

School of Civil and Environmental Engineering

University of Technology, Sydney

Sydney, Australia

EXPERIMENTAL AND NUMERICAL STUDY OF TIME-DEPENDENT BEHAVIOUR OF REINFORCED SELF-COMPACTING CONCRETE SLABS

By

Farhad Aslani

BSc (Civil), MSc (Structure)

A thesis submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

February 2014

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Farhad Aslani

February 2014

ACKNOWLEDGEMENTS

The research presented in this PhD thesis was undertaken in the Centre for Built Infrastructure Research (CBIR), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology (FEIT) at the University of Technology, Sydney (UTS).

I wish to express my sincerest gratitude to my principal supervisor, Dr. Shami Nejadi for his patience, outstanding guidance, knowledge, motivation, wisdom and caring support provided throughout my thesis. It was an honour and a pleasure to be his student. His exceptional personality and positive attitude became a source of inspiration and a role model for my professional and personal development. Utmost gratitude is also forwarded to my co-supervisor, Professor Bijan Samali for his guidance, motivation and support throughout my study. I am heartily thankful to Dr. Hamid Valipour for his encouragement, guidance and unfailing assistance throughout this study. It was possible to fulfil my dream of completing PhD due to their invaluable advice, kind response to my interest and support given from beginning of my study.

I also gratefully acknowledge the financial assistance provided by FEIT, UTS provided as International Research Scholarship, Boral, BOSFA, and Concrite companies. The assistance from the staff in Concrete, Structures and Material Testing Laboratories at UTS has been very important in completing the tests included in the thesis. I would like to thank all working staff in those laboratories. Working in the lab would never have been easy without the assistance provided by all these people.

I would like to express my deepest gratitude to my family for their love, support and encouragement while I was thousands of miles away from home. My special thanks also go to my friends for their support and motivation. I offer my regards and blessings to all of those who supported me in any respect during the completion of this study.

Farhad Aslani

December 2013

LIST OF PUBLICATIONS

Journal papers:

Aslani, F. & Nejadi, S. 2013, 'Creep and Shrinkage of Self-Compacting Concrete with and without Fibers,' *Journal of Advanced Concrete Technology*, vol.11, no.10, pp. 251-265.

Aslani, F. & Nejadi, S. 2013, 'Mechanical Characteristics of Self-Compacting Concrete with and without Fibers,' *Magazine of Concrete Research*, vol.65, no.10, pp. 608–622.

Aslani, F. & Nejadi, S. 2012, 'Mechanical properties of conventional and selfcompacting concrete: An analytical study,' *Construction and Building Materials*, vol.36, pp.330-347.

Aslani, F. & Nejadi, S. 2012, 'Bond Behavior of Reinforcement in Conventional and Self-Compacting Concrete,' *Advances in Structural Engineering -An International Journal*, vol.15, no.12, 2033–2051.

Aslani, F. & Nejadi, S. 2012, 'Bond characteristics of steel fibre reinforced selfcompacting concrete,' *Canadian Journal of Civil Engineering*, vol.39, no.7, pp. 834-848.

Aslani, F. & Nejadi, S. 2012, 'Shrinkage Behavior of Self-Compacting Concrete,' *Journal of Zhejiang University SCIENCE A*, vol.13, no.6, pp.407-419.

Aslani, F. & Nejadi, S. 2012, 'Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC),' *Central European Journal of Engineering*, vol.2, no.3, pp. 445-470.

Aslani, F. & Nejadi, S. 2012, 'Bond Characteristics of Reinforcing Steel Bars Embedded in Self-Compacting Concrete,' *Australian Journal of Structural Engineering*, vol.13, no.3, pp.279-295. Aslani, F., Nejadi, S. & Samali, B. 2013, 'Short Term Flexural Cracking Control of Reinforced Self-Compacting Concrete One Way Slabs with and without Fibres,' *Construction and Building Materials*, under review.

Aslani, F., Nejadi, S. & Samali, B. 2013, 'Long Term Flexural Cracking Control of Reinforced Self-Compacting Concrete One Way Slabs with and without Fibres,' *Construction and Building Materials*, under review.

Conference papers:

Aslani, F., Nejadi, S. & Samali, B. 2013, 'Energy dissipation in self-compacting concrete with or without fibers in compression,' *Fifth North American Conference on the Design and Use of Self-Consolidating Concrete*, May 12–15, 2013, Chicago, IL, USA, pp. 1-10.

Aslani, F. & Nejadi, S. 2012, 'Comparison of the Analytical Models to Determine Modulus of Rupture of Self-Compacting Concrete and Conventional Concrete,' *Australasian Conference on the Mechanics of Structures and Materials, 22nd ACMSM:* '*Materials to Structures: Advancement through Innovation*' Sydney, Australia, pp. 1105-1112.

Nejadi, S. & Aslani, F. 2012, 'Bond Constitutive Relationship for Steel Fiber Reinforced Self-Compacting,' *Bond in Concrete 2012, Bond, Anchorage, Detailing -Fourth International Symposium*, 17th-20th June 2012, Brescia, Italy, pp.931-939.

Aslani, F. & Nejadi, S. 2012, 'Bond Characteristics of Deformed Reinforcing Steel Bars Embedded in Steel Fibre Reinforced Self-Compacting Concrete,' *Bond in Concrete 2012, Bond, Anchorage, Detailing - Fourth International Symposium*, 17th-20th June 2012, Brescia, Italy, pp.757-764.

Aslani, F. & Nejadi, S. 2011, 'A comparison of the bond characteristics in conventional and self-compacting concrete, Part I: experimental results,' *The 9th*

Symposium on High Performance Concrete, edKhrapko, M; Wallevik, O, 9th-12th August 2011, Rotorua, New Zealand, pp.435-442.

Aslani, F. & Nejadi, S. 2011, 'A comparison of the bond characteristics in conventional and self-compacting concrete, Part II: code provisions and empirical equations,' *The 9th Symposium on High Performance Concrete*, edKhrapko, M; Wallevik, O, 9th-12th August 2011, Rotorua, New Zealand, pp.443-450.

Aslani, F. & Nejadi, S. 2011, 'Comparison of creep prediction models for selfcompacting and conventional concrete,' *The 9th Symposium on High Performance Concrete*, edKhrapko, M; Wallevik, O, 9th-12th August 2011, Rotorua, New Zealand, pp.1-10.

Aslani, F. & Nejadi, S. 2011, 'Comparison of shrinkage prediction models for selfcompacting and conventional concrete,' *The 9th Symposium on High Performance Concrete*, edKhrapko, M; Wallevik, O, 9th-12th August 2011, Rotorua, New Zealand, pp.1-10.

Aslani, F. & Nejadi, S. 2011, 'Evaluation and comparison of analytical models to determine the bond characteristics of steel fiber reinforced self-compacting concrete,' *The 9th Symposium on High Performance Concrete*, edKhrapko, M; Wallevik, O, 9th-12th August 2011, Rotorua, New Zealand, pp.1-8.

Nejadi, S. & Aslani, F. 2011, 'Evaluation and Comparison of the Compressive Stress-Strain relationships of Self-Compacting Concrete and Conventional Concrete,' *Concrete 2011-Building a Sustainable Future*, 12th-14th October 2011, Perth, Western Australia, pp.1-10.

Aslani, F. & Nejadi, S. 2011, 'Comparison of the Analytical Models to Determine Modulus of Elasticity of Self-Compacting Concrete and Conventional Concrete,' *Structural Engineering World Congress (SEWC)*, 4th-6th April 2011, Como, Italy, pp. 1-10.

Aslani, F. & Nejadi, S. 2011, 'Evaluation and Comparison of Experimental Results to Determine the Bond Characteristics of Steel Fiber Reinforced Self-Compacting Concrete,' *Structural Engineering World Congress (SEWC)*, 4th-6th April 2011, Como, Italy, pp. 1-8. Aslani, F. & Nejadi, S. 2011, 'Evaluation and Comparison of the Analytical Models to Determine Tensile Strength of Self-Compacting Concrete and Conventional Concrete,' *Structural Engineering World Congress (SEWC)*, 4th-6th April 2011, Como, Italy, pp. 1-9.

Aslani, F. & Nejadi, S. 2011, 'Evaluation and Comparison of the Analytical Models to Predict Creep and Shrinkage Behavior of Self-Compacting Concrete,' *Structural Engineering World Congress (SEWC)*, 4th-6th April 2011, Como, Italy, pp. 1-10.

LIST OF NOTATIONS

Chapter 3	
γ	unit weight of concrete
ϕ	fibre inclination angle
λ, μ	coefficients of linear equation of the stress-strain curve
λ_f, μ_f	coefficients of linear equation of the SFRSCC stress-strain curve
κ_l	first proposed constant value for MOE prediction
κ_2	second proposed constant value for MOE prediction
η_{I}	first proposed constant value for TS prediction
η_2	second proposed constant value for TS prediction
μ_i	initial coefficient of friction
μ_{ss}	steady state value of the coefficient of friction attained at large pullout
	distances
σ_c	concrete stress
σ_{cf}	SFRSCC compressive stress
σ_{ctf}	SFRSCC tensile stress
З	concrete strain
ε'_c	strain corresponding with the maximum stress f'_c
ε'_{cf}	strain at peak stress of SFRSCC
ε^*	corresponding strain to the $0.85 f_{ctf}$
\mathcal{E}_{ct}	tensile concrete strain
\mathcal{E}_{f}	SFRSCC strain
$ au_{max}$	maximum bond strength
$ au_{max(app)}$	maximum apparent bond shear strength
$ au_{f(app)}$	fibre apparent bond shear strength
$ au_{f}$	fibre bond shear strength
$ au_u$	ultimate bond strength
а	radius of fibre
С	concrete cover

c (fibre)	a constant that governs the rate at which the coefficient of friction decays	
	with increase in pullout distance	
d_b	diameter of the steel bar	
d_{f}	diameter of fibre	
E_c	modulus of elasticity of concrete	
E_{cf}	modulus of elasticity of SFRSCC	
E_{sec}	secant modulus of elasticity	
E_{secf}	secant modulus of elasticity of SFRSCC	
f	snubbing friction coefficient	
f_c	maximum compressive strength of concrete	
$f_{\it cf}$	compressive strength of SFRSCC	
f'_{cy}	maximum compressive strength of cylinder concrete specimens	
f'_{cu}	maximum compressive strength of cube concrete specimens	
f_{cr}	modulus of rupture of concrete	
f_{ct}	tensile strength of concrete	
f_{ctf}	tensile strength of SFRSCC	
k	spalling coefficient and ϕ is in radians	
l_d	embedded length of the steel bar	
l_f	length of fibre	
l_f/d_f	aspect ratio	
n	material parameter that depends on the shape of the stress-strain curve	
n _f	SFRSCC parameter that depends on the shape of the stress-strain curve	
n_1	modified material parameter at the ascending branch	
<i>n</i> _{lf}	modified SFRSCC parameter at the ascending branch	
n_2	modified material parameter at the descending branch	
n_{2f}	modified SFRSCC parameter at the descending branch	
p_{d1} and p_{d2}	fibre pullout distances	
$P_{p_{d1}}$ and $P_{p_{d2}}$	fibre pullout loads corresponding to pullout distances p_{d1} and p_{d2}	
P_m	measured fibre pullout load	
R.I.	fibre reinforcing index	
S, S ₁ , S ₂ , S ₃	slip related to pullout bond test	

