovers is defined as the number of handovers of all users during 

the simulation interval and can be mathematically expressed as: 

T

t

N

i
itHOTHO

1 1
_

(2.30)
 

where N is the total number of users, T represents the total simulation time, HOt_i 

denotes the number of handovers of user i at time t, and THO represents total number of 

handovers. 

2.12 Summary of Assumptions 

All the assumptions that were used in the thesis are summarised in this section. These 

assumptions are: 

1. The instantaneous SINR on a PRB is computed based on the center frequency of 

the PRB located on a sub-carrier and there are minimum variations of multi-path 

fading among the sub-carriers of a PRB. 

2. Inter-cell interference is assumed to be constant. 

3. The CQI is reported to the eNodeB on each PRB. 

4. Each UE’s packet is buffered without lost in the eNodeB throughout the 

simulation. 
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2.13 Summary 

This chapter described a general downlink LTE and LTE-A system model implemented 

within the system level simulator. The modelling of the downlink LTE and LTE-A 

topology (seven cells model), mobility, radio propagation (Hata model, Gaussian 

distribution, and Rayleigh fading model), CQI reporting, RSRP, handover, packet 

scheduling, and HARQ were discussed. The traffic characteristics of the real time and 

non-real time services are presented. The performance metrics (system throughput, PLR, 

system delay, RB utilisation, and number of handovers) that were used to evaluate 

handover performance and the assumptions that are used in the thesis were defined.  
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Chapter 3  

HANDOVER ALGORITHMS 

An algorithm is an effective method for solving a problem expressed as a finite 

sequence of instructions. It is usually a high-level description of a procedure which 

manipulates well-defined input data to produce other data [104]. An algorithm can be 

used to solve a given problem, implement a solution, and communicate about your 

problem/solution to people. A handover algorithm is used for making a handover 

decision and it consists of one or more conditions associated with radio propagation 

related handover parameters. A handover will be triggered only if conditions specified 

in the handover algorithm are satisfied. The environmental conditions used in a 

handover algorithm could vary over time depending on a user’s mobility.  

This chapter studies the basic cell selection and handover schemes for cellular networks 

followed by a number of well-known handover algorithms. Thereafter, a proposed 

handover algorithm in LTE system is presented. The handover parameters of selected 

handover algorithms for LTE are optimized by applying a proposed optimization 

method. It is necessary to determine optimized handover parameters to ensure efficiency 

and reliability of a handover algorithm. The performance of selected handover 

algorithms is evaluated and compared using the optimized parameters. The performance 

study aims to identify the strength and the weakness of each selected handover 

algorithm with optimized handover parameters.  

This chapter is organised as follows: Section 3.1 and Section 3.2 thoroughly describe 

the fundamental cell selection and basic handover schemes, respectively. Section 3.3 

studies the two handover mechanisms in LTE system. Section 3.4 discusses several 

well-known handover algorithms and Section 3.5 discusses a proposed handover 

algorithm in LTE system. Section 3.6 discussed the performance of the selected 

handover algorithms in LTE with optimized handover parameters followed by the 

performance comparison. Finally, a summary of the chapter is given in Section 3.7. 
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3.2 Handover Mechanisms 

There are two types of handover mechanism in general: (a) hard handover [106] also 

known as Break-Before-Connect (BBC) handover and (b) soft handover [107] or 

Connect-Before-Break (CBB) handover. Hard and soft handover are discussed in the 

following subsections. 

3.2.1 Hard Handover 

In the legacy wireless systems, hard handover is the commonly used handover method. 

The hard handover requires a UE to break an existing connection with the current cell 

(source cell) and then make a new connection with a target cell [108]. Hard handover 

has been adopted in LTE system by 3GPP due to the flat IP-based architecture and the 

lack of a centralized controller. The use of hard handovers reduces the complexity of the 

handover mechanism and minimizes the handover delay. However, the hard handover 

approach causes call drop that may result in lost data during a session. Therefore, a 

mechanism to avoid data loss is needed for hard handovers. 

3.2.2 Soft Handover 

Soft handover is a category of handover mechanism where radio links are added and 

removed in such manner that the UE always keeps at least one radio link active to the 

mobile network [108]. Soft and softer handover were introduced in WCDMA/UTRAN 

architecture. Radio Network Controller (RNC) is the centralized device to perform 

handover control for each UE in the UMTS network. It is possible for a UE to be 

simultaneously connected to two or more cells (or cell sectors) during a call [109]. If the 

multiple connections from a UE are within the same physical site, it is referred to a 

softer handover. From a handover perspective, soft handover is better suited than hard 

handover for maintaining an active session without voice or packet call drop. However, 

the soft handover requires more signalling procedures in the WCDMA network. Figure 

3.4 and Figure 3.5 show a soft handover with different NodeBs and softer handover 

within the same NodeB, respectively.  
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Figure 3.6 shows a simplified signal exchange diagram of the X2-based handover in 

LTE. The preparation phase starts from Step 1 to Step 4 when the source eNodeB 

initiates a handover decision to handover a UE to a target eNodeB based on the 

measurement report sent by the UE on a periodic basis. If the handover decision is made, 

the source eNodeB sends out a HANDOVER REQUEST message to the target eNodeB. 

In LTE there are two modes (seamless and lossless modes) that can be used for 

seamless connectivity during handover. If the seamless mode is selected by the source 

eNodeB, it proposes the seamless mode to the target eNodeB in the HANDOVER 

REQUEST message (Step 2 in Figure 3.6). This request establishes a GPRS Tunnelling 

Protocol (GTP) tunnel between the source and target eNodeB for data forwarding. If the 

target eNodeB accepts the HANDOVER REQUEST message, the target eNodeB will 

first allocate an appropriate buffer size for the incoming UE and then inform the source 

eNodeB the tunnel endpoint where the forwarded data is expected to be received in the 

HANDOVER REQUEST ACK message (Step 3 in Figure 3.6). Similar to the seamless 

mode, if the source eNodeB selects lossless mode then the source eNodeB proposes to 

the target eNodeB in the HANDOVER REQUEST message (Step 2 in Figure 3.6). If 

the target eNodeB accepts it, the target eNodeB will first allolcate appropriate the buffer 

size for the incoming UE and then indicate in the HANDOVER REQUEST ACK 

message (Step 3 in Figure 3.6) to the source eNodeB. Additionally source eNodeB 

forwards those user plane downlink packets over X2 interface to the target eNodeB. 

These packets and a GTP extension header field are sent over X2 prior to the newly 

arriving packets from the source S1 path. The same GTP tunnel mechanism is used in 

the seamless handover mode. In addition, the target eNodeB must ensure that all the 

packets are delivered in-sequence at the target side. Once the source eNodeB receives 

the HANDOVER REQUEST ACK message (Step 3 in Figure 3.6), it now can send out 

the HANDOVER COMMAND message to the UE (Step 4 in Figure 3.6) requesting it 

to perform a handover action. 

In the execution phase (Step 4 and Step 5 in Figure 3.6), the UE detaches from the 

source eNodeB and attempts to connect to the target eNodeB. The source eNodeB 

forwards the buffered and newly arrived packets to the target eNodeB instead of the UE 

(since the UE is not attached in the network) and the target eNodeB buffers all 



 
CHAPTER 3 

 - 62 - 
  

forwarded packets from the source eNodeB for the UE. Meanwhile the UE starts to 

attach to the target eNodeB using a random access procedure on the RACH. The UE 

also needs to have uplink time alignment assigned by the target eNodeB by measuring 

the uplink transmission of the UE (on the RACH) [115]. After the UE attached to the 

target eNodeB, a HANDOVER COMFIRM message has to be sent to the target 

eNodeB (Step 5 in Figure 3.6) to complete the execution phase. 

A completion phase begins after Step 5 in Figure 3.6 when the target eNodeB forwards 

the buffered packets to the UE. The target eNodeB informs the MME/Gateway to 

switch path from the source eNodeB to the target eNodeB by sending a HANDOVER 

COMPLETE message (Step 6 in Figure 3.6). The MME/Gateway will then update its 

path to the corresponding UE and send back a HANDOVER COMPLETE ACK 

message in responding the HANDOVER COMPLETE message (Step 7 in Figure 3.6). 

Target eNodeB sends out a RELEASE RESOURCE message to source eNodeB to flush 

the buffer in source eNodeB (Step 8 in Figure 3.6). Source eNodeB flushes the 

downlink buffer after receiving RELEASE RESOURCE message from target eNodeB. 

According to [115], it is important to ensure the correct delivery order of packets while 

forwarding from the source to the target eNodeB in order to achieve high TCP 

throughput performance. Reference [116] purposed one possible solution that could be 

considered to avoid out of sequence problem during forwarding buffered packets.  
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three phases involved in S1-based handover (a) preparation phase involving the core 

network where the resources are first prepared at the target eNodeB (from Steps 2 to 

Step 9 in Figure 3.7), (b) an execution phase (from Step 10 to Step 12 in Figure 3.7) and 

(c) a completion phase (from Step 13 to Step 17 in Figure 3.7) to complete the entire 

handover procedure.  

In the preparation phase, the source eNodeB makes a handover decision and send out a 

HANDOVER REQUEST message to the source MME via the S1 interface. Source 

MME forwards the RELOCATION REQUEST message to the target MME. Target 

MME sends out the HANDOVER REQUEST message to the target eNodeB via the S1 

interface. If the target eNodeB accepts this HANDOVER REQUEST message, the 

target eNodeB performs a resource setup for the incoming UE and then sends out a 

HANDOVER REQUEST ACK message back to the target MME via the S1 interface. A 

RELOCATION REQUEST message will be forwarded from the target MME to the 

source MME. A HANDOVER COMMAND message will be sent out from the source 

MME to the UE via the source eNodeB and indicates that the network is ready for the 

UE to perform this handover. The UE upon receiving the HANDOVER COMMAND 

message starts performing the handover action and the handover procedure moves to the 

execution phase. 

In the execution phase, the source eNodeB sends out a eNodeB STATUS TRANSFER 

message to the source MME and the source MME in turn sends out a MME STATUS 

TRANSFER message to the target eNodeB via target MME. The source eNodeB 

directly forwards the buffered packets to the target eNodeB. The execution phase is 

completed after the UE attaches to the target eNodeB and sends out a HANDOVER 

CONFIRM message to the target eNodeB.  

In the completion phase, target eNodeB sends out a HANDOVER NOTIFY message to 

the target MME (Step 13 in Figure 3.7) and a FORWARD RELOCATION 

COMPLETE message is sent by the target MME and acknowledged by the source 

MME (Step 14a and Step 14b in Figure 3.7). Lastly, a TRACKING AREA UPDATE 

(TAU) request will be directly sent from the UE to the target MME for updating local 

area information and the source MME will send out a RELEASE RESOURCE message 
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Tu
Tm

 
(3.3) 

where Tu is an integer multiple of Tm. After the filtered RSS and the forgetting factor 

are computed from Equation (3.2) and Equation (3.3), the signal strength comparison is 

performed using the formula below: 

HOM(nTu)RSS(nTu)RSS ST  (3.4) 

where T(nTu)RSS and S(nTu)RSS  are the filtered RSS of the target cell and serving cell 

at n-th Tu interval, respectively. 

In the RSS Based TTT Window Handover Algorithm, as  gets closer to 0, the current 

)(nTmRSS is more dependent on the historical ))1(( TmnRSS . On the other hand, as  

gets closer to 1, the current )(nTmRSS  is more dependent on the current RSS(nTm).  

Unlike in LTE Hard Handover Algorithm, the TTT (Tu) is an integer multiple of Tm. 

The TTT observation has to be triggered whenever the filtered received signal strength 

of the target sector is greater than the filtered received signal strength of the serving 

sector plus HOM. If the filtered received signal strength of the target sector is less than 

the filtered received signal strength of the serving sector plus HOM at any time instant 

within a Tu window, the TTT observation will be stopped and reset. Otherwise the 

handover decision will be made after Equation (3.4) is satisfied for the Tu duration. 

3.4.3 LTE Integrator Handover Algorithm [120] 

The main concept of LTE Integrator Handover Algorithm is to make a handover 

decision using historical signal strength differences. The idea of historical data is similar 

to RSS Based TTT Window Handover Algorithm discussed in Section 3.4.2. There are 

three parts consist in LTE Integrator Handover Algorithm: RSRP difference calculation, 

filtered RSRP difference computation, and handover decision. The RSRP difference 

calculation can be expressed as follow: 

)()()(_ tRSRPtRSRPtiDIFs ST  (3.5) 
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where RSRPT(t) and RSRPS(t) is the RSRP received by the UE from the target and the 

serving cell at time t, respectively. DIFs_i(t) is the RSRP difference of the user i at time 

t. The filtered RSRP difference computation can be expressed as follows: 

)(_*)1(_*)1( tiDIFstiFDIFsFDIFs_i(t)  (3.6) 

where  is a proposed variable and is defined as a fraction between 0 and 1, FDIFs_i(t) 

is the filtered RSRP difference value of user i at serving cell s at time t, and DIFs_i(t) is 

the RSRP difference value calculated in Equation (3.5).  

The FDIFs_i(t) value depends on the proportion between current RSRP difference and 

historical filtered RSRP difference based on . As  gets closer to 1, the FDIFs_i(t) is 

more dependent on the current DIFs_i(t). On the other hand, as  goes closer to 0, the 

FDIFs_i(t) is more dependent on the FDIFs_j(t-1). A handover decision will be made 

based on the following condition after the filtered difference has been computed: 

HOMtFDIF is )(_  (3.7) 

If the FDIFs_i(t) between any of target cell and serving cell is greater than HOM, a 

handover decision will be triggered immediately. Please note that the ping-pong effect 

may occur due to lack of TTT mechanism involved in this algorithm. 

3.4.4 Semi-Soft Handover(SSHO) Algorithm [121] 

Semi-soft Handover (SSHO) algorithm for multicarrier systems is proposed based on 

Site Selection Diversity Technique (SSDT) in [121]. SSDT is a macro-diversity method 

used in soft handover mode in the WCDMA network [122]. The main objective of 

SSHO algorithm is to reduce the inter-cell interference caused by multiple transmissions 

in a soft handover mode while transmitting on the downlink of the best (serving) cell. 

