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Abstract 

Predicting probabilities of marketing events and choices is a primary activity in marketing. 

Prediction can be from the outcome of a formal model or one’s knowledge but the two sources 

often conflict. Although overwhelming evidence has demonstrated that models often outperform 

people in terms of accuracy, there is little doubt that decisions are made mostly by people based 

on their own knowledge. Past research suggests that models and intuition should work together 

for better outcomes but it is unclear how this may be accomplished other than by using “plain 

vanilla” style Decision Support Systems (DSSs).  

 

This researcher adopted an alternative approach and believes that the key to solving this problem 

is to improve people’s own knowledge. To do so, people need to gain a substantive understanding 

of a reliable model to improve predictions. Four generalisable model-learning approaches based 

on concepts from learning theories in psychology and cognitive science were developed and tested 

in an experiment to ascertain which approach was more effective in helping learners develop an 

understanding of the model’s parameters and to improve their consequent predictions. The 

experiment was supported by an online Intelligent Support System (ITS) with both learning 

approaches and a target model built in. This target learning model is a consumer choice model of 

airline flights. The system evaluates predictions, estimates learner models, and classifies answers. 

Moreover, it provides real-time feedback matching the design of each learning approach. 

 

According to the results, the most effective approach for both model learning and prediction 

improvement is a learning approach generating outcome feedback with correct answers after each 

experimental design controlled training task. This finding disagrees with a common view of 

multiple cue probability learning (MCPL). Having regard for effectiveness, the above learning 

approach is followed by an approach showing feedback with a comparison of estimated learner 
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model and target model outcomes on all parameters. Both approaches outperformed the approach 

where learners performed self-regulated learning in a DSS which is actually the status quo of decision 

support nowadays. Another approach tested was to learn a model for a consumer class from the 

similarities of classes. This approach achieved slow improvement but can be further refined.  

 

In conclusion, this research opens a new path for prediction improvement by combining a learning 

approach, and methods and technology for experimental design, ITS and DSS. 
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Chapter 1  Introduction 

1.1 Background and Motivation 

1.1.1 Overview 

Predicting probabilities of events occurring is challenging and important. As best put by Winkler 

(1996, p.1), “since probability is the mathematical language of uncertainty, it is natural in modelling inferential 

and decision-making problems to represent our uncertainty in terms of probabilities”. It is not hard to see that 

asking people to predict the probability of an event occurring is to assess their degree of belief in, 

or uncertainty towards, these events in quantitative form. For example, economists forecast likely 

movements in the economy and make recommendations based on those forecasts to government 

and organisations to determine policies. Doctors assess the risks and predict likely consequences 

for patients arising from the application of certain treatments. Examples of where probability 

predictions are made explicitly or implicitly can be found in all aspects of life. In marketing, 

practitioners constantly face situations of decision making in uncertain environments. Consumers 

also make decisions in purchasing all manner of goods and services from small items to large 

investments such as a house. Learning to effectively and accurately predict probabilities of certain 

occurrences may reduce the risk of making poor, or even wrong, decisions.  

 

To make predictions, one either has to apply an inductive approach by closely observing the 

frequency of occurrence of events so as to establish the probabilities of their recurrence, or else 

has to understand the underlying model determining outcomes to make effective predictions based 

on expected probabilities deductively. This researcher is particularly interested in approaches that 

best support the second type of predictions, that is, learning a model. Although the first approach 

may be an approach of choice in predicting simple events, in predicting events influenced by, or 

associated with, other more complex phenomena, it is difficult if not impossible to take an 
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inductive approach because observed frequencies are often not available for the making of 

inferences. Studying how people predict and learn probabilistically is hardly a new research topic. 

What is new in this research is the identification of a direction that can most effectively facilitate 

learning by people from a complex discrete choice model so as to make probability predictions on 

a discrete number of choice options when these options vary. This research applies a new type of 

experiment which treats model learning, task training, feedback and other elements all through an 

intelligent tutoring system free from intervention by human trainers.  

1.1.2 Bridging the Gap between Predictions by People and Models 

Considering how people learn to predict probabilities and how to evaluate their predictions, 

abundant research has been conducted on this and related topics in psychology, judgment and 

decision making (JDM), and social judgment theory (SJT) (e.g. Bower & Hilgard 1981; Camerer & 

Johnson 1997; Cooksey 1996). For example, Estes and other psychologists developed learning 

theories articulating associations between recurring situations and subsequent events in probability 

learning (Estes 1950; Estes & Burke 1953; Estes 1972). Decision theory researchers and 

statisticians discussed and tested many “scoring rules” on how to measure people’s probability 

predictions (Friedman 1983; Gneiting & Raftery 2007; Nau 1985; Winkler 1996; Winkler & 

Murphy 1968). Hammond and others studied probability learning based on single and multiple 

cues (Cooksey 1996; Hammond & Stewart 1975). In related fields to probability predictions, Meehl 

and others compared predictions made by experts and models in different problem areas and 

concluded that models overwhelmingly outperformed people on accuracy (e.g. Dawes 1971; 

Goldberg 1970; Grove et al. 2000; Meehl 1954). Tversky and Kahneman (1974) initiated the trend 

to study heuristics and bias that influences people’s judgment process. These theories on 

probability learning and related fields provide a solid foundation to guide empirical studies in 

various fields including marketing. For example, Meyer’s study on learning multi-attribute 
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judgment policies is theoretically based on a multiple-cue probability learning (MCPL) approach 

under SJT (Meyer 1987).  

 

As distinct to studying people’s probability prediction activities, advancements in computers and 

other technologies bring with it an enormous capacity and capability for research to discern 

probabilistic data from the resources available. This area of research covers model estimation, 

predictive learning in computer science and artificial intelligence, and data mining (Cherkassky & 

Mulier 2007). In marketing, learning from data has become increasingly popular, performing well 

in areas such as forecasting, product and price optimisation, and consumer studies (e.g. Dzyabura 

& Hauser 2011; Lilien & Rangaswamy 2002). Availability of large databases such as scanner panel 

data and survey data also make learning and predicting possible. Apart from these examples, in 

various operations certain problems may be supported by imperfect information, while certain 

problems may require a large budget to process, and certain problems can only be solved on a 

sequential, step by step basis. In solving these classes of problems, learning from data plays an 

important role (Powell & Ryzhov 2012).  

 

Looking at the foregoing streams of research, it is not difficult to see that there exists a gap between 

probability predictions made by people using knowledge they possess and those predictions made 

by models gained from data computation and analysis. For example, the probability of consumers 

choosing a product at a certain price level can be intuitively predicted by marketers. Such choice 

can also be predicted from sales and research data. In reality, the two predictions can be quite 

different. In this case, which prediction should a company rely on? This problem is not simply a 

matter of trust, but relates to reasoning and sources of disagreement behind the two approaches. 

For example, people do not use every piece of information as do models and apply shortcuts or 

“configural rules” in the predictions (Camerer & Johnson 1997). On the other hand, models can 
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outperform humans in prediction accuracy because models can represent relationships of variables 

more efficiently, even if relationships are not represented accurately (e.g. Grove et al. 2000; Hastie 

& Dawes 2001). One of the common thoughts among researchers seems to be: even though 

people are not as accurate as models for various reasons, they can benefit from models as decision 

aids to improve their own predictions. This belief that people can improve their predictions via learning 

from models is the fundamental premise of this research. 

 

In marketing, this gap remains problematic in both theory and practice waiting for a better solution 

(Hoch & Kunreuther 2001; van Bruggen & Wierenga 2010). Some researchers have made their 

positions on this quite clear. For example, Blattberg and Hoch (1990) suggested that the ideal 

strategy is to apply both people’s intuition and the model in predictions and overall decision 

making. Dhir (2001) stressed the importance of managers to have a “convergent understanding” 

of models by focusing on the reasoning behind these models. The reality is, even though models 

may generate more accurate predictions than people, decisions are still largely made by decision 

makers themselves based on their own experiences. This is widely acknowledged from studies 

performed on managers at various levels (e.g. Burke & Miller 1999; Covin, Slevin & Heeley 2001; 

Vanharanta & Easton 2010; Woiceshyn 2009). Studying how to best improve decision-makers’ 

judgments by learning from models may be as important as studying the models themselves. In 

principle, since decisions are made by decision makers, the quality of decisions is determined by 

the decision makers’ own mental models. Therefore, the contribution made from an external 

model to the quality of a decision is equivalent to the degree of influence by the model on the 

decision maker. 

 

Few researchers in marketing so far have started to think carefully about training people in the use 

of models. An example is the study by Kayande et al. (2009) where training features were built into 
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decision support systems to teach users. However, research on decision support systems often 

limits itself to particular problems or features, hence its findings may not be widely applicable or 

suited to generalisation. Certainly practical features can improve the effectiveness of a system, 

although it is more important to identify theoretical directions which may lead to future 

developments to broaden the role that a decision support system can play. For example, some 

directions can be deduced from learning theories, progress made in model estimation, statistical 

learning and other areas. Meyer’s study on multi-attribute learning suggests a useful direction in 

applying learning theories in multi-attribute probability predictions (Meyer 1987). Dzyabura and 

Hauser’s (2011) study on learning consumer decision rules is supported by algorithms developed 

from machine learning.  

 

In light of the foregoing, this research aims to narrow the gap between probability predictions 

made by people and by models. This is done by identifying the most effective model learning 

approach which can maximise learners’ understanding of target models and increase the accuracy 

of their predictions. In building these approaches for testing, learning approaches, prediction 

evaluation, model estimation and classification are applied through an intelligent tutoring system. 

This research is not about particular design features such as graphic user interfaces or the 

visualisation of certain information. The learning approaches tested are driven by underlying 

theories. The objective is to identify effective ways for people to learn to operate a model and 

make better predictions. This researcher believes, until a direction is identified to effectively train 

people on models, a gap between the two sources of predictions based on probabilities will remain, 

and judgments and decisions by people and models will be inevitably disparate, if not conflict.  
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1.2 Research Problem and Research Hypotheses 

Section 1.1 explained the background of the present research and the researcher’s motivation in 

conducting it. This section provides a more detailed discussion of the research problem and 

hypotheses. At the outset, the research problem is stated as follows:  

What is the most effective approach for training people to gain a substantive understanding 

of a model in making accurate predictions of related probabilities? 

 

The study tests four model-learning approaches. Testing these approaches is effected in an online 

experiment using an intelligent tutoring system. The system has real-time evaluation, model 

estimation, classification and feedback generation capacities without the need for human 

intervention. A learner can work directly with the system to perform model learning and 

probability prediction in training tasks. The learning environment includes instructions and 

feedback processes that are designed specifically for each training approach. Learners are asked to 

study a particular model and learn how to make probability predictions according to the model’s 

rules of operation. The learners interact with the system by receiving information, instructions and 

trial tasks. They then make a series of probability predictions dependent on the state of their 

learning of the target model. The system performs evaluations, estimations or classifications 

depending upon the particular experimental conditions imposed. The object is to identify the 

approach that causes learners to successively improve both prediction accuracy and model learning 

through the course of the experiment. By analysing data gained from the experiment, the most 

effective approach can be identified. 

 

The type of model selected to empirically test this research problem is the discrete choice model 

(DCM) applied to consumer choices in a selected product category (cross-country airline travel). 

The reasons for selecting DCM for this study are threefold. First, DCMs are well developed both 
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theoretically and practically. They are an important tool in marketing science where new research 

proliferates. Second, the consumer choice problem is a complex phenomenon and there are 

various possibilities related to how consumers make choices. Nonetheless, consumer choices can 

also be simplified by DCMs into a probability prediction problem which matches this research 

topic. Third, although the current model-based decision support systems can make predictions, 

they are not designed to train people in how models work. Using DCMs for this research is an 

appropriate choice as these models reflect the complex nature of consumer behaviour and yield 

results in probability prediction terms. On the other hand, due to complexity, the DCM lacks an 

effective approach for teaching people how these models make probability predictions.  