$U_{\textit{peak}}(\pmb{\phi})$	peak slip displacement corresponding to the peak load with the inclination	
	angle ϕ	
V_f	fibre volume fraction	
W_p	work of fibre pullout	
Chapter 4		
α	coefficient representing the influence of the cement type	
eta	represents time dependency of drying shrinkage	
γ	coefficient representing the influence of the cement and admixtures type	
η	constant related to compressive strength and water content	
κ	conventional scalar damage index	
μ , λ and α	parameters to be obtained from a least square minimization procedure	
$eta_{ m sc}$	coefficient which depends on the type of cement	
σ'_{cp}	creep stress unit	
ε'_{sh}	final value of shrinkage strain	
$\varepsilon'_{ds ho}$	the final value of drying shrinkage strain	
$\varepsilon'_{ds\infty}$	final value of drying shrinkage	
$\varepsilon'_{as\infty}$	final value of autogenous shrinkage strain	
ε' _{cr}	final value of creep strain per unit stress	
ε'_{bc}	final value of basic creep strain per unit stress	
ε'_{dc}	final value of drying creep strain per unit stress	
$(\varepsilon_{\rm sh})_{\rm u}$	ultimate shrinkage strain	
$\varepsilon_e(t)$	instantaneous strain	
$\varepsilon'_{cs}(t,t_0)$	shrinkage strain of concrete from age to t	
$\varepsilon'_{ds}(t,t_0)$	drying shrinkage strain of concrete from age to t	
$\varepsilon'_{as}(t,t_0)$	autogenous shrinkage strain of concrete from age to t	
$\varepsilon'_{sc}(t,t_0)$	shrinkage strain of concrete from age of t_0 to t	
$\varepsilon'_{as}(t,t_0)$	autogenous shrinkage strain of concrete from the start of setting to age t	
$\varepsilon'_{cc}(t, t', t_0)$	creep strain	
Δt_i	number of days where the temperature T prevails	
$T(\Delta t_i)$	temperature (°C) during the time period Δt_i	
С	cement	

c/p	cement to powder ratio	
f_c	compressive strength	
$f_{c,28d}$	compressive strength at the age of 28 days	
$f_{\rm cm}$	mean compressive strength of concrete at the age of 28 day	
$f_{ m cmo}$	10 MPa	
$f_{cm}(t)$	mean value of compressive strength at time t	
f	constant based on the duration of curing	
h_0	100 mm	
h	notional size of member (mm)	
RH_0	100%	
RH	relative humidity (%)	
s' and n	parameters that have to be specifically calibrated for each SCC concrete	
	mix by using experimental results	
t_1	1 day	
t_0	effective age (days) of concrete at the beginning of drying	
t'	effective age (days) of concrete at the beginning of loading	
t	effective age (days) of concrete during loading respectively	
T_0	1 °C	
v/s	volume to surface ratio	
W	water	
w/c	water to cement ratio	
Chapter 5		
α and β	empirical constants related to compressive strength model	
η and μ	d μ empirical constants related to modulus of elasticity	
γ and λ	empirical constants related to tensile strength	
ψ and ϕ	empirical constants related to modulus of rupture	
ω and ρ	empirical constants related to energy dissipated under compression	
χ, ζ	coefficients of linear equation of stress-strain curve	
σ_c	concrete stress	
З	concrete strain	
ε_c'	strain corresponding with the maximum stress f_c	

\mathcal{E}_{u}	ultimate deformation
E_c	modulus of elasticity
E_{cN}	N-SCC mix modulus of elasticity
E_{cfD}	D-SCC mix modulus of elasticity
E_{cfS}	S-SCC mix modulus of elasticity
E_{cfDS}	DS-SCC mix modulus of elasticity
E_{sec}	secant modulus of elasticity
f_c'	maximum compressive strength of concrete
f'_{cN}	N-SCC mix compressive strength
$f'_{c\!f\!D}$	D-SCC mix compressive strength
f'_{cfS}	S-SCC mix compressive strength
f_{cfDS}	DS-SCC mix compressive strength
f_{ctN}	N-SCC mix tensile strength
f_{ctfD}	D-SCC mix tensile strength
f_{ctfS}	S-SCC mix tensile strength
f_{ctfDS}	DS-SCC mix tensile strength
f_{crN}	N-SCC mix modulus of rupture
f_{crfD}	D-SCC mix modulus of rupture
f_{crfS}	S-SCC mix modulus of rupture
f_{crfDS}	DS-SCC mix modulus of rupture
G_c	energy dissipated under compression
G_{cN}	N-SCC mix energy dissipated under compression
G_{cfD}	D-SCC mix energy dissipated under compression
G_{cfS}	S-SCC mix energy dissipated under compression
G_{cfDS}	DS-SCC mix energy dissipated under compression
n	material parameter that depends on the shape of the stress-strain curve
n_1	modified material parameter at the ascending branch
n_2	modified material parameter at the descending branch
Chapter 6	
$ au_b$	bond shear stress
M_s	in-service bending moment

M_{cr}	cracking moment
kd	compression chord of depth
b	width
A_{st}	tensile reinforcement of area
A_{ct}	area of tensile concrete
d	depth
Icr	second moment of area about the centroidal axis
σ_{ct}	uniform tensile stress of concrete
b^*	width of the section at the level of the centroid of the tensile steel
ρ	tensile reinforcement ratio
n	modular ratio
М	applied moment
f_y	steel yield stress
f_{ct}	direct tensile strength of the concrete
λ_1	load duration factor
λ_2	reduction in bond stress as the steel stress σ_{st1} factor
λ_3	significant increase in bond stress factor
$ ho_{tc}$	reinforcement ratio of the tension chord
d_b	reinforcing bar diameter
S _{min}	minimum crack spacing
S _{max}	maximum crack spacing
$(w_i)_{tc}$	instantaneous crack width
k _{cover}	a term to account for the dependence of crack width on the clear concrete
	cover
<i>W_{max}</i>	maximum crack width
les	transfer length
\mathcal{E}_{sm}	mean steel strain
ε_{cm}	mean concrete strain
σ_{cf}	stress in the fibre reinforced concrete
$\sigma^{i}_{cf,cr}$	imaginary cracking stress of the fibre reinforced concrete
$ au_{sm}$	average bond stress over load transmission length

E_s	modulus of elasticity of reinforcing bar
$ ho_s$	reinforcing ratio of steel reinforcement
$lpha_b$	shape coefficient of strain courses
$lpha_E$	ratio of the modulus of elasticity of steel to the modulus of elasticity of
	concrete
f_R	relative rib area of the rebars
σ_s	stress in the reinforcing bar at a crack
F	applied load
A_s	cross-sectional area of the steel bars
G_{f}	fracture energy of the concrete matrix
σ_{cf0}	maximum post-cracking stress
w_0	crack width corresponding to maximum post-cracking stress
σ_{cf0}	maximum post-cracking stress
η	coefficient of fibre orientation
g	coefficient of fibre efficiency
$ ho_{f}$	volume fraction of fibres
l_f	fibre length
d_{f}	fibre diameter
$ au_{fm}$	mean fibre-matrix bond stress
f_{ctm}	mean tensile strength of the plain concrete matrix
E_{f}	modulus of elasticity of the fibres
$\sigma^{i}_{cf,cr}$	maximum stress of the ascending fibre phase
Chapter 7	
$lpha_b$	shape coefficient of strain courses
$lpha_{E,s}$	ratio of the modulus of elasticity of steel to the modulus of elasticity of
	concrete
$lpha_{E,f}$	ratio of the modulus of elasticity of fibre to the modulus of elasticity of
	concrete
η	fibre orientation coefficient
$\mathcal{E}_{f,shr}$	shrinkage shortening of the fibres
$ ho_s$	reinforcing ratio of steel reinforcement

$ ho_{f}$	fibre content	
$ ho_{tc}$	reinforcement ratio of the tension chord	
σ_{cf}	stress in the fibre reinforced concrete	
$ au_b$	bond shear stress	
$ au_{sm}$	average bond stress over load transmission length	
A_{st}	tensile reinforcement of area	
A_{ct}	area of tensile concrete	
b	width	
d_b	reinforcing bar diameter	
E_s	modulus of elasticity of reinforcing bar	
kd	compression chord of depth	
M_{cr}	cracking moment	
M_s	in-service bending moment	
<i>S</i> *	final maximum crack spacing	
Chapter 8		
α_e	modular ratio = E_s / E_c	
$lpha_b$	shape coefficient of strain courses	
$lpha_E$	ratio of the modulus of elasticity of steel to the modulus of elasticity of	
	concrete	
eta	empirical coefficient to assess the mean strain over $l_{s,max}$	
eta_{ac}	ratio of the distances from the neutral axis to the extreme tension fibre	
eta_{ec}	coefficient relating the average crack width to the design value	
β_{mc}	empirical coefficient to assess the average strain within $l_{s,max}$	
ϕ	diameter of the steel fibre	
ρ	relaxation coefficient	
$ ho_{e\!f}$	effective steel ratio	
arphi	creep coefficient	
σ_{s}	steel stress	
σ_{sr}	maximum steel stress in a crack in the crack formation stage	
σ_{cti}	uniform average tensile stress	
$ au_{bi}$	short-term bond stress	

$ au_{bm}$	mean bond strength
$ au_{sm}$	average bond stress over load transmission length
E _{cm}	mean strain in the concrete between the cracks
\mathcal{E}_{s2}	maximum steel strain at the crack
\mathcal{E}_{sr2}	steel strain at the crack
\mathcal{E}_{CS}	free shrinkage strain of concrete
\mathcal{E}_{sm}	mean strain in the reinforcement at the design loads
η_r	coefficient taking account of shrinkage contribution
A_{ct}	cross-sectional area of concrete in the tensile zone
$A_{c,eff}$	effective area of the tensile concrete surrounding the tensile reinforcement
	of depth
A_e	effective tension area of concrete surrounding the flexural tension
	reinforcement
$A_{s,min}$	minimum tensile reinforcement area
A_{st}	cross-sectional area of tensile steel reinforcement
С	clear cover to the longitudinal reinforcement
d	depth to the tensile reinforcement
d_b	bar diameter
d_c	distance from centre of bar to extreme tension fibre
d_n	depth of compression zone in a fully cracked section
D	overall depth of a cross-section
E_s	steel modulus of elasticity
f_{ct}	concrete matrix tensile strength
$f_{ct,eff}$	mean value of the axial tensile strength of concrete at the time cracking
f_{ctm}	mean value of axial tensile strength
F_{cr}	cracking force
f_{Fts}	steel fibre tensile strength
f_s	maximum stress permitted in the reinforcement immediately after crack
	formation
f_y	steel bar yield stress
k_t	factor that depends on the duration of load

xvi

- k_1 coefficient depending upon bond quality
- k_2 coefficient depending upon the shape of the strain diagram
- *l_{es}* transfer length
- $l_{s,max}$ length over which slip between steel and concrete occurs
- *L* length of the steel fibre
- M_{cr} cracking moment
- *M_{max}* maximum moment
- n_b number of reinforcing bar
- s bar spacing
- *s*_{rm} average crack spacing
- *s_{r,max}* maximum crack spacing
- w_k maximum crack width
- w_m average crack width
- *w_{max}* maximum crack width