Semisoft handover algorithm divides the frequency bandwidth into two different bands: 

control band and data band. Figure 3.11 shows the concept of the frequency bandwidth 

divided into control and data bands in a seven cells scenario. 
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Two steps were introduced to control the eNodeBs in the handover list: add and remove 

eNodeBs. A tested eNodeB would be added into the list and removed from the list is 

based on the Equation (3.8) and Equation (3.9), respectively. When the signal strength 

of the tested eNodeB satisfies a threshold (named “adding threshold”), the tested 

eNodeB would be added in to the list. On the other hand, the test eNodeB would be 

removed from the list when the signal strength of the tested eNodeB is less than the 

better eNodeB with a HOM.  

By applying the soft handover algorithm for TD-LTE in high-speed railway scenario, 

the signal quality of the UEs in the high-speed railway scenario has a much smaller 

deterioration. Furthermore, the soft handover algorithm for TD-LTE in high-speed 

railway scenario results less frequent interruption delay during the handover process 

which provides a better user experience as well as system throughput.  

3.5 Proposed Handover Algorithm in LTE 

Hard handover mechanism is adopted to be used in 3GPP LTE in order to reduce the 

complexity of the LTE network architecture. This mechanism comes with degradation 

in system throughput as well as a higher system delay. A new handover algorithm in 

LTE known as LTE Hard Handover Algorithm with Average RSRP Constraint 

(LHHAARC) is proposed in this thesis in order to minimize the number of handovers 

and the system delay as well as maximizing the system throughput.  

LHHAARC [124] is proposed based on LTE Hard Handover Algorithm with an average 

RSRP condition for more efficient handover performance. The average RSRP can be 

calculated as following: 

Np

)(nTRSRP
RSRP

Np

n
m_iS

avgS_i
1  

(3.10) 

where RSRPS_i(nTm) is the RSRP received by user i from serving cell S at n-th Tm and 

Np is the total number of periods. An average RSRP constraint can be expressed as 

following: 
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iSavgT RSRPtRSRP
_

)(  (3.11) 

where RSRPT(t) is the current RSRP received from target cell T and RSRPavgS_i is the 

average RSRP computed from Equation (3.10). The handover decision will be made by 

satisfying Equation (3.11) followed by two conditions listed below: 

HOMRSRPRSRP ST  (3.12) 

TTTHOTrigger  (3.13) 

A handover will be triggered if and only if Equation (3.11), Equation (3.12), and 

Equation (3.13) are all satisfied. Please note that RSRPavgS_i will be reset to 0 each time 

due to serving cell changes when a handover is successfully performed. 

The concept of LHHAARC is to narrow down the possibility of handovers to minimize 

unnecessary handovers; this algorithm aims to minimize unnecessary handovers by 

limiting UE to be handed over to a target cell whose current RSRP is higher enough to 

be satisfying the handover condition and also higher than the historical RSRP of the 

serving cell from the first handover measurement period till the last. 

3.6 Performance Evaluation 

The performance of LTE Hard Handover Algorithm, RSS Based TTT Window 

Handover Algorithm, LTE Integrator Handover Algorithm, and LHHAARC is 

evaluated in this section. SSHO algorithm and the soft handover algorithm for TD-LTE 

in high-speed railway scenario are not selected for performance evaluation because the 

soft handover mechanism involved in both handover algorithms is not standardized in 

the LTE system. The performance evaluation is separated into two subsections: 

parameter optimization and performance comparison. The parameter optimization is 

performed to ensure that all selected handover algorithms operated with the optimized 

performance in the subsequent performance comparison. 

The performance of four handover algorithms are optimized, evaluated, and compared 

using the computer simulation tool discussed in Chapter 2 with 100 UEs in the 

downlink LTE system. UEs are uniformly distributed within a rectangle area as shown 

in Figure 3.14. It is assumed in this chapter that the CQI reporting is performed in each 
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Table 3.1: Simulation Parameters for Optimization and Performance Comparison 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Carrier Frequency 2 GHz 
Bandwidth 5 MHz 

Number of PRBs 25 
Number of sub-carriers per PRB 12 

Sub-carrier Spacing 15 kHz 
Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 

Packet Scheduler Round Robin  
Scheduling Time (TTI) 1 ms 

Data Traffic  1 Mbps Constant Rate 
User 100 

User’s position Uniform distributed 

User’s direction Randomly choose from [0,2 ],  
constantly at all time 

Simulation time 1000 ms for optimization 
10000 ms for performance evaluation 

Handover measurement period 50 ms 

3.6.1 Parameters Optimization 

Parameters optimization of the four handover algorithms is discussed in this section 

under three speed scenarios. The results in [126] show that an optimized handover 

algorithm can effectively minimize the unnecessary number of handovers while 

maximizing system throughput. The optimized parameters are determined by comparing 

a new parameter called OptimizeRatio value which is a ratio of total system throughput 

to the average number of handovers. OptimizeRatio can be computed as follows: 

),(

),(
),(

TTTHOM

TTTHOM
SpeedHOA ANOH

ST
tioOptimizeRa  (3.14) 
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where HOA indicates the handover algorithm, Speed is the corresponding speed in each 

scenario. ST and ANOH are the total system throughput of the 7 cells and the average 

number of handovers per UE per second, respectively. TTT will be replaced by  or  

factor when the LTE Integrator Handover Algorithm or RSS Based TTT Window 

Algorithm is selected, respectively.  

Table 3.2 outlines LTE Hard Handover Algorithm, RSS Based TTT Window Algorithm, 

LTE Integrator Handover Algorithm, and LHHAARC are referred as HOA 1, HOA 2, 

HOA 3, and HOA 4 respectively, in the following discussions. The range of the HOM 

and  or  factor follows the values that are given in [120, 127]. The highest 

OptimizeRatio value leads to a set of optimized parameters of the selected handover 

algorithm for a specific speed by maximizing the total system throughput and 

minimizing the average number of handovers per UE per second.  

Table 3.2: Simulation Parameters for Optimization 

Parameters Values 

Handover Algorithm 
(HOA) 

1: LTE Hard Handover Algorithm 
2: RSS Based TTT Window Algorithm 
3: LTE Integrator Handover Algorithm 
4: LHHAARC 

TTT ( 0, 1, 2, 3, 4, 5 ) millisecond 

HOM ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) dB 
UE Speed ( 3, 30, 120 ) km/hr 

 /  ( 0.25, 0.5, 0.75, 1 ) 
 

The OptimizeRatio results in Figure 3.15 are determined using input sets as HOA 1 and 

UE speeds equal to 3, 30, and 120 km/hr with changing HOM value from 0 to 10 and 

TTT value from 0 to 5.  

The highest bar graph in each speed scenario in Figure 3.15 indicates the highest 

OptimizeRatio value in each simulation and it refers to HOM and TTT equal to 10 and 5 

in 3 km/hr scenario, HOM and TTT equal to 6 and 5 in 30 km/hr scenario, and HOM 

and TTT equal to 7 and 5 in 120 km/hr scenario, respectively. 
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computer simulation that the proposed handover algorithm has reduced (up to 35.56%) 

the average number of handovers when compared to LTE Integrator Handover 

Algorithm. Moreover, the total system throughput under the proposed handover 

algorithm is 3.55%, 25%, and 1.302% higher as compared to the LTE Hard Handover 

Algorithm, RSS Based TTT Window Algorithm and LTE Integrator Handover 

Algorithms, respectively. The proposed handover algorithm is able to maintain a lower 

system delay when compared with the other three well known handover algorithms (i.e. 

17.93%, 22.77%, and 47.58% reductions when compared with LTE Hard Handover 

Algorithm, RSS Based TTT Window Algorithm and LTE Integrator Handover 

Algorithms, respectively). Moreover, the results obtained are in line with results in the 

literature and hence validated the system level simulator described in Chapter 2.  

Given that the downlink LTE is a complex multi-carrier mobile cellular system that 

performs handover in both time and frequency domains, it was concluded that the 

mathematical analysis is impractical for use in this research work. 
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Chapter 4  

ADVANCED LTE-A COMP HANDOVER 

ALGORITHMS 

Many proposals in the literature have been studied as candidates for LTE-Advanced 

technologies. The concept of cooperated multiple point (CoMP) transmission and 

reception is a promising research topic. CoMP transmission and reception was initially 

proposed in the 3GPP Release 10  in 2010 [128, 129] and remains as an open topic to be 

continuously enhanced for real-life scenarios at the Workshop on LTE Release 12 and 

Beyond [130, 131]. CoMP transmission and reception improves the cell-edge data rate 

and average data rate, and is suitable to increase spectral efficiency (and hence capacity) 

for much more dense network deployments in urban areas and capacity hotspots. 

Network coordination provided by the CoMP transmission and reception in 3GPP LTE-

Advanced networks results in spectrally efficient and high capacity communication with 

enhanced cell edge user throughput [132]. In coordinated multipoint networks, multiple 

base stations send information in a coordinated manner to the mobile station. Due to the 

information exchanged in a coordinated manner and the data synchronization among 

multiple base stations, the current existing handover algorithms in LTE network are not 

applicable for CoMP networks [63]. Therefore new CoMP handover algorithms are 

needed to be designed in a coordinated multipoint LTE-A network. 

A CoMP Handover Algorithm in LTE-A system is introduced in [133]. Based on the 

research work, the CoMP Handover Algorithm enhances the LTE-A system throughput 

and reduces the PLR when compared with the LTE system. However, this algorithm 

could lead to system capacity overload and saturated system throughput issues within a 

highly congested network. Improved user and cell throughput due to CoMP may be 

limited by the capacity. A handover algorithm could mitigate this limitation by 
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considering the capacity and the load [134]. Hence, a new handover algorithm that 

supports CoMP and takes system capacity into consideration in LTE-A system is 

necessary. Three CoMP handover algorithms are proposed in this chapter: Limited 

CoMP Handover Algorithm, Capacity Based CoMP Handover Algorithm, and Capacity 

Integrated CoMP Handover Algorithm. The Limited CoMP Handover Algorithm comes 

with the concept of accommodating as many UEs as possible. The Capacity based 

CoMP handover algorithm aims to emphasis the quality of target cells in both capacity 

and channel quality domains and ensures the radio resources are efficiently used in the 

system. The Capacity Integrated CoMP Handover Algorithm inherits the concept of the 

Capacity Based CoMP Handover Algorithm and is further improved with an additional 

mechanism whereby instantaneous and historical RB utilization values are taken into 

consideration when making the handover decision. 

The performance of each of the proposed CoMP handover algorithm is evaluated and 

compared with the CoMP Handover Algorithm using the simulation tool discussed in 

Chapter 2. It is shown via simulation that the Limited CoMP Handover Algorithm can 

improve the system throughput when compared to the CoMP Handover Algorithm in a 

saturated system. The Limited CoMP Handover Algorithm is able to maintain a lower 

system delay when compared with the CoMP Handover Algorithm. Simulation results 

show that both the Capacity Based CoMP Handover Algorithm and the Capacity 

Integrated CoMP Handover Algorithm can improve the system throughput and 

minimize the system delay when compared to the CoMP Handover Algorithm. 

However, the Capacity Based CoMP Handover Algorithm has a side effect of having 

higher total numbers of handovers. The Capacity Integrated CoMP Handover Algorithm 

eliminates the side effect (lower or equivalent total number of handovers) and achieves 

a lower PLR when compared to the CoMP Handover Algorithm.  

This chapter is organised as follows: Section 4.1 thoroughly describes the related CoMP 

technology and studies existing CoMP handover algorithms. Section 4.2 introduces 

three proposed CoMP handover algorithms for LTE-A and the performance of each 

proposed CoMP handover algorithm is evaluated and compared with the CoMP 

Handover Algorithm in this subsection. Section 4.3 concludes this chapter. 
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2. Three 20MHz FFT (Fast Fourier transform) modules are needed in the receiver 

of UE  

Based on these assumptions, UE can simultaneously receive the signal from multiple 

eNodeBs using different FFT modules. This mechanism is the basis of the proposed 

FSHO scheme in the LTE-Advanced system. Furthermore, all component carriers in 

[138] are assumed to be used by the eNodeB and UEs and data transmissions are 

assumed to be transmitted from all component carriers. Therefore the source eNodeB 

needs to negotiate with the target eNodeB by selecting one of these component carriers 

such as the FSHO carrier during the handover preparation phase. Figure 4.3 shows the 

signal exchange diagram of the FSHO in the LTE-A system. Note that solid arrow lines 

and dashed arrow lines indicate the flows of the control plane messages and the user 

plane packets, respectively. 
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request message to require the preparation of a FSHO at the target eNodeB. The target 

eNodeB checks the authorization of the UE and the availability of the selected 

component carrier. An acknowledgement of selected FSHO component carrier is sent 

from the target eNodeB to the source eNodeB if the UE can be accommodated in the 

target eNodeB. Otherwise, it shall send the NACK to the source eNodeB. Upon 

acknowledging the FSHO carrier by the target eNodeB, the source eNodeB sends out 

the FSHO command to the UE. Meanwhile, the data transmission on the FSHO 

component carrier is scheduled to the other component carrier by the source eNodeB in 

order to satisfy the QoS of the current on-going session. 

After receiving the FSHO command, the radio resource control (RRC) connection is 

established using the FSHO carrier by the UE with the target eNodeB. After the RRC 

establishment has been completed, the UE sends out an RRC ESTABLISHING 

COMPLETION message to the source eNodeB and the target eNodeB. A bi-casting 

request message is sent to S-GW by the target eNodeB after receiving the RRC 

ESTABLISHING COMPLETION message. S-GW replies the ACK message to the 

target eNodeB while bi-casting the Voice over IP (VoIP) packets to the source eNodeB 

and target eNodeB at the same time. The VoIP packets are simultaneously transmitted 

to the UE from the target eNodeB and source eNodeB, while non-VoIP packets are only 

transmitted to the UE from the eNodeB with better signal quality. 

In addition, a traditional hard handover mechanism is applied when the signal quality of 

the source eNodeB is below a predefined threshold. A FULL HANDOVER REQUEST 

message is sent from the source eNodeB to the target eNodeB indicating a handover 

occurred. The target eNodeB sends the ACK back to the source eNodeB and the target 

eNodeB sends the path switch command to the S-GW. After receiving the full handover 

ACK message, the source eNodeB sends a FULL HANDOVER INDICATOR message 

to the UE to perform the hard handover procedure. The FSHO procedure is completed 

when the UE is fully served by the target eNodeB after the detaching time.  

