Faculty of Engineering and Information Technology University of Technology, Sydney

Ensemble Predictions: Empirical Studies on Learners' Performance and Sample Distributions

A thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

by

Guohua Liang

February 2014

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Acknowledgments

I would like to express my deepest gratitude to my principal supervisor Professor Chengqi Zhang for providing me with such an excellent research environment; for the wonderful opportunities to explore my dreams to become a successful scientist; for his supervision; ongoing encouragement and support. His deep insights, profound knowledge and outstanding contributions to our society have been a great model for me. All of these will benefit my future research career. It has been a great honor for me to be his PhD student.

I would especially like to express my deepest appreciation to my co-supervisor Professor Xingquan Zhu. His guidance and rigorous approach in all academic areas has been of great value, allowing me to make significant academic achievements in a short period of time. I am very grateful for his support and advice.

My warm thanks to all members, visitors and students of the Centre for Quantum Computation & Intelligent Systems, University of Technology, Sydney for their helpful discussions and encouragement.

I would like to dedicate this thesis to my family, my husband Bin Kong and my two sons, Jeffrey Kong and Kevin Kong for their love, support, and understanding, especially, my little son, Kevin. He always asks me, "Mum why you always go to your office doing your work?" Sometimes he talks to himself, "My mum has a lot of work to do"; he also frequently says to me, "When you finish your work come back home, I will give you some gold stars."

Finally, I would like to express my gratitude to both the Graduate School and the Faculty of Engineering and IT, University of Technology, Sydney for offering financial support with the final stages of my thesis writing.

Contents

Certifi	cate
Ackno	wledgment
Abstra	act
Chapte	er 1 Introduction 1
1.1	Objectives
1.2	Contributions
1.3	Organisation
1.4	Publications Related to the Thesis
Chapt	er 2 Related Work 10
2.1	Ensemble Learning
	2.1.1 General Ensemble Learning Approaches
	2.1.2 Empirical Studies on Ensemble Learning 13
2.2	Bagging
	2.2.1 Basic Concept and Framework of Bagging 14
	2.2.2 Bagging Algorithm
	2.2.3 Advantages of Bagging
	2.2.4 Bagging Background and Approaches
2.3	Statistical Test
	2.3.1 Wilcoxon Signed-rank Test
	2.3.2 Friedman Test and Post-hoc Nemenyi Test

2.4	Sampling Techniques	21
2.5	Evaluation Metrics	24
	$2.5.1 ROC \ldots \ldots$	27
	2.5.2 How to Calculate AUC of ROC	28
2.6	Basic Learning Algorithms	29
2.7	Benchmark Data-sets	30
	2.7.1 Imbalanced Data-sets	30
	2.7.2 Selection of Medical Data-sets	31
Chapte	er 3 An Effective Approach for Imbalanced Classifica-	
	tion: UBagging	34
3.1	Introduction	35
3.2	The UBagging Algorithm	38
3.3	Related Work	40
3.4	Experimental Setup	41
	3.4.1 Data-sets	43
3.5	Experimental Results and Analysis	43
3.6	Conclusion	48
Chapte	er 4 An Empirical Study of Bagging Predictors with	
	Different Learning Algorithms	49
4.1	Introduction	50
4.2	Designed Framework	52
4.3	Base Learner Characterization	53
4.4	Experimental Setting	55
4.5	Experimental Analysis	56
	4.5.1 Comparison of All Bagging Predictors	57
	4.5.2 Comparison of Two Learners Bagging and Single Learner	60
	4.5.3 Comparison of Average Improvement of Bagging	60
4.6	Conclusions	62

Chapte	er 5 An Empirical Study of the Sensitivity of Bagging
	on Imbalanced Class Distribution 63
5.1	Introduction
5.2	Designed Framework
	5.2.1 Sensitivity of Bagging Predictor
	5.2.2 Friedman Test with Post-hoc Nemenyi Test $\ldots \ldots \ldots 68$
	5.2.3 Evaluation Metrics $\ldots \ldots 69$
5.3	Experimental Results
	5.3.1 Statistical Analysis
	5.3.2 Graphical Analysis
5.4	Conclusion
Chapte	er 6 The Impact of Class Distribution on Bagging 75
6.1	Introduction
6.2	Designed Framework
	6.2.1 Random Under-sampling Technique Varying the Levels
	of Class Distribution
6.3	Experimental Setting
6.4	Experimental Results Analysis
	6.4.1 Statistical Comparison Bagging Predictors with Single
	Learners
	6.4.2 Graphical Comparison of <i>ROC</i> Curves
	6.4.3 Comparison of the Performance of All Bagging Predictors 90
6.5	Conclusion
Chapte	er 7 An Empirical Investigation of Bagging on Domain
	Specific Data
7.1	Introduction
7.2	Designed Framework
7.3	Experimental Setting