LIST OF ACRONYMS

AEA	air-entraining admixtures	
CA	coarse aggregate	
CC	conventional concrete	
CD	casting direction	
CRI	concrete research institute	
CRC	conventional reinforced concrete	
CS	compressive strength	
CSSC	compressive stress-strain curve	
c/p	cement to powder ratio	
EFA	Eraring Fly Ash	
FA	fine aggregate	
FCL	first crack load	
FCD	first crack deflection	
FEM	finite element method	
FRC	fibre-reinforced concrete	
FRSCC	fibre-reinforced self-compacting concrete	
FTS	flexural tensile strength	
Н	horizontal casting direction	
HMR	high moment region	
HRWR	high range water reducer	
GGBFS	ground granulated blast furnace slag	
LVDT	linear variable displacement transducer	
MOE	modulus of elasticity	
MOR	modulus of rupture	
RH	relative humidity	
RC	reinforced concrete	
RVE	representative volume element	
SC	slag cement	

SCC	self-compacting concrete	
SFC	super flowable concrete	
SFRC	steel fibre-reinforced concrete	
SFRSCC	steel fibre reinforced self-compacting concrete	
SHCC	strain hardening cementitious composites	
SLC	shrinkage limited cement	
SP	superplaticizers	
SUCST	specimen utilized in the compressive strength test	
TS	tensile strength	
UHPFRC	high and ultrahigh performance fibre reinforced concrete	
V-D	vertical down casting direction	
V-U	vertical up casting direction	
w/c	water-cement ratio	
w/cm	water-cementitious materials ratio	
VMA	viscosity modifying admixture	
WHS	workplace health and safety	
WR	water reducer	

TABLE OF CONTENTS

Certificate of Original Authorship	i
Acknowledgement	iii
List of Publications	iv
List of Notations	viii
List of Acronyms	xviii
Table of Contents	xxi
List of Figures	xxxi
List of Tables	liii
Abstract	lxii
1. INTRODUCTION	1
1.1 Background	1
1.2 State of the Problem	4
1.3 Objectives and Scope of the Thesis	5
1.4 Layout of the Thesis	
2. LITERATURE REVIEW	
2.1 Background and Development of SCC	
2.1.1 History	
2.1.2 Development	

2.2 Advantages of SCC	15
2.3 Limitations of SCC	17
2.4 Key Drivers of Development of SCC	18
2.5 Fresh Properties of SCC	19
2.5.1 Testing of Fresh Properties	20
2.6 Mechanical Properties of SCC	24
2.6.1 Compressive Strength (CS)	25
2.6.2 Modulus of Elasticity (MOE)	26
2.6.3 Tensile Strength (TS)	26
2.6.4 Modulus of Rupture (MOR)	27
2.7 Bond Characteristics of SCC	28
2.7.1 Bond Characteristics of Reinforcing Steel Bars Embedded in CC and SCC	28
2.7.2 Bond Characteristics of Steel Fibre Reinforced SCC	30
2.8 Shrinkage and Creep of SCC	32
2.8.1 Shrinkage of SCC	32
2.8.2 Creep of SCC	33
2.9 Full-Scale Time-Dependent SCC and FRSCC Studies from the Literature	34
2.9.1 Buratti et al. (2010) - "Long-Term Behaviour of Fibre-Reinforced Self-	
Compacting Concrete Beams"	34
2.9.2 Mazzotti and Savoia (2009) - "Long-Term Deflection of Reinforced Self-	
Consolidating Concrete Beams"	37
2.9.3 Xiao-jie et al. (2008) - "Long term behaviour of self-compacting reinforced	
concrete beams"	40
2.10 Summary	44

3.	H	IARDENED CONCRETE PROPERTIES	. 45
	3.1	Introduction	. 45
	3.2	Modulus of Elasticity (MOE)	. 46
	3	.2.1 Experimental and Analytical Database for MOE	. 46
	3	.2.2 Proposed MOE Model	. 47
	3	.2.3 Comparison of the MOE Analytical Models	. 47
	3.3	Tensile Strength (TS)	. 59
	3	.3.1 Experimental and Analytical Database for TS	. 59
	3	.3.2 Proposed TS Model	. 60
	3	.3.3 Comparison of the TS Analytical Models	. 60
	3.4	Modulus of Rupture (MOR)	. 73
	3	.4.1 Experimental and Analytical Database for MOR	. 73
	3	.4.2 Comparison of Proposed MOR Model with Available MOR Models	. 74
	3.5	Compressive Stress-Strain Curve (CSSC)	. 83
	3	.5.1 Experimental and Analytical Database for CSSC	. 83
	3	.5.2 Comparison of Proposed CSSC Model with Available CSSC Models	. 84
	3.6	Bond Characteristics of Reinforcing Steel Bars Embedded in CC and SCC	. 96
	3	.6.1 Experimental and Analytical Database for Bond Characteristics	. 96
	3	.6.2 Comparison of Proposed Bond Model with Available Bond Models	. 97
	3.7	Stress-Strain Behaviour of Steel Fibre Reinforced Self-Compacting Concrete	118
	3	.7.1 Experimental and Analytical Database for Stress-Strain Behaviour of SFRSCC.	119
	3	.7.2 Comparison of Proposed SFRSCC Model with Available SFRSCC Models	122
	3.8	Bond Characteristics of Steel Fibre Reinforced Self-Compacting Concrete	144

	3.8.1 Experimental and Analytical Database for Bond Characteristics of SFRSCC	145
	3.8.2 Overview of the Theoretical Pullout Models	147
	3.8.3 Calibration of the pullout model for bond characterization of SFRSCC	153
	3.8.4 Calibration of the Pullout Model by Allowing for the Effect of Fibre Inclin	ation
	Angle in the Bond Characterization of SFRSCC	154
	3.8.5 Results and Discussion	157
4.	TIME-DEPENDENT BEHAVIOUR OF HARDENED CONCRETE	165
4	.1 Introduction	165
4	.2 Instantaneous Strain	166
4	.3 Creep Strain	168
	4.3.1 Creep Coefficient	170
	4.3.2 Creep in Tension	172
4	.4 Shrinkage Strain	172
4	.5 Shrinkage of SCC	174
	4.5.1 Experimental Database for Shrinkage of CC and SCC from the Literature	176
	4.5.2 Shrinkage Models for CC from the Literature	176
	4.5.3 Shrinkage Models for SCC from the Literature	177
	4.5.4 Proposed Shrinkage Model for SCC	177
	4.5.5 Discussion of the Shrinkage Models	199
4	.6 Creep of SCC	201
	4.6.1 Experimental Database for Creep of CC and SCC from the Literature	202
	4.6.2 Creep Models for CC from the Literature	203
	4.6.3 Creep Models for SCC from the Literature	203

4.6.4 Proposed Creep Model for SCC	
4.6.5 Discussion of the Creep Models	
5. EXPERIMENTAL PROGRAM (PHASE I) – MA	ATERIAL PROPERTIES OF
SCC AND FRSCC	
5.1 Introduction	
5.2 Materials	
5.2.1 Cement	
5.2.2 Fly Ash	
5.2.3 Ground Granulated Blast Furnace Slag	
5.2.4 Aggregate	
5.2.5 Admixtures	
5.2.6 Fibres	
5.3 Mixture Proportions	
5.4 Preparation and Curing Condition of Samples	
5.5 Test Methods of Samples	
5.6 Properties of Fresh Concrete	
5.7 Experimental Results	
5.7.1 Properties of Fresh Concrete	
5.7.2 Compressive Strength	
5.7.3 Tensile Strength	
5.7.4 Modulus of Elasticity	
5.7.5 Modulus of Rupture (flexural tensile strength)	
5.7.6 Compressive Stress-Strain Curve	

	5.7.7 Energy Dissipated under Compression	239
5	5.8 Analytical Relationships for the Mechanical Properties	245
	5.8.1 Time-Dependent Mechanical Properties Relationships	245
	5.8.2 Compressive Strength-Related Mechanical Properties Relationships	247
	5.8.3 Compressive Stress–Strain Relationship	248
5	5.9 Flexural Toughness of SCC and FRSCC	254
	5.9.1 Flexural Toughness and Its Characterization	254
	5.9.2 Flexural Load-Deflection Behaviour of D-SCC, S-SCC, and DS-SCC Mixes	256
6.	EXPERIMENTAL PROGRAM (PHASE II) – SHORT TERM FLEXUR	AL
CR	ACKING	267
6	5.1 Introduction	267
6	5.2 Experimental Program	268
	6.2.1 Test Parameters and Reinforcement Layouts	269
	6.2.2 Construction of Specimens and Test Procedures	269
6	5.3 Test Results	274
	6.3.1 Material Properties	275
	6.3.2 N-SCC-a and N-SCC-b	276
	6.3.3 D-SCC-a and D-SCC-b	283
	6.3.4 S-SCC-a and S-SCC-b	289
	6.3.5 DS-SCC-a and DS-SCC-b	295
	6.3.6 N-CC-a and N-CC-b, Nejadi (2005)	301
6	5.4 Instantaneous Bond Shear Stress	307
	6.4.1 Steel Bar Reinforcement Concrete	307

6.4.2 Reinforcement Concrete with Fibres	
6.4.3 Calculation of Crack Width with Different Bond Shear Stress	
6.5 Summary and Conclusions	
6.5.1 Cracking Behaviour	
6.5.2 Deflection	
6.5.3 Bond Shear Stress	
7. EXPERIMENTAL PROGRAM (PHASE III) – LONG TERM	I FLEXURAL
CRACKING	
7.1 Introduction	
7.2 Experimental Program	
7.2.1 Test Parameters and Reinforcement Layouts	
7.2.2 Construction of Specimens and Test Procedures	
7.3 Test Results	
7.3.1 Material Properties	
7.3.2 N-SCC-a and N-SCC-b	
7.3.3 D-SCC-a and D-SCC-b	
7.3.4 S-SCC-a and S-SCC-b	
7.3.5 DS-SCC-a and DS-SCC-b	
7.3.6 N-CC-a and N-CC-b, Nejadi (2005)	
7.4 Time-dependent Bond Shear Stress	
7.4.1 Steel Bar Reinforcement Concrete	
7.4.2 Reinforcement Concrete with Fibres	
7.4.3 Calculation of Crack Width with Different Bond Shear Stress	

7.5 Summary and Conclusions	
7.5.1 Cracking Behaviour	
7.5.2 Deflection	
7.5.3 Bond Shear Stress	
8. ANALYTICAL MODELS FOR INSTANTANEOUS AND TIME-	DEPENDENT
FLEXURAL CRACKING OF SCC AND FRSCC	
8.1 Introduction	
8.2 Crack Width and Crack Spacing According to the Codes of Prac	tice 386
8.2.1 Eurocode 2 (1991) Model	
8.2.2 CEB-FIP (1990) Model	
8.2.3 ACI318-99 (1999) Model	
8.2.4 Eurocode 2 (2004) Model	
8.2.5 fib-Model Code (2010)	
8.3 Flexural Cracking Model for CC by Nejadi (2005)	
8.4 Proposed Flexural Cracking Model-Instantaneous and Time	me-Dependent
Behaviour	
8.4.1 Calculation of Instantaneous and Time-dependent Crack Widths i	n Conventional
Reinforced Concrete - Initial Cracking	
8.4.2 Calculation of Instantaneous and Time-dependent Crack Widths i	n Conventional
Reinforced Concrete - Stabilized Cracking	
8.4.3 Calculation of Instantaneous and Time-dependent Crack Widths in	n Conventional
Reinforced Concrete with Fibres - Initial Cracking	