A fractional soft handover (FSHO) scheme is proposed based on the carrier aggregation 

for the 3GPP LTE-Advanced system. Due to the absence of CoMP technique in the 

FSHO scheme, it is not selected for performance comparison in this chapter. 
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transmission in LTE and LTE-A standards. When the regular measurement update is 

required during the transmission, the selection of CCS and CTP for each UE will be 

repeated by the serving cell to search for updated target cells. A handover is triggered 

when the condition is satisfied for the TTT time duration expressed as following: 

HOMRSRPRSRP SCTPT _  (4.1) 

where RSRPT_CTP  and RSRPS are the RSRP received by an UE from the target cell in the 

CTP and the serving cell, respectively. 

Once the handover is triggered, the serving cell sends a cancellation message to each of 

the cell in CTP to cancel the current transmissions. A handover command is triggered to 

instruct the UE to handover to the future serving cell.. 

The concept of this algorithm is to emphasize the opportunity of attaching to a future 

target cell which has the best channel quality for each UE by double filtering the 

measurement set into CCS and CTP. This reduces the signalling overhead between the 

UE and serving cell by narrowing down the RSRP observation from a full measurement 

set to the CTP while checking the handover constraint. 

The performance of the CoMP Handover Algorithm in LTE-A is evaluated and 

compared with standard hard handover in LTE in terms of system throughput, PLR, and 

RB utilization metrics. The simulation environment and the performance metrics are 

discussed in Chapter 2. The complete system parameters used in the simulation are 

listed in Table 4.1. The Hybrid Automatic Repeat Request (HARQ) technique in [125] 

was used to recover from wireless transmission errors. The maximum number of error 

packet retransmissions is limited to 3. 
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Table 4.1: Downlink 3GPP LTE and LTE-A System Parameters 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian log-normal distribution 

Multi-path Non-frequency selective Rayleigh fading 
Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 

HARQ / Retransmission Enable / 3 times 
Packet Scheduler Round Robin  

Scheduling Time (TTI) 1 ms 
Data Traffic  1 Mbps Constant Rate 

User 30, 50, 80, 100 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ],  
constantly at all time 

User’s velocity 120 km/hr 

Simulation time 5000 ms 

RSRP sampling timer interval 50 ms 

Handover Margin 5 dB 
Time to Trigger (TTT) 5 ms 
Size of CCS and CTP 2 
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The simulation results of the handover algorithm with JP in LTE-A are presented and 

compared with the standard handover algorithm in the LTE. Note that the number of 

handovers in the LTE system is the same as in the LTE-A system due to the fixed 

positions, directions, and velocity of each UE in the two simulations. Figure 4.12 shows 

the system throughput comparison in LTE-A and LTE system. LTE-A provides a higher 

system throughput than LTE due to the benefit of having multiple transmissions for 

each UE in the network. The system throughput improvements of LTE-A over LTE in 

30, 50, 80, and 100 UEs are 42%, 47%, 49%, and 27%, respectively. 

 

Figure 4.12: System Throughput of CoMP Handover Algorithm in LTE-A vs Hard 

Handover Algorithm in LTE 

Figure 4.13 shows the PLR comparison in LTE-A and LTE systems. In contrast, LTE-A 

provides 36%, 31%, and 26% lower PLRs than LTE in first 3 scenarios (30, 50, and 80 

UEs, respectively). This is because UEs in LTE-A receive redundant packets coming 

from multiple transmissions which can effectively reduce the PLRs for each packet. 

However, LTE-A has a slightly higher PLRs (0.2% higher than LTE system) in the case 

of 100 UEs.  
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Figure 4.13: PLR of CoMP Handover Algorithm in LTE-A vs Hard Handover 

Algorithm in LTE 

Figure 4.14 shows the RB utilization comparison in LTE-A and LTE systems. The 

higher the RB utilization value indicates a higher system load. LTE-A achieves higher 

system loads when compared to LTE in all scenarios due to the fact that it has multiple 

transmissions for each UE. The RB utilization in the LTE-A system shows 26.12%, 

35.77%, 40.69%, and 37.32% above the LTE system in each scenario. Furthermore, the 

system capacity reaches 95% with 100 UEs in LTE-A, which leads to system 

throughput saturation and higher PLR issues. It is because that there are not enough 

resources in the eNodeBs for buffering each UE’s incoming packets when the system is 

close to its full capacity. The CoMP Handover Algorithm aims to satisfy the 

requirements of JP in CoMP transmission and reception in the LTE-A system.  
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Figure 4.14: RB Utilization of CoMP Handover Algorithm in LTE-A vs Hard Handover 

Algorithm in LTE 

Simulation results show that, when compared to the standard hard handover algorithm 

in the LTE system, the CoMP Handover Algorithm in LTE-A is able to improve system 

throughput and minimize PLR effectively. However, this algorithm could lead to system 

capacity overload and saturated system throughput issues within a highly congested 

network. 

4.2 Proposed CoMP Handover Algorithms 

Three CoMP handover algorithms have been proposed (Limited CoMP Handover 

Algorithm, Capacity Based CoMP Handover Algorithm, and Capacity Integrated CoMP 

Handover Algorithm) in order to overcome the system capacity overload and saturated 

system throughput issues while maintaining the system performance efficiency. Each 

proposed CoMP handover algorithm is described in detail, followed by a performance 

evaluation and comparison with the CoMP Handover Algorithm discussed in Section 

4.1.3. 
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4.2.1 Limited CoMP Handover Algorithm 

Limited CoMP Handover Algorithm consists of the same four concepts as in the CoMP 

Handover Algorithm: serving cell, measurement set, CoMP coordinating set (CCS), and 

CoMP transmission points (CTP). A serving cell takes the responsibility of making 

handover decision for each UE in the network. A measurement set is a set of cells 

whose RSRPs can be received and reported by the UE and fed back to the serving cell 

for making the selection of CCS. A CCS is a subset of the measurement set and a CTP 

is a subset of CCS. Three handover parameters are involved in Limited CoMP 

Handover Algorithm: measurement period, handover margin (HOM), and time to 

trigger (TTT) timer. A measurement period is a time interval that is used for checking 

the handover condition periodically. A HOM is a constant variable that represents the 

threshold for the difference in RSRP between the serving and the target cells. A TTT 

value is the time interval that is required for satisfying HOM condition. 

A flowchart of the Limited CoMP Handover Algorithm is given in Figure 4.15. Note 

that the red solid line in Figure 4.15 indicates the time instant of a measurement period, 

the blue dash line in Figure 4.15 indicates the time instant other than the measurement 

period, and the black long dash dot line in Figure 4.15 indicates every time instant. 
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back to the serving cell. The first measurement period expires immediately due to an 

update required for the new incoming UE. The serving cell recursively selects the cell 

with the highest RSRP to be the CCS until reaching the end of measurement set. 

Moreover, the CTP selection will be recursively executed by the serving cell until 

reaching the end of CCS based on: 

HOMRSRPRSRP SCCST _ (4.2) 

where RSRPT_CCS and RSRPS are the RSRPs received by an UE from the target cell in 

the CCS and the serving cell, respectively. 

The target cell in the CCS will be ignored if Equation (4.2) is satisfied, otherwise the 

target cell in the CCS will be added into the CTP. After the CTP selection is finalized, 

serving cell performs handover condition check in the CTP based on Equation (4.3): 

HOMRSRPRSRP SCTPT _ (4.3) 

where RSRPT_CTP and RSRPS are the RSRPs received by an UE from the target cell in 

the CTP and the serving cell, respectively. 

A handover is triggered if Equation (4.3) is satisfied within the TTT duration. The 

serving cell sends out a handover command to instruct the UE to handover to the future 

serving cell. Lastly, the UE detaches from the network and camps on a new serving cell 

after the interruption time (the time period which UE disconnects from the network). 

The CTP starts transmitting data to the UE and wait for the next incoming measurement 

period expired if Equation (4.2) is not satisfied at any point during the TTT duration. 

When the measurement period is not expired, the serving cell directly performs the CTP 

selection (Step 6 in Figure 4.15). The CTP continues transmitting data to the UE and 

repeat this process until the next measurement period expires. 

The CoMP Handover Algorithm compares the highest RSRP of the target cells in 

measurement set and CCS for the candidate target cells in CTP (Step 4.A and 4.B in 

Figure 4.11). The CoMP Handover Algorithm improves the system throughput by 

giving multiple connections to each UE at any time instant regardless their channel 

conditions. This mechanism accelerates the current system capacity multiple times to 



 
CHAPTER 4 

 - 104 - 
  

reach its maximum capacity due to multiple connections needed to be maintained for 

each UE in the network. Therefore the CoMP Handover Algorithm leads to system 

capacity overload and saturated system throughput issues within a high congested 

network.  

The Limited CoMP Handover Algorithm comes with the concept of accommodating as 

many UEs as possible. The Limited CoMP Handover Algorithm utilizes the available 

radio resources by differentiating a cell-center UE (the UE with good/fair channel 

conditions) or a cell-edge UE (the UE with fair/bad channel conditions). Multiple data 

transmissions are given to a cell-edge UE while a single data transmission is given to a 

cell-center UE in order to save the available radio resources for accommodating more 

incoming UE.  

The major difference between CoMP Handover Algorithm and Limited CoMP 

Handover Algorithm is shown in Step 6 in Figure 4.15. The Limited CoMP Handover 

Algorithm tracks the channel quality of each target cell in CCS at any time instant by 

using the HOM in Equation (4.2). If the RSRP of a target cell in the CTP received by a 

UE is significantly lower than the RSRP of the serving cell with a HOM, this UE is 

categorized as a cell-center UE. Thus the multiple data transmissions for cell-center 

UEs should be avoided in order to prevent the radio resources overused in other target 

cells in CTP based on the concept of the Limited CoMP Handover Algorithm. On the 

other hand, if the RSRP of a target cell in the CTP received by a UE is within the range 

of the HOM from the RSRP of the serving cell, this UE is categorized as a cell-edge UE. 

Thus the Limited CoMP Handover Algorithm has to provide multiple data 

transmissions for cell-edge UEs to maintain their qualities of connections while they 

stay in cell-edge areas. This mechanism (Step 6 in Figure 4.15) helps eliminating 

inefficient data transmissions at any time instant in the network, therefore the Limited 

CoMP Handover Algorithm is able to maintain the available radio resources more 

efficiently. 

The Limited CoMP Handover Algorithm and the CoMP Handover Algorithm share 

most of the steps other than Step 6 in Figure 4.15 as following: 
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•The cell (re)selection when the UE joins the network in Step 1 in Figure 4.11 and 

Figure 4.15. 

•UE gathers measurement reports and feeds them back to the serving cell in Step 2 in 

Figure 4.11 and Figure 4.15. 

•A periodic measurement check in Step 3 in Figure 4.11 and Figure 4.15. 

•CCS selection in Step 4.A in Figure 4.11 and Step 5 in Figure 4.15. 

•Handover condition check in Step 5 in Figure 4.11 and Step 7 in Figure 4.15. 

•CTP starts transmitting data to UEs in Step 6 in Figure 4.11 and Step 8 in Figure 4.15. 

•Serving cell indicates all cells in CTP to cancel all current CTP connections in Step 7 

in Figure 4.11 and Step 9 in Figure 4.15. 

•Serving cell instructs UE to handover to the future serving cell in Step 8 in Figure 4.11 

and Step 10 in Figure 4.15. 

• UE detaches the network in Step 9 in Figure 4.11 and Step 11 in Figure 4.15. 

Step 1 and Step 2 in the two algorithms are information gathering procedures. Similarly, 

Step 3 performs a standard periodical measurement check in both algorithms. Step 4.A 

in Figure 4.11 and Step 5 in Figure 4.15 share the concept of CCS selection based on 

the target cells with the highest RSRP in the measurement set. However, the CCS 

selection in Step 5 in Figure 4.15 can be used dynamically based on different 

requirements (such as delay constraint) rather than RSRP. Step 5 in Figure 4.11 and 

Step 7 in Figure 4.15 function as the standard handover condition check within CTP. 

Step 6 to Step 9 in Figure 4.11 and Step 8 to Step 11 in Figure 4.15 are the same in that 

both algorithms transmit data from CTP to UEs if the handover condition check (Step 5 

in Figure 4.11 and Step 7 in Figure 4.15) is not satisfied, otherwise the serving cell 

sends out handover control messages in CTP for the UE to be handed over to the future 

serving cell. Lastly, the UE detaches the network and repeats the cell (re)selection (Step 

1 in Figure 4.11 and Figure 4.15) in both algorithms. 
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The performance of CoMP Handover Algorithm and Limited CoMP Handover 

algorithm are evaluated and compared on the basis of RB utilization, system throughput, 

and system delay using the simulation tool described in Chapter 2. The system 

parameters used in the simulation are listed in Table 4.2. A simulation time between 0 

ms and 10000 ms is needed for performance comparison for the proposed CoMP 

handover algorithms. However, 1000 ms and 10000 ms were intentionally used for 

optimization and performance evaluation as shown in Table 3.1. Therefore a 5000 ms (a 

mid-value of 10000 ms) simulation time was considered in Table 4.2. 

Table 4.2: Simulation Parameters for Limited CoMP Handover Algorithm and CoMP 

Handover Algorithm 

Parameters Values 
Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m
Carrier Frequency 2 GHz 

Bandwidth 5 MHz
Number of PRBs 25

Number of sub-carriers per PRB 12
Sub-carrier Spacing 15 kHz

Slot Duration 0.5 ms
Number of OFDM Symbols / 

Slot 7 
Path Loss Cost 231 Hata model

Shadow fading Gaussian distribution
Multi-path Rayleigh fading

Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 
HARQ / Retransmission Enable / 3 times 

Packet Scheduler Round Robin  
Scheduling Time (TTI) 1 ms 

Data Traffic  1 Mbps Constant Rate 
User 30, 50, 100, 150, 200, 250, 300 

User’s position Fixed uniform distributed

User’s direction Randomly choose from [0,2 ],  
constantly at all time 

User’s velocity 120 km/hr 
Simulation time 5000 ms 

RSRP sampling timer interval 10 ms
Handover Margin [1 ,2, 3, 4, 5] dB 

Time to Trigger (TTT) 5 ms 
Size of CCS 3 
Size of CTP 2 
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Even when there are still plenty of available PRBs remain in the system, the Limited 

CoMP Handover Algorithm only support one single data connection at a time for UEs 

in a fair/good channel condition, which limits the number of transmitted bits in the 

system, and in turn directly limits the system throughput. Therefore the CoMP 

Handover Algorithm can reach a higher system throughput over the Limited CoMP 

Handover Algorithm in a light loaded system. 

