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Abstract

Imbalanced data problems are among the most challenging in Data Mining

and Machine Learning research. This dissertation investigates the

performance of ensemble learning systems on different types of data

environments, and proposes novel ensemble learning approaches for solving

imbalanced data problems. Bagging is one of the most effective ensemble

methods for classification tasks. Despite the popularity of bagging in many

real-world applications, there is a major drawback on extremely imbalanced

data. Much research has addressed the problems of imbalanced data by

using over-sampling and/or under-sampling methods to generate an equally

balanced training set to improve the performance of the prediction models.

However, it is unclear which is the best ratio for training, and under which

conditions bagging is outperformed by other sampling schemes on

extremely imbalanced data.

Previous research has mainly been concerned with studying unstable

learners as the key to ensuring the performance gain of a bagging predictor,

with many key factors remaining unclear. Some questions have not been

well answered: (1) What are the key factors for bagging predictors to

achieve the best predictive performance for applications? and (2) What is

the impact of varying the levels of class distribution on bagging predictors

on different data environments. There is a lack of empirical investigation of

these issues in the literature.

xvii



The main contributions of this dissertation are as follows:

1. This dissertation proposes novel approaches, uneven balanced bagging

to boost the performance of the prediction model for solving imbalanced

problems, and hybrid-sampling to enhance bagging for solving highly

imbalanced time series classification problems.

2. This dissertation asserts that robustness and stability are two key

factors for building a high performance bagging predictor. This

dissertation also derives a new method, utilizing two-dimensional

robustness and stability decomposition to rank the base learners into

different categories for the purpose of comparing the performance of

bagging predictors with respect to different learning algorithms. The

experimental results demonstrate that bagging is influenced by the

combination of robustness and instability, and indicate that

robustness is important for bagging to achieve a highly accurate

prediction model.

3. This dissertation investigates the sensitivity of bagging predictors. We

demonstrate that bagging MLP and NB are insensitive to different

levels of imbalanced class distribution.

4. This dissertation investigates the impact of varying levels of class

distribution on bagging predictors with different learning algorithms

on a range of data environments, to allow data mining practitioners

to choose the best learners and understand what to expect when

using bagging predictors.

xviii
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