8.4.4 Calculation of Instantaneous and Time-dependent Crack Widths in Con	nventional
Reinforced Concrete with Fibres - Stabilized Cracking	
8.4.5 Calculation of Instantaneous and Time-dependent Crack Widths in Con	nventional
Reinforced Concrete with Fibres - Stabilized Cracking	406
8.5 Summary and Conclusions	412
8.5.1 Crack Width	
8.5.2 Crack Spacing	
9. FINITE ELEMENT MODELLING OF CRACKING BEHAVIOUR	OF THE
CONVENTIONAL STEEL REINFORCED AND FIBRE REINFORCE	D SELF-
COMPACTING CONCRETE SLABS	
9.1 Introduction	429
9.2 Nonlinear Modelling of Concrete Structures	
9.3 Finite Element Models for Reinforced Concrete	
9.4 Finite Element Method Software	433
9.5 FEM Modelling of SCC and FRSCC Slabs	445
9.5.1 Criteria for Element Choice	
9.5.2 Verification of the Element	
9.5.3 Loading Plates	
9.5.4 Slab Modelling Process	
9.6 Parametric Study of SCC and FRSCC Slabs by FEM Analysis	461
10. SUMMARY AND CONCLUSIONS	477
10.1 Summary	477
10.2 Conclusions	478

10.2.1 Hardened Concrete Properties
10.2.2 Time-Dependent Behaviour of Hardened Concrete
10.2.3 Experimental Program (Phase I) – Materials Properties of SCC and FRSCC 483
10.2.4 Experimental Program (Phase II) – Short Term Flexural Cracking
10.2.5 Experimental Program (Phase III) – Long Term Flexural Cracking
10.2.6 Analytical Models for Instantaneous and Time-Dependent Flexural Cracking of
SCC and FRSCC
10.2.7 Finite Element Modelling of Cracking Behaviour of Conventional Steel
Reinforced and Fibre Reinforced Self-Compacting Concrete Slabs 491
10.3 Recommendations for Future Research 493
REFERENCES 495
APPENDIX A 521
APPENDIX B
APPENDIX B
APPENDIX B 530 APPENDIX C 539 APPENDIX D 547
APPENDIX B 530 APPENDIX C 539 APPENDIX D 547 APPENDIX E 567
APPENDIX B 530 APPENDIX C 539 APPENDIX D 547 APPENDIX E 567 APPENDIX F. 681

LIST OF FIGURES

Figure 2.1 – Slump Flow Apparatus
Figure 2.2 – J-Ring Apparatus
Figure 2.3 – L-Box Apparatus
Figure 2.4 – V-Flow Apparatus
Figure 2.5 – U-Flow Apparatus
Figure 2.6 – (a) Test set-up for pre-cracking the beams; (b) test set-up for the long-term
tests; (c) detail of the transducers used in the long-term tests; (d) two beams during the
long-term test (Buratti et al., 2010)
Figure 2.7 – (a) Cross section and (b) side view of reinforced concrete beams (Mazzotti and
Savoia, 2009)
Figure 2.8 – Experimental setup for long-term tests on SCC beams: (a) loading scheme and
instrumentation; and (b) picture of experimental setup (Mazzotti and Savoia, 2009)
Figure 2.9 – Reinforcement details of simple beam (unit: mm) (Xiao-jie et al., 2008)
Figure 2.10 – Layout of measuring points of simple beam (unit: mm) (Xiao-jie et al., 2008). 42
Figure 2.11 - Reinforcement details of two-span continuous beam (unit: mm) (Xiao-jie et
al., 2008)
Figure 2.12 – Layout of measuring points of two-span continuous beam (unit: mm) (Xiao-
jie et al., 2008)
Figure 2.13 – Test setup of long term experiment: (a) Shrinkage beam; (b) Simple beam; (c)
Continuous beam (Xiao-jie et al., 2008)
Figure 3.1 - Comparison of the MOE CC proposed model, ACI 318 (2008) model and
Dinakar et al. (2008) model versus CC experimental database

Figure 3.2 - Comparison of the experimental results versus calculated values from the
proposed model for MOE in the CC mixtures
Figure 3.3(a) – Comparison of the experimental results versus calculated values from (a)
ACI 318 (2008) models for MOE in the CC mixtures
Figure 3.3(b) - Comparison of the experimental results versus calculated values from
Dinakar et al. (2008) models for MOE in the CC mixtures
Figure 3.4 - Comparison of the MOE CC proposed model, ACI 318 (2008) model and
Dinakar et al. (2008) model versus SCC experimental database
Figure 3.5 - Comparison of the MOE SCC proposed model, Leemann and Hoffmann
(2005) model and Kim (2008) model versus SCC experimental database
Figure 3.6 - Comparison of the experimental results versus calculated values from the
proposed model for MOE in the SCC mixtures
Figure 3.7 – Comparison of the experimental results versus calculated values from the (a)
Leemann and Hoffmann (2005) and (b) Kim (2008) models for MOE in the SCC mixtures 56
Figure 3.8(a,b) - MOE versus compressive strength for the proposed models of SCC
mixtures included in the database (a) with river gravel aggregate, (b) limestone aggregate 57
Figure 3.8(c,d) - MOE versus compressive strength for the proposed models of SCC
mixtures included in the database (c) fly ash filler, (d) limestone filler
Figure 3.8(e) - MOE versus compressive strength for the proposed models of SCC
mixtures included in the database (e) general model for both SCC and CC 59
Figure 3.9 – Comparison of the TS CC proposed model, Carino and Lew (1982), Raphael
(1984), CEB-FIP (1990) and Gardner (1990) models versus CC experimental database 65
Figure 3.10 - Comparison of the experimental results versus calculated values from the
proposed model for TS in the CC mixtures

Figure 3.11(a) – Comparison of the experimental results versus calculated values from (a)	
Carino and Lew (1982) model for TS in the CC mixtures	66
Figure 3.11(b,c) – Comparison of the experimental results versus calculated values from (b)	
Raphael (1984) and (c) CEB-FIP (1990) models for TS in the CC mixtures	67
Figure 3.11(d) – Comparison of the experimental results versus calculated values from (d)	
Gardner (1990) model for TS in the CC mixtures	68
Figure 3.12 – Comparison of the TS CC proposed model, Carino and Lew (1982), Raphael	
(1984), CEB-FIP (1990) and Gardner (1990) models versus SCC experimental database	68
Figure 3.13 – Comparison of the TS CC proposed model, Parra et al. (2011) and Topçu and	
Uygunoğlu (2010) models versus SCC experimental database	69
Figure 3.14 - Comparison of the experimental results versus calculated values from	
proposed model for TS in the SCC mixtures	69
Figure 3.15 - Comparison of the experimental results versus calculated values from (a)	
Parra et al. (2011) and (b) Topçu and Uygunoğlu (2010) model for TS in the SCC mixtures.	70
Figure 3.16(a,b) – TS versus compressive strength for the proposed models of SCC	
mixtures included in the database (a) with river gravel aggregate and (b) limestone	
aggregate	71
Figure 3.16(c,d) – TS versus compressive strength for the proposed models of SCC	
mixtures included in the database (c) fly ash filler, (d) limestone filler	72
Figure 3.16(e) – TS versus compressive strength for the proposed models of SCC mixtures	
included in the database (e) general model for both SCC and CC	73
Figure 3.17(a to d) – Comparison of MOR for SCC experimental results versus calculated	
values for various CC prediction models	78

Figure 3.17(e to h) - Comparison of MOR for SCC experimental results versus calculated	
values for various CC prediction models	79
Figure 3.17(i,j) - Comparison of MOR for SCC experimental results versus calculated	
values for various CC prediction models	80
Figure 3.18 - Comparison of MOR for SCC experimental results versus calculated values	
for various CC prediction models	80
Figure 3.19(a to d) – Comparison of MOR for SCC experimental results versus calculated	
values for various SCC prediction models	81
Figure 3.19(e) - Comparison of MOR for SCC experimental results versus calculated	
values for various SCC prediction models	82
Figure 3.20 - Comparison of MOR for SCC experimental results versus calculated values	
for various SCC prediction models and proposed model	82
Figure 3.21 – Comparison between Kim et al. (1998) experimental test with compressive	
stress-strain models	91
Figure 3.22 – Comparison between Rols et al. (1999), Peter et al. (2006), and Dhonde et al.	
(2007) experimental test with compressive stress-strain models	92
Figure 3.23 – Comparison between Babu et al. (2008) experimental test with compressive	
stress-strain models	93
Figure 3.24 - Comparison between Luo and Chao (2009) experimental test with	
compressive stress-strain models	94
Figure 3.25 – Comparison between Prasad et al. (2009) and Kumar et al. (2011)	
experimental test with compressive stress-strain models	95

Figure 3.26(a to f) – Comparison of the experimental results versus calculated values from following models (a) Orangun et al. (1977), (b) Kemp and Wilhelm (1979), (c) Eligehausen (1983), (d) Kemp (1986), (e) Chapman and Shah (1987), (f) Harajli (1994)......108 Figure 3.26(g to l) – Comparison of the experimental results versus calculated values from following models (g) Huang et al. (1996), (h) Esfahani and Rangan (1998), (i) Pillai et al. Figure 3.26(m) – Comparison of the experimental results versus calculated values from Figure 3.27 – Bond stress versus slip curves of the equations compared with Valcuende and Parra (2009) experimental results of (a) CC and (b) SCC (f'_c = 32 MPa and w/c=0.55)...... 111 Figure 3.28 – Bond stress versus slip curves of the equations compared with Valcuende and Parra (2009) experimental results of (a) CC and (b) SCC (f'_c = 42 MPa and w/c=0.45)...... 112 Figure 3.29(a,b) – Bond stress versus slip curves of the equations compared with Hassan et Figure 3.29(c,d) – Bond stress versus slip curves of the equations compared with Hassan et al. (2010) experimental results (c) CC, (d) SCC (Middle bar pullout at 14 days)...... 113 Figure 3.29(e,f) – Bond stress versus slip curves of the equations compared with Hassan et al. (2010) experimental results of (e) CC, (f) SCC (Bottom bar pullout at 7 days)...... 115 Figure 3.30 – Bond stress versus slip curves of the equations compared with Desnerck et al. (2010) experimental results of (a) CC and (b) SCC1 (diameter of bar 25 mm) 116 Figure 3.31 – Bond stress versus slip curves of the equations compared with Desnerck et al. (2010) experimental results of (a) CC and (b) SCC2 (diameter of bar 40 mm) 117 Figure 3.32 - Proposed relationship for compressive strength of SFRSCC versus