However when there are 150 UEs, the Limited CoMP Handover Algorithm outperforms 

the CoMP Handover Algorithm with the system throughput improvements of 19.91%, 

17.09%, 14.64%, 12.02%, and 8.65% when the HOM of 1, 2, 3, 4, and 5 dB, 

respectively. The Limited CoMP Handover Algorithm takes the advantage of 

supporting single data connection for cell-center UEs in the system. A cell-center UE in 

the CoMP Handover Algorithm will be allocated by two data transmissions at any time, 

while in the Limited CoMP Handover Algorithm, a cell-center UE can only be allocated 

by one single data transmission. This restriction frees the available PRBs of the second 

data connection from the cell-center UE and the freed PRBs can be further used for 

other new incoming UEs which increase transmitted packets in the system, therefore 

enhancing the system throughput. When the system becomes fully loaded, the system 

throughput stops increasing due to insufficient radio resources (PRBs) to be allocated to 

the UEs in the system. The system throughput of the CoMP Handover Algorithm stops 

increasing and stays fixed around 60 Mbps at 150, 200, 250, and 300 UEs scenarios. 

When the system becomes saturated in 150, 200, 250, and 300 UEs scenarios, the 

system throughputs of the Limited CoMP Handover Algorithm stops increasing and 

stays fixed at 72 Mbps, 70 Mbps, 68 Mbps, 67 Mbps, and 65 Mbps when the HOM is 1, 

2, 3, 4, and 5 dB, respectively. When the HOM is 5 dB, the Limited CoMP Handover 

Algorithm has the lowest system throughput due to the fact of having the largest HOM 

value which delays the handover triggering timing.  

Figure 4.18 shows the system delay comparison of the CoMP Handover Algorithm and 

limited CoMP handover algorithm in LTE-A. The overall trend of system delay 

increases in both handover algorithms with increasing the number of UEs. This is 

because the queuing delay of the buffered packets in the eNodeBs increases due to the 

increased transmission requests by the higher number of UEs in the simulation. 
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the target cell in CTP for this particular UE. Therefore this UE will not increase the 

loading and the queuing delay of the target cell in CTP which leads to a lower system 

delay result. 

It is shown via simulation that the proposed handover algorithm can improve the system 

throughput when compared to the CoMP Handover Algorithm in a saturated system 

when the number of UEs is 150, 200, 250, and 300. The proposed handover algorithm is 

able to maintain a lower system delay when compared with the CoMP Handover 

Algorithm. Moreover, the system throughput and system delay of the proposed 

handover algorithm can be further improved by optimizing the HOM variable. 

4.2.2 Capacity Based CoMP Handover Algorithm 

The Capacity Based CoMP Handover Algorithm aims to select the appropriate target 

cells (in terms of capacity and channel quality) and ensures that the radio resources are 

efficiently used in the system. 

The Capacity Based CoMP Handover Algorithm uses the same four concepts in the 

CoMP Handover Algorithm and/or Limited CoMP Handover Algorithm: serving cell, 

measurement set, CoMP coordinating set (CCS), and CoMP transmission points (CTP). 

There are four parameters involved in the Capacity Based CoMP Handover Algorithm: 

HOM, TTT, measurement period, and RB utilization value. HOM, TTT, and 

measurement period were described in the LTE hard handover algorithm in Section 

3.4.1. An instantaneous RB utilization value evaluates the proportion of total used PRBs 

to total PRBs in each cell and describes the current state of the cell’s capacity. It can be 

expressed as: 

)(max)( tPRBtPRBuseutilizeRB ccc  (4.4) 

The Capacity Based CoMP Handover Algorithm computes the instantaneous RB 

utilization value in real time to evaluate the system capacity of each eNB immediately 

to make a handover decision. A higher RB utilization value indicates that the cell 

becomes overloaded; therefore a cell reselection needs to be considered when more UEs 

are going to be handed over to this cell. On the other hand, when the cell has a lower 

RB utilization value, it is capable of accommodating more incoming UEs. 
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The Capacity Based CoMP Handover Algorithm starts the cell selection/reselection 

when the UE joins the network by camping on the cell with the highest RSRP in the 

measurement set or the cell which was instructed by the previous serving cell. The UE 

then gathers measurement reports which are the RSRP measurements received from the 

measurement set and feeds the reports back to the serving cell. The first measurement 

period expires immediately due to an update required for the new incoming UE. 

Moreover, the serving cell selects a set of cells with the lowest RB utilization value 

from the measurement set as CCS. The CTP selection will be done by the serving cell 

based on selecting a set of cells with the highest RSRP from CCS. The size of CCS can 

be adjusted but the size of CTP cannot be greater than the size of CCS. A handover will 

be triggered when the triggering condition Equation (4.5) is satisfied during the entire 

TTT duration, otherwise the CTP starts transmitting data to the UE and waits for the 

next measurement period expiration. 

HOMRSRPRSRP SCTPT _ (4.5) 

where RSRPT_CTP and RSRPS are the RSRPs received by a UE from the target cell in the 

CTP and the serving cell, respectively. Once a handover is triggered, the serving cell 

indicates all cells in the CTP to cancel all current CTP transmissions. A handover 

command is sent to instruct the UE to be handovered to the future serving cell. Lastly, 

the UE detaches the network and camps on a new serving cell after the interruption time. 

A flowchart of the Capacity Based CoMP Handover Algorithm is given in Figure 4.19. 

The difference between the CoMP Handover Algorithm and Capacity Based CoMP 

Handover Algorithm starts from Step 4 in Figure 4.19. An instantaneous system 

capacity is computed by each eNB in the network and the Capacity Based CoMP 

Handover Algorithm prioritizes the target eNB based on its instantaneous RB utilization 

value. Whenever a target eNB has the lowest instantaneous RB utilization value, this 

target eNB is added into CCS as a candidate of the CTP. This is because when the cell 

has a lower RB utilization value, it is capable of accommodating more incoming UEs. 

Checking RB utilization value in CCS selection (Step 4 in Figure 4.19) reduces 

unnecessary feedback from the UE to the serving cell and ensures that the radio 

resources are efficiently used in the system. Thus, when the process moves to Step 5 in 
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Table 4.3: Simulation Parameters for Capacity Based CoMP Handover Algorithm and 

CoMP Handover Algorithm 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 
Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 

HARQ / Retransmission Enable / 3 times 
Packet Scheduler Round Robin  

Scheduling Time (TTI) 1 ms 
Data Traffic  1 Mbps Constant Rate 

User 15, 30, 50, 80, 100 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ],  
constantly at all time 

User’s velocity 120 km/hr 

Simulation time 5000 ms 

RSRP sampling timer interval 10 ms 

Handover Margin 5 dB 
Time to Trigger (TTT) 5 ms 

Size of CCS 2 
Size of CTP 2 
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throughput and minimize the system delay when compared to the CoMP Handover 

Algorithm. However, a side effect of having higher total numbers of handovers needs to 

be resolved to improve the Capacity Based CoMP Handover Algorithm. 

4.2.3 Capacity Integrated CoMP Handover Algorithm 

A Capacity Integrated CoMP Handover Algorithm is proposed based on the Capacity 

Based CoMP Handover Algorithm with an additional mechanism whereby 

instantaneous and historical RB utilization values are taken into consideration when 

making the handover decision. 

The Capacity Integrated CoMP Handover Algorithm has four concepts: serving cell, 

measurement set, CoMP coordinating set (CCS), and CoMP transmission points (CTP). 

A historical RB utilize value can be mathematically expressed as: 

T

tutilizeRB
tutilizeHisRB

T

t
c

c
1

)(
)(  

(4.6) 

where T is the total simulation time, RButilizec(t) denotes the RB utilize value of cell c 

at time t obtained from Equation (4.4), and HisRButilizec(t) is the historical RB utilize 

value of cell c at time t. 

A new handover parameter (called the capacity indicator) is introduced in the Capacity 

Integrated CoMP Handover Algorithm. The capacity indicator represents the 

proportional combination of historical RB utilization values and RB utilization values 

and  is expressed as: 

)(*)1(*)1()( tRButilizetzeHisRButilitCapacity CCC  (4.7) 

where  is a factor between 0 and 1. When  approaches 1, the capacity indicator is 

weighted more to the RB utilization value. Conversely, when  approaches 0, the 

capacity indicator will be biased more to the historical RB utilization values at the 

previous time instant. A cell’s capacity condition is expressed as follows: 
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CoMP Handover Algorithm (Step 1, Step 2, and Step 3 in Figure 4.19) and have been 

described in Section 4.2.2. 

The target cells within the measurement set which satisfy Equation (4.8) will be 

selected as CCS by the serving cell after the measurement period expiration. The CCS 

selection will be repeated until it reaches the end of the measurement set. Moreover, the 

CTP selection will be based on selecting a cell with the highest RSRP from CCS. The 

CTP selection will be repeated until it reaches the end of the CCS. The size of CCS and 

CTP can be adjusted but the size of CTP cannot be greater than the size of CCS. 

A handover will be triggered when Equation (4.8) is satisfied during the entire TTT 

duration; otherwise the CTP transmits data to the UE and waits for the next 

measurement period expiration. Once a handover is triggered, a handover command is 

sent by the serving cell to instruct the UE to be handed over to the future serving cell.. 

The key features of the Capacity Integrated CoMP Handover Algorithm are: (a) a 

historical capacity of each eNB in the system is tracked, (b) the capacity indicator takes 

both the instantaneous and the historical capacities of each eNB in the system into 

consideration, (c) an adjustable parameter  is used in the capacity indicator for 

customizing the proportion between instantaneous and the historical capacities of each 

eNB, and (d) the capacity threshold can be customized by operators based on different 

policies. 

The use of double filtering in the Capacity Integrated CoMP Handover Algorithm (Step 

4 and Step 5 in Figure 4.23) emphasises the quality of target cells in both capacity and 

channel quality domains and ensures that the radio resources are efficiently used in the 

system while reducing unnecessary feedback of RSRP measurements from a large cell 

set for each UE. 

The performance of the Capacity Integrated CoMP Handover Algorithm and CoMP 

Handover Algorithm in LTE-A is evaluated using the simulation tool described in 

Chapter 2 and is based on four metrics: system throughput, system delay, PLR, and total 

number of handovers. The system parameters used in the simulation are listed in Table 

4.4. A 5000 ms simulation time was used in Table 4.4 for consistency with Table 4.2. 
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Table 4.4: Simulation Parameters for Capacity Integrated CoMP Handover Algorithm 

and CoMP Handover Algorithm 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 
Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 

HARQ / Retransmission Enable / 3 times 
Packet Scheduler Round Robin  

Scheduling Time (TTI) 1 ms 
Data Traffic  1 Mbps Constant Rate 

User 15, 30, 50, 80, 100 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ],  
constantly at all time 

User’s velocity 120 km/hr 
Simulation time 5000 ms 

RSRP sampling timer interval 10 ms 
Handover Margin 5 dB 

Time to Trigger (TTT) 5 ms 
Size of CCS and CTP 2 

 0.5 
Capacity Threshold 0.8 
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The Capacity Integrated CoMP Handover Algorithm has 33.33%, 27.91%, 32.69%, and 

4.69% lower total number of handovers than the CoMP Handover Algorithm in 15, 50, 

80, and 100 UEs scenarios, respectively. It is shown that the Capacity Integrated CoMP 

Handover Algorithm has a lower or equivalent total number of handovers than the 

CoMP Handover Algorithm in all scenarios. 

In this section, the Capacity Integrated CoMP Handover Algorithm in LTE-A is 

proposed, evaluated and compared with an open literature handover algorithm. The 

Capacity Integrated CoMP Handover Algorithm aims to ensure that the radio resources 

are efficiently used in the system in both capacity and channel quality domains while 

reducing unnecessary feedbacks. Simulation results show that the Capacity Integrated 

CoMP Handover Algorithm can improve the system throughput, minimize system delay, 

provide lower PLR and a lower or equivalent total number of handovers than the CoMP 

Handover Algorithm among all scenarios. 

4.3 Summary 

This chapter describes the CoMP technology mechanism in a LTE-A system and 

several open literature CoMP handover algorithms for the LTE system. Based on the 

research work, the JP in CoMP technology enhances the LTE-A system throughput and 

reduces the PLR when compared to the LTE system. Furthermore, the existing hard 

handover algorithms in LTE network are not applicable for CoMP networks in the LTE-

A system and JP in CoMP technology could lead to system capacity overload and 

saturated system throughput issues within a highly congested network. To address this 

situation, three CoMP handover algorithms are proposed for the LTE-A system. These 

algorithms take into consideration one or more decision criteria to overcome the loaded 

system throughput problem and maximize the system capacity. The system performance 

of each proposed CoMP handover algorithm is evaluated and compared with open 

literature handover algorithm via simulation tools described in Chapter 2.  
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Chapter 5  

PERFORMANCE EVALUATION OF COMP HANDOVER 

ALGORITHMS 

A performance evaluation of selected CoMP handover algorithms with various type of 

traffic in the LTE-A system is discussed in this chapter. The CoMP Handover 

Algorithm, the Limited CoMP Handover Algorithm, the Capacity Based CoMP 

Handover Algorithm, and the Capacity Integrated CoMP Handover Algorithm are 

selected for performance evaluation and comparison. The handover parameters of each 

CoMP handover algorithm are optimized by the optimization method purposed in 

Section 3.6.1. The simulation results of the performance testing of all CoMP handover 

algorithms for RT, NRT and mixed RT and NRT traffics are shown in this chapter. 

The radio resources in the performance testing of the RT traffic are assumed to be fully 

utilized in a high system load scenario because the RT traffic is a CBR traffic. The radio 

resources in the performance testing of NRT traffic is assumed to be utilized in a lower 

system load scenario because the web browsing model in the NRT traffic does not 

constantly provide packets to the UEs throughout the simulation. Furthermore, the radio 

resources in the performance testing of the mixed RT and NRT traffic is assumed to be 

a medium to high system load scenario due to the equal divided for the RT traffic and 

NRT traffic.  

Based on the simulation result obtained from Figure 4.16, around 150 UEs leads to a 

full loaded state in the seven cells scenario. Therefore a total number of 150 UEs is 

selected for both parameters optimization and performance testing in RT, NRT, and 

mixed RT and NRT traffics. The PF packet scheduling algorithm was selected in both 

parameters optimization and performance testing because PF provides a better trade-off 

between fairness and throughput when compared to the MR and RR packet scheduling 

algorithms. 
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This chapter is organised as follows: Section 5.1 gives the handover parameters 

optimization of each selected CoMP handover algorithm for performance testing. 