 

The four learning approaches tested in this research are as follows:  

 Approach One: learners (selected subjects) are asked to learn directly how a DCM operates 

from an interactive decision support system which provides probabilities in response to 

any scenarios selected by the learners; 

 Approach Two: learners are asked to learn from outcome feedback which gives correct 

answers to probability predictions made by learners during the training tasks; 

 Approach Three: learners are asked to learn from feedback comparing their own models 

with the target model, attribute by attribute; 

 Approach Four: learners are asked to learn from classification feedback indicating whether 

they have predicted probabilities according to a model of a particular class that they are 

asked to predict, accompanied by information on the differences between several classes. 

Among these four approaches, learners involved with the first three approaches, learn from 

the same model, and learners in the fourth approach receive information related to several 

classes, but only one class is the correct one that they should learn. 
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Learners under Approach One are considered the control group. Under this approach, learners 

can choose any scenarios relating to the target model with any attribute combinations. A decision 

support system can immediately give correct probabilities of events or options in the chosen 

scenarios. Learners can perform self-regulated learning by going through any scenarios in which 

they are interested.  

 

Feedback in Approach Two is widely applied in traditional probability learning studies (this will be 

discussed in Chapter 2). This type of feedback is called “outcome feedback”, which refers to the 

correct answer to a training task being given immediately following a learner’s completion of the 

prediction task. Learners are expected to correct what they believe may be causing discrepancies 

to occur iteratively through a series of tasks followed by feedback (Cooksey 1996).  

 

Approaches Three and Four can both be considered as “cognitive feedback”, a concept established 

in MCPL studies. Cognitive feedback is a type of feedback that may contain, but not exclusively, 

the following types of information: statistical information about task characteristics, information 

about learners’ cognitive and judgment characteristics, and information that compares learners’ 

outcomes and system’s outcomes (Cooksey 1996). In brief, cognitive feedback works at a deeper 

level in a learners’ cognition. Approach Three supports attribute by attribute learning of the target 

model. Approach Four focuses on similarities and dissimilarities of several different classes (in the 

experiment, different consumer groups). The approach intends to establish a new and different 

type of cognitive feedback by highlighting their similarities/dissimilarities visually and structurally 

without explaining attributes one by one. This approach can be linked to such theories as 

Prototype, Imagery and Conceptual Spaces influential in cognitive science (e.g. Gärdenfors 2000; 

Kosslyn 1981; Rosch 1973).   
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Approach One is the default approach practised in marketing when a decision support is given to 

marketers. Marketers receive a marketing decision support system (MDSS) with a black-box style 

model built in. This system has computation features but no communication features (Kayande et 

al. 2009). Eisenstein and Lodish (2002) termed it the “plain vanilla” system, describing it as:  

(plain) vanilla MDSS play a passive role in the human-machine interaction. They may 

execute computations, present data, and respond to queries. But they cannot explain their 

logic, deal with incomplete information, or make logical inferences … they are incapable 

of even simple reasoning. Hence they do not serve as intelligent assistants to a decision-

maker. (p. 439) 

This approach is considered a reference point so the any different learning approaches can be 

compared against this approach to see if any improvements are achieved. This is equivalent to 

comparing a new hypothetical decision support approach to current practice. A screenshot of the 

“plain vanilla” MDSS used in this research is shown in Figure 1.1.  

 

Figure 1.1 A screenshot of the “plain vanilla” MDSS used in this research 
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In this study, Approaches Two and Three are compared with Approach One. Different from most 

studies on probability learning in which only prediction accuracy matters, this research also 

examines how well learners can capture model parameters and apply their understanding in 

predicting probabilities. Prediction accuracy is regarded as the “normative” standard 

corresponding to subjective probability prediction. Understanding the model can also be referred 

to as “substantive learning” which implies probability predictions are made with learners having 

knowledge of the problem (Hogarth 1975; Winkler 1996; Winkler & Murphy 1968). Therefore, 

each main hypothesis is split into two separate hypotheses matching these two performance 

measurements.  

 

The reason that Approach Four is not directly compared with Approach One is that target 

information and the learning objectives are different. While Approaches One to Three aim to 

understand a single target model to make probability predictions, Approach Four asks learners to 

learn from the differences of several different class models in order to converge to one particular 

class. Because the learning objectives and type of information are different, it is not reasonable to 

directly compare the performance of learners under Approach Four with Approach One, at least 

not in the same experiment. It is natural to believe that the task that learners are asked to perform 

is more difficult than the one required in the other three approaches. Instead of comparing them, 

a more appropriate hypothesis may be to focus on whether learners have greater success in their 

prediction and converge to the most appropriate class model with more tasks; for example, 

comparing a second training session with the first training session. 

 

Hypotheses for this research are summarised below: 
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H1a (on prediction accuracy with Approach Two versus Approach One): Learners who 

receive outcome feedback after each training task make more accurate probability predictions than 

those who perform self-regulated learning using a "plain vanilla" MDSS.  

H1b (on model learning with Approach Two versus Approach One): Learners who receive 

outcome feedback after each training task have a better understanding of the target model than 

those who perform self-regulated learning using a "plain vanilla" MDSS. 

 

H2a (on prediction accuracy with Approach Three versus Approach One): Learners who 

receive diagnosis of their own model after training tasks make more accurate predictions than 

those who perform self-regulated learning using a "plain vanilla" MDSS. 

H2b (on model learning with Approach Three versus Approach One): Learners who receive 

diagnosis of their own model after training tasks gain a better understanding of the target model 

than those who perform self-regulated learning using a "plain vanilla" MDSS. 

 

H3a (on prediction accuracy with Approach Four): Learners who receive class information 

and classification feedback after training tasks improve their predictions of probabilities matching 

a particular class with more tasks and feedback given in training.  

H3b (on model parameter learning with Approach Four): Learners who receive class 

information and classification feedback after training tasks gain a better understanding of a target 

class’ model with more tasks and feedback given in training. 

 

In testing these hypotheses, it is important to notice that different estimation approaches are 

applied using different measurements for prediction accuracy and model learning. Measurements 

for the two purposes come from different research areas.  

 



12 

 

To evaluate probability prediction accuracy, a widely applied and accepted measure in subjective 

probability evaluation is “scoring rules”. Scoring rules are well suited for evaluating the differences 

between two probability distributions with categorical choices. Simply speaking, for each 

prediction, a numerical score can be given to indicate the accuracy of a prediction. If such a scoring 

rule is “strictly proper” then better predictions will always yield better scores. Among many scoring 

rules, logarithm rules such as Shannon entropy and cross entropy (Kullback-Leibler divergence) 

are often applied. Other scoring rules such as the Brier score are also often applied. Gneiting and 

Raftery (2007) provided a complete review with mathematical proofs covering all commonly used 

scoring rules in probability prediction evaluation.  

 

To test model learning, some measurements need be established to model the predicted 

probabilities of discrete choices or events. Methods to test model parameter learning are not as 

universal as scoring rules. Measurements and estimation approaches can be developed from 

discrete choice model literature. For example, given a learner’s prediction of choice probabilities 

for several options, if we can consider one option as the base option, then ratios of probabilities 

of other options over the probability of this base option yields a set of odds which are comparable 

across different scenarios. Odds and odds ratios are commonly applied concepts in discrete choice 

models and categorical data analysis (e.g. Agresti 2002). 

1.3 Overview of Experiment Plan 

The experiment for this research is conducted in two stages. Stage 1 is a survey to study people’s 

choices with respect to a product, in this case, cross-country airline travel. Data for this survey is 

then used to develop real consumer choice models as target models for learning in Stage 2. Stage 

2 is an online training experiment. The same respondents who completed the Stage 1 survey are 

invited to participate in this online training experiment. Learners are randomly assigned to one of 

the four conditions matching the four learning approaches discussed in Section 1.2. They complete 
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two sessions of training tasks, each with 16 prediction tasks under different scenarios. Data 

collected in Stage 2 is used for testing hypotheses H1a to H3b. 

 

The Stage 1 consumer survey adopts a proven experimental design method (orthogonal main 

effects design or OMEP), and a randomly selected sample of consumers are invited to complete 

the survey. Two types of models are developed from this survey. The first type is an aggregated 

multinomial logit model (MNL) summarising the choices of the entire sample in Stage 1; the 

second type includes several class models in MNL, each representing unique choices of a particular 

class of sample or consumer group. A consumer group refers to a representative consumer group 

with more homogenous preferences and choices.  

 

Using these two types of models, an online tutoring system is built to conduct the Stage 2 

experiment. Those who completed the Stage 1 study are invited to complete the training program. 

Each respondent (learner) is randomly assigned to one of the four experimental conditions 

matching four learning approaches. In the program, there are two sessions of 16 training tasks 

identical for all approaches and learners. Each training task is similar to the one shown in Figure 

1.2. In each task, respondents need to make a categorical choice (predict consumers’ most likely 

choice) and a full probability prediction of consumers choosing each option including the “none” 

option. 

 

As discussed, there are four experimental conditions (matching four learning approaches) for 

testing. Learners in Conditions 1 to 3 are asked to make predictions about all consumers by 

learning from the aggregated consumer model. Learners in Condition 4 are asked to make 

predictions about one of the three consumer groups by learning from the similarities and 

dissimilarities of the three consumer groups.  
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Figure 1.2 An example training task in the Stage 2 training program 

Learners in Condition 1 are asked to learn from an MDSS directly through self-selected “what-if” 

analysis. Learners in Condition 2 receive outcome feedback after each task, informing them the 

correct answer to the task. Learners in Condition 3 receive a full model diagnosis after each session 

of 16 tasks comparing their own models with the target model. Each learner’s learning model is 

processed in real-time using prediction data from the previous session. Learners in Condition 4 

are first asked to learn from information about the three consumer groups before starting their 

training tasks. Information they receive contain visual and verbal descriptions of three consumer 

groups describing their similarities and dissimilarities. They then receive feedback after completing 

each training task informing them whether they have predicted the correct group. Feedback is 

generated from a built-in classifier. Results of the Stage 2 test research hypotheses on two 

performance measurements discussed earlier. All the foregoing discussed procedures will be 

further described in Chapter 4.  
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In designing this experiment, two arguments arose from the feedback received on the proposal. 

The first regards the necessity of the Stage 1 survey and the second regards the type of sample for 

Stage 2. For Stage 1, some argue whether this stage is even needed and ask why the simulated 

models cannot be used directly for the target model for learning. The answer to this argument is 

simple. Since this research is aiming to search for a better learning approach to improve learners’ 

understanding of a model to improve predictions, target models used to correct learners’ 

misconceptions and errors have to be more successful predictors and closer to reality than the 

learners’ own models. Simulation models cannot guarantee this outcome. It can be said that to 

correct learners’ errors in thinking about real choices with unreal and inaccurate simulation models 

is contrary to the purpose of improving predictions through model learning. 