7.4	Exper	imental Results Analysis
	7.4.1	Comparison of Bagging with Single Learners 105
	7.4.2	Comparison of All Bagging Predictors 106
	7.4.3	Comparison of the Performance of Prediction Models
		on Individual Medical Data-sets
	7.4.4	Comparison of the Performance of Bagging between
		Natural Class Distribution and Altered Class
		Distribution on Individual Medical Data-sets
7.5	Concl	usions $\ldots \ldots 122$
Chapte	er 8 /	An Effective Method for Imbalanced Time Series
	(Classification: Hybrid Sampling
8.1	Introd	luction $\ldots \ldots 126$
8.2	HBag	ging approach $\ldots \ldots 127$
	8.2.1	Statistical Tests
8.3	Exper	imental Setup $\ldots \ldots 130$
	8.3.1	Data-sets
8.4	Exper	imental Results Analysis
	8.4.1	Evaluation of the Performance of SVM $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	8.4.2	Comparison of Over-sampling, Under-sampling, and
		Hybrid-sampling Methods
	8.4.3	Comparison of the Performance of State-of-the-art
		Methods in TSC, SPO, Under-sampling, and
		H-sampling Methods
8.5	Concl	usion
Chapte	er 9 (Conclusions and Future Work
9.1	Concl	usions $\ldots \ldots 140$
9.2	Future	e Work

Bibliography	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	144

List of Figures

2.1	Framework of bagging	14
3.1	Comparison of average rank of F_{value} of the performance of four prediction models with the Nemenvi test, where the x-axis	
	indicates the average rank of F_{value} , the y-axis indicates the	
	ranking order of the four prediction models, and the vertical	
	bars indicate the "critical difference"	47
3.2	Comparison of average rank of G_{mean} of the performance of	
	four prediction models with the Nemenyi test, where the x -axis	
	indicates the average rank of G_{mean} , the y-axis indicates the	
	ranking order of the four prediction models, and the horizontal	
	bars indicate the "critical difference"	47
4.1	Designed framework	53
4.2	Two-dimensional robustness and stability decomposition of	
	the base learners based on estimated error rate and variance,	
	where the x -axis denotes the robustness of the base learners	
	from robust to weak, and the y -axis denotes the stability of	
	the base learners from stable to unstable	54

4.3	Friedman and post-hoc Nemenyi test results of comparison of	
	all bagging predictors, where the x-axis indicates the mean	
	rank of bagging predictors, the y-axis indicates the ranking	
	order of the bagging predictors, and the horizontal error bars	
	indicate the "critical difference"	59
4.4	The improved accuracy between bagging predictors and	
	individual base learners on average over multiple data-sets.	
	The error bars present a 95% confidence interval based on	
	the cross-validated t-test.	61
5.1	Designed framework	67
5.2	Comparison of all bagging predictors with the Nemenyi test,	
	where the x -axis indicates the average rank of the bagging	
	predictors, the y -axis indicates the ascending order of the	
	average rank of CG performance, and the horizontal bars	
	indicate the CD	71
5.3	Comparison of ROC curve and G_{mean} among selected bagging	
	predictors and data-sets	72
6.1	Designed framework	79
6.2	Comparisons of ROC curves between a B_MLP and a single	
	learner MLP on 12 imbalanced data-sets, where the x -axis	
	denotes FPR , the y-axis denotes TPR for each sub-figure.	88
6.3	The group of comparisons of ROC curves between 12 bagging	
	predictors and single learners on the <i>Diabetes</i> data-set, where	
	the x-axis denotes FPR , the y-axis denotes TPR for each	
	sub-figure	89