Section 5.2, Section 5.3, and Section 5.4 discuss the performance testing of selected 

CoMP handover algorithms for RT traffic, NRT traffic, and mixed RT and NRT traffic 

in the LTE-A system, respectively. Finally, a summary of this chapter is given in 

Section 5.5. 

5.1 Parameters Optimization 

Parameters optimization under three speed scenarios of four CoMP handover algorithms 

is discussed in this section. The optimization method based on Section 3.6.1 is used to 

optimize the performance of all CoMP handover algorithms for performance evaluation 

in the following sections. The common parameters and parameters for optimization in 

the simulation are listed in Table 5.1 and Table 5.2, respectively. The simulation time 

for parameters optimization in Table 5.1 was intentionally set to 1000 ms in order to be 

consistent with the simulation time for optimization in Table 3.1 in Chapter 3. 
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Table 5.1: The Common Simulation Parameters for Parameters Optimization 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 

Carrier Frequency 2 GHz 

Bandwidth 5 MHz 

Number of RBs 25 
Number of sub-carriers per RB 12 

Sub-carrier Spacing 15 kHz 
Slot Duration 0.5 ms 

Number of OFDM Symbols / 
Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 

Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 

HARQ / Retransmission Enable / 3 times 

Packet Scheduler Proportional Fair 

Scheduling Time (TTI) 1 ms 

Data Traffic 1 Mbps Constant Rate 
User 150 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ] 

Simulation time 1000 ms 
Simulation run 3 times 

RSRP sampling timer interval 10 ms 

Size of CCS 3 
Size of CTP 2 

 0.75 
Capacity Threshold 0.9 
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Table 5.2: Simulation Parameters Optimization for CoMP Handover Algorithms 

Parameters Values 

HOA 
5: CoMP Handover Algorithm 
6: Limited CoMP Handover Algorithm 
7: Capacity Based CoMP Handover Algorithm 
8: Capacity Integrated CoMP Handover Algorithm 

TTT ( 0, 1, 2, 3, 4, 5 )  millisecond 

HOM ( 0, 1, 2, 3, 4, 5 )  dB 

UE Speed ( 3, 30, 120 )  km/hr 

 

An average system throughput and ANOH are calculated from the three simulations of 

the same HOM, TTT, HOA, and UE speed. Furthermore, the average system throughput 

and ANOM from the three simulations are applied to the optimization method based on 

Equation (3.14) to find out the OptimizeRatio value. A log scale of OptimizeRatio value 

was added for refined comparison. The highest log10(OptimizeRatio) value in each 

speed scenario leads to an optimized set of HOM and TTT of the HOA. 

The log10(OptimizeRatio) of HOA5 results in Figure 5.1 are calculated using Equation 

(3.14) under 3, 30, and 120 km/hr scenarios with an input set of HOM and TTT 

increasing from 0 to 5 dB and 0 to 5 ms, respectively. The highest bar graph in each 

speed scenario in Figure 5.1 indicates the highest log10(OptimizeRatio) value in each 

speed and it refers to HOM and TTT equivalent to 4 and 5, 4 and 5, 5 and 4, in 3 km/hr, 

30km/hr, and 120 km/hr scenarios, respectively. 
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Figure 5.4 shows the log10(OptimizeRatio) of HOA 8 under 3, 30, and 120 km/hr 

scenarios with an input set of HOM and TTT increasing from 0 to 5 dB and 0 to 5 ms, 

respectively. The highest log10(OptimizeRatio) value in Figure 5.4 indicates the 

optimized set of HOM and TTT equivalent to 4 and 3, 5 and 1, 5 and 0, in 3 km/hr, 

30km/hr, and 120 km/hr scenarios, respectively. 

The results in Table 5.3 are used to evaluate and compare the system performance of all 

four CoMP handover algorithms in the following sections of performance testing with 

RT, NRT, and mixed RT and NRT traffic models. 

Table 5.3: Optimized Parameters of four CoMP handover algorithms 

Speed 
[km/hr] 

HOA 5: 
CoMP 

Handover 
Algorithm 

HOA 6: 
Limited CoMP 

Handover 
Algorithm 

HOA 7: 
Capacity Based 

CoMP Handover 
Algorithm 

HOA 8: 
Capacity 

Integrated CoMP 
Handver 

Algorithm 

3 [HOM, TTT] = 
[4, 5] 

[HOM,TTT] = 
[4, 4] 

[HOM, TTT] = 
[5, 3] 

[HOM, TTT] = 
[4, 3] 

30 [HOM, TTT] = 
[4, 5] 

[HOM,TTT] = 
[5, 4] 

[HOM,TTT] = [4, 
1] 

[HOM, TTT] = 
[5, 1] 

120 [HOM, TTT] = 
[5, 4] 

[HOM,TTT] = 
[5, 3] 

[HOM,TTT] = [5, 
5] 

[HOM, TTT] = 
[5, 0] 

5.2 Performance of CoMP Handover Algorithms for RT Traffic  

In this section the performance of four selected CoMP Handover Algorithms discussed 

in Chapter 4 are evaluated and compared (using the simulation tool described in Chapter 

2) for RT traffic. The performance is evaluated based on three metrics: system 

throughput, system delay, and the number of handovers. The system performance of 

each CoMP handover algorithm under each user speed is optimized by applying the 

optimized parameters in Table 5.3. The system parameters used in the performance 

testing for RT traffic are listed Table 5.4. The simulation time for performance 

evaluation in Table 5.4 was intentionally set to 10000 ms in order to be consistent with 

the simulation time for performance evaluation in Table 3.1 in Chapter 3. 

  



 
CHAPTER 5 

 - 133 - 
  

Table 5.4: Simulation Parameters for Capacity Integrated CoMP Handover Algorithm 

and CoMP Handover Algorithm 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 

Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 
HARQ / Retransmission Enable / 3 times 

Packet Scheduler Proportional Fair 
Scheduling Time (TTI) 1 ms 

Data Traffic Real Time1 Mbps Constant Rate 
User 150 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ], 
constantly at all time 

User’s velocity 3 km/hr, 30 km/hr, 120 km/hr 
Simulation time 10000 ms 

RSRP sampling timer interval 10 ms 
Handover Margin 5 dB 

Time to Trigger (TTT) 5 ms 
Size of CCS 3 
Size of CTP 2 

 0.75 
Capacity Threshold 0.9 
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CoMP Handover Algorithm outperforms Capacity Integrated CoMP Handover 

Algorithm in a low speed scenario because the Capacity Threshold factor in the 

Capacity Integrated CoMP Handover Algorithm could filter out most of the target cells 

during the filtering in the high system load scenario. Therefore the Capacity Based 

CoMP Handover Algorithm has a higher chance to provide multiple transmission points 

in a high system load scenario which leads to a slightly higher system throughput. 

Finally, the CoMP Handover Algorithm has the lowest system throughput (82.7185 

Mbps) in the high system load scenario as discussed in Section 4.1.3. 

In the scenario of 30 km/hr, the Limited CoMP Handover Algorithm offers the highest 

RT system throughput of 94.1135 Mbps followed by the Capacity Integrated CoMP 

Handover algorithm, the Capacity Based CoMP Handover Algorithm, and the CoMP 

Handover Algorithm (88.5998 Mbps, 87.7103 Mbps, and 81.2869 Mbps, respectively). 

The Limited CoMP Handover Algorithm outperforms all other CoMP handover 

algorithms in the scenario of 30 km/hr with a system throughput increase of 14.33% 

when compared to the scenario of 3 km/hr. The Capacity Integrated CoMP Handover 

Algorithm outperforms the Capacity Based CoMP Handover Algorithm in the scenario 

of 30 km/hr due to the assistance of the Capacity Threshold factor which restricts the 

cells in the measurement set to be the target cells in the CCS of each UE. Therefore the 

available radio resources in the target cells in the CCS can be further utilized by other 

UEs. The system throughput is enhanced and the number of handovers is reduced 

(Figure 5.7). The CoMP Handover Algorithm has the lowest system throughput 

(81.2869 Mbps) in the scenario of 30 km/hr in the high system load scenario. 

In the scenario of 120 km/hr, the Capacity Integrated CoMP Handover Algorithm 

overcomes the Limited CoMP Handover Algorithm (system throughput of 73.4635 

Mbps and 67.2567 Mbps, respectively). The Limited CoMP Handover Algorithm has a 

lower system throughput in the scenario of 120 km/hr because the Step 6 in Figure 4.15 

constantly checks the RSRP of the target cells in CCS. However, the feedback messages 

required from UEs at any time instant for checking the RSRP are heavily affected by the 

high speed and the radio propagation in the scenario. This situation affected the 

handover decisions, therefore the Limited CoMP Handover Algorithm offers a lower 

system throughput in the 120 km/hr scenario than other speed scenarios. On the other 



 
CHAPTER 5 

 - 136 - 
  

hand, the RB utilization value used in the Capacity Integrated CoMP Handover 

Algorithm is calculated by each eNodeB and exchanged via X2 interfaces in the system. 

The RB utilization value is not affected by the speed and the radio propagation. 

Therefore the Capacity Integrated CoMP Handover Algorithm can provide higher 

system throughput than the Limited CoMP Handover Algorithm in a high speed 

scenario.  

The Capacity Based CoMP Handover Algorithm and the CoMP Handover Algorithm 

have 65.8869 Mbps and 63.0107 Mbps throughput in the scenario of 120 km/hr, 

respectively. The RB utilization value in the Capacity Based CoMP Handover 

Algorithm is less affected by the speed and the radio propagation. However, the 

Capacity Based CoMP Handover Algorithm has a higher number of handovers as 

discussed in Section 4.2.2. This issue could cause signalling overhead and waste of 

radio resources which leads to a lower system throughput. Finally, the CoMP Handover 

Algorithm provides the lowest system throughput performance in the scenario of 120 

km/hr when compared to other CoMP handover algorithms in the high system load 

scenario. 

Figure 5.6 shows the system delay of four CoMP handover algorithms for RT traffic in 

the simulation. A lower system delay value indicates a better system performance under 

a CoMP handover algorithm. The trend of the system delay of all CoMP handover 

algorithms increases when the speed increases due to the rapid variation in the radio 

channel in the simulation. 

The Capacity Integrated CoMP Handover Algorithm offers the lowest system delay of 

11645.5 ms, 13237.1 ms, and 23176.7 ms in 3 km/hr, 30 km/hr, and 120 km/hr 

scenarios, respectively. The Capacity Integrated CoMP Handover Algorithm 

outperforms all other CoMP Handover Algorithms among all speed scenarios in the 

simulation due to the assistance of the Capacity Threshold factor. The number of data 

connection of each UE can be minimized and the number of incoming traffic packets in 

target cells in CTP are reduced by the Capacity Threshold factor. Due to the lower 

number of incoming traffic packets in target cells in CTP, the queuing delay of each cell 

in the simulation can be shortened, therefore the Capacity Integrated CoMP Handover 
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5.3 Performance of CoMP Handover Algorithms for NRT Traffic  

In this section, the performance evaluation of four CoMP Handover Algorithms is 

compared with the NRT web browsing traffic discussed in Section 2.10.1 with Dpc 

equivalent to 30 ms. The system throughput of the NRT web browsing traffic is 

expected to be lower than the system throughput of the RT traffic because the packets in 

are not constantly provided throughout the simulation. The NRT web browsing traffic 

has the period of empty incoming packet in an ongoing session between the main 

objects and the embedded objects and between the packet calls (in Figure 2.11). 

Therefore the simulation of performance testing in this section is assumed as a low 

system load scenario. 

The performance is compared based on three metrics: system throughput, system delay, 

and the number of handovers. The parameters of each CoMP handover algorithm under 

each user speed are optimized as shown in Table 5.3 and the system parameters used in 

the performance testing for NRT web browsing traffic are listed in Table 5.5. The 

simulation time for performance evaluation in Table 5.5 was intentionally set to 10000 

ms in order to be consistent with the simulation time for performance evaluation in 

Table 3.1 in Chapter 3. 
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Table 5.5: Simulation Parameters for Capacity Integrated CoMP Handover Algorithm 

and CoMP Handover Algorithm 

Parameters Values 
Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 

Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 
HARQ / Retransmission Enable / 3 times 

Packet Scheduler Proportional Fair 
Scheduling Time (TTI) 1 ms 

Data Traffic Non-Real Time Web Browsing Traffic 
Dpc=30 ms 

User 150 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ], 
constantly at all time 

User’s velocity 3 km/hr, 30 km/hr, 120 km/hr 
Simulation time 10000 ms 

RSRP sampling timer interval 10 ms
Handover Margin 5 dB 

Time to Trigger (TTT) 5 ms 
Size of CCS 3 
Size of CTP 2 

 0.75 
Capacity Threshold 0.9 
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Integrated CoMP Handover Algorithm and Capacity Based CoMP Handover Algorithm 

in a low system load scenario in every speed scenario. This result directly confirms that 

the CoMP Handover Algorithm increases the system throughput among 3 km/hr, 30, 

km/hr, and 120 km/hr cases in a low system load scenario. 

The Capacity Integrated CoMP Handover Algorithm and Capacity Based CoMP 

Handover Algorithm have the system throughputs of 66.318 Mbps and 65.4891 Mbps, 

60.8015 Mbps and 62.0797 Mbps, and 49.4818 Mbps and 44.8897 Mbps in 3 km/hr, 30 

km/hr, and 120 km/hr scenarios, respectively. The Capacity Integrated CoMP Handover 

Algorithm produces very similar results to the Capacity Based CoMP Handover 

Algorithm in 3 km/hr and 30 km/hr scenarios because the  factor is close to 1 which 

makes the behaviour of the Capacity Integrated CoMP Handover Algorithm similar to 

the Capacity Based CoMP Handover Algorithm. However, the Capacity Integrated 

CoMP Handover Algorithm makes more accurate handover decisions due to the 

mechanism of tracking historical capacity of each individual eNB in the system. This 

mechanism enhances the system throughput and minimizes the number of handovers (in 

Figure 5.10) compared to the Capacity Based CoMP Handover Algorithm in the 120 

km/hr scenario. 