 

Some may also question why marketers or managers are not used in the sample because it is 

obvious that learning consumer choice models is of more interest to them. Besides the obvious 

reason that using a sample of managers for a proof-of-concept study is costly, a more important 

reason is that it is contrary to the study’s objective to reduce rather than increase the impact of the 

learners’ experience and prior knowledge on learning. This researcher aims to search for a learning 

approach which can be generalised to solve a wider array of problems. Research of this nature 

should not limit itself to a particular group or context so research findings are not influenced by 

the unique knowledge that learners possess. In fact, whether the empirical problem is related to 

airline offers or any other categories, or whether learners have knowledge of the category, should 

not play a significant role in the research findings. It is the difference in learners’ performance 

before and after the learning experiment that is important. Therefore, it may be of benefit to use 

general respondents and non-experts who hold no, or limited, perceptions of the product instead 

of those who are influenced by their own market knowledge. This relates to the external validity 

of the research findings. It is common in marketing to use a general sample and a novel category 
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in studies on learning. For example, Meyer used students to learn a product category (copper wires) 

of which they had no prior knowledge in his study. The results of his study can be said to be due 

to applied learning approaches (Meyer 1987).   

1.4 Justifications for Research  

As discussed in Section 1.2, the research problem aims to identify effective ways to improve 

people’s probability predictions by learning models. This research problem is general in nature 

because it does not specify the type of probability and the type of model involved. The research 

proceeds by conducting an experiment testing people’s performance in predicting consumers’ 

choice probabilities through learning choice models. Why is this experiment an appropriate 

empirical case for the research problem in marketing? A justification for this appropriateness is 

the main feature discussed in this section.  

 

Besides the justification, it is also worthwhile to discuss the uniqueness of the methodology applied 

in this research. There are two noticeable differences from past studies on probability learning in 

marketing. First, two measurements are used in testing performance instead of one: prediction 

accuracy and model parameter learning. Past probability learning studies focused only on 

prediction accuracy. Second, the experiment is conducted with learners and the system interacting 

directly in an intelligent tutoring system. This method has not been applied in past studies in 

marketing. The final justification is about the potential areas in marketing concerned with the 

implications of this research. However, it is more appropriate to discuss this justification in more 

detail in the final chapter of the thesis following a discussion of the results. 

1.4.1 Learning Choice Models to Make Predictions on Choice Probabilities 

Two reasons determine why improving predictions of choice probabilities by learning choice 

models is a good empirical case in marketing. First, making choices is one of the most complex 
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activities in marketing and it is difficult to predict probabilities of choices. Second, there exist well 

recognised barriers for people predicting choices accurately based on intuition.  

 

Theories of choice differ greatly as to whether people’s choices are economically “rational”. If 

choices can be considered rational, then it is easier to gain more accurate predictions of choice 

probabilities. Theories of choice can generally be categorised into a normative stream and 

descriptive stream. The normative stream considers that choices follow a utility maximisation rule 

therefore choice probabilities can be predicted quantitatively. By way of contrast, the descriptive 

stream thinks people’s choices are driven by a variety of heuristics thus violating the utility 

maximisation rule (Bell, Raiffa & Tversky 1988; Hastie & Dawes 2001; March 1988). 

 

The central concept of the normative framework is that if a decision maker’s choices obey some 

well-defined axioms such as transitivity and independence, then both utilities and probabilities of 

choices can be predicted using deterministic functions (Goldstein & Hogarth 1997; Luce 1959; 

Luce & Raiffa 1957; Savage 1954; Simon 1997; Thaler 1980; von Neumann & Morgenstern 1944). 

This idea provides viable ways to further develop advanced models. A major break-through came 

with the development of discrete choice modelling methods consistent with Random Utility 

Theory (e.g. Ben-Akiva & Lerman 1985; Ben-Akiva et al. 1999; Louviere, Hensher & Swait 2000; 

Manski 1977; McFadden 1974; Thurstone 1927; Train 2009; Yellot 1977). On the other hand, 

researchers from the descriptive stream have demonstrated that people can be inconsistent with 

one or more rational rules in making choices. Researchers found that individuals rely on simplified 

decision strategies adopted to overcome cognitive and computation limitations (Payne, Bettman 

& Johnson 1993; Slovic, Fishhoff & Lichtenstein 1977; Tversky & Kahneman 1974). For example, 

Kahneman and Tversky (1979) proposed that individuals identify a psychological “prospect” that 
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translates objective values of goods into personal values, thus their decision rules are subjective 

and may not be economically rational.  

 

As Louviere and Meyer (2008) stated, although behavioural researchers focus on examples to show 

that people do not make choices consistent with normative theories, they have not offered an 

alternative paradigm that can be applied in solving real modelling problems. In contrast, random 

utility models have shown great accuracy in predicting people’s choices. They further pointed out 

that research on choice is advancing towards the integration of normative and behavioural decision 

theories to enhance both statistical accuracy and the understanding of individual differences. There 

is no doubt that researchers have developed many useful methods along the way in predicting 

choices by including factors such as individuals’ psychological and social differences. The field is 

extending and developing towards more robust models in this direction (Ben-Akiva et al. 1999; 

Ben-Akiva et al. 2002; de Palma et al. 2008). 

 

Based on the foregoing discussion, it is clear that choices are complex and difficult to predict. Predicting 

choices requires an understanding of the models that are developed under a normative framework, 

as well as understanding the differences among individuals due to social and other factors. It is 

difficult to imagine that any experts, no matter how much knowledge they may have, could make 

accurate predictions about choice probabilities without the assistance of a model. This reality 

justifies the key assumption that people need to learn from a model to make accurate predictions 

about choice probabilities. 

 

Moreover, people also face fundamental barriers in making accurate probability predictions. These 

barriers are associated with psychological and cognitive processes that they cannot overcome. 

Research has demonstrated how people may experience difficulty in dealing with probabilities 
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related to concepts such as distribution, independence and randomness. These findings are well 

documented in early subjective probability prediction literature (e.g. Hogarth 1975; Slovic & 

Lichtenstein 1971). Generally speaking, people draw information from incomplete cues and tend 

to search for information contingently and non-systematically in making judgements (e.g. Camerer 

& Johnson 1997; Hammond 1955). Cognitive scientists support these views with evidence 

showing how human minds may work. First, the human mind does not work as a general problem 

solver but as a set of adaptations. Second, features of the human brain are designed to achieve 

adaptation conveniently rather than optimally. Limitations of the human brain are common, as 

Luger et al. described (1994, p. 143): “although extraordinarily adept at some tasks, such as pattern 

recognition, it (the human brain) is slow and cumbersome at other tasks, such as numerical 

computation”. Unfortunately, numerical computation is also the key capacity needed in predicting 

probabilities. The issue is, can people be trained to improve such capacities through model 

learning, or alternatively, substitute the need for numerical computation with other enhanced 

capacities, such as using mental images, or make judgements from similarities. Although this is 

hard to answer, especially it lacks experimental means to directly observe what happens in people’s 

minds and make such connections, it is possible to test whether prediction accuracy improves, or 

not, given certain conditions facilitated by these potential approaches. 

 

Due to barriers in making predictions, it is agreed among researchers that people require decision 

aids such as decision support systems. For example, Hoch, Kunreuther and Gunther (2001) 

dedicated a whole volume to this particular topic. One interesting view is that people’s intuition 

and the analytical model can enter into the decision process at different stages. In the initial 

problem framing stage, intuition plays a more important role. At a later prediction stage, formal 

models are more useful and accurate. This view is also supported in Blattberg and Hoch (1990). 
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To summarise, choices are complex and people are not inherently equipped to make accurate 

predictions in context. Learning from more accurate models will help them to make more accurate 

predictions about choice probabilities. This essentially matches the main research problem 

regarding improved predictions through learning the relationship between model outcomes and 

model parameters. Therefore, testing how to best learn from choice models to improve predictions 

of choice probabilities is an ideal empirical study to answer the main research problem. 

1.4.2 Two measurements, Two Questions and One System Used in Prediction 

As mentioned in Section 1.2, past studies on probability learning only consider prediction accuracy 

as the indicator in judging performance, most notably in MCPL literature (e.g. Cooksey 1996). In 

this research, both prediction accuracy and model learning are used to measure learners’ 

performance. 

 

In order to measure both performances, in the Stage 2 learning experiment, two types of questions 

are asked in the training tasks. The first question is a “categorical” prediction question. When 

learners face a scenario consisting of several options, a combination of various attributes and levels, 

they are asked to predict a single best option. A question like this is commonly used in prediction 

tasks and can be used as an indicator of prediction accuracy. The second type of question is a 

“numerical” prediction task which is unique to this research. According to this researcher’s 

knowledge, such a task has not been asked in past probability learning research. This question asks 

people to predict choice probabilities of all product options. This question is more difficult to 

answer than the first question and provides much more information. It is easy to see that besides 

providing good information on prediction accuracy, full probability prediction provides a strong 

indicator to test model parameter learning. Arguably, other than learners having good knowledge 

of the target model, it is difficult to produce accurate full probability predictions covering all choice 

options. It is possible to randomly guess a single best category and still make it correct, but it is 
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not possible to have a close to true probability distribution prediction without a good 

understanding of the target model. 

 

In this research, a dynamic and automatic evaluation, estimation and classification mechanism is 

also introduced into the experiment. This mechanism is built into a tutoring and feedback system 

which can arguably be considered an Intelligent Tutoring System (Woolf 2009). Computation 

using task results to generate feedback is effected without intervention from human tutors or 

operators. The objective of this mechanism is that it can provide target and individualised feedback 

to each learner without delaying continuous learning. Dynamic feedback without delay can be 

considered comparable to a human tutor providing learners with relevant feedback. 

 

In summary, this research is unique with regards to methodology in two ways: first, two 

measurements of prediction accuracy and model learning, and questions are designed to ensure 

the two measurements can be tested; second, an intelligent tutoring system is facilitated by dynamic 

computation and feedback generation. If both approaches are working effectively in this research, 

this researcher expects further use of this method in future research to study probability prediction 

and model learning. 

1.4.3 Implications in Marketing 

As mentioned earlier, “plain vanilla” decision support systems only perform model computations 

for prediction but lack any communication or training capacities. This type of system is unlikely to 

be defined as a complete decision support because other than making its own predictions, it does 

not support a person’s decision process with comprehensive guidance and insight. This is the 

precise area in which this research can help to make a difference. Research findings may have 

direct implications for decision support and staff training. Knowing effective ways to learn models 

to improve probability predictions is useful because it can reduce uncertainty and risk in decision 
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making thus improving decision quality overall. By applying effective learning approaches, 

marketers at various levels can benefit from better decision support.  

 

Moreover, the system applied in this research can be extended to an alternative decision aid tool. 

It can either be applied alone for training, or combined with existing decision support systems as 

a new type of integrated decision support system. If combined with an existing “plain vanilla” 

system, the combined system can play several roles: to make model-based predictions, to 

communicate with users about model parameters and insights, and can provide ways to train users. 

The guiding principle is that decision support does not simply mean the provision of an accurate 

model. Having an accurate predictive model is only the starting point. What is more crucial to 

marketing decision-making is to effectively transfer this knowledge from a model to the marketers’ 

minds. This helps marketers to become better decision makers overall even in situations where a 

physical decision support system is not available. 

 

As mentioned earlier, more discussion of the implications of this research will be provided in the 

last chapter following the provision of the research results. 

1.5 Linking Theories and Methodology 

Figure 1.3 illustrates connections between the background, research problem, main justifications 

and more detailed theoretical points crucial to this research. As shown in Figure 1.3, the parental 

discipline targets the conflict of model and intuitive predictions of probabilities. As discussed in 

Section 1.1, the main background is the existing gap between the subjective and model predicted 

probabilities. This causes conflicts in decision making which indicate the path(s) a decision maker 

should follow. The belief shared by the present researcher and other researchers on this issue is 

that the gap can be narrowed by integrating the model into people’s intuitive outlook to improve 

the quality of predictions made by people. This is predicated on the evidence that people are the 
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main decision makers not models, hence knowledge integration should be performed by people 

learning about the relevant models. This is the main research problem. It aims to identify the most 

effective way that a model can be learned. The research targets this problem from several aspects. 

