

 “© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.”

ATTRIBUTE-BASED LEARNING FOR LARGE SCALE OBJECT CLASSIFICATION

Worapan Kusakunniran1,2,5, Shin’ichi Satoh3, Jian Zhang4,5, Qiang Wu4

1The Faculty of ICT−Mahidol University, 2University of New South Wales, 3National Institute of Informatics,
4University of Technology Sydney, and 5National ICT Australia

ABSTRACT

Scalability to large numbers of classes is an important chal-

lenge for multi-class classification. It can often be computa-

tionally infeasible at test phase when class prediction is per-

formed by using every possible classifier trained for each in-

dividual class. This paper proposes an attribute-based learn-

ing method to overcome this limitation. First is to define at-

tributes and their associations with object classes automati-

cally and simultaneously. Such associations are learned based

on greedy strategy under certain conditions. Second is to

learn a classifier for each attribute instead of each class. Then,

these trained classifiers are used to predict classes based on

their attribute representations. The proposed method also al-

lows trade-off between test-time complexity (which grows

linearly with the number of attributes) and accuracy. Exper-

iments based on Animals-with-Attributes and ILSVRC2010

datasets have shown that the performance of our method is

promising when compared with the state-of-the-art.

Index Terms— Large scale object classification,

attribute-based learning, greedy strategy, Bayes’ rule,

sublinear complexity

1. INTRODUCTION

Classification with a large number of classes becomes more

important in the computer vision community. This is because

image collections have been significantly growing over time.

Meanwhile, the standard one-vs.-all strategy [1] can be ineffi-

cient in large scale multi-class classification, because its test-

time complexity grows linearly with the number of classes.

Recently, several methods [2][3][4][5][6][7][8] have been

proposed to address sublinear testing cost for large multi-

class tasks. All these methods rely on a tree-based learning.

In particular, Bengio et al. [2] proposed an algorithm for

learning a label tree of classifiers by optimizing the overall

tree loss. Each node of the label tree consisted of a subset of

class labels and its corresponding linear classifier. In the clas-

sification phase, a given test image started at the root node

which contained all class labels, traveled down the tree where

a decision was made at each node to determine which branch

to follow, and ended at a leaf node which contained a single

class label.

For a well balanced tree, the test-time complexity can be

reduced from O(DK) to O(D log K) where D is the fea-

ture dimension and K is the number of classes. The method

[2] has been demonstrated to outperform the other tree-based

methods including Conditional Probability Tree (CPT) [3]

and Filter Tree (FT) [4]. However, it also has several limita-

tions [6]. First, sets of class labels in any two nodes at a same

depth of the tree are disjoint. This can sensitively lead to a

misclassification when closely related classes are assigned to

different nodes at a top layer of the tree. Second, the tree can

be unbalanced, which will lead to a suboptimal complexity.

To improve the performance of the method in [2], Deng

et al. [6] proposed an algorithm for learning an efficient la-

bel tree, which has been shown to be the state-of-the-art. The

method [6] simultaneously determined the tree structure and

learned the classifiers for the tree nodes. It allowed overlap-

ping of class labels among children of each node. This re-

sulted in an efficient optimization. It also allowed precise con-

trol of the trade-off between accuracy and efficiency, which

can guarantee balanced trees.

Although the tree-based learning has been reported to be

successful in reducing test-time complexity for large scale ob-

ject classification, it is limited to several practical constraints.

First, the tree-based methods cannot be further speeded up by

using parallel computing which is a very important and useful

methodology to solve a computational problem in real appli-

cations. In practice, parallel computing is a way to perform

multiple processes simultaneously by using multiple compute

resources. Since the tree-based methods rely on a hierarchi-

cal structure, multiple classifiers cannot be applied in parallel

on a given test image, but in sequence. This is because a se-

lection of classifier used in each level of the tree depends on a

decision making of classifier used in previous level of the tree.

Second, the tree-based methods consume expensive memory

for storing and loading all classifiers at all nodes of the tree in

test phase. All classifiers must be presented because it cannot

be known beforehand that which classifiers will be used for

each given test image. Based on our investigation, the total

number of classifiers for each tree is ≥ K (= K for a well

balanced tree), where K is the total number of classes. This

can cause a trouble in memory consumption when K is very

large and/or a tree structure is heavily unbalanced.