Figure 5.9 shows the system delay of four CoMP handover algorithms with NRT web 

browsing traffic under three user speeds in the LTE-A simulation. Similar to RT traffic 

scenario, a lower system delay indicates a better system performance under a CoMP 

handover algorithm and the trends of the system delay of all CoMP handover algorithms 

increase when the UE speed increases due to the rapid variation of radio channel quality. 
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CoMP Handover Algorithm outperforms other CoMP handover algorithms (35 and 205 

handovers in 30 km/hr and 120 km/hr, respectively). The Limited CoMP Handover 

Algorithm has the second lowest number of handovers of 41 and 209 handovers in 30 

km/hr and 120 km/hr scenarios, respectively. Based on the assistance of the optimized 

parameters to limit handover occurring, the Capacity Based CoMP Handover Algorithm 

and the CoMP Handover Algorithm have the same number of handovers as 44 and 209 

in 30 km/hr and 120 km/hr scenarios, respectively. Furthermore, the CoMP Handover 

Algorithm has the highest number of handovers due to searching the corresponding 

target cell with the highest RSRP for each UE. The Capacity Based CoMP Handover 

Algorithm has the highest number of handovers due to handing over UEs to a lower 

loaded cell. This arrangement limits the chance that UEs camp on the most appropriate 

cell with the best radio signal quality when making the handover decision. Therefore the 

Capacity Based CoMP Handover Algorithm finds the most appropriate cell for each UE 

by having higher number of handovers. 

5.4 Performance of CoMP Handover Algorithms for Mixed RT 
and NRT Traffic 

In this section, the performance evaluation of four CoMP Handover Algorithms is 

carried out with mixed RT and NRT traffic. The performance evaluation is compared 

based on three metrics: system throughput, system delay, and number of handovers. The 

total number of users in the simulation is 150 and is equally divided for the RT constant 

traffic and the NRT web browsing traffic.  

The system load of the mixed RT and NRT traffic is expected to be a medium to high 

load scenario due to the equal divided for the RT traffic and NRT traffic. The 

parameters of each CoMP handover algorithm under each user speed are optimized as 

shown in Table 5.3 and the system parameters used in the performance testing for NRT 

web browsing traffic are listed in Table 5.6. The simulation time for performance 

evaluation in Table 5.6 was intentionally set to 10000 ms in order to be consistent with 

the simulation time for performance evaluation in Table 3.1 in Chapter 3. 
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Table 5.6: Simulation Parameters for Capacity Integrated CoMP Handover Algorithm 

and CoMP Handover Algorithm 

Parameters Values 

Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 100 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of RBs 25 

Number of sub-carriers per RB 12 
Sub-carrier Spacing 15 kHz 

Slot Duration 0.5 ms 
Number of OFDM Symbols / 

Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 

Modulation and Coding Scheme QPSK, 16QAM, and 64QAM 
HARQ / Retransmission Enable / 3 times 

Packet Scheduler Proportional Fair 
Scheduling Time (TTI) 1 ms 

Data Traffic 
Non-Real Time Web Browsing Traffic with 

Dpc= 30 ms 
Real Time Constant Stream Traffic 

User 
Total 150 Users 

75 Users: NRT Web Browsing Traffic 
75 Users: RT Constant Stream Traffic 

User’s position Fixed uniform distributed 

User’s direction Randomly choose from [0,2 ], 
constantly at all time 

User’s velocity 3 km/hr, 30 km/hr, 120 km/hr 
Simulation time 10000 ms 

RSRP sampling timer interval 10 ms
Handover Margin 5 dB 

Time to Trigger (TTT) 5 ms 
Size of CCS 3 
Size of CTP 2 

 0.75 
Capacity Threshold 0.9 
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traffic packets in target cells in CTP. Due to fewer incoming traffic packets in target 

cells in CTP, the queuing delay of each target cell in the simulation can be shortened, 

therefore the Capacity Integrated CoMP Handover Algorithm has the lowest system 

delay among all speed scenarios when compared to other CoMP handover algorithms. 

The Limited CoMP Handover Algorithm has the system delay of 7781.29 ms, 12480.1 

ms, and 20357.1 ms in 3 km/hr, 30 km/hr, and 120 km/hr scenarios, respectively. The 

Limited CoMP Handover Algorithm utilizes the separation between cell-center users 

and cell-edge users and minimizes the multiple transmission points of cell-center users. 

The packets within the transmission points are reduced due to the lower number of 

multiple transmission points. Therefore the queuing delay of the buffered packets in the 

eNodeBs are shortened which minimizes the system delay. However, the separation 

mechanism in the Limited CoMP Handover Algorithm involves the constant RSRP 

feedback from the UEs at any time instant, which increases the feedback messages, 

signalling overhead, and system delay. Unlike the Limited CoMP Handover Algorithm, 

the Capacity Integrated CoMP Handover Algorithm checks the capacity indicator in 

each eNB via X2-interfaces in the system, therefore the system delay can be minimized. 

The Capacity Based CoMP Handover Algorithm and the CoMP Handover Algorithm 

have the system delay of 11741 ms and 14719.1 ms, 13832.5 ms and 14886.3 ms, 

20891.5 ms and 21223.8 ms in 3 km/hr, 30 km/hr, and 120 km/hr scenarios, 

respectively. The Capacity Based CoMP Handover Algorithm outperforms the CoMP 

Handover Algorithm by using the double filtering discussed in Section 4.2.2 to choose 

the target cell with the lowest system capacity and highest RSRP when making the 

handover decision. This mechanism minimizes the system delay by minimizing the 

multiple transmission points to a single transmission point which minimises the time 

spent by the incoming packets in the eNodeB buffer. However, the Capacity Based 

CoMP Handover Algorithm has the side effect of having a higher number of handovers 

especially in a high speed scenario; therefore the system delay of the Capacity Based 

CoMP Handover Algorithm in 120 km/hr scenario converges to the system delay of the 

CoMP Handover Algorithm. 

The CoMP Handover Algorithm has the highest system delay because 150 UEs leads to 

a full loaded state for the CoMP Handover Algorithm in the simulation (refer to Figure 
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Algorithm finds the most appropriate cell for each UE by having higher number of 

handovers. 

5.5 Summary 

Simulation results have shown that the Capacity Integrated CoMP Handover Algorithm 

can effectively minimize the system delay and the number of handovers with RT traffic, 

NRT traffic, and Mixed RT and NRT traffic in 3 km/hr, 30 km/hr, and 120 km/hr 

scenarios. Furthermore, the Capacity Integrated CoMP Handover Algorithm provides 

the highest system throughput with most of the traffic models at 120 km/hr except for 

the NRT traffic. For the NRT traffic model, the Limited CoMP Handover Algorithm 

provides the highest system throughput among all speed scenarios. 
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Chapter 6  

COMPARATIVE STUDY OF COMP HANDOVER 

ALGORITHMS UNDER CHANNEL IMPAIRMENTS 

The works in the earlier chapters mostly assume that all channel feedbacks were 

correctly received at the eNodeB and UEs immediately perform a handover action after 

receiving the HANDOVER COMMAND message from the eNodeBs. These 

assumptions are applicable for preliminary research work, but they are not appropriate 

for a practical mobile cellular system as the channels are subject to various impairments, 

such as interference, multi-path fading, shadowing, and imperfect channel feedback 

reports (including delayed channel feedback and missing channel feedback). These 

impairments may cause severe performance degradation (in terms of system throughput 

and delay) especially for handover algorithms that strongly rely on an accurate RSRP 

report. 

To study and analyse the impacts from these impairments, a practical LTE-A cellular 

system with mobile cellular channel impairments is considered in this chapter. Two 

impairment environments are assumed for the practical LTE-A system: outdated 

feedback and missing feedback scenarios. A constantly feedback delayed channel is 

assumed in the outdated feedback scenario while a missing feedback channel is assumed 

in the missing feedback scenario. The performance of each CoMP handover algorithm 

for perfect feedback scenario, outdated feedback scenario, and missing feedback 

scenario in a practical LTE-A system is evaluated and discussed in this chapter, 

respectively. 

This chapter is structured as follows: Section 6.1 provides a thorough description on the 

related works including the 3GPP standards of handover parameters in a practical LTE-

A system and the performance impact due to imperfect channel feedback reports in a 

practical LTE-A system. Section 6.2 describes the simulation environments for a 
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practical LTE-A System. Section 6.3 evaluates and discusses the performance of each 

CoMP handover algorithm for perfect feedback scenario, outdated feedback scenario, 

and missing feedback scenario in a practical LTE-A system. The summary of this 

chapter is given in Section 6.4. 

6.1 Related Works 

The imperfect channel feedback reports in a practical LTE-A system are categorized 

into two feedback reports: CQI reports and RSRP reports. Each of these imperfect 

channel feedback reports is discussed after the 3GPP standards of handover parameters 

in a practical LTE-A system. 

6.1.1 The 3GPP Standards of Handover Parameters in a Practical 
LTE-A System 

The handover parameters in a practical LTE-A system including the report interval 

values, the range of the TTT values, the range of RSRP values, and the Hysteresis 

values are specified in the 3GPP Technical Report 36.331 [93, 141].  

The report interval is applicable if the UE performs periodical reporting and indicates 

the time interval between each periodical report. Thirteen values are considered as the 

report interval in a practical LTE-A system. The values are enumerated (120, 240, 480, 

640, 1024, 2048, 5120, and 10240) in millisecond and (1, 6, 12, 30, and 60) in minute.  

The value range used for TTT parameter is the time interval which the HOM condition 

is satisfied in order to trigger a handover. Sixteen values are considered as the TTT 

parameter in a practical LTE-A system. The values are enumerated (0, 40, 64, 80, 100, 

128, 160, 256, 320, 480, 512, 640, 1024, 1280, 2560, and 5120) in millisecond.  

The range of the RSRP values specifies the value range used in RSRP measurements. 

The range of the RSRP values was specified as an integer (in 3GPP Technical 

Specification 36.133 [142]) with the range between 0 and 97 dBm. 
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The Hysteresis is a parameter used within the entry and leave condition of an event 

triggered reporting condition. The range of the Hysteresis value is specified as an 

integer with the range between 0 and 30 dB. 

Given that a practical LTE-A system is studied in this chapter, it is important to follow 

the 3GPP standards for performance testing and evaluation. The report interval values, 

the range of the TTT values, the range of RSRP values, and the Hysteresis values 

specified by the 3GPP standards described in this section are used in the performance 

testing sections. 

6.1.2 Performance Impact due to Imperfect CQI Reports 

The impact on HSDPA performance due to outdated CQI reports was investigated in 

[143]. It is shown in [143] that the outdated CQI reports lead to degradation on HSDPA 

performance as the inaccuracy CQI experienced by a user due to the delay in the 

acquisition and processing of the CQI reports. Furthermore, this degradation depends on 

the speed of the UE and the system load situations or the resource allocating scheme. 

Simulation results in [143] show that the Max-Rate algorithm has a 7% throughput 

degradation in the 50 km/hr scenario compared to the 3 km/hr scenario when a 2 ms 

delayed CQI report is available at the base station. 

The performance impact due to channel estimation errors, outdated and erroneous CQI 

reports over a multi-carrier mobile cellular system for different user speeds has been 

studied in [90]. It was shown in [90] that the maximum tolerable CQI delay is related to 

the user speed in the simulation. If the BLER is to be kept below 10-3 threshold, (a) a 

maximum of 5 ms CQI delay is tolerable for a 5 km/hr user speed scenario, (b) a 

maximum of 1 ms CQI delay is tolerable for a 30 km/hr user speed scenario, and (c) a 

maximum of -15 dB in Mean Square Error (MSE) of the channel estimation when the 

average SINR is fixed at 10 dB. Moreover, Simulation results have shown that the 

system performance is very sensitive against outdated CQI (which may cause a wrong 

selection of the instantaneous modulation scheme) when compared to other CQI 

imperfectness. 
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Table 6.1: The Simulation Parameters for a Practical LTE-A System 

Parameters Values
Cellular layout Hexagonal grid, wrap around (reflect), 7 cells 

Radius 500 m 
Carrier Frequency 2 GHz 

Bandwidth 5 MHz 
Number of PRBs 25

Number of sub-carriers per 
PRB 12 

Sub-carrier Spacing 15 kHz
Slot Duration 0.5 ms

Number of OFDM Symbols / 
Slot 7 

Path Loss Cost 231 Hata model 

Shadow fading Gaussian distribution 

Multi-path Rayleigh fading 
Modulation and Coding 

Scheme QPSK, 16QAM, and 64QAM 

HARQ / Retransmission Enable / 3 times 

Packet Scheduler Proportional Fair 

Scheduling Time (TTI) 1 ms 

Data Traffic RT Traffic: 1 Mbps CBR 
User 100 

UE position Fixed uniform distributed 

UE direction Randomly choose from [0,2 ] 

UE speed 3, 30, 120  km/hr 

Simulation time 1000 ms 

HOA 
5: CoMP Handover Algorithm 
6: Limited CoMP Handover Algorithm 
7: Capacity Based CoMP Handover Algorithm 
8: Capacity Integrated CoMP Handover Algorithm 

TTT 0 ms
HOM 0 dB

Measurement report interval 120 ms
Size of CCS 3 
Size of CTP 2 

 0.75 
Capacity Threshold 0.9 
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6.3 Performance Impact of CoMP Handover Algorithms in a 
Practical LTE-A System 

The performance impacts of selected CoMP handover algorithms due to impairment 

environments in a practical LTE-A system are evaluated in terms of system throughput, 

system delay, and the number of handovers in this section. The performance evaluation 

of each selected CoMP handover algorithm in impairment environments is discussed 

individually in the following sub-sections. 

6.3.1 CoMP Handover Algorithm 

Figure 6.7 shows the system throughputs of HOA5 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.7: System Throughput of HOA5 in a Practical LTE-A System 

There is a 3.3% and 3.7% performance degradation in the system throughput due to the 

outdated feedback and the missing feedback scenarios compared to the perfect feedback 

scenario at 3 km/hr, respectively. These performance degradations are not significant 

when compared to the perfect feedback scenario due to the slow UE speed.  
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The performance in the system throughput due to the outdated feedback and the missing 

feedback scenarios has an 8.5% and 11.8% degradation compared to the perfect 

feedback scenario at 30 km/hr, respectively. As the UE speed increases from 3 km/hr to 

30 km/hr, the performance degradation due to the outdated feedback and the missing 

feedback scenarios compared to the perfect feedback scenario increases 5.2% and 8.1%, 

respectively. The performance in the system throughput due to the outdated feedback 

and the missing feedback scenarios has a 12.75% and 15.38% degradation compared to 

the perfect feedback scenario at 120 km/hr, respectively. As the UE speed increases 

from 3 km/hr to 120 km/hr, the performance degradation due to the outdated feedback 

and the missing feedback scenarios compared to the perfect feedback scenario increases 

9.45% and 11.68%, respectively. 