Figure 3.33 - Proposed relationship for tensile strength of SFRSCC versus reinforcing
index of fibre (a) 35-60, (b) 60-80, and (c) 80-120 MPa
Figure 3.34 - Proposed relationship for modulus of elasticity of SFRSCC versus
reinforcing index of fibre
Figure 3.35 – Proposed relationship for strain at peak stress of SFRSCC versus reinforcing
index of fibre
Figure 3.36(a,b) - Comparison between Liao et al. (2006) experimental tests with
compressive stress-strain relationships (a) SFRSCC3, (b) SFRSCC4
Figure 3.36(c,d) - Comparison between Liao et al. (2006) experimental tests with
compressive stress-strain relationships (c) SFRSCC5, and (d) SFRSCC6 mixtures 140
Figure 3.37 - Comparison between Cunha (2006) experimental tests with compressive
stress-strain relationships (a) SFRSCC1 and (b) SFRSCC2 mixtures
Figure 3.38 - Comparison between Dhonde et al. (2007) experimental tests with
compressive stress-strain relationships (a) SFRSCC2 and (b) SFRSCC3 mixtures 142
Figure 3.39 - Comparison between Liao et al. (2006) experimental tests with proposed
tensile stress-strain relationship (a) SFRSCC2, (b) SFRSCC3, (c) SFRSCC4, (d)
SFRSCC5, and (e) SFRSCC6 mixtures
Figure 3.40 – Coefficient of friction versus pullout displacement curves for (a) smooth fibre
and normal strength SCC (b) smooth fibre and high strength SCC 160
Figure 3.41 – Coefficient of friction versus pullout displacement curves for (a) hooked fibre
and normal strength SCC (b) hooked fibre and high strength SCC 161
Figure 3.42 - Comparison of the experimentally obtained load-slip curves versus
(Holschemacher and Klug, 2005) predicted curves by using the proposed model

Figure 3.43 – Comparison of the proposed apparent shear strengths (Eq. (3.37)) with shear	
strengths obtained by using the Cunha (2007) experimental results subjected to calibration	
according to inclination angle by using Eq. (2-11) in Figure 2.A	62
Figure 3.44 – Comparison of the proposed apparent shear strengths (Eq. (3.38)) with shear	
strengths obtained by using the Cunha (2007) experimental results subjected to calibration	
according to inclination angle by using Eq. (2-11) in Figure 2.A	63
Figure 3.45 – Comparison of the predicted curve for β by Eq. (3.40) with the	
experimentally obtained $U_{peak}(\varphi)/U_{peak}(0)$ ratios for different inclination angles	63
Figure 3.46 - Comparison of the experimentally obtained load-slip curves (Cunha, 2007)	
versus the predicted curves by using the proposed model	64
Figure 4.1 – Concrete strain components under sustained stress	66
Figure 4.2 – Typical stress vs instantaneous strain curve for concrete in compression	
(Gilbert, 1993)	67
Figure 4.3 – Strain versus time for specimen under constant stress	69
Figure 4.4 – Effect of age at first loading on the creep strain (Gilbert, 1988)	70
Figure 4.5 – Typical shrinkage curve for concrete	73
Figure 4.6 – Experimental database that summarized for CC (drying shrinkage versus time	
(days))	89
Figure 4.7 – Experimental database that summarized for SCC (drying shrinkage versus time	
(days))	89
Figure 4.8 – Comparison of the SCC and CC drying shrinkage from experimental results	
versus calculated values from CEB-FIP (1990) model	90
Figure 4.9 – Comparison of the SCC and CC drying shrinkage from experimental results	
versus calculated values from ACI 209R (1997) model 19	91

Figure 4.10 – Comparison of the SCC and CC drying shrinkage from experimental results
versus calculated values from Eurocode 2 (2001) model
Figure 4.11 – Comparison of the SCC and CC drying shrinkage from experimental results
versus calculated values from JSCE (2002) model
Figure 4.12 – Comparison of the SCC and CC drying shrinkage from experimental results
versus calculated values from AASHTO (2004) model 194
Figure 4.13 – Comparison of the SCC and CC drying shrinkage from experimental results
versus calculated values from AASHTO (2007) model 195
Figure 4.14 – Comparison of the SCC and CC drying shrinkage from experimental results
versus calculated values from AS 3600 (2009) model 196
Figure 4.15 – Comparison of the SCC drying shrinkage from experimental results versus
calculated values from Poppe and De Schutter (2005) model 197
Figure 4.16 – Comparison of the SCC drying shrinkage from experimental results versus
calculated values from Larson (2006) model
Figure 4.17 – Comparison of the SCC drying shrinkage from experimental results versus
calculated values from Cordoba (2007) model 198
Figure 4.18 – Comparison of the SCC drying shrinkage from experimental results versus
calculated values from Khayat and Long (2010) model
Figure 4.19 - Comparison of proposed shrinkage SCC model with experimental results
database
Figure 4.20 – Experimental database that summarized for CC (creep coefficient versus time
(days))
Figure 4.21 – Experimental database that summarized for SCC (creep coefficient versus
time (days))
xxxviii

Figure 4.22 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from CEB-FIP (1990) model	.3
Figure 4.23 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from ACI 209R (1997) model	.4
Figure 4.24 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from Eurocode 2 (2001) model	5
Figure 4.25 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from JSCE (2002) model	.6
Figure 4.26 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from AASHTO (2004) model	.7
Figure 4.27 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from AASHTO (2007) model	.8
Figure 4.28 – Comparison of the SCC and CC creep coefficient from experimental results	
versus calculated values from AS 3600 (2009) model	.9
Figure 4.29 – Comparison of the SCC creep coefficient from experimental results versus	
calculated values from Poppe and De Schutter (2005) model	20
Figure 4.30 – Comparison of the SCC creep coefficient from experimental results versus	
calculated values from Larson (2006) model	20
Figure 4.31 – Comparison of the SCC creep coefficient from experimental results versus	
calculated values from Cordoba (2007) model	21
Figure 4.32 - Comparison of proposed creep SCC model with experimental results	
database	21
Figure 5.1 – Compressive strengths of SCC mixtures at different ages	;7
Figure 5.2 – Tensile strengths of SCC mixtures at different ages	57

Figure 5.3 – Modulus of elasticity of SCC mixtures at different ages	238
Figure 5.4 – Modulus of rupture of SCC mixtures at different ages	238
Figure 5.5 – Compressive stress-strain curve of N-SCC mix at different ages	239
Figure 5.6 – Compressive stress-strain curve of D-SCC mix at different ages	240
Figure 5.7 – Compressive stress-strain curve of S-SCC mix at different ages	240
Figure 5.8 – Compressive stress-strain curve of DS-SCC mix at different ages	241
Figure 5.9 – Energy dissipated under compression (G_c) at different ages	242
Figure 5.10 – Energy dissipated under compression (G_c) versus strain of N-SCC mix	at
different ages	243
Figure 5.11 – Energy dissipated under compression (G_c) versus strain of D-SCC mix	at
different ages	243
Figure 5.12 - Energy dissipated under compression (Gc) versus strain of S-SCC mix	at
different ages	244
Figure 5.13 – Energy dissipated under compression (G_c) versus strain of DS-SCC mix	at
different ages	244
Figure 5.14 - Predicted time-related mechanical properties values versus experiment	ted
values (a) compressive strength, (b) tensile strength, (c) modulus of elasticity, (d) modul	lus
of rupture, and (e) energy dissipated under compression	250
Figure 5.15 – Predicted compressive strength-related mechanical properties values vers	sus
experimented values (a) tensile strength, (b) modulus of elasticity, and (c) modulus	of
rupture	251
Figure 5.16(a,b) - Comparison between experimented compressive stress-strain cur	rve
result with proposed relationship (a) N–SCC and (b) D–SCC	252

Figure 5.16(c,d) - Comparison between experimented compressive stress-strain currents	ve
result with proposed relationship (c) S-SCC and (d) DS-SCC	. 253
Figure 5.17 – Flexural load-deflection behaviour of N-SCC mixture at different ages	. 258
Figure 5.18 – Flexural load-deflection behaviour of D-SCC mixture at different ages	. 258
Figure 5.19 – Flexural load-deflection behaviour of S-SCC mixture at different ages	. 259
Figure 5.20 – Flexural load-deflection behaviour of DS-SCC mixture at different ages	. 259
Figure 5.21 – Flexural load-deformation behaviour of the D-SCC mix	. 264
Figure 5.22 – Flexural load-deformation behaviour of the S-SCC mix	. 264
Figure 5.23 – Flexural load-deformation behaviour of the DS-SCC mix	. 265
Figure 6.1 – Test arrangement for all specimens	. 271
Figure 6.2 – Dimensions and reinforcement details for slab specimens	. 272
Figure 6.3 – General view of slab mould before casting the SCC	. 273
Figure 6.4 – General view of test set-up	. 273
Figure 6.5 – General view of loading cells, concrete strain gauges, and LVDT test set-up	. 274
Figure 6.6 – Crack width vs. applied bending moment for slab N-SCC-a	. 279
Figure 6.7 – Crack width vs. applied bending moment for slab N-SCC-b	. 279
Figure 6.8 – Crack pattern for slab N-SCC-a (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	. 280
Figure 6.9 – Crack pattern for slab N-SCC-a (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	. 280
Figure 6.10 – Load-deflection curve for slab N-SCC-a at mid-span	. 281
Figure 6.11 – Load-deflection curve for slab N-SCC-b at mid-span	. 281
Figure 6.12 – General view of slab N-SCC-a failure	• • •
	. 282
Figure 6.13 – Crack width vs. applied bending moment for slab D-SCC-a	. 282 . 286
Figure 6.13 – Crack width vs. applied bending moment for slab D-SCC-a Figure 6.14 – Crack width vs. applied bending moment for slab D-SCC-b	. 282 . 286 . 286

Figure 6.16 – Crack pattern for slab D-SCC-b (4N12 $c_b=25$ mm) at load stage $P = 26$ kN.	287
Figure 6.17 – Load-deflection curve for slab D-SCC-a at mid-span	288
Figure 6.18 – Load-deflection curve for slab D-SCC-a at mid-span	288
Figure 6.19 – Crack width vs. applied bending moment for slab S-SCC-a	292
Figure 6.20 – Crack width vs. applied bending moment for slab S-SCC-b	292
Figure 6.21 – Crack pattern for slab S-SCC-a (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	293
Figure 6.22 – Crack pattern for slab S-SCC-a (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	293
Figure 6.23 – Load-deflection curve for slab S-SCC-a at mid-span	294
Figure 6.24 – Load-deflection curve for slab S-SCC-b at mid-span	294
Figure 6.25 – Crack width vs. applied bending moment for slab DS-SCC-a	298
Figure 6.26 – Crack width vs. applied bending moment for slab DS-SCC-b	298
Figure 6.27 – Crack pattern for slab DS-SCC-a (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	í. 299
Figure 6.28 – Crack pattern for slab DS-SCC-b (4N12 $c_b=25$ mm) at load stage $P = 26$ kN	[299
Figure 6.29 – Load-deflection curve for slab DS-SCC-a at mid-span	300
Figure 6.30 – Load-deflection curve for slab DS-SCC-b at mid-span	300
Figure 6.31 – Crack width vs. applied bending moment for slab N-CC-a	304
Figure 6.32 – Crack width vs. applied bending moment for slab N-CC-b	304
Figure 6.33 – Crack pattern for slab N-CC-a (4N12 c_b =25 mm) at load stage P = 26 kN	305
Figure 6.34 – Crack pattern for slab N-CC-a (4N12 cb=25 mm) at load stage $P = 26$ kN	305
Figure 6.35 – Load-deflection curve for slab N-CC-a at mid-span	306
Figure 6.36 – Load-deflection curve for slab N-CC-a at mid-span	306
Figure 6.37 - Cracked reinforced concrete beam and idealised tension chord mod	lel
(Gilbert, 2004)	309
Figure 6.38 – Tension chord – actions and stresses (Marti et al., 1998)	311