To avoid these limitations, this paper proposes a new solu-

tion from different perspective using an attribute-based learn-

ing. It is also shown to achieve comparable performance to

the state-of-the-art (i.e. the balanced label tree) [6] regard-

ing sublinear test-time complexity and accuracy. However,

��������	
����
�������

�
��

�
����
�
��
�����
�

��
����	
������������
�
��

�
�����
�
���
��������
�

�
�����	
��������
��
���
��������
�

��������
����
�
��������������

Fig. 1. Attribute-based learning for large scale object classification.

our method can be more flexible and preferable for real ap-

plications. This is because its efficiency can be practically

enhanced by using parallel computing. Since same classifiers

are known beforehand to be used for any test image, multiple

classifiers can be applied in parallel on a given test image. Be-

sides, a total number of classifiers used in our attribute-based

learning (≤ K) is less than used in the tree-based learning

(≥ K) for all cases. Thus, our method will consume less

memory for storing and loading classifiers in test phase.

Fig. 1 shows the framework of the proposed method. A

concept of attribute-based classification is adopted for this

study to reduce test-time complexity. In previous works

[9][10], it was applied for different purpose to detect unseen

object classes. Moreover, our method will make significant

difference in learning attribute representation by using visual

correlations between classes instead of manual human efforts

as in [9] or semantic relatedness as in [10]. This makes at-

tributes more related to visual information in images and se-

quentially leads to the better classification.

Our framework contains three main steps in the training

process, as shown in the first three rectangles of Fig. 1. The

first step is to compute a similarity matrix (S) based on one-

vs.-all classification using training and validation datasets.

The matrix S represents correlations between different object

classes. Then, the second step is to build up relations between

classes and attributes which are virtually defined based on S.

Object classes are represented by different sets of attributes

and each attribute may belong to several related classes. The

third step is to learn a classifier for each attribute instead of

each object class. In this way, classes are associated with the

trained classifiers by using their attribute representations.

Afterwards, at test phase, the per-attribute classifiers are

applied to generate predictions of attribute values for each test

sample. The final prediction score of the test sample against

each class is calculated from the relevant attribute values.

Based on our proposed method, it can be seen that the test-

time complexity grows linearly with the total number of at-

tributes (M) instead of the total number of classes (K). Thus,

M can be selected to be much less than K, in order to signif-

icantly reduce the complexity.

The rest of this paper is organized as follows. Attribute-

based classification is explained in section 2. Constructions

of correlations between different classes and associations be-

�� �� ��

�� �� ��

��
� ��

�

�

�	��
�� �	��
��

Fig. 2. Direct Attribute Prediction (DAP) for attribute-based classification.

z1, ..., zK are K object classes. a1, ..., aM are M attributes. ak
m is an

association between zk and am. p(am|x) is a posterior probability of that

am being present in an image x, which is estimated from a classifier for am.

tween classes and attributes are proposed in section 3. Ex-

perimental results are shown in section 4 and conclusions are

drawn in section 5.

2. ATTRIBUTE-BASED CLASSIFICATION

Given that there are total M attributes (a1, a2, ..., aM), each

class k (zk) is represented by a set of attributes Ak =
[ak

1
, ak

2
, ..., ak

M] where ak
m (1 ≤ m ≤ M) is a binary num-

ber. ak
m = 1 means zk is associated with am, otherwise zk

is not associated with am. Fig. 2 shows the Direct Attribute

Prediction (DAP) suggested by [9]. Attributes are used as in

between layer to decouple images from layer of class labels.

In this study, the probabilistic formulation of the DAP in

[9] is adopted and revised for our attribute-based classifica-

tion. It starts by learning a probabilistic classifier βm for each

attribute am. βm is trained by using images of all classes k
for which ak

m = 1 as positive training samples and the rest

as negative training samples. In this way, βm can provide a

posterior probability p(am|x) of that am being present in an

image x.

βm models the relation between an image x and an at-

tribute am. Next is to consider the relation between an at-

tribute am and a class zk, based on Bayes’ rule as:

p(zk|am) =
p(am|zk)p(zk)

p(am)
=

ak
m

p(am)K
(1)

where p(zk) = 1/K by assuming identical class priors, and

p(am|zk) = ak
m which represents the association between an

attribute am and a class zk.