First, it examines existing learning theories. The resultant review in Chapter 2 serves as the 

foundation in establishing directions for learning approaches which will be tested in this research. 

Second, Chapter 3 will discuss theories, methods and practices in building evaluations, model 

estimations and classifications into an intelligent tutor. The ensuing discussion will cover issues 

such as the ways to perform evaluations in a tutoring system during a learning experiment to 

motivate and inform learners how to make better predictions, ways to better design a training 

experiment, ways to construct comparable measures for testing prediction accuracy and model 

parameter learning, and ways to perform analysis on learners’ performances.  

 

Figure 1.3 The position of this research in marketing decision making 

 

1.6 Plan of Thesis 

This thesis contains six chapters. Chapter 1 introduced the background of the research and 

provides an overview of the research problem, research hypothesis, measurements, justifications 

Intuitive and model 
predictions often conflict 
in predicting probabilities 

(Research GAP)

Integrate two sources of 
predictions to improve 

decision making 
(Potential Solution)

Identify the most effective approach 
for training people to gain a substantive 

understanding of a model in making 
accurate predictions of related 

probabilities(Research Problem)

1. Learning theories/approaches
2. Evaluation and feedback in system

3.  Design  training experiment
4.  Measurements and analysis

(Research Approaches)
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and methodology. Chapter 2 concentrates on the literature of learning theories and the key 

characteristics of learning to establish the main learning approaches for testing. Chapter 3 covers 

theories and methods on prediction evaluation, model estimation and classification. These 

methods are built into the proposed intelligent tutoring system to generate real-time feedback. 

Chapter 4 gives details of the empirical study covering experimental design, the survey instrument, 

and the fieldwork plan. Chapter 5 will present and discuss the analysis results. Chapter 6 will 

conclude with theoretical and practical contributions, suggesting implications and limitations of 

the research findings, and propose future research directions.  
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Chapter 2  Developing Learning Approaches 

2.1 Overview 

Chapter 1 addressed a fundamental point of this research: people can learn from models to 

improve their predictions of probabilities. Regardless of how a model may be taught to learners, 

the exact process of learning in people’s minds remains largely unknown and not directly 

observable. What researchers can collect for analysis are people’s responses to training tasks before 

and after learning. They then can identify the relationship between what has been taught and the 

learning results to try to understand the mystery of what has been learned. The mainstream of 

learning theories focuses on studying such relationships between stimuli and responses since both 

stimuli and responses can be clearly observed and measured. Other theories make conjectures 

about what may have happened implicitly in the learning process. However, theories targeting the 

overall learning process lack observation and measurement means hence they remain exploratory. 

It is beyond the scope of this research to study the learning process, though it is crucial to identify 

key characteristics common to many learning problems from existing theories that have an impact 

on learning performance. By identifying such characteristics, different learning approaches can be 

designed and tested in an experimental setting to ascertain which approach works most effectively 

in terms of the performance measures. This is the objective of this chapter. 

 

There is little doubt that information in an analytical model such as its coefficients is just a raw 

form of knowledge because there exist many different ways of representing and teaching this 

knowledge. These different ways can be easily misunderstood as simply visualisation techniques 

or instructional design problems, the fields that have been studied by information visualisation and 

instructional design researchers (e.g. Merrill 1994; Tufte 1983; Tufte 1997). It is certainly true that 

knowing how to design information visualisation and how to arrange instructions is important. 

However, there are more fundamental issues related to how knowledge should be taught and 
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learned by people. For example, should we expect learning to occur with many small steps of 

improvements in trial-and-error fashion, or should we expect learning to result from several major 

steps of improvements with plateaus between steps? Answers to such questions are closer to the 

core of learning. As Norman (1985) indicated, the main reason that many studies of learning have 

come to “nought” is because learning involves many aspects, and failure to identify them can cause 

researchers to come to wrong conclusions. According to Norman, learning is about knowledge 

representation, input and output, thought, inference and many other things. Many implicit aspects 

affect the success of learning. To name a few, in learning a model, how should the model’s 

knowledge be best represented and taught to learners? What kind of input should learners receive 

before, during and after making predictions for trial tasks? How should they receive them? These 

questions are above the level of design features and instructions but relate to methodologies for 

teaching and learning.  

 

Before discussing some important aspects of learning, the chapter will first provide a brief review 

of learning theories. This review introduces some concepts and background for establishing the 

theoretical foundation of learning approaches. As mentioned in Chapter 1, it is important to 

develop learning approaches that are theory-driven, because practical approaches that are problem 

specific cannot be generalised for a wider array of problems. This will be followed by a discussion 

on four key aspects of thinking about learning approaches, namely: 1) self-regulated or self-

controlled learning versus guided experimentally controlled learning; 2) feedback and their effects; 

3) knowledge representation, and 4) categorisation. These aspects shape the learning mechanism 

designed in this research and support the development of research hypotheses and empirical tests. 
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2.2 A Review of Learning Theories 

2.2.1 Definitions of Learning and Taxonomy of Learning Theories 

Learning covers many phenomena and is usually accompanied by a form of training in practice. 

For example, technicians follow training courses to learn new technical skills, doctors learn how 

to perform surgery by observing and assisting experienced doctors, and business professionals 

learn how to improve their understanding of the market by continuously following market 

information. Generally speaking, people observe external events and receive inputs from the 

environment, process such information and take actions. They then assess outcomes returned 

from the environment, either explicitly or implicitly, and repeat the above described process. 

Understanding this learning process is not universal hence research about learning is not restricted 

to a single theory, even a single discipline.  

 

Indeed, many phenomena are studied under the banner of “learning”, making it an ambiguous 

concept to define. Mowrer and Klein (2001) defined learning as “a relatively permanent change in 

the probability of exhibiting a certain behaviour resulting from some prior experience (successful 

or unsuccessful)” (p. 2). Some definitions of “learning” are more specific and stress the positive 

outcome only. According to these definitions, not only should some domain knowledge be gained 

from experience, learners should also show improved performance when the same situations occur 

again (Simon 1983). Whether learning suggests improved performance is an open question for 

many. It is probably convenient from an experimental perspective to think that the main objective 

of learning experiments is to gain improvement, as this researcher aims to do. However, it is also 

important to acknowledge that improvement is only one of the possible outcomes from learning. 

As pointed out by Luger (2009, p. 388), “learning research must address the possibility that changes 

may actually degrade performance”. In reality, people can learn from degraded performance too. 

Phenomena observed during learning trials such as a plateau of no performance improvement 
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followed by a sudden performance improvement have been often observed in experiments (Estes 

1972).  

 

Considering different definitions of learning, it is not a surprise to see that theories of learning also 

vary greatly. There are in general three schools of learning theories: learning theories investigating 

the “behaviour” of learners (prominent in psychology), learning theories investigating the process 

of the “mind” (prominent in cognitive science), and learning theories investigating how a 

“machine” can learn as humans (prominent in artificial intelligence). These three schools of 

theories together define the major landscape of learning theories. They differ with regard to 

theoretical foundation and empirical practice, but are related on many fronts. Learning theories 

initially were studied in psychology. Further development came with advancements in cognitive 

science and AI, accompanied by increasingly advanced technology and improved research 

methodology (Bower & Hilgard 1981; Gärdenfors 2005; Luger et al. 1994; Luger 2009; Mowrer & 

Klein 2001). These theories are reviewed in the following sections.  

2.2.2 The “Behavioural” School of Learning Theories 

Learning as a research problem has long been studied in psychology. Both theories and 

experimental methods were first developed in psychology (Bower & Hilgard 1981; Kimble 1985). 

Psychological learning theories involve the measurement of learners’ performance and responses 

to learning tasks. Two kinds of information are often considered crucial. The first kind of 

information is materials that are designed to trigger learners’ reactions and actions, the “stimulus”. 

The second kind of information is the learners’ responses to stimuli. Learning can be viewed as a 

repeated loop consisting of a sequential process from stimuli, to responses and follow-up 

evaluation of outcomes, or simply called “Stimulus-Response-Outcome" (S-R-O) mechanism. 

This mechanism is often applied as a standard framework in studying learning (e.g. Bower & 

Hilgard 1981).  
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Psychologists working in the field of learning are mostly empiricists and behaviourists who share 

a strong and common view that learning occurs as a result of experience and the only acceptable 

way to measure learning is through observed behaviour. Therefore, the purpose of learning 

theories under this framework is to identify key factors such as the stimuli, conditioning and 

feedback influencing behaviour of learners. These theories, regardless of their differences, have 

been loosely termed “Behavioural-Associationist” theories (Bower & Hilgard 1981; Hulse, Egeth 

& Deese 1980; Mowrer & Klein 2001). The term explains two distinct characteristics of these 

theories in general. First, ignoring specific mental processes, these theories emphasise people’s 

behaviour demonstrated and observed in outcomes. Whether people are really gaining experience 

explicitly or implicitly and whether people’s minds work in a certain way is not of interest. Second, 

these theories are interested in the association of stimulus and response. Rather than considering 

responses as being driven by clear purposes, these theories more or less suggest that responses are 

habits or natural reactions to stimuli which are distant from some deeper level mental activities 

(Bower & Hilgard 1981; Mowrer & Klein 2001).  

 

It is important to note that early work in the field of probability learning by Estes and others was 

developed with this background (Estes 1972, 1994). According to Estes’ Stimulus Sampling 

Theory (SST), what learners learn and how they respond are under the influence of the sample 

consisting of different combinations of stimulus elements. By varying these combinations of 

stimulus elements, learners’ responses may change accordingly. Stimulus elements can change over 

time, across trials, or under the influence of external environment. Further sampling certain 

elements will result in further learning of these elements. Thinking about this theory in the context 

of the present research, it can well support the need to use an experimental design method in 

learning. Only by applying a carefully selected experimental design for stimulus elements (in this 
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case attributes and levels for making choices), attributes and their relationships to choice 

probabilities can be learned in a more explicit way.  

 

Since the 1970s, many studies of probability learning have been conducted under the Multiple Cue 

Probability Learning (MCPL) umbrella. In these studies, psychologists conducted experiments to 

test how learners performed in learning probabilities of events that consisted of multiple cues. 

Frameworks of these studies are consistent with the traditional S-R-O framework, and little 

attention is paid to the mental processes of the learners. In terms of stimuli, not only are multiple 

cues sampled and presented, the conditioning of different feedback forms is also added. In terms 

of responses, researchers are interested in observing the incremental learning of probabilities over 

trials. By analysing the relationships between observed responses on a performance level and 

experimental conditions relating to presented cues and feedback, researchers are able to detect the 

impact of different conditions on performance (e.g. Brehmer 1987; Castellan 1974; Cooksey 1996; 

Edgell 1978, 1983; Klayman 1984; Steinmann 1976). These methods have been applied in studying 

learning performance in many different areas, including marketing and management (Eisenstein & 

Hutchinson 2006; Meyer 1987). 

 

In summary, the traditional learning theories in psychology have provided a useful and important 

framework that incorporates input (stimuli), output (response), evaluation and conditioning for 

learning. It is also reasonable to say that designing learning studies within this framework is both 

clear and practical, which also explains why most empirical work related to learning has been 

conducted in this tradition. The limitations of these theories are also clear. There are some 

fundamental aspects neglected in this framework. For example, these theories do not discuss the 

nature of knowledge and its representation in learning. Although less obvious and difficult to 

observe, these aspects are nonetheless critical to the success of learning processes. Should any 
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knowledge be considered as just stimulus elements and should people’s understanding of different 

knowledge be considered natural responses to these elements? Are there different ways that 

learning can occur, whereby different thought and inference processes are triggered, resulting in 

different outcomes? These missing parts work in the minds of learners and are not obvious or 

easily separable from the responses. These neglected aspects of traditional learning theories have 

sparked the development of learning theories in cognitive science (Gärdenfors 2008a; Mowrer & 

Klein 2001). 