Figure 6.39 - Strain development along reinforcing bar for initial crack (Leutbecher a	nd
Fehling, 2008)	315
Figure 6.40 – Stress-COD model (Leutbecher and Fehling, 2008)	316
Figure 6.41 – Strain development along reinforcing bar for stabilized cracking (Leutbech	ıer
and Fehling, 2008)	316
Figure 6.42 – Comparison of different bond stresses for slab N-SCC series	318
Figure 6.43 – Comparison of different bond stresses for slab D-SCC series	319
Figure 6.44 – Comparison of different bond stresses for slab S-SCC series	320
Figure 6.45 – Comparison of different bond stresses for slab DS-SCC series	321
Figure 6.46 – Comparison of different bond stresses for slab N-CC series (Nejadi, 2005).	322
Figure 6.47(a,b) – Adopted bond stresses for (a) N-SCC and (b) D-SCC slab series	328
Figure 6.47(c,d) – Adopted bond stresses for (c) S-SCC and (d) DS-SCC slab series	329
Figure 7.1 – General view of flexural long-term tests under load	334
Figure 7.2 – Loading slab specimens by concrete blocks	335
Figure 7.3 – Illustrative sustained loads slab specimens	335
Figure 7.4 – Supports for slabs	336
Figure 7.5 – Creep coefficient for SCC and CC mixtures	340
Figure 7.6 – Free shrinkage for unreinforced SCC and CC mixtures	340
Figure 7.7 – Final crack pattern for slab N-SCC-a	345
Figure 7.8 – Final crack pattern for slab N-SCC-b	345
Figure 7.9 – Deflection of slabs N-SCC-a and N-SCC-b	346
Figure 7.10 – Final crack pattern for slab D-SCC-a	351
Figure 7.11 – Final crack pattern for slab D-SCC-b	351
Figure 7.12 – Deflection of slabs D-SCC-a and D-SCC-b	352

Figure 7.13 – Final crack pattern for slab S-SCC-a	357
Figure 7.14 – Final crack pattern for slab S-SCC-b	357
Figure 7.15 – Deflection of slabs S-SCC-a and S-SCC-b	358
Figure 7.16 – Final crack pattern for slab DS-SCC-a	363
Figure 7.17 – Final crack pattern for slab DS-SCC-b	363
Figure 7.18 – Deflection of slabs DS-SCC-a and DS-SCC-b	364
Figure 7.19 – Final crack pattern for slab N-CC-a (Nejadi, 2005) - Not scaled	367
Figure 7.20 – Final crack pattern for slab N-CC-b (Nejadi, 2005) - Not scaled	367
Figure 7.21 – Deflection of slabs N-CC-a and N-CC-b	368
Figure 7.22 – Stabilized cracking - Qualitative distribution of strains for the bar and fibr	res
reinforcement and for the matrix, considering the influence of shrinkage	371
Figure 7.23 – Comparison of different bond stresses for slab N-SCC series	373
Figure 7.24 – Comparison of different bond stresses for slab D-SCC series	374
Figure 7.25 – Comparison of different bond stresses for slab S-SCC series	375
Figure 7.26 – Comparison of different bond stresses for slab DS-SCC series	376
Figure 7.27 – Comparison of different bond stresses for slab N-CC series	377
Figure 7.28(a,b) – Adopted bond stresses for (a) N-SCC and (b) D-SCC slab series	382
Figure 7.28(c,d) – Adopted bond stresses for (c) S-SCC and (d) DS-SCC slab series	383
Figure 8.1 – Initial crack - Qualitative distribution of strains for the bar reinforcement a	nd
for the matrix	386
Figure 8.2 – Initial crack - Qualitative distribution of strains for the bar reinforcement a	nd
for the matrix, considering the influence of shrinkage	399
Figure 8.3 – Stabilized cracking - Qualitative distribution of strains for the b	oar
reinforcement and for the matrix	400

Figure 8.4 - Stabilized cracking - Qualitative distribution of strains for the bar
reinforcement and for the matrix, considering the influence of shrinkage
Figure 8.5 - Initial crack - Qualitative distribution of strains for the bar and fibres
reinforcement and for the matrix
Figure 8.6 - Initial crack - Qualitative distribution of strains for the bar and fibres
reinforcement and for the matrix, considering the influence of shrinkage
Figure 8.7 – Stabilized cracking - Qualitative distribution of strains for the bar and fibres
reinforcement and for the matrix
Figure 8.8 – Stabilized cracking - Qualitative distribution of strains for the bar and fibres
reinforcement and for the matrix, considering the influence of shrinkage
Figure 8.9 - Comparison between experimental results, proposed model and available
models for slab N-SCC-a (Instantaneous behaviour)
Figure 8.10 - Comparison between experimental results, proposed model and available
models for slab N-SCC-b (Instantaneous behaviour)
Figure 8.11 - Comparison between experimental results, proposed model and available
models for slab D-SCC-a (Instantaneous behaviour)
Figure 8.12 - Comparison between experimental results, proposed model and available
models for slab D-SCC-b (Instantaneous behaviour)
Figure 8.13 - Comparison between experimental results, proposed model and available
models for slab S-SCC-a (Instantaneous behaviour)
Figure 8.14 - Comparison between experimental results, proposed model and available
models for slab S-SCC-b (Instantaneous behaviour)
Figure 8.15 - Comparison between experimental results, proposed model and available
models for slab DS-SCC-a (Instantaneous behaviour)

Figure 8.16 - Comparison between experimental results, proposed model and available
models for slab DS-SCC-b (Instantaneous behaviour)
Figure 8.17 - Comparison between experimental results, proposed model and available
models for slab N-SCC-a (Time-dependent behaviour)
Figure 8.18 - Comparison between experimental results, proposed model and available
models for slab N-SCC-b (Time-dependent behaviour)
Figure 8.19 - Comparison between experimental results, proposed model and available
models for slab D-SCC-a (Time-dependent behaviour)
Figure 8.20 - Comparison between experimental results, proposed model and available
models for slab D-SCC-b (Time-dependent behaviour)
Figure 8.21 - Comparison between experimental results, proposed model and available
models for slab S-SCC-a (Time-dependent behaviour)
Figure 8.22 - Comparison between experimental results, proposed model and available
models for slab S-SCC-b (Time-dependent behaviour)
Figure 8.23 - Comparison between experimental results, proposed model and available
models for slab DS-SCC-a (Time-dependent behaviour)
Figure 8.24 - Comparison between experimental results, proposed model and available
models for slab DS-SCC-b (Time-dependent behaviour)
Figure 8.25 – Comparison between crack widths experimental results, proposed analytical
model and codes for instantaneous behaviour
Figure 8.26 – Comparison between crack widths experimental results, proposed analytical
model and codes for instantaneous behaviour
Figure 8.27 - Comparison between crack widths experimental results, proposed analytical
model and codes for time-dependent behaviour

Figure 9.1 – Non-linear modelling of concrete structures: Cracking approaches, constitutive
models and fracture models (Chong, 2004)
Figure 9.2 – Non-linear modelling of concrete structures: Regularization of spurious strain
localization (Chong, 2004)
Figure 9.3 – Non-linear modelling of concrete structures: Modelling of steel reinforcement
(Chong, 2004)
Figure 9.4 – Non-linear modelling of concrete structures: Modelling of steel-concrete bond
(Chong, 2004)
Figure 9.5 – Non-linear modelling of concrete structures: Computational creep modelling
part I (Chong, 2004)
Figure 9.6 – Non-linear modelling of concrete structures: Computational creep modelling
part II (Lam, 2007)
Figure 9.7 – Finite element models for reinforced concrete
Figure 9.8 – ATENA, constitutive model SBETA I
Figure 9.9 – ATENA, constitutive model SBETA II
Figure 9.10 – ATENA, Fracture–Plastic Constitutive Model
Figure 9.11 – ATENA, Creep and Shrinkage Analysis
Figure 9.12 – Geometry of CCIsoBrick element (ATENA, 2012)
Figure 9.13 – Geometry of CCIsoTetra element (ATENA, 2012)
Figure 9.14 – Geometry of CCIsoQuad element (ATENA, 2012)
Figure 9.15 – Stresses at steel level in a cracked reinforced concrete member
Figure 9.16 – Slab tensile strength - Red = 2.9 MPa, Blue = 2.8 MPa (onset of cracking) 448
Figure 9.17 – Slab tensile strength - Red = 2.9 MPa, Blue = 2.8 MPa (onset of cracking) 449
Figure 9.18 – GiD wireframe slabs showing reinforcement and loading areas

Figure 9.19 - Material properties for CC3DNonLinCementitious2 concrete n	nodel
(ATENA, 2012)	452
Figure 9.20 – Material properties for CC3DNonLinCementitious2User	and
CC3DNonLinCementitious2SHCC concrete model (ATENA, 2012)	453
Figure 9.21 – Reinforcement material model details (ATENA, 2012)	456
Figure 9.22 – Reinforcement with bond model details (ATENA, 2012)	457
Figure 9.23 – Shrinkage in the ATENA creep environment (ATENA, 2012)	458
Figure 9.24 – Visual representation of meshing	460
Figure 9.25 – Visual representation of boundary conditions	461
Figure 9.26 – Deflection-age behaviour of slab N-SCC-a	463
Figure 9.27 – Deflection-age behaviour of slab N-SCC-b	463
Figure 9.28 – Deflection-age behaviour of slab D-SCC-a	464
Figure 9.29 – Deflection-age behaviour of slab D-SCC-b	464
Figure 9.30 – Deflection-age behaviour of slab S-SCC-a	465
Figure 9.31 – Deflection-age behaviour of slab S-SCC-b	465
Figure 9.32 – Deflection-age behaviour of slab DS-SCC-a	466
Figure 9.33 – Deflection-age behaviour of slab DS-SCC-b	466
Figure 9.34 – Deflection-age behaviour of slab N-CC-a	467
Figure 9.35 – Deflection-age behaviour of slab N-CC-b	467
Figure 9.36 – Final deflection comparisons for all concrete mixes	468
Figure 9.37 – Instantaneous crack widths comparisons for all concrete mixes	470
Figure 9.38 – Time-dependent crack widths comparisons for all concrete mixes	471
Figure 9.39 – Typical FEM time-dependent crack width result for N-SCC-a slab	472
Figure 9.40 – Typical FEM time-dependent deflection result for N-SCC-a slab	473
	xlviii