Then, the posterior probability of a class k given an image

x can be calculated as:

p(zk|x) =
M
∑

m=1

p(zk|am)p(am|x) =
1

K

M
∑

m=1

ak
m p(am|x)

p(am)
(2)

where p(am) = 1

K

∑K

k=1
ak

m by empirical means over all

classes. Equivalently, p(zk|x) can be estimated in the product

form as suggested by [9] as:

p(zk|x) =
M
∑

m=1

p(zk|am)p(am|x) =
1

K

M
∏

m=1

(

p(am|x)

p(am)

)ak

m

(3)

where p(am) can be approximated by the empirical means or

set to 0.5 [9]. Based on our experiments, equations (2) and

(3) yield comparable performances.

Therefore, the best output class label (̂k) for an image x is

predicted as:

̂k = argmax
1≤k≤K

p(zk|x) (4)

where p(zk|x) is obtained from equation (2) or (3). By

contrast, the standard one-vs.-all classification [1] predicts

p(zk|x) by using the trained per-class classifiers.

Challenge. The remaining challenge is to construct the

associations between classes and attributes (ak
m). The method

in [9] uses manual human judgments to seek out the relative

strength of these associations. The attributes represent high-

level descriptions of object classes such as colors and geomet-

ric patterns. To reduce this dependency on human labeling ef-

fort, the method in [10] performs mining such associations by

measuring their semantic relatedness using linguistic knowl-

edge bases including WordNet, World Wide Web and Web

Image Search.

The methods in [9][10] estimate the associations without

using any visual information from training image samples.

This is because they learn to detect unseen object classes,

and thus image samples of test classes are not available in the

training process. They also use pre-defined attributes, while

our method will automatically learn attributes based on cor-

relations between classes. These lead to the following limita-

tions. First, some high-level concepts describing attributes in

[9][10] such as ‘smelly’, ‘fast’, ‘active’ and ‘strong’ are unre-

lated/weakly related to visual information in images. Second,

85 attributes are used for 50 classes [9][10]. This cannot re-

duce the test-time complexity in our study because M > K.

On the other hand, this paper does not deal with the prob-

lem of unseen object classes. Thus, training samples of all

classes will be used as a basis to virtually define attributes

and their associations with object classes (see section 3).

3. ATTRIBUTE REPRESENTATION

In this paper, attributes are not used to explicitly represent the

high-level descriptors as in [9][10]. Instead, they are learned

from relations between object classes. We define a matrix

A ∈ {0, 1}K×M to represent the associations between M
attributes and K classes. The matrix A can be written in three

different forms as:

A =











a1

1
. . . a1

M

.

.

.
aK
1

. . . aK
M











= [A1, A2, ..., AK]T = [B1, B2, ..., BM] (5)

where Ak is a set of attributes representing a class zk such

that Ak = [ak
1
, ak

2
, ..., ak

M] ∈ {0, 1}1×M , Bm is a set

of classes representing an attribute am such that Bm =
[a1

m, a2

m, ..., aK
m]T ∈ {0, 1}K×1, and A(k,m) = ak

m repre-

senting the association between zk and am. As mentioned in

section 2, zk is associated with am when ak
m = 1, while zk is

not associated with am when ak
m = 0.

Moreover, to reduce the test-time complexity, M must be

less than K. However, since attributes are in the binary forms,

M ≥ ⌈log2 K⌉ in order to differentiate all K classes. Thus,

the optimal complexity of our method grows by O(log K),
which is equivalent to the complexity of the perfect balanced

tree. M can be selected empirically by trading-off between

test-time complexity and accuracy.

Basically, classes that share the same attribute should be

highly related. Thus, the matrix A will be determined based

on the similarities between object classes using the greedy

strategy [11] under certain conditions. This section will dis-

cuss three issues: 1) measurement of such similarities (see

section 3.1); 2) conditions for the matrix A (see section 3.2);

3) construction of the matrix A (see section 3.3).