2.2.3 The “Mind” and “Machine” Schools of Learning Theories 

Research about learning in cognitive science and artificial intelligence (AI) are discussed in this 

section together. This is because they are well connected in many ways from their origin to current 

development. They are new scientific disciplines and both are yet to fully identify their theoretical 

boundaries and directions (Luger 2009; Luger et al. 1994). There are two overarching goals in 

cognitive science according to Gärdenfors (2000). One is explanatory, the other is constructive. 

The explanatory goal aims to explain and theorise aspects of human cognition and what occupies 

human minds. The constructive goal is to develop systems that can accomplish cognitive tasks by 

simulating or emulating human thought process (Gärdenfors 2000). Whilst cognitive science may 

focus more on the explanatory goal, AI focuses on the constructive goal to study what can be 

achieved by computer science and other technology in simulating human thought process.  

 

According to Luger et al. (1994), cognitive science is a new science developed with efforts by 

researchers from different disciplines including psychology, linguistics, philosophy, computer 

science, neuroscience and many others. The common belief driving this development is that the 

science of intelligence can be regarded as common rules and principles existing in human 

intelligence that can be identified and utilised for constructive purposes. Different from the 

psychological learning theories which attempt to encompass the entire domain with a global 
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framework characterised by S-R-O association, cognitive science specifically targets the process of 

the human mind. The motivation behind this move is that existing psychological learning theories 

cannot give explanations for many phenomena observed in learning (Bower & Hilgard 1981; 

Cohen & Lefebvre 2005; Gärdenfors 2000, 2005, 2008a; Harnad 2005; Luger 2009).  

 

An early movement towards the study of the human mind was initially made by psychologists 

themselves. For example, Tolman’s (1948) study on animals and humans shifted away from S-R-

O association and considers learning as a purposeful and active search process. The process of 

learning constructs a so-called “cognitive map”, which serves to reach different rewards instead of 

passive and reactive responses to stimuli (Tolman 1948). Another example is the rise of Piaget’s 

theory on Constructivism, which has since made a great impact on education. Piaget’s theory 

reveals how differences in the way children and adults learn are due to structural differences in 

their mental processes, and how knowledge is constructed instead of being passively taught 

(Bransford et al. 2006). A third example of the break away from the traditional S-R-O paradigm is 

the development in studying human information processing to construct computer systems that 

can solve problems in a similar fashion. This is led by Simon and his associates, whose work 

revolves around the development of early AI applications for problem solving. Simon (1979) 

discussed constructs in information processing such as knowledge domain, semantic memory, 

adaptive production, pattern induction, motivation and emotion, which are not a part of concepts 

in traditional learning theories in psychology.  

 

It can be said that developments of cognitive science and AI constitute a paradigm shift in studying 

human learning. In addition, researchers are also interested in building practical systems with 

capabilities to learn, which requires “mind” and “machine” schools of learning theories to work 

coherently. The key belief is that, if a computer system could perform in the way a person would 
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have responded in facing the same situations, then an abstract form of the learning and decision 

process can be identified and replicated external to the person. As a result, the underlying process 

in such a system can represent key characteristics of the mental model of the person (Luger et al. 

1994). This is also the original idea of the “Turing Test” proposed by Alan Turing (Gärdenfors 

2005). In reviewing both human cognitive learning and machine learning theories, it is noticeable 

that the taxonomies of both theories are almost identical.  

 

Common ideas of cognitive science and AI focus on symbolic and connectionist learning. Luger 

(2009) and Luger et al. (1994) reviewed both classes of learning in the contexts of cognitive science 

and AI. Recently, a third class of learning has emerged: concept learning. The argument is that 

concept learning cannot be treated as symbolic or connectionist learning as it has more to do with 

similarities of concept properties and dimensions of these concepts (Gärdenfors 2000, 2005, 

2008b; Gärdenfors & Williams 2001). Fundamentally, these three classes of learning established 

learning theories in cognitive science and AI and they differ in many aspects such as knowledge 

representation and information processing. Below is a brief introduction to the principles of each 

class of learning.   

 

The central tenet of symbolic learning considers knowledge as symbols, and learning occurs via 

processing equipped with manipulation methods such as logical “if-then” rules. However, the 

symbol itself is not considered meaningful. What makes it meaningful is the operation of symbol 

manipulation. One of the key ideas is that natural languages can be represented and programmed 

recursively with a central processor. The central processor then determines rules which can be 

applied to manipulate symbols to yield outcomes (Luger et al. 1994; Gärdenfors 2000, 2005, 

2008a). Symbolic learning has been the central focus especially in designing AI systems but the 

idea has also been criticised for some fundamental problems in the context of human learning. 
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Existing scientific findings relating to the human brain suggest that the notion that the human 

brain works as a central processor to manipulate symbols, simply does not hold. There is no such 

thing as a central processor in the human brain; quite the opposite in fact. Neuroscience has found 

that the human brain works in similar fashion to a well distributed parallel network consisting of 

many modules (Gärdenfors 2000, 2005, 2008a). Another fundamental problem of symbolic 

learning can probably be best explained by Searle’s famous thought experiment called the “Chinese 

room” scenario (Searle 1980). In this scenario, a mechanism (person or computer program) with 

no knowledge of Chinese is able to demonstrate the ability to construct responses in Chinese by 

following strictly syntactic rules by treating Chinese characters as symbols. However, no 

knowledge in Chinese is gained whatsoever by the mechanism. The mechanism is simply 

simulating the construction process. It is not strange that computer systems favour a symbolic 

learning approach because of well-defined syntactic rules. However, it is a different case for human 

learning when gaining knowledge, rather than simulating certain capabilities, is the purpose of 

learning. 

 

The motivation for connectionist learning theories is closely associated with the biological construction 

of the human brain, as mentioned previously. The human brain works as a parallel system with 

simultaneous activities of numerous neurons. The connectionist learning approach is mostly 

applied in AI and the main system developed under this notion is Artificial Neural Networks or 

ANN (Gärdenfors 2000, 2005, 2008a; Luger et al. 1994, 2009; Pandya & Macy 1995;). Although 

considered a highly useful approach in many areas such as data mining, ANN also comes with 

many limitations. As with symbolic learning, connectionist learning is not an approach targeted 

for human learning. Systems designed under this principle can perform tasks such as automatically 

identifying patterns when large amounts of training data are available. Even with a sophisticated 

computer system, such a pattern identification task is complex and slow. More crucially, it is 
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suitable only if a large amount of data is available for processing, and its central aim is to extract 

combinations of data to derive features for modelling or classification purposes (Hastie, Tibshirani 

& Friedman 2009; Pandya & Macy 1995; Woolf 2009). Therefore, it is difficult to apply this 

approach to human learners.   

 

Concept learning proposes a process that involves learning complex concepts from their 

similarities and dissimilarities. A concept is defined here as a broad term meaning the basic building 

blocks of knowledge, and may cover many subjects such as a complex task, a skill, a knowledge 

domain and, in the context of this research, a model predicting probabilities. The Conceptual 

Spaces (CS) theory is a framework designed by Gärdenfors (2000) specifically for this type of 

learning. As Gärdenfors (2000) explains, the motivation for the development of this theory is the 

lack of understanding and methods in both symbolic learning and connectionist learning of 

learning concepts. In symbolic learning, the basic building block is a symbol, whereby semantic 

knowledge cannot be represented until operational rules for manipulation are in place; in ANN, 

the neuron is the basic building block but it is also not meaningful until a discernible pattern is 

recognised. This theory targets the level of concept in its representation and categorisation. It 

proposes that concepts can be learned by defining “quality dimensions”, which are semantic scales 

for measuring features or attributes of concepts. As suggested by Gärdenfors (2000, p. 1), 

“Conceptual spaces are geometrical structures based on quality dimensions”. In simple terms, concepts can be 

visualised as objects in a geometrical structure so that similarities of concepts can be represented 

by spatial distances in conceptual spaces. The idea is that by treating concepts in this way, a learning 

task can be largely simplified. This theoretical idea is different from traditional learning theory but 

it is a simple and clear idea if one can agree with the key assumption that a knowledge domain and 

its basic building blocks can be represented in this way.  
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The Knowledge Representation (KR) literature seems to support this belief of concept learning 

(Markman 1999; Rumelhart & Norman 1985). In KR, knowledge and concepts are considered as 

the “represented world” and this framework constructs an approachable “representing world” in 

geometrical space with concepts showing as objects. There are no restrictions to request that the 

represented and representing world be in the same form, as long as psychological interpretations 

and semantic connections can be established. Moreover, support may also be drawn from theories 

in using images for feature representation and learning concept connections directly from 

connected quantitative graphics (Kosslyn 1981; Tufte 1997; Wilhelm 2005).  

 

A key problem faced by this researcher in applying these theories in cognitive science and AI is 

simply, that these theories lack experimental and empirical evidence to show they actually work in 

human learning problems. This applies even more to the field of probability learning which is 

occupied by methodologies developed in the context of traditional psychological learning theories. 

Nonetheless, knowing these theories of learning process can help this researcher to pursue 

directions to develop learning approaches somehow matching the underlying principles of these 

learning theories. 

2.3 Key Attributes to Characterise Learning 

2.3.1 The Selection of Key Attributes 

In Section 2.2, three schools of learning theories were reviewed. The review made clear that 

psychological learning theories focus on the behaviour of learners while other theories focus on 

the mental process. To better connect these theories to the reality of how learners engage in 

learning in real-life, it is practical to treat some key features or concepts studied in these theories 

as attributes in the design of learning approaches.  
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Since there are many characteristics in the theories for selection, it is important to consider the 

objectives of this study and the environment in which it will be conducted. From discussions in 

Chapter 1, it is clear that learners will be trained to learn how to operate a model represented as a 

DSS and to perform both categorical and full probability prediction tasks in a computer tutoring 

environment. The selection of learning characteristics should relate to how to improve the learners’ 

mental models by either self-learning or computer-assisted learning. The tutoring system needs to 

provide everything that is required for learning without intervention from a human trainer. 

Learning outcomes can only be determined by what learners are able to do and what the system 

structure and parameters allow to be done.  

 

Improvements in the mental models require learners to continuously practise, either guided by 

their own strategies, or directed by the system. As Johnson-Laird (1988, p. 130) pointed out: “once 

you have some internal model of what ought to happen, you can learn by practising the skill until 

your performance converges on the desired model”. It is self-evident that a single exposure to a 

probability problem cannot converge to a desired model because probability itself is established 

on multiple incidences. Making generalisations from multiple incidences of trials is fundamentally 

an inductive problem. In thinking about tasks for practice, the first thing is to refine tasks given to 

learners. Instead of giving learners hundreds or thousands of tasks, tasks can be designed more 

efficiently to reduce the effort required in converging to an ideal mental model. To achieve such 

efficiency, two directions may be considered. First, as suggested in some education literature, 

learners can be given the freedom to determine their own learning strategies to overcome 

inefficiency caused by using the same training program for students who have different knowledge 

and styles. This is the idea of self-regulated or self-directed learning (e.g. Garrison 1997; 

Zimmerman & Martinex-Pons 1990). Second, using an experimental design method, training tasks 

can be refined to represent the whole problem space with statistical efficiency such that the number 
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of training tasks is reduced to a smaller set of tasks but each task is more efficient. This is similar 

to the situation applied in discrete choice experiments where efficient experimental designs require 

much fewer tasks to elicit people’s preferences. Similarly, the same method can be considered to 

apply in training. This generates the first attribute to test in terms of the learning approach: self-

regulated learning versus experimentally-designed learning.  