A 3 ms CQI delay in the outdated feedback scenario causes a wrong selection of the 

instantaneous modulation scheme and a significant performance degradation occurs 

with increasing UE speed. Moreover, the tunnels and the 3 ms CQI delay in the missing 

feedback scenario causes (a) a wrong selection of the instantaneous modulation scheme 

for all UEs and (b) unreachable data transmissions for UEs in the tunnel areas. These 

conditions significantly decrease the system throughput for having lower number of 

correctly transmitted and received packets. 

Figure 6.7 shows the system delay of HOA5 in a perfect feedback scenario, an outdated 

feedback scenario, and a missing feedback scenario in a practical LTE-A system. The 

performance in the system delay due to the outdated feedback scenario has 4.66%, 

36.33%, and 47.3% degradations compared to the perfect feedback scenario at UE 

speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance in the 

system delay due to the missing feedback scenario has 12.76%, and 44.76%, and 53.7% 

degradations compared to the perfect feedback scenario at 3 km/hr, 30 km/hr, and 120 

km/hr, respectively.  
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Figure 6.8: System Delay of HOA5 in a Practical LTE-A System 

A 0 ms CQI delay is assumed in the perfect feedback scenario whereas a 3 ms CQI 

delay in the outdated feedback scenario causes a total of 6 ms system delay for a single 

TB of all UEs. A 3 ms delay duration used by the UE to decode the received TB and 

perform a CRC check followed by another 3 ms delay duration is used by the serving 

cell to decode the HARQ feedback and constructs a new encoded TB based on the 

feedback (which is outdated already). Therefore, the system delay is significantly higher 

in the outdated feedback scenario than in the perfect feedback scenario for all speed 

scenarios. Moreover, the missing feedback scenario causes a total system delay of 6 ms 

for a single TB of all UEs and an increased queuing delay for the buffered packets in the 

serving cell waiting to be transmitted to the unreachable UEs in the tunnel areas. Thus, 

the system delay of a missing feedback scenario is higher than an outdated feedback 

scenario for all speed scenarios. 

Figure 6.9 shows the number of handovers of HOA5 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  
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Figure 6.9: Number of Handovers of HOA5 in a Practical LTE-A System 

There are 5 handovers for all speed scenarios in HOA5 at 3 km/hr. The number of 

handovers is equivalent in the perfect feedback, the outdated feedback, and the missing 

feedback scenarios due to the slow UE speed. The performance in the number of 

handovers due to the outdated feedback scenario has 6 more handovers compared to the 

perfect feedback scenario at UE speeds of 30 km/hr and 120 km/hr. The serving cell in 

the outdated feedback scenario makes the handover decision based on the outdated 

measurement report where the RSRP of the serving cell will be too low when a 

handover is triggered. Thus a too late handover occurs in the outdated feedback scenario. 

In order to maintain the received signal quality for the UE in the outdated feedback 

scenario, the serving cell keeps handing over the UE to a target cell whether it has a 

better received signal strength or not. However, due to the outdated measurement 

reports, the signal strengths of the target cells are always outdated (inaccurate) and 

therefore the number of handovers at user speeds at 30 km/hr and 120 km/hr are 

increased in the outdated feedback scenario compared to the perfect feedback scenario.  

The performance in the number of handovers due to the missing feedback scenario has 7 

more handovers compared to the perfect feedback scenario at UE speeds of 30 km/hr 

and 120 km/hr. A too early handover and a handover to a wrong cell could possibly 

occur when the UEs travel through the tunnel areas in the missing feedback scenario. 
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Due to the obstruction of the tunnels, a RLF could possibly occur in the target cell after 

a successful handover triggered by the serving cell when the UE enters the tunnel areas. 

Therefore (a) if the UE reconnects to the serving cell after the RLF occurred, then a too 

early handover occurs or (b) if the UE reconnects to a cell which is neither the serving 

cell nor the target cell after the RLF occurred, then a handover to a wrong cell occurs. 

The number of unnecessary handovers is increased due to the situations described above 

in the missing feedback scenario which results in a higher number of handovers 

compared to the perfect feedback and the outdated feedback scenarios for user speeds of 

30 km/hr and 120 km/hr. 

6.3.2 Limited CoMP Handover Algorithm 

Figure 6.10 shows the system throughputs of HOA6 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.10: System Throughput of HOA6 in a Practical LTE-A System 

The performance in the system throughput in the outdated feedback scenario has 

19.16%, 26.37%, and 26.61% degradations compared to the perfect feedback scenario at 

UE speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 
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degradation in the system throughput from a UE speed of 3 km/hr to 30 km/hr and from 

3 km/hr to 120 km/hr increases 9.02% and 16.28%, respectively. 

The performance in the system throughput due to the missing feedback scenario has 

20.46%, and 22.4%, and 24.54% degradation compared to the perfect feedback scenario 

at UE speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradation in the system throughput from a UE speed of 3 km/hr to 30 km/hr and from 

3 km/hr to 120 km/hr increases 7.84% and 17.31%, respectively. 

The overall system throughputs of HOA6 among all speed scenarios are higher than the 

overall system throughputs of HOA5 among all speed scenarios; however the 

performance degradations in the outdated feedback and the missing feedback scenarios 

are significantly higher than those for HOA5. HOA6 heavily relies on the measurement 

report at each TTI to add or remove a target cell in the CCS by constantly checking the 

RSRP from the CCS. The outdated and missing measurement reports in the outdated 

feedback and the missing feedback scenarios mislead the handover decision of HOA6, 

therefore the system throughputs of HOA6 decrease sharply for all speed scenarios in 

these two impairment environments. 

Figure 6.11 shows the system delay of HOA6 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

The performance in the system delay due to the outdated feedback scenario has 47.16%, 

87.70%, and 66.47% degradations compared to the perfect feedback scenario at 3 km/hr, 

30 km/hr, and 120 km/hr, respectively. The performance in the system delay due to the 

missing feedback scenario has 57.58%, and 97.99%, and 71.63% degradations 

compared to the perfect feedback scenario at 3 km/hr, 30 km/hr, and 120 km/hr, 

respectively. 

A 0 ms CQI delay is assumed in the perfect feedback scenario whereas a total system 

delay of 6 ms for a single TB for all UEs is assumed in the outdated feedback scenario 

causes. Therefore the system delay is significantly higher in the outdated feedback 

scenario than in the perfect feedback scenario for all speed scenarios. Moreover, the 
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missing feedback scenario causes a total system delay of 6 ms for a single TB for all 

UEs and an increased queuing delay for the buffered packets in the serving cell waiting 

to be transmitted to the unreachable UEs in the tunnel areas. Thus, the system delay of 

the missing feedback scenario is higher than the outdated feedback scenario for all 

speed scenarios. 

 

Figure 6.11: System Delay of HOA6 in a Practical LTE-A System 

Figure 6.12 shows the number of handovers of HOA6 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

The performance in the number of handovers due to the outdated feedback scenario has 

4, 3, and 1 more handovers compared to the perfect feedback scenario at UE speeds of 3 

km/hr, 30 km/hr and 120 km/hr, respectively. The performance in the number of 

handovers due to the missing feedback scenario has 4, 3, and 2 more handovers 

compared to the perfect feedback scenario at UE speeds of 3 km/hr, 30 km/hr and 120 

km/hr, respectively. 

Simulation results have shown that HOA6 is less tolerable to an outdated feedback 

scenario than a missing feedback scenario because an accurate measurement report at 

each TTI is needed for the HOA6 to perform the correct handover decision. A too late 
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a handover to a wrong cell could both possibly occur in the missing feedback scenario; 

therefore the number of handovers in the missing feedback scenario is higher than the 

one in the outdated feedback scenario at 120 km/hr. 

 

Figure 6.12: Number of Handovers of HOA6 in a Practical LTE-A System 

6.3.3 Capacity Based CoMP Handover Algorithm 

Figure 6.13 shows the system throughput of HOA7 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

The performance in the system throughput due to the outdated feedback scenario has 

2.24%, 12.12%, and 12.34% degradations compared to the perfect feedback scenario at 

UE speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradation in the system throughput of the outdated feedback scenario from a UE 

speed of 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr increases 11.22% and 

22.35%, respectively. 

The performance in the system throughput due to the missing feedback scenario has 

8.02%, and 12.95%, and 13.82% degradations compared to the perfect feedback 

scenario at 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradation in the system throughput at a UE speed from 3 km/hr to 30 km/hr and from 

3 km/hr to 120 km/hr increases 6.5% and 18.87%, respectively. 
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Figure 6.13: System Throughput of HOA7 in a Practical LTE-A System 

Simulation results have shown that HOA7 is slightly more robust against the 

performance degradation in terms of the system throughput from 3 km/hr to 120 km/hr 

UE speeds in the outdated feedback and the missing feedback scenarios compared to the 

HOA6. It is because the RB utilization value used in the HOA7 is calculated by each 

eNodeB and exchanged via X2 interfaces in the system. The RB utilization value is less 

subjected to the delay and missing impairments in the radio channels in the outdated 

and missing feedback scenarios. 

Figure 6.14 shows the system delay of HOA7 in a practical LTE-A system with a 

perfect feedback scenario, an outdated feedback scenario, and a missing feedback 

scenario.  

The performance in the system delay due to the outdated feedback scenario has 7.24%, 

49.17%, and 40% degradations compared to the perfect feedback scenario at UE speeds 

of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance degradation in the 

system delay due to the outdated feedback scenario increases 44.40% and 79.92% from 

3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, respectively.  
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Figure 6.14: System Delay of HOA7 in a Practical LTE-A System 

The performance in the system delay due to the missing feedback scenario has 16.73%, 

and 51.20%, and 40.71% degradation compared to the perfect feedback scenario at UE 

speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance degradation 

in the system delay due to the missing feedback scenario increases 34.47% and 66.11% 

from 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, respectively. 

A 0ms CQI delay is assumed in the perfect feedback scenario whereas a total system 

delay of 6 ms for a single TB for all UEs is assumed in the outdated feedback scenario. 

Therefore the system delay is significantly higher in the outdated feedback scenario than 

in the perfect feedback scenario for all speed scenarios. Moreover, the missing feedback 

scenario causes a total system delay of 6 ms for a single TB for all UEs and an increased 

queuing delay for the buffered packets in the serving cell waiting to be transmitted to 

the unreachable UEs in the tunnel areas. Thus, the system delay of the missing feedback 

scenario is higher than the outdated feedback scenario for all speed scenarios. 

The performance degradation in the system delay for the outdated feedback scenario is 

caused by (a) a total of 6 ms system delay for a single TB for all UEs and (b) an 

increased queuing delay of the buffered packets in the serving cell for the unreachable 
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measurement reports and is able to minimize the system delay difference between the 

outdated feedback scenario and the missing feedback scenario for all speed scenarios.  

Figure 6.15 shows the number of handovers of HOA7 with a perfect feedback scenario, 

an outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.15: Number of Handovers of HOA7 in a Practical LTE-A System 

The performance in the number of handovers in the outdated feedback scenario has 1, 6, 

and 6 more handovers compared to the perfect feedback scenario at UE speeds of 3 

km/hr, 30 km/hr and 120 km/hr, respectively. The performance in the number of 

handovers due to the missing feedback scenario has 2, 7, and 7 more handovers 

compared to the perfect feedback scenario at UE speeds of 3 km/hr, 30 km/hr and 120 

km/hr, respectively. 

A too late handover occurs in the outdated feedback scenario whereas a too early 

handover and a handover to a wrong cell can possibly both occur in the missing 

feedback scenario; therefore the number of handovers in the missing feedback scenario 

is higher than the outdated feedback scenario for all speed scenarios.  

HOA7 has a higher total number of handovers compared to HOA5 and HOA6 because 
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signal strength especially in the outdated and missing feedback scenarios. However, the 

arrangement based on an inaccurate measurement report (outdated or missing) directs 

the UEs to inappropriate target cells. Therefore UEs have a higher chance of more 

handovers which leads to a higher handover count. 

6.3.4 Capacity Integrated CoMP Handover Algorithm 

Figure 6.16 shows the system throughputs of HOA8 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.16: System Throughput of HOA8 in a Practical LTE-A System 

The performance of the system throughput in the outdated feedback scenario has 2.17%, 

11.05%, and 9.85% degradations compared to the perfect feedback scenario at UE 

speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance degradation 

of system throughput for the outdated feedback scenario increases 10.4% and 20.49% 

from 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, respectively. 

The performance in the system throughput due to the missing feedback scenario has 

7.46%, and 13.97%, and 13.57% degradations compared to the perfect feedback 

scenario at 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradation in the system throughput due to the missing feedback scenario increases 
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8.38% and 19.40% from 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, 

respectively. 

HOA8 checks the RB utilization value which is calculated by each eNodeB and 

exchanged via X2 interfaces in the network. The RB utilize value and the capacity 

indicator are less subjected to the delay and missing impairments in the outdated and 

missing feedback scenarios. In terms of the degradation of system throughput in the 

outdated feedback and the missing feedback scenarios (for all speed scenarios), HOA8 

is more robust than HOA6 and HOA7.  

Figure 6.17 shows the system delay of HOA8 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.17: System Delay of HOA8 in a Practical LTE-A System 

The performance in the system delay due to the outdated feedback scenario has 9.71%, 

29.26%, and 37.09% degradations compared to the perfect feedback scenario at UE 

speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradations in the system delay due to the outdated feedback scenario increase 29.78% 

and 62.95% from 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, 

respectively. 
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The performance in the system delay due to the missing feedback scenario has 9.24%, 

41.75%, and 46.23% degradations compared to the perfect feedback scenario at UE 

speeds of 3 km/hr, 30 km/hr, and 120 km/hr, respectively. The performance 

degradations in the system delay due to the missing feedback scenario increase 41.71% 

and 73.07% from 3 km/hr to 30 km/hr and from 3 km/hr to 120 km/hr UE speeds, 

respectively.  

Simulation results show that HOA8 is more robust when missing measurement reports 

are considered.  This minimizes the system delay difference between the outdated 

feedback and the missing feedback scenarios for all speed scenarios. The RB utilize 

value and the capacity indicator used in the HOA8 are less subjected to the delay and 

missing impairments in the radio channels in the outdated and missing feedback 

scenarios. 