3.1. Correlations between different classes

We define a matrix S ∈ ℜK×K to represent similarities be-

tween object classes. S(i, j), 1 ≤ i, j ≤ K, is the similarity

of class zj to class zi, which can be measured from proba-

bility scores of that samples of class zj being predicted as

belonging to class zi. In this way, the matrix S will be ob-

tained based on one-vs.-all classification in the training pro-

cess, which can be done offline beforehand.

Given a training dataset, a classifier αk is learned for each

class zk. Thus, αk can provide a posterior probability p(zk|x)
of that an image x being predicted as belonging to class zk.

Then, the trained per-class classifiers are applied on a valida-

tion dataset containing image samples of all classes. S(i, j)
is computed as:

S(i, j) =

∑N
n=1

p(zi|xn,j)

N
(6)

where xn,j is image sample n of zj on the validation dataset.

3.2. Conditions for attribute representation

In this study, the attribute representation must be constructed

under the following five conditions.

C1: No identical sets of attributes representing different

classes (i.e. Ai and Aj are not identical for any 1 ≤ i, j ≤ K
and i 6= j). In order to differentiate all classes, their attribute

representations must be different.

C2: No identical sets of classes describing different at-

tributes (i.e. Bm and Bn are not identical for any 1 ≤ m, n ≤
M and m 6= n). Otherwise, it will lead to duplicated clas-

sifiers which will increase test-time complexity without addi-

tional benefit.

C3: No subset among sets of attributes representing dif-

ferent classes (i.e. Ai should not be a subset of Aj for any

1 ≤ i, j ≤ K and i 6= j). This is to avoid a bias classification

based on equations (2) and (4). Ai is a subset of Aj if and

only if there is at least one attribute am (1 ≤ m ≤ M) such

that aj
m = 1 and ai

m = 0 and there is not any attribute an

(1 ≤ n ≤ M) such that ai
n = 1 and aj

n = 0.

C4: Each class must be associated with at least one at-

tribute. That is, for any Ai (1 ≤ i ≤ K), there is at least one

attribute am (1 ≤ m ≤ M) such that ai
m = 1.

Algorithm 1 Construction of the associations between K
classes and M attributes

Input: The similarity matrix S ∈ ℜK×K

Output: The between-class attribute associations A ∈ {0, 1}K×M

1: Initialize all elements in A to be 1

2: while (max number of loops is not reached AND there is a change in A)

3: {
4: A = prune(A, S), A = subset(A, S)
5: }
6: return A

Algorithm 2 prune(...)
Input: The matrices A and S
Output: The updated version of A

1: while (there is a change in A)

2: {
3: for (each zk)

4: {
5: min.sim = 2
6: for (each am such that A(k, m) = 1)

7: {
8: sk

m = similarity(A, S, k, m)
9: if (set ak

m = 0 then C1,C2,C4,C5 are

10: held AND sk
m < min.sim)

11: {
12: min.sim = sk

m, min.attr = m, min.class = k
13: }
14: }
15: if(min.sim < 2)
16: A(min.class, min.attr) = 0
17: }
18: }
19: return A

C5: Each attribute must be associated with at least one

class. That is, for any Bm (1 ≤ m ≤ M), there is at least one

class zk (1 ≤ k ≤ K) such that ak
m = 1.

3.3. Associations between classes and attributes

At this stage, the associations between classes and attributes

(i.e. A) are constructed using the similarity matrix S based on

the greedy strategy [11] under the certain conditions (i.e. C1-

C5), as shown in algorithms 1, 2, 3 and 4. Given K classes,

the number of attributes M can be selected by trading-off

between accuracy and efficiency (i.e. test-time complexity).

The larger M will lead to higher accuracy but lower effi-

ciency. This will be verified in our experiments.

Algorithm 1 presents the main function. It performs iter-

ation on two key steps including prune(...) and subset(...).
First, all elements in the matrix A are initialized to be 1. That

is, each class is initially associated with all attributes. Then,

unnecessary associations are removed in prune(...), and sub-

sets among Ai are eliminated in subset(...). The while loop

is performed to seek out the optimum.