 

In thinking about the attributes for learning, it is difficult to miss “feedback”. Feedback is one of 

the most commonly discussed and well-studied subjects in learning studies. An entire literature in 

MCPL focuses on comparing different types of feedback and their effectiveness in learning (e.g. 

Cooksey 1996). Indeed, in traditional learning theories in psychology, feedback is arguably the 

most important factor in the process of constructing associations between stimulus and response. 

Learning converges on existing training tasks, so learners need to have access to evaluation for 

better convergence. Without feedback on performance, learners are left in the dark without further 

direction (Johnson-Laird 1988). In cognitive science, feedback is not discussed as explicitly as in 

psychology and it is often embedded in discussions of broader topics. Feedback is regarded by 

cognitive scientists as the foremost criterion to separate supervised learning from unsupervised 

learning (Harnad 2005). This view is supported by statistical learning theories. In statistical 

learning, supervised learning generates inferences and functions as feedback from existing or test 

cases and applies them to new cases. Two common approaches are regression and classification 

models. On the other hand, the focus of unsupervised learning is to identify hidden structures in 

data. It includes methods such as cluster analysis (Hastie, Tibshirani & Friedman 2009). In 

supervised learning, the discovery of functions and inferences is achieved by analysing existing 

cases by a mechanism, whether it is a human brain or a computer system. The analysis results are 

then evaluated by certain objective standards such as being able to further reduce errors in a 
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function. Before new trial cases enter the learning process, evaluation results are returned to the 

mechanism as feedback.  

 

Next, in mediating between a stimulus and the response to create an association between the two, 

there needs to be a representation of both external knowledge and internal states of mind. 

Rumelhart and Norman (1985) believe that the primary task of knowledge representation (KR) is 

to elicit internal mental models, whereas representing external objects is a secondary task. The 

literature in cognitive science provides detailed knowledge classifications to represent different 

types of knowledge such as features, propositions, imagery, structure, concept and network (Cohen 

1983; Markman 1999). KR is regarded crucial to understanding a particular knowledge domain and 

most relevant to establish a foundation for developing methods for computation and problem 

solving in that domain. KR serves two purposes in practice: first, to ensure that what learners are 

assessing are indeed the right underlying domains that they are supposed to learn; and second, to 

know whether learners are learning more effectively from a particular form of representation. As 

a common and important branch in cognitive science, KR has been studied widely and serves an 

important role in improving the mental models of learners. There are different views about how 

to classify representation forms. However, one view is agreed by all that the choice of KR in any 

particular domain makes a great difference in learning (Markman 1999; Rumelhart & Norman 

1985).  

 

One objective of learning is to generalise knowledge from many trials and group these trials into 

instances of same categories. In this spirit, learning is to construct a new program consisting of 

fewer numbers of generalised categories. In the view of cognitive scientists, categorisation is a 

broad concept grounded in interactions between agents and environment, and reflects different 

classes of environmental situations (Cohen & Lefebvre 2005). It can be linked to practical methods 
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such as classification and clustering as mentioned in machine learning and statistical learning 

literature (e.g. Hastie, Tibshirani & Friedman 2009; Mitchell 1997; Pandya & Macy 1995; Pekalska 

& Duin 2005). It can also be linked to theories in cognitive science and psychology and discussed 

in those contexts. For example, in Rosch’s Prototype Theory, categorisation is considered the 

process of identifying natural categories that learners automatically try to match in learning new 

concepts (Rosch 1973, 1975). A large volume edited by Cohen and Lefebvre (2005) gives a good 

review of many works written by cognitive scientists on categorisation. Categorisation overall is 

regarded highly as the central theme of cognition. As put by Harnad (2005, p. 20), “to cognize is 

to categorize”. The notion of categorisation is to find identical categories based on similarities or 

dissimilarities of instances.  

 

In summary, four attributes are considered basic building blocks to construct learning approaches 

for testing. They cover different aspects of learning: 1) should learners conduct self-regulated 

learning or should a tutoring system control the way learning tasks are selected via experimental 

designs; 2) which type of feedback is more effective in learning; 3) how to represent target 

knowledge; and 4) will categorisation help learners to generalise findings?  

2.3.2 Attribute One – Self-Regulated and Design Controlled Learning 

The fundamental problem in comparing self-regulated learning and experimentally designed 

controlled learning is whether learners can converge to an ideal mental model effectively with 

limited exposures to training stimuli and trial tasks. An analogy for this problem is finding a path 

to a destination while driving on the road. Self-regulated learning is like finding a path purely based 

on intuition and self-developed strategies, without external guidance. Design controlled learning 

is similar to using a GPS; it tells you the shortest way to reach the destination while ignoring other 

possible paths that may also lead to the destination. In the context of this research, if learners use 

a “plain vanilla” style decision support system without an effective communicating target model, 
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they may need to conduct many rounds of practice trying to find the patterns of the model. The 

advantage of this learning is that it is freely controlled by learners to construct any scenarios that 

they are interested in learning, but the disadvantage is that they are not able to find those most 

representative scenarios to maximise the effectiveness of the learning. On the other hand, 

experimentally designed controlled learning will provide a small but efficient set of scenarios so 

learners can maximise what they can learn from each scenario. 

 

There are three aspects to the comparison of self-regulated versus experimentally designed 

controlled learning. The first aspect relates to the process of generalising from examples to form 

accurate assessments of probabilities. The second is about what learners do when they are 

conducting self-regulated learning. The third has to do with selection bias when learners self-select 

tasks as sample stimuli. 

 

The generalisation process of learning from multiple incidences is necessary. Without this process, 

examples remain as unique as they are. Rules, principles and other connections cannot be derived 

from examples (Johnson-Laird 1988). In psychological learning theories, probability learning relies 

on inductive inference. The basic assumption is that people are able to learn probabilities from 

many examples. The research problem of interest in probability learning is more about whether 

and how people can actually improve through practice, not whether people can learn in the first 

instance. Hogarth (1975) gave an extensive review of many cases to show that due to limited mental 

capacity and the influence of a variety of biases, people are unable to assess probabilities accurately 

regardless of the amount and quality of information received. The only remedy that can improve 

this situation is to provide decision aids during probability learning. In contrast, Edwards argued 

that people are not so limited in their mental capacity that they cannot perform complex mental 

arithmetic as well as mental note-taking. According to Edwards, if people have ever shown poor 
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performance or lack of learning in probability assessment experiments, it is not because people 

have any inherit disadvantages. Rather, it can only be caused by poorly designed experiments 

(Edwards 1975).  

 

In empirical studies, psychologists have been applying trial-and-error methods by giving learners 

repeated tasks, sometimes in hundreds, or even thousands. This is most notable in probability 

learning literature (e.g. Camerer & Johnson 1997; Cooksey 1996; Estes 1972; Goldstein & Hogarth 

1997; Hogarth 1987). In the marketing literature such as in managerial and consumer learning, it 

is also obvious that training methods involve some form of inductive learning through experience 

accumulation (e.g. Eisenstein & Hutchinson 2006; Hoch & Schkade 1996). It can be said that the 

underlying expectation of this method is for learners to combine induction from examples and 

falsify temporary hypotheses they have formed during learning until correct hypotheses are found. 

In designing a pedagogical tutoring system to support this process, systems are required to offer 

multiple tasks and interactive feedback (e.g. Gulz 2008; Woolf 2009). The question is: should 

information and training tasks be determined by learners or designed by trainers? 

 

In the field of education, the idea of self-regulated learning is popular. It has been applied in both 

classroom environments and computer-assisted environments (Barber et al. 2011; Butler & Winne 

1995; Garrison 1997; Zimmerman 1990, 2008; Zimmerman & Martinez-Pons 1990). The idea is 

simple: learners can determine their own goals that they wish to achieve, develop their own learning 

strategies by self-selecting tasks, and monitor learning outcomes. In this process, they are actively 

directing their learning so they are not passive recipients of knowledge. The role played by trainers 

becomes that of the facilitator. Researchers have been focusing on issues such as motivation, self-

monitoring, self-efficacy and learners’ internal feedback in an attempt to form a comprehensive 

model of such self-directed learning (e.g. Butler & Winne 1995; Garrison 1997). As pointed out 
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by Zimmerman and Martinez-Pons (1990), in self-directed learning, performance and self-efficacy 

are determined by strategies that learners choose by themselves and these strategies can vary greatly 

due to individual differences. Performance and self-efficacy in turn also influence the further 

selection of goals and strategies of learning. In addition, external task characteristics also influence 

learners’ choices of goals and strategies (Butler & Winne 1995; Barber et al. 2011). According to 

these researchers, the main problems of self-regulated learning are clear and include 

misspecification of goals and tasks, and the misperception of cues and performance. Although 

self-regulated learning is attractive because it allows learners to have freedom in determining their 

goals and strategies, the outcomes of this method may not be ideal. Even more, due to the possible 

misspecification of goals and tasks, relying on learners themselves to design their own learning 

program can be quite ineffectual. 

 

An important point that has not been covered by any researchers in the field of self-regulated 

learning is the problem of selection bias in self-selected tasks. If a target learning problem involves 

a large number of scenarios with enormous numbers of combinations, it is impossible to train with 

all possible scenarios and only a subsection can be selected for training. This is a common 

phenomenon not limited to the topic in this study. For example, different combinations of training 

can take place in teaching people how to operate advanced equipment or a program in difficult 

software languages. Training materials commonly only cover a well-selected small set of cases to 

maximise what learners can learn from each case. To find a good set of training tasks is not an 

easy task itself though it can determine the outcomes of learning. But what are the criteria for 

selecting a small but representative set of cases to allow efficient learning?  

 

In original work by Heckman and others on selection bias, there was not much fundamental 

interest in what caused the sample to be selected with bias. The interest was to fix the biased 



44 

 

sample problem with a statistical solution. Selection bias has been discussed in the context of 

biased samples in social and economic research. For example, the work on sample selection bias 

by Heckman was discussed in the context of an economic study of wages and labour supply 

amongst females (Heckman 1979; Vella 1998). It has since been applied in assessing social 

programs such as training programs for unemployed people (e.g. Heckman & Hotz 1989). 

Regardless how sample selection bias may be caused, when it does occur, there are unobserved 

characteristics involved. Failing to identify or estimate the effects of these missing characteristics 

can cause huge errors in estimation.   

 

In the context of this research, learners need to sample from a large combination of available 

training tasks; this is equivalent to a market researcher selecting samples from a population. For 

example, assume that a consumer choice model that learners want to learn is in the simple form 

denoted in Equation 2.1, where the whole population of tasks is denoted as . If all tasks are 

observed, in the learner’s mental model, there should be a record or observation  for each task.  

  (2.1) 

For the sake of argument, we assume there is a “perfect” learner who can learn and record every 

task from 1 to I to draw a correct conclusion, so the consumer model function should be recovered 

without any extra errors besides initial in-built errors in the model. Because it is impossible to learn 

all tasks from 1 to I and only a subset of tasks can be selected and used in learning, the actual 

function that this learner can realistically learn is not the function in Equation 2.1, but the function 

in Equation 2.2.  