Figure 9.41 – Typical FEM time-dependent displacement result for N-SCC-a slab
Figure A.1 – Stage 1-Fiber completely bonded along the length of the fibre with the
relevant calculations
Figure A.2 – Stage 2- Fibre partially bonded along its embedded length with the relevant
calculations
Figure A.3 – Stage 3- Fibre completely debonded over its embedded length and pulling out
with the relevant calculations
Figure B.1 – Slump flow test
Figure B.2 – Slump flow test measurement
Figure B.3 – J-ring test-1
Figure B.4 – J-ring test-2
Figure B.5 – J-ring test measurement-1
Figure B.6 – J-ring test measurement-2
Figure B.7 – J-ring test measurement-3
Figure B.8 – L-Box test-1
Figure B.9 – L-Box test-2
Figure B.10 – L-Box test-3
Figure B.11 – L-Box test-4
Figure B.12 – L-Box test measurement-1
Figure B.13 – L-Box test measurement-2
Figure B.14 – V-Funnel test-1
Figure B.15 – V-Funnel test-2
Figure C.1 – Toughness indexes proposed by ASTM C 1018 (2000)
Figure C.2 – JSCE (1984) flexural toughness factor

Figure C.3 – Banthia and Trottier (1995) flexural toughness factor	545
Figure C.4 – Toughness indexes proposed by ACI 544 (1988)	546
Figure D.1 – Concrete surface strain at steel level for slab N-SCC-a	548
Figure D.2 – Concrete surface strain at steel level for slab N-SCC-b	549
Figure D.3 – Concrete surface strain at steel level for slab D-SCC-a	550
Figure D.4 – Concrete surface strain at steel level for slab D-SCC-b	551
Figure D.5 – Concrete surface strain at steel level for slab S-SCC-a	552
Figure D.6 – Concrete surface strain at steel level for slab S-SCC-b	553
Figure D.7 – Concrete surface strain at steel level for slab DS-SCC-a	554
Figure D.8 – Concrete surface strain at steel level for slab DS-SCC-b	555
Figure D.9 – Steel strain for slab N-SCC-a	556
Figure D.10 – Steel strain for slab N-SCC-b	557
Figure D.11 – Steel strain for slab D-SCC-a	558
Figure D.12 – Steel strain for slab D-SCC-b	559
Figure D.13 – Steel strain for slab S-SCC-a	560
Figure D.14 – Steel strain for slab S-SCC-b	561
Figure D.15 – Steel strain for slab DS-SCC-a	562
Figure D.16 – Steel strain for slab DS-SCC-b	563
Figure D.17 – Short-term typical experimental test view-1	564
Figure D.18 – Short-term typical experimental test view-2	564
Figure D.19 – Short-term typical experimental test view-3	565
Figure D.20 – Short-term typical experimental test view-4	565
Figure D.21 – Short-term typical experimental test view-5	566
Figure E.1 – Long-term typical experimental test view-1	678

Figure E.2 – Long-term typical experimental test view-2	679
Figure E.3 – Long-term typical experimental test view-3	680
Figure F.1 – General view of creep tests-1	686
Figure F.2 – General view of creep tests-2	686
Figure F.3 – General view of creep tests-3	687
Figure F.4 – General view of creep tests-4	687
Figure F.5 – General view of creep tests-5	688
Figure F.6 – General view of shrinkage tests of monitor specimens-1	688
Figure F.7 – General view of shrinkage tests of monitor specimens-2	689
Figure F.8 – General view of shrinkage tests of monitor specimens-3	689
Figure F.9 – General view of standard shrinkage tests-1	690
Figure F.10 – General view of standard shrinkage tests-2	690
Figure F.11 – General view of standard shrinkage tests-3	691
Figure G.1 – Typical FEM time-dependent crack width result for N-SCC-a slab	693
Figure G.2 – Typical FEM time-dependent crack width result for N-SCC-b slab	694
Figure G.3 – Typical FEM time-dependent crack width result for D-SCC-a slab	695
Figure G.4 – Typical FEM time-dependent crack width result for D-SCC-b slab	696
Figure G.5 – Typical FEM time-dependent crack width result for S-SCC-a slab	697
Figure G.6 – Typical FEM time-dependent crack width result for S-SCC-b slab	698
Figure G.7 – Typical FEM time-dependent crack width result for DS-SCC-a slab	699
Figure G.8 – Typical FEM time-dependent crack width result for DS-SCC-b slab	700
Figure G.9 – Typical FEM time-dependent crack width result for N-CC-a slab	701
Figure G.10 – Typical FEM time-dependent crack width result for N-CC-b slab	702
Figure G.11 – Typical FEM time-dependent deflection result for N-SCC-a slab	703

Figure G.12 – Typical FEM time-dependent deflection result for N-SCC-b slab	704
Figure G.13 – Typical FEM time-dependent deflection result for D-SCC-a slab	705
Figure G.14 – Typical FEM time-dependent deflection result for D-SCC-b slab	706
Figure G.15 – Typical FEM time-dependent deflection result for S-SCC-a slab	707
Figure G.16 – Typical FEM time-dependent deflection result for S-SCC-b slab	708
Figure G.17 – Typical FEM time-dependent deflection result for DS-SCC-a slab	709
Figure G.18 – Typical FEM time-dependent deflection result for DS-SCC-b slab	710
Figure G.19 – Typical FEM time-dependent deflection result for N-CC-a slab	711
Figure G.20 – Typical FEM time-dependent deflection result for N-CC-b slab	712
Figure G.21 – Typical FEM time-dependent displacement result for N-SCC-a slab	713
Figure G.22 – Typical FEM time-dependent displacement result for N-SCC-b slab	714
Figure G.23 – Typical FEM time-dependent displacement result for D-SCC-a slab	715
Figure G.24 – Typical FEM time-dependent displacement result for D-SCC-b slab	716
Figure G.25 – Typical FEM time-dependent displacement result for S-SCC-a slab	717
Figure G.26 – Typical FEM time-dependent displacement result for S-SCC-b slab	718
Figure G.27 – Typical FEM time-dependent displacement result for DS-SCC-a slab	719
Figure G.28 – Typical FEM time-dependent displacement result for DS-SCC-b slab	720
Figure G.29 – Typical FEM time-dependent displacement result for DS-SCC-a slab	721
Figure G.30 – Typical FEM time-dependent displacement result for DS-SCC-b slab	722

LIST OF TABLES

Table 2.1 – Summary of the beams considered. The fibre dosage is given both as mass per	
volume unit and as volume percentage (Buratti et al., 2010)	35
Table 2.2 – Geometry of the fibres used (Buratti et al., 2010)	35
Table 2.3 – Cube compressive strength of the concrete for the different casts (Buratti et al.,	
2010)	35
Table 2.4 – Loads applied on each end of the beams during the long-term test (Buratti et al.,	
2010)	37
Table 2.5 – Parameters of beam specimens for long term test (Xiao-jie et al., 2008)	41
Table 2.6 – Mechanical properties of concrete (Xiao-jie et al., 2008)	42
Table 3.1 – MOE experimental database	49
Table 3.2 – MOE experimental database (continued)	50
Table 3.3 – MOE models for CC	51
Table 3.4 – MOE models for SCC	51
Table 3.5 – Coefficient of correlation factor (R^2) for MOE	52
Table 3.6 – TS experimental database	62
Table 3.7 – TS experimental database (continued)	63
Table 3.8 – TS models for CC	64
Table 3.9 – TS models for SCC	64
Table 3.10 – Coefficient of correlation factor (R^2) for TS	65
Table 3.11 – MOR experimental results database	75
Table 3.12 – MOR experimental database (continued)	76
Table 3.13 – MOR models for CC	76

Table 3.14 – MOR models for SCC	77
Table 3.15 – MOR models prediction properties for CC	77
Table 3.16 – MOR models prediction properties for SCC	78
Table 3.17 – CSSC experimental database	86
Table 3.18 – CSSC experimental database (continued)	86
Table 3.19 – CSSC experimental database (continued)	87
Table 3.20 – Compressive stress-strain models for CC	88
Table 3.21 – Compressive stress-strain models for SCC	89
Table 3.22 – Coefficient of correlation factor (R^2) for compressive stress-strain models	90
Table 3.23 – SCC and CC bond experimental tests detailing	102
Table 3.24 – SCC and CC bond experimental tests detailing (continued)	103
Table 3.25 – Analytical bond models	104
Table 3.26 – Analytical bond stress-slip models	106
Table 3.27 – Proposed parameters that included in bond stress-slip model	107
Table 3.28 – Coefficient of correlation factor (R^2) bond prediction models for CC and SC	CC 107
Table 3.29 - SFRSCC experimental results database properties (including: cement ty	ype,
filler type, compressive strength specimen type, and aggregate type)	128
Table 3.30 – SFRSCC experimental results database properties (including: fibre type, f	ibre
shape, aspect ratio (l_f/d_f) , and fibre length)	130
Table 3.31 - SFRSCC compressive strength results database properties (including: f	ibre
type, fibre volume fraction (V_f) , 28 days compressive strength, and fibre reinforcing in	dex
R.I.)	131
Table 3.32 – SFRC compressive stress-strain relationships database	133
Table 3.33 – SFRSCC compressive stress-strain relationship database	135

Table 3.34 – SFRSCC database for the included bond characteristics investigations	. 151
Table 3.35 – Experimental results of Grünewald (2004)	. 152
Table 3.36 – Experimental results of Holschemacher and Klug (2005)	. 152
Table 3.37 – Experimental results of Cunha (2007)	. 153
Table 3.38 – Proposed models for the coefficient of friction μ	. 159
Table 3.39 - Comparison of experimental peak pullout force (Grünewald, 2004) versu	us
predicted peak pullout force by using proposed model	. 159
Table 3.40 – Proposed values of $\tau_{max(app)}$, $\tau_{f(app)}$, β and the corresponding P_{max} obtained	ed
through comparison of the Cunha (2007) experimental results with respect to the inclination	on
of fibres	. 159
Table 4.1 – Shrinkage experimental database	. 178
Table 4.2 – Shrinkage experimental database (continued)	. 179
Table 4.3 – Mix properties of the shrinkage experimental database	. 180
Table 4.4 – Summary of the factors accounted for by different prediction models	. 187
Table 4.5 – Shrinkage models for SCC	. 188
Table 4.6 – Coefficient of correlation factor (R^2) of shrinkage prediction models for CC ar	nd
SCC	. 201
Table 4.7 – Creep experimental results database	. 207
Table 4.8 – Creep experimental results database (continued)	. 207
Table 4.9 – Mix properties of the creep experimental database	. 208
Table 4.10 – Summary of the factors accounted for by different prediction models	. 210
Table 4.11 – Creep Models for SCC	. 212
Table 4.12 – Coefficient of correlation factor (R ²) CC creep prediction models for CC ar	nd
SCC	. 223