Algorithm 2 presents the function prune(...) to iteratively

remove weak associations under the conditions C1, C2, C4

and C5. In the function, min.sim represents relative strength

Algorithm 3 subset(...)
Input: The matrices A and S
Output: The updated version of A

1: while (there is a change in A)

2: {
3: for (each Ak is a subset of others Ai)

4: {
5: max.sim = −1
6: for (each am such that A(i, m) = 0)

7: {
8: sk

m = similarity(A, S, k, m)
9: if (set ak

m = 1 then C1,C2,C4,C5 are

10: held AND sk
m > max.sim)

11: {
12: max.sim = sk

m, max.attr = m, max.class = k
13: }
14: }
15: if(max.sim > −1)
16: A(max.class, max.attr) = 1
17: }
18: }
19: return A

Algorithm 4 similarity(...)
Input: The matrices A and S, the class label k, and the attribute label m
Output: The relative strength sk

m of the association between class zk and

attribute am

1: B = {b | A(b, m) = 1 AND b 6= k}

2: sk
m =

∑NB

i=1
[S(k, B(i)) + S(B(i), k)]/[2 × NB]

3: where NB is the number of class labels in B
4: return sk

m

of the weakest association between attribute min.attr and

class min.class. For each existing association (A(k,m) =
1), the function similarity(...) is used to calculate the rela-

tive strength (sk
m) between class zk and all other classes shar-

ing the same attribute am, where sk
m ∈ [0, 1]. By greedy

technique, the weakest association of each class is eliminated

(A(min.class,min.attr) = 0), under which the matrix A
still can hold the conditions C1, C2, C4 and C5. The while
loop is repeated till there is no more unnecessary associations

between classes and attributes.

Algorithm 3 presents the function subset(...) to reduce

subsets among Ai as described in the condition C3, by adding

more associations as needed under the conditions C1, C2, C4

and C5. In the function, max.sim represents relative strength

of the strongest association between attribute max.attr and

class max.class that can help in removing a subset. To cut

off any subset (i.e. Ak is a subset of others Ai), we need to

find attribute am which is not associated with any class zi (i.e.

ai
m = 0) and then link it to class zk by setting ak

m = 1. By

greedy technique, one of such associations that has the maxi-

mum relative strength is added (A(max.class,max.attr) =
1). The while loop is repeated till there is no more subset that

can be removed.

Algorithm 4 presents the function similarity(...) to es-

timate the relative strength (sk
m) of the association between

class zk and attribute am. In this study, attribute am is pre-

sented by the set of classes. Thus, sk
m can be equivalently

calculated from correlations between class zk and all other

classes that share the same attribute am.

4. EXPERIMENTS

In our experiments, two datasets are used to evaluate the per-

formance of the proposed method, which include 1) Animals-

with-Attributes (AwA) [9] and 2) ILSVRC2010 [12]. Be-

sides, classifiers are trained based on RBF-SVM [13].

4.1. AwA

AwA is used to: 1) roughly expose implicit high-level con-

cepts of attributes; and 2) clearly demonstrate trade-off be-

tween accuracy and efficiency of the proposed method. It

consists of 30475 images from 50 animal classes. We use

20 % for training, 10 % for validation, and the rest 70 % for

testing. The provided pre-computed features are used in our

experiments, which include RGB color histograms, local self-

similarity histograms, SIFT, rgSIFT, PHOG, and SURF. Thus,

the total feature dimension is 10940.

4.1.1. Implicit high-level concepts of attributes

In this paper, attributes are represented by using sets of

classes, without any pre-defined explicit high-level concept as

used in [9][10]. Instead, they are obtained through the learn-

ing processes as explained in sections 3.1, 3.2 and 3.3. How-

ever, to reveal high-level meanings of our learned attributes,

they can be implicitly matched against high-level concepts by

investigating common visual features among classes sharing

the same attribute.

As an example, we discuss three attributes (a1, a2, a3)

learned by using our method on AwA dataset where a total

number of attributes is 20. a1 is associated with classes ‘dal-

matian’, ‘siamese cat’, ‘skunk’, ‘chihuahua’, ‘weasel’. a2 is

associated with classes ‘persian cat’, ‘siamese cat’, ‘hamster’,

‘chihuahua’, ‘rat’, ‘weasel’, ‘mouse’. a3 is associated with

classes ‘gorilla’, ‘chimpanzee’, ‘giant panda’.

a1 can be linked to concepts of ‘black’ and ‘white’. How-

ever, ‘panda’ and ‘zebra’ also contain black and white col-

ors but do not share a1 because global shape structure of

‘panda’ and stripe pattern of ‘zebra’ are too different from

other classes sharing a1. a2 can be linked to concepts of

‘whisker’, ‘triangular ears’, ‘big eyes’, and ‘small’. Other

classes such as ‘lion’, ‘tiger’ and ‘bobcat’ do not share a2, al-

though they also have whisker, triangular ears, and big eyes.