  (2.2) 

In this function, the expected unobserved error component  is conditioned on the sample 

(task) selected. As will be further discussed in Chapter 3, the purpose of experimental design is to 

minimise the unobserved error component, so it is reasonable to think that if the tasks are selected 
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following this principle,  can be reduced to a minimum. In this case, the estimation of  from 

the subset of tasks from the experimental design is only a “loss of efficiency” (Heckman 1979, p. 

155). In contrast, there is no guarantee that self-selected tasks can follow this principle of 

experimental design; therefore, the expected error component becomes much larger for self-

selected tasks than with experimentally-designed tasks.  

 

From a learning perspective, what we learn and how we respond are subject to samples of stimulus 

elements shown to us. If there are missing elements or combinations of elements in samples, 

learners are less likely to learn effectively (Estes 1950). 

 

In summary, this section discussed two opposing views in selecting learning information and 

training tasks. This served to introduce the first attribute in designing learning approaches. 

2.3.3 Attribute Two – Feedback 

As discussed earlier, feedback plays a crucial role in learning. Apart from other attributes such as 

knowledge representation and categorisation, which are rarely mentioned in learning literature, 

feedback has always been the focal point for studies in learning. There are many types of feedback; 

for example, feedback on outcomes, feedback on task characteristics, feedback as procedural 

instructions, rewards and punishments on performance and many more. It is fair to say that the 

types of feedback and the number of studies about feedback are enormous. Several thorough 

reviews and meta-analyses of feedback in learning are given by Kluger and DeNisi (1996), Hattie 

(1999) and Hattie and Timperley (2007). To have an idea of the volume of studies in this area, in 

Kluger and DeNisi’s meta-analysis, 607 effect sizes and 23,663 observations were covered. Even 

more, Hattie’s 1999 review covers 500 meta-analyses representing a variety of types of feedback 

in learning. 
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Feedback is considered as “information provided by an agent (e.g. teacher, peer, book, parent, self, 

experience) regarding aspects of one’s performance or understanding” (Hattie & Timperley 2007, 

p. 81). Kluger and DeNisi (1996) referred to it as feedback intervention (FI), but offered a definition 

very similar to Hattie and Timperley. In general, the feedback discussed here refers to external 

feedback on either the learning performance or process. It does not include internal feedback that 

learners generate by themselves during learning. It is agreed by the above-mentioned authors that 

not all feedback is good for learning and performance improvement. Indeed, quite the opposite; 

certain feedback can have negative effects on performance. For example, extrinsic rewards and 

tangible rewards can significantly undermine the intrinsic motivation of learning interesting tasks. 

Feedback such as “you should have performed” in a particular way or at certain level is considered 

as threatening to learner’s self-esteem and is shown to cause even worse performance (Hattie & 

Timperley 2007). As Kluger and DeNisi (1996) concluded, feedback intervention in general 

improves performance by about 40% but over one-third of the feedback types can decrease 

performance. The question is: which types of feedback should learning approaches adopt in this study? 

 

Views held by Kluger and DeNisi (1996) and Hattie and Timperley (2007) on the role of feedback 

in learning are similar. According to them, there exists a hierarchy of feedback. The hierarchy starts 

from feedback on task learning, and moves up to feedback on task procedure, task motivation and 

finally on self-related characteristics. Moving up this hierarchy, the positive effects of feedback 

decrease. This means, the most effective type of feedback for performance is closely related to the 

actual task at the bottom level in the hierarchy. It may sound strange because one would think that 

feedback on individual characteristics should be quite effective. As explained by the foregoing 

authors, feedback about self-related characteristics actually does not offer useful task information 

for learners to correct judgements.  
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So what kind of feedback is task related? Feedback on tasks mainly includes: 1) corrective feedback 

or “outcome feedback”, which is a correct answer given to a learner after a predictive answer to a 

task question; and 2) cognitive feedback, which includes some or all statistical information about 

formal task characteristics such as models and decision insights behind predictions, and 

information about learners’ cognitive characteristics and other relationships (Cooksey 1996; 

Kluger & Denisi 1996). These two types of feedback have been extensively studied and compared 

in MCPL literature (Cooksey 1996). MCPL, or multiple cue probability learning, as summarised by 

Slovic and Lichtenstein (1971), is part of probability learning research to see how people can learn 

the relationships between a set of cues and environmental situations (criteria). Functional 

relationships between cues and criteria are typically statistical, as in a regression model. In the 

process of learning these functional relationships, either outcome feedback or a variety of cognitive 

feedback can be applied to improve performance. While outcome feedback simply reports the 

correctness of answers, leaving cognitive activities up to learners, cognitive feedback can provide 

suggestions on how and why decisions should be made. A large number of empirical studies have 

compared the two types of feedback and most researchers agree that cognitive feedback may be 

more effective than outcome feedback. 

 

For example, Hammond, Summers and Deane (1973) compared outcome feedback with cognitive 

feedback. They found that not only was outcome feedback unnecessary for performance 

improvement, it actually impeded performance improvement. According to Schmitt, Coyle and 

King (1976), improvement by outcome feedback is significantly less consistent than improvement 

by cognitive feedback with task information. They found that cognitive feedback with both cue 

utilisation and task information produces the best matching between answers and predictions. One 

advantage of cognitive feedback over outcome feedback is that it can better identify irrelevant 

information which may hinder performance (Sengupta 1995). Researchers then went further to 
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test and compare different types of cognitive feedback. Steinmann (1976) tested feed-forward 

information in combination with cognitive feedback. In his study, statistical information about the 

task is given as feed-forward information before tasks are provided. Statistical information about 

subjects’ own performances in addition to information about the tasks are included as part of the 

cognitive feedback subjects received. Task complexity was then varied on cues and their 

relationships to the criteria. Steinmann found that, in both simple and complex tasks, subjects 

perform well with this combined feedback. Klayman (1984) argues that cognitive feedback focuses 

only on relationships between cues and criteria and cannot capture an important aspect of 

probability learning, namely, the generation of new predictive cues. Hence, such feedback 

encourages an inappropriate deterministic mental set. Balzer, Doherty, and O’Connor (1989) 

decomposed cognitive feedback into three components: information about the task system, 

information about the subject’s cognitive system, and information about the relationship of the 

task system to the cognitive system. Their review suggests that information about task is mainly 

responsible for performance improvement while the other two components have a less significant 

effect.  

 

A more useful comparison for this study was given by Arunachalam and Daly (1996). They 

compared two types of cognitive feedback, judgement policy feedback and model prediction 

feedback. Judgement policy feedback is feedback that directly answers the accuracy of stated 

judgement policies such as cue weights and functional forms applied by learners. Model prediction 

feedback is based on predictions made according to learners’ judgement policies. This is equivalent 

to a learner model, the results of which are given back to learners. Arunachalam and Daly (1996) 

found that model prediction feedback is more effective than judgement policy feedback, because 

it exactly shows how learners’ policies differ from correct policies in terms of prediction results. 
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In terms of which feedback may perform better in testing, this researcher holds the view that it 

may be conditional on the type and complexity of the learning problem. It may also depend on 

which learning style a learner adopts. For example, in really simple tasks, such as in predicting an 

on and off signal in multiple trials, learners may simply take a frequency count of each event in 

their minds and follow frequencies mentally. This was observed in probability learning studies and 

indicated from early learning theory literature (e.g. Estes 1976). If this is the case, outcome 

feedback can actually be quite effective and anything more complex than a simple frequency count 

in cognitive feedback may not work better. Another possible condition under which outcome 

feedback may be more effective is when learning problems are too complex and cognitive feedback 

too difficult to comprehend; for example, when a learning model has many parameters. In cases 

when there are a limited number of relationships that can be clearly explained, cognitive feedback 

should be more effective because it provides more task related information. In this research, both 

types of feedback and the different types of cognitive feedback are tested. 

2.3.4 Attribute Three – Knowledge Representation 

Attributes One and Two largely associate well with the traditional S-R-O framework in 

psychological learning theories. The underlying question relating to Attribute One is how to cause 

learners to learn effectively from stimuli organised by learners or by controlled experimental 

design. Attribute Two uses learners’ responses for evaluation and provides evaluation feedback to 

learners as new stimuli. The ideas of Attributes Three and Four discussed in the following two 

sections are knowledge representation and categorisation. They do not match directly with the S-

R-O framework based on observed behaviour. In a way, these two attributes make assumptions 

about potential mental processes that learners may employ in learning if a particular learning 

approach is applied.  
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Attribute Three is knowledge representation or KR. It is a central issue of cognitive science in 

studying cognition. This attribute is not clear because it has not been tested in the context of 

learning real-life problems by researchers in psychology, education, business or other disciplines. 

So far, it has largely remained as a theoretical concept rather than an empirical research subject. In 

the context of learning, it is crucial to think about how knowledge is represented, taught and stored. 

Knowledge representation, as Rumelhart and Norman (1985) put it, is a notation of mental models 

and mental activities. Perhaps a better way to describe knowledge representation is the relationship 

between the “represented world” and the “representing world”. Knowledge to learners can be 

considered as the “represented world”, or the actual domain knowledge regardless of any particular 

ways in which it is manifested. Information that learners actually receive can be considered as the 

“representing world”, or knowledge in a particular form that works on learners’ cognition 

(Markman 1999). What learners see is only a chosen form of the underlying knowledge but not 

the knowledge itself. The two worlds are only probabilistically related. Therefore, the objective of 

designing an effective learning approach should aim to most effectively reflect the underlying 

knowledge that learners are supposed to learn. 

 

There are many categories of KR and researchers have similar and different views on how 

knowledge should be represented. Since this is a vast and relatively inconsistent field, this research 

will focus only on one particular argument of KR, namely, the argument between advocates for 

propositional and imagery KR (Anderson 1978; Cohen 1983; Kossyln 1985; Markman 1999; 

Pylyshyn 1973; Pylyshyn 1981; Rumelhart & Norman 1985). Without spending substantial effort 

trying to define what is propositional and imagery KR in abstract terms, it is more meaningful to 

compare their differences concerning relevant ways to represent an analytical model to make its 

knowledge accessible for learning. One approach is to list a combination of propositions regarding 

features, rules and relationships identified in the model. These propositions are addressed formally 
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and explicitly, in either verbal or graphic formats. A different way is to express model relations in 

spatial forms such as in two-dimensional graphics with each dimension representing a model 

property. In the former case, graphics are used simply as a way of presentation, parallel to verbal 

expressions. In the latter case, graphics are used for demonstrating structural relationships in the 

model without formally announcing them. The desired cognitive activity is for people’s mental 

images to be created seamlessly. In practice, both representations can be used jointly, with more 

or less emphasis on one of the two representations. 

 

Researchers supporting the propositional representation insist that the represented world should 

be reflected by propositions. These propositions can be any formal statements on logical 

relationships, structures, connections, concepts or any other forms of propositions. Cognitive 

operations are regarded as activation and manipulations of these propositions (Cohen 1983; Pylyshyn 

1981). In research supporting propositional representation, visual images can be used but they are 

not independent constructs, so have no major roles to play in cognition. This view is consistent 

with symbolic learning and connectionist learning discussed earlier in cognitive learning theories. 

Propositions can be naturally considered as major building blocks in learning. Activation and 

manipulation of these blocks define cognitive activities. In contrast, researchers who support 

imagery representation (or “imagists” in some literature) believe that there exists a functional role 

for mental imagery. Not only can actual images in the represented world be represented and 

directly mapped to the representing world as mental images, spatial relationships such as those 

between objects and geometrical structures, concepts and conceptual relationships, can all be 

represented as images and map to mental images. The leading researcher in developing this theory 

is Kosslyn (1981, 1994), but spatial representation is just one way of thinking about imagery KR 

(Markman 1999).  
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The real challenge in the study of KR is how to conduct suitable empirical tests. As pointed out 

by Cohen (1983), both KR approaches seem resistant to experiments because both views can find 

explanations in opposite results. For example, in a study done by Kosslyn, Ball and Reiser (1978), 

people were asked to first learn the locations of objects on a map, then asked to search their mental 

images to recall distances between two locations. Results show that subjects seemed to use mental 

maps effectively to retrieve distances between objects without actually looking at physical maps. 