Figure 6.18 shows the number of handovers of HOA8 in a perfect feedback scenario, an 

outdated feedback scenario, and a missing feedback scenario in a practical LTE-A 

system.  

 

Figure 6.18: Number of Handovers of HOA8 in a Practical LTE-A System 

The performance in the number of handovers due to the outdated feedback and missing 

feedback scenarios has 2 and 4 more handovers compared to the perfect feedback 

scenario for all speed scenarios, respectively. 
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Simulation results have shown HOA8 can minimize the number of (unnecessary) 

handovers in the perfect feedback, the outdated feedback, and the missing feedback 

scenarios compared to HOA5, HOA6, and HOA7 for all speed scenarios because HOA8 

limits the UEs to be handed over to a target cell. However, a too late handover occurs in 

the outdated feedback scenario whereas a too early handover and a handover to a wrong 

cell can possibly both occur in the missing feedback scenario; therefore the number of 

handovers in the missing feedback scenario is higher than the outdated feedback 

scenario among all speed scenarios. 

6.4 Summary 

The performance impact of selected CoMP handover algorithms due to mobile cellular 

channel impairments in a practical LTE-A cellular system is considered in this chapter. 

This chapter initially studied the related works including the 3GPP standards of 

handover parameters in a practical LTE-A system and the performance impact due to 

imperfect channel feedbacks in a practical LTE-A system. The impairments for a 

practical LTE-A system are assumed to be in two scenarios: outdated feedback scenario 

and missing feedback scenario. The simulation environments for each scenario in a 

practical LTE-A are individually discussed. The performances of each CoMP handover 

algorithm for a perfect feedback scenario, an outdated feedback scenario, and a missing 

feedback scenario in a practical LTE-A system are individually evaluated and discussed 

in this chapter. 

Simulation results show that the system performance (in terms of system throughput 

and system delay) is very sensitive against outdated CQI feedback and missing CQI 

feedback. A handover failure (too late handover, too early handover, or handover to a 

wrong cell) increases the number of unnecessary handovers which requires additional 

resources in the network and may significantly degrade the system performance. 
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Chapter 7  

CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

This chapter summarises a number of challenges in handover algorithms studied in this 

thesis and contributions made to improve the system performance in the LTE and LTE-

A systems followed by some discussions for the future research. Section 7.1 

summarises the original contributions of this thesis. Section 7.2 and Section 7.3 discuss 

the system implications and limitations and future research directions, respectively. 

7.1 Summary of Thesis Contributions 

The original contributions of this thesis are divided into three major areas described as 

follows: 

7.1.1 Handover Parameters Optimization Method 

Given the scarcity of the radio resources, the dynamic nature of the propagation 

environment and the variety of user mobility, maximizing the possible system 

throughput and minimizing the system delay are the major challenges that need to be 

addressed in the handover mechanisms in LTE and LTE-A systems. A handover 

parameters optimization method was proposed to address the research question: “Given 

the current handover algorithms in multi-carrier systems, can one improve the 

performance of the current algorithms by minimizing system delay and maximizing the 

system throughput in a multi-cell scenario”?  

The handover parameters optimization method was proposed based on a ratio of total 

system throughput to the average number of handovers across a number of HOM and 

TTT values. The handover parameters optimization method can minimize the 
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unnecessary number of handovers while maximizing the system throughput (see Section 

3.6.1 and Section 5.1).  

7.1.2 Handover Algorithm in LTE 

A handover algorithm in LTE, namely LTE Hard Handover Algorithm with Average 

RSRP Constraint (LHHAARC) is proposed for better handover performance. 

LHHAARC was proposed to address the research question: “Given a set of handover 

algorithms in LTE, can one evaluate these algorithms based on the simulation 

performance analysis”?  

Under the assumption of an ideal channel conditions and optimized handover 

parameters, it was shown via computer simulation that the proposed LHHAARC has 

reduced (by up to 35.56%) the average number of handovers compared to the LTE 

Integrator Handover Algorithm. LHHAARC has 3.55%, 25%, and 1.302% higher total 

system throughputs compared to the other three well known handover algorithms 

respectively (see Section 3.6.2). The proposed handover algorithm is able to maintain a 

lower system delay compared to the other three well known handover algorithms (i.e. 

17.93%, 22.77%, and 47.58% reductions in delay when compared to LTE Hard 

Handover Algorithm, RSS Based TTT Window Algorithm and LTE Integrator 

Handover Algorithms, respectively). 

Given that a LTE-A system is a major enhancement of the LTE system, the feasibility 

of the LTE handover mechanisms on LTE-A system needs to be studied. The CoMP 

technology is expected to improve the cell-edge throughput and/or system throughput 

with multiple data transmissions in LTE-A compared to the throughput(s) in the LTE 

system. Therefore, the current existing handover algorithms in the LTE network are not 

applicable for CoMP networks. A computer simulation was developed to address the 

research question: “How suitable are LTE handover mechanisms for LTE Advanced”? 

Based on the discussion (see Section 4.1.3), the computer simulation results show that, 

when compared to the standard LTE Hard Handover Algorithm in the LTE system, the 

CoMP Handover Algorithm in LTE-A is able to improve the system throughput and 

minimize PLR effectively. However, this algorithm could lead to system capacity 

overload and saturated system throughput issues within a highly congested network. 
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7.1.3 CoMP Handover Algorithms in LTE-A 

Three CoMP handover algorithms are proposed for the LTE-A system in this thesis: 

Limited CoMP Handover Algorithm, Capacity Based CoMP Handover Algorithm, and 

Capacity Integrated CoMP Handover Algorithm. These algorithms take into 

consideration one or more decision criteria to overcome the loaded system throughput 

and maximize the system capacity usage. These algorithms are proposed to address the 

research question: “Given that existing handover algorithms in the LTE network are not 

applicable for CoMP networks, can one design a handover algorithm that support CoMP 

technology and take system capacity into consideration in the LTE-A system”?  

Under the assumption of an ideal channel condition and optimized handover parameters, 

it was shown via computer simulation that the Capacity Integrated CoMP Handover 

Algorithm can minimize the system delay and the number of handovers with RT traffic, 

NRT traffic, and mixed RT and NRT traffic in 3 km/hr, 30 km/hr, and 120 km/hr 

scenarios. Furthermore, the Capacity Integrated CoMP Handover Algorithm provides 

the highest system throughput at 120 km/hr for the RT traffic and mixed RT and NRT 

traffic. For the NRT traffic model, the Limited CoMP Handover Algorithm provides the 

highest system throughput among all speed scenarios. 

Chapter 6 studied a practical LTE-A cellular system with realistic mobile cellular 

channel impairments. These impairments may cause severe performance degradations 

especially for handover algorithms that strongly rely on an accurate RSRP report. This 

chapter aimed to address the research questions: “Given that handover algorithms rely 

on an accurate RSRP report to perform optimized performance, what is the performance 

impact of CoMP handover algorithms due to impairment environments in a practical 

LTE-A cellular network”? 

The performance impact of selected CoMP handover algorithms due to mobile cellular 

channel impairments in a practical LTE-A cellular system is considered in Chapter 6. 

The impairments for a practical LTE-A system are assumed to be in two scenarios: 

outdated feedback scenario and missing feedback scenario. It is shown via computer 

simulation that the system throughput and system delay are very sensitive to outdated 

CQI feedback and missing CQI feedback. A handover failure (too late handover, too 
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early handover, or handover to a wrong cell) caused by an inaccurate measurement 

report increases the number of unnecessary handovers which requires additional 

resources in the network and may significantly degrade the system performance. 

7.2 System Implications and Limitations 

This thesis proposed five novel contributions (a handover parameters optimization 

method, a handover algorithm in the LTE system, and three CoMP handover algorithms 

in the LTE-A system) are needed to be addressed the research challenges of: (i) why the 

new handover techniques for downlink LTE-A are designed and evaluated, (ii) what a 

system planner needs to do to use the system, and (iii) how system planners can be 

benefitted from this research.  

(i) During the research on the literature, the CoMP Handover Algorithm enhances 

the LTE-A system throughput and reduces the PLR when compared with the 

LTE system. However, system capacity overload and saturated system 

throughput issues are found based on the simulation results. The new handover 

techniques for downlink LTE-A are designed for supporting CoMP technology 

and taking the system capacity and the system load into consideration. Limited 

CoMP handover algorithm enhances the system capacity by accommodating as 

many users as possible in the system. Capacity Based CoMP Handover 

Algorithm and Capacity Integrated CoMP Handover Algorithm enhance the 

system capacity by giving the available radio resources to the users based on the 

current and historical available radio resources, respecitvely. 

(ii) A system planner can use the proposed three CoMP handover algorithms in an 

urban density area where CoMP technology and LTE-A are deployed. These 

three CoMP handover algorithms are designed and evaluated for enhancing the 

system capacity, maximizing the system throughput, and minimizing the system 

delay. 

(iii) The system planners can be benefitted from this research for less equipment 

expansive. The system planners could also be benefitted for better user 

experience from their customers based on the higher system throughput and less 

system delay their system provides. 
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This thesis is limited to a seven hexagonal cells scenario which supports multiple users 

with one active application (RT, NRT, or RT and NRT traffic) at a time in the 

performance evaluation. Moreover, a number of assumptions were made in this thesis 

due to the time constraint as well as to further reduce complexity of the system 

simulation. The limitations of this thesis are addressed in Section 2.12. 

7.3 Future Research Directions 

Based on the study of handover challenges in LTE and LTE-A systems, a number of 

important issues have been identified for future research. Some of the issues are briefly 

discussed as follows: 

(i) The majority of works discussed in this thesis focus on the total number of 

handovers in the simulation. One of the major problems with handover is the 

ping-pong effect. Ping-pong effect results in a wastage of network resources. 

However, handovers are essential to provide a satisfactory user experience. The 

development of necessary and unnecessary (ping-pong) handovers detection in the 

simulation is a subject for future study. 

(ii) RLF is one of the major issues that occur in a handover failure and is related to 

the PHY layer aspects. The majority of works discussed in this thesis focus on the 

effects caused by the RLF. A detailed research on the relationship between RLF in 

the PHY layer and handover failure is a subject for future study.  

(iii) The performance impact due to outdated and missing feedbacks towards handover 

performance has been studied in Chapter 6. The simulation results in Chapter 6 

have shown that the outdated and missing feedbacks significantly degrade the 

system performance. A handover mechanism with handover failure rescue in the 

imperfect feedback scenarios in the LTE-A system will be included in future 

studies. 
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APPENDIX 

This appendix gives validations of the system level simulator used in this research work 

and the validated simulation results are discussed. Validation of simulation results is to 

ensure the results obtained via simulation are correct and reliable. Two validations were 

used to validate the simulation results that are in-line with other works in the literature. 

Validation 1: 

A simple validation of the behaviour of the uniform distribution of the users’ positions 

in one simulation is given in Figure A.1 which shows the X, Y coordinates of users in 

one simulation. The validation was set to compare the probability density function (PDF) 

and cumulative distribution function (CDF) of the X, Y coordinates of all users in the 

simulation and the uniformly distributed random numbers from MATLAB [151]. 

 

Figure A.1: X, Y coordinates of all users in one simulation 
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Figure A.2: PDF of the X coordinate of all users in one simulation 

 

Figure A.3: CDF of the X coordinate of all users in one simulation 

Figure A.2 and Figure A.3 show the PDF and CDF of the X coordinate of all users in 

one simulation, respectively. The comparison shows the similarity of the simulation 
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in Figure A.2 and Figure A.3, the higher the similarity these two scenarios are.  
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The probability of the X coordinate of all users is distributed between 100 and 400 in 

Figure A.2 for both dash and solid lines. This can validate that X coordinates of all 

users are distributed in the manner as expected as shown in Figure A.1. In Figure A.3, 

the solid line is mostly overlapping the dash line which means the initial position and 

the distribution of the x coordinates of all users in the simulation follows the random 

distribution function in MATLAB. Figure A.4 and Figure A.5 show the PDF and CDF 

of the Y coordinate of all users in one simulation, respectively. 

 

Figure A.4: PDF of the Y coordinate of all users in one simulation 

 

Figure A.5: CDF of the Y coordinate of all users in one simulation 
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The probability of the Y coordinate of all users is distributed between 50 and 450 in 

Figure A.4 for both dash and solid lines. This can validate that Y coordinates of all 

users are distributed in the manner as expected as shown in Figure A.1. In Figure A.5, 

the solid line is mostly overlapping the dash line which means the initial position and 

the distribution of the Y coordinates of all users in the simulation follows the random 

distribution function in MATLAB. 

Validation 2: 

In this validation, the simulation results were compared with the result in the literature 

[77]. The simulation results provided by the simulator in this thesis should be the same 

or similar to the results provided in the literature [77] when similar input was 

considered for each simulation run. A simulation time of 1000 milliseconds was used 

for validation. System parameters used in the simulation are given in Table A.1. Note 

that the cellular layout in the simulator in this validation was changed to single cell in 

order to be consistent with the simulator used in the literature [77]. 
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Table A.1: The Common Simulation Parameters for Validation 

Parameters Values 
Cellular layout Hexagonal grid, wrap around (reflect) 

Cell = 1 

Cell radius 100 m 

Path Loss Hata model 

Shadow fading Gaussian model 

Multi path Rayleigh model 

Carrier Frequency 2 GHz 

Bandwidth 5 MHz 

Number of sub-carriers 300 

Resource Block 25 

Number of sub-carriers per RB 12 

Sub-Carrier Spacing 15 kHz 

Scheduling Time (TTI) 1 ms 

Packet Scheduling Algorithm Round Robin 

Number of PFDM Symbols per Slot 7 

User 50 

User’s direction Uniform distributed, [0,2 ] 

User’s Speed [0, 30, 65, 100] 

Simulation time 1000 ms 

RSRP sampling timer interval 50 ms 

Handover Margin, RSRP unit 5 dB 

Handover Time to Trigger (TTT) 5 ms 

Data Traffic 1 Mbps Constant Rate 

 

Figure A.6 and Figure A.7 show the average user throughput and average system delay 

in multi-cells simulator and single cell simulator, respectively. 
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Figure A.6: Average User Throughput Multi-Cells (1 cell) vs Single Cell 

 

Figure A.7: Average System Delay Multi-Cells (1 cell) vs Single Cell 

It can be observed in the figures that the simulator used in this thesis provided valid 
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