This is because their size is big. a3 can be linked to concepts

of ‘black’, ‘tree’, and ‘big’. The class ‘spider monkey’ is also

one type of monkeys as similar to ‘gorilla’ and ‘chimpanzee’,

but it does not share a3. This is because its main colors are

brown and grey and its size is small.

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

A
c
c
u
ra

c
y
 (

%
)

Test time (minutes)

Fig. 3. The trade-off between the test-time and the accuracy using the

proposed method.

Many concepts mentioned above such as ‘black’, ‘white’,

‘small’, ‘big’, ‘tree’ are also used in [9][10]. Moreover, as

discussed in this section, it can be seen that each attribute can

be well linked to multiple high-level concepts. In contrast,

each attribute in [9][10] is represented by a single high-level

concept. This is the main reason why the methods in [9][10]

use M(= 85) > K(= 50). In our study, M < K in order

to reduce test-time complexity. Thus, each attribute must be

implicitly linked to multiple high-level concepts.

4.1.2. Trade-off between accuracy and efficiency

Since this dataset contains K = 50 classes, the minimum

number of attributes is ⌈log2 50⌉ = 6. In this section, exper-

iments have been carried out based on 10 different numbers

of attributes (i.e. M = 6, 10, 15, 20, 25, 30, 35, 40, 45,

50). Figure 3 illustrates the trade-off between the test-time

and the accuracy. It can be seen that the accuracy grows faster

than linear (i.e. approximately polynomial) with the test-time

which only grows linearly with the number of attributes.

When M = K (i.e. 50 attributes for 50 classes), the pro-

posed method is equivalent to the one-vs.-all classification [1]

regarding both accuracy and test-time complexity. The one-

vs.-all scheme has been confirmed to be as accurate as any

other more complicated schemes [1]. So, it is used as a base-

line in this study.

In our method, a proper M can be selected to significantly

reduce test-time complexity but only slightly reduce accuracy

when compared with the one-vs.-all strategy. Two examples

are shown in Figure 3. In the first example shown as the green

dashed lines, when M ≈ 35, the test-time complexity is re-

duced by 30 % but the accuacy is reduced by 2% only. In the

second example of a better efficiency shown as the red dashed

lines, when M ≈ 30, the test-time complexity is reduced by

almost 50 % but the accuacy is reduced by just 4 %. However,

selecting the number of attributes can be properly decided by

programmers based on natures of applications and datasets.

4.2. ILSVRC2010

ILSVRC2010 is used for a fair comparison with the state-of-

the-art [6] on large scale object classification. It includes a

large number of classes i.e. 1k classes, which contains 1.2M

images for training, 50k images for validation, and 150k im-

Table 1. Large scale object classification on ILSVRC2010.

Method
Case 1 Case 2 Case 3

Accuracy (%) Test speedup Accuracy (%) Test speedup Accuracy (%) Test speedup

Label tree [2] 8.33 10.3 5.99 15.2 5.88 9.3

Balanced label tree [6] 11.90 10.3 8.92 18.2 5.62 31.3

The proposed method 12.13 10.3 8.07 18.2 5.81 31.3

ages for testing. We use the pre-computed SIFT on a 10k

entry codebook and use a two level spatial pyramid (1x1 +

2x2) to obtain a 50k dimensional feature vector.

As shown in Table 1, the proposed method is compared

with the efficient label tree-based methods [2][6]. The method

in [6] has been shown to achieve state-of-the-art performance

in testing for large scale object classification. We follow the

same experiments as in [6]. There are three different cases

where test speedups are 10.3, 18.2, and 31.3 respectively. The

test speedup is defined as the speedup of the test cost com-

pared to the baseline (i.e. one-vs.-all classification). In our

method, given a test speedup (t), M = K/t. Thus, our ex-

periments have been carried out based on the three cases by

using three different numbers of attributes which are 97, 55,

and 32 respectively.