Table 5.1 – Chemical, physical, and mechanical properties of cement	227
Table 5.2 – Chemical and physical properties of Fly Ash	227
Table 5.3 – Chemical and physical properties of GGBFS	228
Table 5.4 – Properties of crushed latite volcanic rock coarse aggregate	229
Table 5.5 – Properties of Nepean river gravel fine aggregate	230
Table 5.6 – Properties of Kurnell natural river sand fine aggregate	230
Table 5.7 – The physical and mechanical properties of fibres	231
Table 5.8 – The proportions of the concrete mixtures (based on saturated surface of	lry
condition)	231
Table 5.9 – The SCC mixes workability characteristics	234
Table 5.10 - Compressive strength, tensile strength, modulus of elasticity, and modulus	of
rupture of SCC mixtures at different ages	236
Table 5.11 – The energy dissipated under compression	242
Table 5.12 – Load-deflection and flexural strength properties of the N-SCC mix	260
Table 5.13 – Load-deflection and flexural strength properties of the D-SCC mix	261
Table 5.14 – Load-deflection and flexural strength properties of the S-SCC mix	262
Table 5.15 – Load-deflection and flexural strength properties of the DS-SCC mix	263
Table 6.1 – Details of slabs for short-term flexural tests	272
Table 6.2 – Material properties of SCC and FRSCC	275
Table 6.3 – Crack history for slab N-SCC-a	277
Table 6.4 – Crack history for slab N-SCC-b	278
Table 6.5 – Crack history for slab D-SCC-a	284
Table 6.6 – Crack history for slab D-SCC-b	285
Table 6.7 – Crack history for slab S-SCC-a	290

Table 6.8 – Crack history for slab S-SCC-b	291
Table 6.9 – Crack history for slab DS-SCC-a	296
Table 6.10 – Crack history for slab DS-SCC-b	297
Table 6.11 – Crack history for slab N-CC-a	302
Table 6.12 – Crack history for slab N-CC-b	303
Table 6.13 – Measured and calculated maximum crack width for slab N-SCC series	318
Table 6.14 – Measured and calculated maximum crack width for slab D-SCC series	319
Table 6.15 – Measured and calculated maximum crack width for slab S-SCC series	320
Table 6.16 – Measured and calculated maximum crack width for slab DS-SCC series	32`
Table 6.17 – Measured and calculated maximum crack width for slab N-CC series	322
Table 6.18 – Summary of the results from short-term flexural test	323
Table 6.19 – Adopted bond stresses for SCC slab series	327
Table 7.1 – Details of slab specimens for long-term flexural test	336
Table 7.2 – Material properties of SCC and FRSCC	338
Table 7.3 – The measured creep coefficient for SCC and CC mixtures	339
Table 7.4 – The measured free shrinkage for unreinforced SCC and CC mixtures	339
Table 7.5 – Crack width at different regions for slab N-SCC-a	338
Table 7.6 – Crack width at different regions for slab N-SCC-b	342
Table 7.7 – The measured crack widths for slab N-SCC-a	343
Table 7.8 – The measured crack widths for slab N-SCC-b	344
Table 7.9 – Ratio of deflections at different ages to instantaneous deflection for slabs	N-
SCC-a and N-SCC-b	347
Table 7.10 – Crack width at different regions for slab D-SCC-a	348
Table 7.11 – Crack width at different regions for slab D-SCC-b	348

Table 7.12 – The measured crack widths for slab D-SCC-a	349
Table 7.13 – The measured crack widths for slab D-SCC-b	350
Table 7.14 – Ratio of deflections at different ages to instantaneous deflection for slabs	D-
SCC-a and D-SCC-b	353
Table 7.15 – Crack width at different regions for slab S-SCC-a	354
Table 7.16 – Crack width at different regions for slab S-SCC-b	354
Table 7.17 – The measured crack widths for slab S-SCC-a	355
Table 7.18 – The measured crack widths for slab S-SCC-b	356
Table 7.19 – Ratio of deflections at different ages to instantaneous deflection for slabs	S-
SCC-a and S-SCC-b	359
Table 7.20 – Crack width at different regions for slab DS-SCC-a	360
Table 7.21 – Crack width at different regions for slab DS-SCC-b	360
Table 7.22 – The measured crack widths for slab DS-SCC-a	361
Table 7.23 – Crack width at different regions for slab DS-SCC-b	362
Table 7.24 – Ratio of deflections at different ages to instantaneous deflection for slabs D	S-
SCC-a and DS-SCC-b	365
Table 7.25 – Crack width at different regions for slab N-CC-a	366
Table 7.26 – Crack width at different regions for slab N-CC-a	366
Table 7.27 – Ratio of deflections at different ages to instantaneous deflection for slabs	N-
CC-a and N-CC-b	369
Table 7.28 – Measured and calculated maximum crack width for slab N-SCC series	372
Table 7.29 – Measured and calculated maximum crack width for slab D-SCC series	373
Table 7.30 – Measured and calculated maximum crack width for slab S-SCC series	374
Table 7.31 – Measured and calculated maximum crack width for slab DS-SCC series	375

Table 7.32 – Measured and calculated maximum crack width for slab N-CC series	376
Table 7.33 – Summary of the results from long-term flexural test	378
Table 7.34 – Measured final and instantaneous deflection at mid-span	380
Table 8.1 – Maximum bar diameters for crack control	392
Table 8.2 – Maximum bar spacing for crack control	392
Table 8.3 – Values for τ_{bm} and the coefficients β and η_r for deformed reinforcing bars	393
Table 8.4 - Comparison between crack widths experimental results, proposed analytic	cal
model and codes for instantaneous behaviour	415
Table 8.5 – Comparison between crack spacings experimental results, proposed analytic	cal
model and codes for instantaneous behaviour	415
Table 8.6 - Comparison between crack widths experimental results, proposed analytic	cal
model and codes for time-dependent behaviour	416
Table 8.7 - Comparison between crack spacings experimental results, proposed analytic	cal
model and codes for time-dependent behaviour	416
Table 9.1 – B3Improved model input data	458
Table 9.2 – Summary of mesh size	459
Table 9.3 - Comparison between crack widths experimental results, proposed analytic	cal
model and codes for instantaneous behaviour	469
Table 9.4 - Comparison between crack widths experimental results, proposed analytic	cal
model and codes for time-dependent behaviour	469
Table 10.1 – Summary of the results from short-term flexural test	486
Table 10.2 – Adopted bond stresses for SCC slab series	486
Table 10.3 – Summary of the results from long-term flexural test	488
Table 10.4 – Measured final and instantaneous deflection at mid-span	489

Table D.1 – Concrete surface strain at steel level for slab N-SCC-a	. 548
Table D.2 – Concrete surface strain at steel level for slab N-SCC-b	. 549
Table D.3 – Concrete surface strain at steel level for slab D-SCC-a	. 550
Table D.4 – Concrete surface strain at steel level for slab D-SCC-b	. 551
Table D.5 – Concrete surface strain at steel level for slab S-SCC-a	. 552
Table D.6 – Concrete surface strain at steel level for slab S-SCC-b	. 553
Table D.7 – Concrete surface strain at steel level for slab DS-SCC-a	. 554
Table D.8 – Concrete surface strain at steel level for slab DS-SCC-a	. 555
Table D.9 – Steel strain for slab N-SCC-a	. 548
Table D.10 – Steel strain for slab N-SCC-b	. 549
Table D.11 – Steel strain for slab D-SCC-a	. 550
Table D.12 – Steel strain for slab D-SCC-b	. 551
Table D.13 – Steel strain for slab S-SCC-a	. 552
Table D.14 – Steel strain for slab S-SCC-b	. 553
Table D.15 – Steel strain for slab DS-SCC-a	. 554
Table D.16 – Steel strain for slab DS-SCC-a	. 555
Table E.1 – Concrete surface strain at steel level for slab N-SCC-a	. 568
Table E.2 – Concrete surface strain at steel level for slab N-SCC-b	. 575
Table E.3 – Concrete surface strain at steel level for slab D-SCC-a	. 582
Table E.4 – Concrete surface strain at steel level for slab D-SCC-b	. 591
Table E.5 – Concrete surface strain at steel level for slab S-SCC-a	. 598
Table E.6 – Concrete surface strain at steel level for slab S-SCC-b	. 605
Table E.7 – Concrete surface strain at steel level for slab DS-SCC-a	. 612
Table E.8 – Concrete surface strain at steel level for slab DS-SCC-b	. 618

Table E.9 – Steel strain for slab N-SCC-a	624
Table E.10 – Steel strain for slab N-SCC-b	631
Table E.11 – Steel strain for slab N-SCC-a	638
Table E.12 – Steel strain for slab D-SCC-b	645
Table E.13 – Steel strain for slab S-SCC-a	652
Table E.14 – Steel strain for slab S-SCC-b	659
Table E.15 – Steel strain for slab DS-SCC-a	666
Table E.16 – Steel strain for slab DS-SCC-b	672
Table F.1 – Creep and shrinkage results for N-SCC mix	682
Table F.2 – Creep and shrinkage results for D-SCC mix	683
Table F.3 – Creep and shrinkage results for S-SCC mix	684
Table F.4 – Creep and shrinkage results for DS-SCC mix	685

ABSTRACT

Developments in concrete technology provide engineers, designers, suppliers and contractors with new methods of approaching engineering problems. Many of these developments are engineered solutions to technical and commercial problems, by either improving the current practices or overcoming limitations in the existing technology. One of the developments is Self-Compacting Concrete (SCC). SCC refers to a 'highly flow-able, non-segregating concrete that can be spread into place, fill the formwork, and encapsulate the reinforcement without the aid of any mechanical consolidation' as defined by the American Concrete Institute (ACI). SCC is regarded as one of the most promising developments in concrete technology due to significant advantages over Conventional Concrete (CC). Many different factors can influence a decision to adopt SCC over CC ranging from structural performance to associated costs. These decisions should be well informed and based on a sound understanding of such factors.

In addition, Fibre Reinforced Self-Compacting Concrete (FRSCC) is a relatively new composite material which congregates the benefits of the SCC technology with the profits derived from the fibre addition to a brittle cementitious matrix. Fibres improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking.

For a structure (made by CC, SCC and FRSCC) to remain serviceable, crack widths must be small enough to be acceptable from an aesthetic point of view, to avoid waterproofing and deterioration problems by preventing the ingress of water and harmful substances. Crack control is therefore an important aspect of the design of reinforced concrete structures at the serviceability limit state. Limited researches have been undertaken to understand cracking and crack control of SCC and FRSCC members. Since, the timedependent mechanisms of SCC and FRSCC are still not completely understood; a reliable and universally accepted design procedure for cracking and crack control of SCC and FRSCC members has not been developed yet. There exists a need for both theoretical and experimental research to study the critical factors which affect the time-dependent cracking of SCC and FRSCC members. In this study cracking caused by external loads in reinforced SCC and FRSCC slabs is examined experimentally and analytically. The mechanisms associated with the flexural cracking due to the combined effects of constant sustained service loads and shrinkage are observed. One of the primary objectives of this study is to develop analytical models that accurately predict the hardened mechanical properties of SCC and FRSCC. Subsequently, these models have been successfully applied to simulate time-dependent cracking of SCC and FRSCC one-way slabs.

Series of tests on eight prismatic, singly reinforced concrete one-way slabs subjected to monotonically increasing loads or to constant sustained service loads for up to 240 days, were conducted. An analytical model is presented to simulate instantaneous and time-dependent flexural cracking of SCC and FRSCC members. It should be emphasized that any analytical model developed for calculation of crack width and crack spacing of reinforced SCC and FRSCC slabs must be calibrated by experimental data and verified by utilizing Finite Element Method (FEM). The analytical predictions of crack width and crack spacing for the SCC and FRSCC one-way slabs are in reasonably good agreement with the experimental observations.