6.4	Comparison of the performance of all bagging predictors with
	post-hoc Nemenyi test, where x -axes indicate the mean rank of
	G_{mean} for bagging, the y-axes indicate the ascending ranking
	order of the bagging predictors and the horizontal error bars
	indicate the "critical difference"
6.5	Comparison of the TPR performance of all bagging predictors
	with the Nemenyi test, where the x -axes indicate the mean
	rank of TPR for bagging predictors, the y-axes indicate the
	ascending ranking order of the bagging predictors, and the
	horizontal bars indicate the "critical difference" 94
6.6	Average ranks of AUC performance for 12 bagging
	predictors with the Nemenyi test, where the x -axis denotes
	the ranking order of the bagging predictors, while the y -axis
	denotes the average rank of the AUC performance of the
	bagging predictors. The error bars present the "critical
	difference" of the Nemenyi test
6.7	The average AUC performance of bagging predictors over 14
	data-sets, where the x -axis indicates the name of the bagging
	predictors, the y -axis indicates the average value of AUC and
	the error bar indicates the variance value
7.1	Designed framework
7.2	Comparison of the G_{mean} performance of all bagging predictors
	with post-hoc Nemenyi test, where the x -axes indicate the
	mean rank of each bagging predictor, the y -axes indicate the
	ascending ranking order of the bagging predictors, and the
	vertical error bars indicate the "critical difference" 109
7.3	The performance of prediction models on $Breastc\ {\rm data-set.}$. . 110

7.4	Comparison of the performance of prediction models on
	Diabetes data-set
7.5	Comparison of the performance of prediction models on $Sick$
	data-set
7.6	Comparison of the performance of bagging predictors and
	single learners on Heart-h data-set
7.7	Comparison of the performance of the bagging predictors and
	single learners on $WDBC$ data-set
7.8	Comparison of the performance of the bagging predictors and
	single learners on <i>Heart-c</i> data-set. \ldots \ldots \ldots \ldots \ldots 113
7.9	Comparison of the performance of the bagging predictors and
	single learners on $WBreastc$ data-set
7.10	Comparison of the performance of the bagging predictors and
	single learners on <i>StatlogHeart</i> data-set
8.1	Comparison of average rank of the F_{value} with the Nemenyi
	test for the over-sampling methods, under-sampling with with
	various algorithms, and HB agging, where the x -axis indicates
	the ranking order of the average rank of the F_{value} , the y-axis
	indicates the average rank of the F_{value} , and the vertical bars
	indicate the "critical difference"
8.2	Comparison of average rank of the G_{mean} with the Nemenyi
	test for all the over-sampling methods, under-sampling with
	various algorithms, and HB agging method, where the x -axis
	indicates the ranking order of the average rank of the G_{mean} ,
	the y-axis indicates the average rank of the G_{mean} , and the
	vertical bars indicate the "critical difference"

- 8.3 Comparison of average rank of the F_{value} metric with the Nemenyi test for the state-of-the-art methods in TSC, SPO, under-sampling with various algorithms, and HBagging, where the x-axis indicates the ranking order of the average rank of F_{value} , the y-axis indicates the average rank of F_{value} , and the vertical bars indicate the "critical difference".... 138
- 8.4 Comparison of average rank of the G_{mean} metric with the Nemenyi test for the state-of-the-art methods in TSC, SPO, under-sampling with various algorithms, and HBagging, where the x-axis indicates the ranking order of the average rank of G_{mean} , the y-axis indicates the average rank of G_{mean} , and the vertical bars indicate the "critical difference". 138

List of Tables

2.1	Confusion matrix for a binary classification problem	25
2.2	Experimental data-set characteristics	32
2.3	Imbalanced data-sets	33
2.4	Medical data-sets	33
3.1	Imbalanced data-sets (ordered by $\% P$)	42
3.2	Comparison of the performance of four prediction models	
	based on F_{value} and G_{mean}	44
4.1	Mean rank of Friedman test for error rate of bagging predictors	57
4.2	The results of the Wilcoxon signed-rank test to compare the	
	estimated <i>ErrorRate</i> of bagging and single learners. The	
	significance level is .05	59
5.1	Statistical results of Wilcoxon signed-rank test	69
6.1	Under-sampling technique altering the levels of class distribution	81