From Table 1, it can be seen that the performance of the

proposed method is comparable to the state-of-the-art [6].

Thus, our method can be considered as an efficient alterna-

tive to the tree-based methods, and it can be more preferable

in real applications due to practical advantages as mentioned

in the introduction. That is, the test speedup of our method

can be further improved by using parallel computing. Also,

our method uses much smaller number of classifiers in test

phase. This leads to smaller memory consumption for stor-

ing and loading the classifiers. In the proposed method, the

number of classifiers (C) equals to the number of attributes.

Thus, we use 97, 55, and 32 classifiers in cases 1, 2, and 3

respectively.

On the other hand, in the tree-based methods [2][6], C
equals to the number of nodes in the tree which varies on the

number of children (Q) for each node and the maximum depth

(H) of the tree. For a well balanced tree, C ≈
∑H

h=1
Qh.

Two parameters Q and H are fixed in the experiments [2][6]

as case 1: Q = 32, H = 2, case 2: Q = 10, H = 3, and case

3: Q = 6, H = 4. Thus, they use approximately 1056, 1110,

and 1554 classifiers in cases 1, 2, and 3 respectively.

5. CONCLUSION

This paper has proposed a new framework for large scale ob-

ject classification by using attribute-based learning. Object

classes are represented by sets of attributes which are virtually

defined in a middle layer between class labels and images.

Associations between attributes and classes are learned by us-

ing classical greedy strategy based on correlations between

classes. Then, per-attribute classifiers are trained instead of

per-class classifiers as in standard one-vs.-all scheme. Finally,

the trained classifiers are applied on a test image to predict its

class label based on the learned attribute representations. In

order to reduce test-time complexity, a number of attributes

can be selected to be less than a number of classes. That is,

trade-off between test-time complexity and accuracy can be

precisely carried out. Experimental results have demonstrated

efficiency of the proposed method compared to the existing

methods based on tree structure.

6. REFERENCES

[1] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”

Journal of Machine Learning Research, vol. 5, pp. 101–141, January

2004.

[2] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for

large multi-class tasks,” Canada, December 2010, Advances in Neural

Information Processing Systems (NIPS), pp. 163–171.

[3] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl,

“Conditional probability tree estimation analysis and algorithms,”

Canada, June 2009, Conf. on Uncertainty in Artificial Intelligence, pp.

51–58.

[4] A. Beygelzimer, J. Langford, and P. Ravikumar, “Multiclass classifica-

tion with filter trees,” Preprint (June 2007).

[5] J. Deng, A. Berg, K. Li, and L. Fei-Fei, “What does classifying more

than 10,000 image categories tell us?,” Greece, September 2010, Euro-

pean Conf. on Computer Vision, pp. 71–84.

[6] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei, “Fast and balanced:

efficient label tree learning for large scale object recognition,” Spain,

December 2011, Advances in Neural Information Processing Systems

(NIPS), pp. 567–575.

[7] G. Griffin and P. Perona, “Learning and using taxonomies for fast visual

categorization,” United States of America, June 2008, IEEE Int. Conf.

on Computer Vision and Pattern Recognition, pp. 1–8.

[8] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: a

large data set for non-parametric object and scene recognition,” IEEE

Tran. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp.

1958–1970, November 2008.

[9] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect un-

seen object classes by between-class attribute transfer,” United States

of America, June 2009, IEEE Int. Conf. on Computer Vision and Pat-

tern Recognition, pp. 951–958.

[10] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele, “What

helps where - and why? semantic relatedness for knowledge transfer,”

United States of America, June 2010, IEEE Int. Conf. on Computer

Vision and Pattern Recognition, pp. 910–917.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, chapter 16, MIT Press, 3rd edition, July 2009.

[12] A. Berg, J. Deng, and L. Fei-Fei, “Imagenet large scale visual

recognition challenge 2010,” http://www.image-net.org/

challenges/LSVRC/2010/.

[13] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,

vol. 2, no. 3, pp. 27:1–27:27, 2011, Software available at http://

www.csie.ntu.edu.tw/˜cjlin/libsvm.