6.2	Sampling techniques are used to change each original
	data-set into 9 altered data-sets with 9 levels of class
	distribution for building 9 single and bagging final prediction
	models, respectively. These prediction models produce 9
	pairs (FPR, TPR) to form a <i>ROC</i> curve for single and
	bagging prediction models, respectively
6.3	The statistical results of the Wilcoxon signed-rank test for
	comparison of the G_{mean} performance of bagging and single
	learners. The significance level is .05
6.4	The statistical results of the Wilcoxon signed-rank test for
	comparison of the TPR performance of bagging and single
	learners. The significance level is .05
6.5	The statistical results of the Wilcoxon signed-rank test for
	comparison of the AUC performance of bagging and single
	learners. The significance level is .05
6.6	Mean rank of the Friedman test for G_{mean} performance of
	bagging predictors
6.7	Mean rank of the Friedman test for TPR performance of
	bagging predictors
6.8	Mean rank of the Friedman test for AUC performance of
	bagging predictors
6.9	Average AUC performance of bagging predictors on 14
	imbalanced data-sets
7.1	Compare bagging with each single learner based on Wilcoxon
	signed-rank test on G_{mean} . The significance level is .05 106
7.2	Ranking order of the performance of bagging based on G_{mean}
	and mean ranks

7.3	Best G_{mean} performance prediction models for the natural
	class distribution on individual medical data-sets \ldots
7.4	The best G_{mean} performance of the bagging prediction models
	achieved with altered class distribution on individual data-sets 116
7.5	Comparison of the performance of bagging predictors on
	Breastc and Heart-c data-sets
7.6	Comparison of the performance of bagging predictors on
	Heart-h and StatlogHeart data-sets
7.7	Comparison of the performance of bagging predictors on
	$Diabetes$ and $Sick$ data-sets $\ldots \ldots \ldots$
7.8	Comparison of the performance of bagging predictors on
	WDBC and WBreastc data-sets
8.1	Time series data-sets
8.2	Results of SVM on imbalanced time series data-sets 132
8.3	Comparison of the performance of over-sampling methods,
	under-sampling with various algorithms, and HBagging
	method based on the evaluation metrics F_{value} and G_{mean} 133
8.4	Comparison of the performance of state-of-the-art methods
	in TSC, SPO, under-sampling with various algorithms, and
	HBagging based on evaluation metrics: F_{value} and G_{mean} 137

Abstract

Imbalanced data problems are among the most challenging in Data Mining and Machine Learning research. This dissertation investigates the performance of ensemble learning systems on different types of data environments, and proposes novel ensemble learning approaches for solving imbalanced data problems. Bagging is one of the most effective ensemble methods for classification tasks. Despite the popularity of bagging in many real-world applications, there is a major drawback on extremely imbalanced data. Much research has addressed the problems of imbalanced data by using over-sampling and/or under-sampling methods to generate an equally balanced training set to improve the performance of the prediction models. However, it is unclear which is the best ratio for training, and under which conditions bagging is outperformed by other sampling schemes on extremely imbalanced data.

Previous research has mainly been concerned with studying unstable learners as the key to ensuring the performance gain of a bagging predictor, with many key factors remaining unclear. Some questions have not been well answered: (1) What are the key factors for bagging predictors to achieve the best predictive performance for applications? and (2) What is the impact of varying the levels of class distribution on bagging predictors on different data environments. There is a lack of empirical investigation of these issues in the literature. The main contributions of this dissertation are as follows:

- 1. This dissertation proposes novel approaches, uneven balanced bagging to boost the performance of the prediction model for solving imbalanced problems, and hybrid-sampling to enhance bagging for solving highly imbalanced time series classification problems.
- 2. This dissertation asserts that robustness and stability are two key factors for building a high performance bagging predictor. This dissertation also derives a new method, utilizing two-dimensional robustness and stability decomposition to rank the base learners into different categories for the purpose of comparing the performance of bagging predictors with respect to different learning algorithms. The experimental results demonstrate that bagging is influenced by the combination of robustness and instability, and indicate that robustness is important for bagging to achieve a highly accurate prediction model.
- 3. This dissertation investigates the sensitivity of bagging predictors. We demonstrate that bagging MLP and NB are insensitive to different levels of imbalanced class distribution.
- 4. This dissertation investigates the impact of varying levels of class distribution on bagging predictors with different learning algorithms on a range of data environments, to allow data mining practitioners to choose the best learners and understand what to expect when using bagging predictors.