Such results clearly favour the imagery approach. However, researchers who support propositions 

argue that subjects were simply responding to demand characteristics and they would first need to 

interpret the map and decode distances between the subjects into formal propositions (Cohen 

1983; Markman 1999). Some believe this argument regarding two different KR approaches cannot 

be solved experimentally, because neither can find distinct properties which can be isolated by 

behaviour. No psychological data can inform us whether people's internal representation is in this 

and not the other form (Anderson 1978; Cohen 1983). 

 

Although it may be difficult to identify which KR approach is actually implemented in people’s 

mind through experiments, it is however possible to test the effectiveness of a learning approach 

facilitated to support a particular KR approach rather than supporting other approaches.  

2.3.5 Attribute Four – Categorisation 

Classifying learners based on their predictions using rules such as Bayesian classifiers is common. 

Thinking widely about real-life applications such as in e-commerce, it is fair to say that classifying 

people based on their patterns of behaviour is a common application. There is a key difference 

between categorisation and classification although the two terms are often used interchangeably 

in practice. According to Markman and Ross (2003), categorisation is a broader concept referring 

to a mental process of acquiring and using categories. Categories are defined as “groups of distinct 

abstract or concrete items that the cognitive system treats as equivalent for some purpose” (pp. 
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592–593). On the other hand, classification refers to methods used to reach classification models 

in order to identify categories. Three common classes of classification models are widely 

recognised. They are exemplar models, prototype models and rule-based models. The exemplar and 

prototype models are similarity-based models whilst exemplar models require information 

integration from examples. Rule-based models focus on identifying rules and classifying instances 

into classes according to identified rules (Markman & Ross 2003). One aspect of classification is 

to identify classification models for the purpose of category learning.  

 

Categorisation plays a profound role in cognitive activities and has many cognitive functions. For 

example, using the above mentioned three classes of classification models, cognitive 

neuroscientists have found, from functional magnetic resonance imaging (fMRI) studies, that 

when people are conducting categorisation learning, different brain regions are activated. Results 

even show that for exemplar-based categorisation learning, human brains can have different 

patterns depending on the number of examples for information integration (Ashby & Ell 2001). 

This suggests that not only are humans capable of categorising stimuli and learning categories such 

as discussed by Medin and Shaffer (1978) and Nosofsky (1986), there is indeed solid neuroscience 

evidence demonstrating that category learning is a natural cognitive activity. 

 

Concepts are often considered as mental representations of categories. Therefore, category 

learning can be addressed as concept learning. Komatsu (1992) provides a thorough literature 

review of the three major schools of concept learning theories covering feature abstraction, prototype 

and instance comparison. Linking these theories to classification models, it is obvious that these 

theories match well with the three types of models: rule-based models (feature abstraction), 

prototype models (prototype) and exemplar models (instance comparison) respectively. These 

three theories shape the picture of category or concept learning.  
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To explain very briefly following reviews by Komatsu (1992), feature abstraction theories are 

developed under the influence of the traditional S-R-O framework. Theories formed under this 

assumption focus on extracting common features from incidences in order to form concepts. 

Mental representation in this concept acquisition form is the process through which a list of 

common features (attributes) is developed. New incidences are then compared according to this 

feature list. The main criticism of feature abstraction theories is that categories often have fuzzy 

boundaries with regard to features, thus it is questionable whether using features to represent 

categories is an effective method.  

 

As distinct to feature abstraction which is an approach working from the bottom level, the 

prototype approach works from the top level. Prototype theory developed by Rosch and her 

colleagues is a classical theory of categorisation (Rosch 1973, 1975; Rosch et al. 1976). The focus 

of this theory is around the concept of “prototype”. A prototype is not a list of features or any 

particular example, but the “central tendencies of categories” (Rosch 1973, p. 328). It is non-arbitrary 

and has most of the attributes common to all members in a category (thus “highest cue validity”). 

This theory holds that a category reflecting a prototype is considerably easier to learn than a 

category violating it. This theory articulates a clear structure of categorisation levels with 

prototypes. The defining hierarchy of categorisation levels consists of a basic level, a subordinate 

level and a superordinate level. The basic level is the class that people naturally assign an object to, 

for example, any tables that people see belong to the class “table”. The subordinate level can be 

considered as the property dimensions of classes, for example, for “table”, property dimensions 

may include height, weight, and style. The superordinate level is a higher class consisting of many 

classes with common attributes. For example, “table” can be grouped into furniture. Though 

intuitively easy to understand, the main problem of prototype theory relates to empirical tests. 

Hampton (1995) gave several cases showing difficulties in testing prototypes. For example, 
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features defining prototypes may be fuzzy or not independent. Therefore, there are no clear 

boundaries between prototypes and for similarity-based categorisation results can be different due 

to non-independent features defining prototypes. It is important to note that experiments used to 

establish the theory, such as those conducted by Rosch and her colleagues, did not have complex 

concepts. Whether or not the theory will work equally well in learning complex concepts requires 

further testing. 

 

Putting into the perspective of empirical testing in this research (a learning consumer choice 

model), using feature abstraction and prototypes for category learning is equivalent to learning 

consumer choices through product attributes and consumer segments. Product attributes can be 

considered as a list of features in feature abstraction. Consumer segments can be considered as 

prototypes. The difference in concept learning literature is that features and prototypes are less 

complex. Therefore, this study provides a good test bed by applying elements of these theories in 

learning. Moreover, these two underlying learning approaches also relate to using proposition or 

imagery representations. The idea of feature abstraction strongly implies that the format of 

knowledge representation is a list of formal propositions, and learning occurs when this list is 

looked up and refined. On the other hand, the idea of categorisation levels in prototype theory 

suggests that some key dimensions are used to define prototypes, and a way to represent these 

dimensions is through the use of multidimensional techniques to reduce problem dimensions and 

visualise key properties of prototypes. In doing this, similarities of categories (prototypes) can be 

converted to distances in spatial representation. This is also the key idea of Conceptual Spaces 

Theory (Gärdenfors 2000). The theory holds that concepts can be visualised as objects in a 

geometrical structure so that similarities of concepts can be represented in a “conceptual space” 

defined by “quality” dimensions. This further proves that a learning approach based on similarity-



56 

 

based visual representation is a different learning approach overall to the traditional feature 

abstraction approach originating from the S-R-O association idea in psychology. 

 

Instance-comparison categorisation learning mainly works by categorising new training cases 

based on existing identified categories. Therefore it can be regarded as an extra support to 

similarity-based category learning, and negates the need for a feature list. The theory holds that for 

many complex concepts, the only way to acquire them is through constantly comparing similarities 

of new instances to existing categories. It argues that learning analytically, such as through a feature 

look up table, makes it difficult to define new training cases’ category memberships (Komatsu 

1992). Since this is regarded as an ancillary idea to the prototype approach, it will not be further 

discussed here.  

 

To summarise, through the foregoing discussion, two distinct category learning approaches have 

been clarified, namely feature abstraction learning and prototype learning. 

2.3.6 Summary 

Regardless of how many different theoretical views are covered in this section, the purpose of the 

discussion remains clear: to design and test theory-based learning approaches to improve 

probability predictions through acquiring knowledge from a model. As pointed out earlier, if the 

idea is purely to develop a practical tool without a theoretical foundation, at best such a tool can 

work well to solve a particular problem. By reviewing rich theoretical views and arguments relating 

to four key attributes of learning, it is possible to develop strong theory-based learning approaches 

with generalisation value and avoid the problem of relying on vague and often incorrect 

assumptions about how learning may occur. 
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2.4 Building Learning Approaches under Extended Framework 

2.4.1 Extended Framework for Learning 

This chapter reviewed different learning theories and frameworks from different disciplines under 

which learning is studied. One important framework is the traditional S-R-O association 

framework treating learning as a repeated loop from stimulus to response then to outcome. 

Another example framework is the concept learning framework developed in cognitive science 

using similarity-based concept learning with objects in quality dimensions to show differences of 

concepts. Among these frameworks, the key difference is whether a framework addresses the 

learning process. In behavioural learning theories under the S-R-O framework, process is not 

covered because under this framework only observed behaviour can be considered evidence for 

learning. The learning process is not directly observable therefore theories regarding process are 

conjectures. Thinking empirically, although we cannot measure the learning process directly, we 

can however design learning approaches which are best suited for a particular learning process to 

be adopted by learners. For example, we can provide a formal list of features and rules in stimuli 

to support feature abstraction learning, or provide descriptions of categories to support category 

learning, or provide outcome feedback to support trial and error learning.  

 

The discussions in this chapter provide adequate evidence to extend the traditional S-R-O 

framework. This framework is labelled the “stimulus-process-response-outcome” framework 

which can be abbreviated as the “S-P-R-O” framework. There are two important associations here. 

This first association is the one between stimulus and process. This researcher believes, the design 

of a stimulus should not be considered as purely task information or instructional information, but 

rather the stimulus should best facilitate a particular target learning process considered as most 

effective for the task. The learning process relies on a stimulus and eventually determines the 

response and outcome. For example, giving propositions in verbal forms suggests the learning 
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process will involve understanding, memorising and implementing. Providing graphics with 

relationships of classes or features illustrated triggers a learning process of building mental images. 

This part of stimulus design can be considered as “process design” which is to determine the 

closest aligned possible learning process.  

 

Another association is the one between process and response. If a different learning process is 

applied, different responses may be triggered. A learning process leaning towards applying rules 

may provide better responses if answers require computation and logical operation, but it may be 

less effective in giving answers in other forms such as visualised forms. In contrast, a learning 

process based on mental images may give clear directions or make good predictions about how 

distant are two objects, but can be inadequate in giving answers to other forms of questions. 

 

Besides the above two associations, the third association between response and outcome are well 

covered in traditional learning theories, especially in the literature on feedback. Together the three 

associations define this extended learning framework and form a loop structure. Once responses 

are evaluated as outcomes, information is returned as feedback as a part of new stimuli for the 

next round of learning. This association between outcome and stimulus is considered to be the 

fourth association. The extended framework is depicted in Figure 2.1. 

 

Figure 2.1 Extended S-P-R-O Learning Framework 

Process

ResponseOutcome

Stimulus
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We have discussed four attributes derived from learning theories. Attribute One (self-regulated 

versus experimentally design learning) clearly targets the association between stimulus and process. 

The assumption is that if we design stimuli efficiently using experimental design, we can expect an 

effective learning process which will lead to better responses. Attribute Two (feedback) targets the 

associations between response and outcome and between outcome and stimulus. Once responses 

are provided, either simple or complex evaluation is conducted to determine outcomes. These 

outcomes are then used to enhance stimuli for the next round of learning. Attribute Three 

(knowledge representation) targets associations between stimulus and process. By treating stimulus 

as the “represented world” with some forms of representation as the “representing world”, 

different learning process may be applied. Attribute Four (categorisation and classification) again 

targets the association between stimulus and process, by designing a stimulus best suited for 

categorisation, the assumption being that learners may adopt categorisation in their learning 

process.  

2.4.2 Designing Learning Approaches for Testing 

Under the extended framework and using the four discussed attributes, it is possible to develop 

many different learning approaches. However, the purpose of this research is not to exhaust all 

attributes relating to learning and all combinations of attributes to identify the most effective 

combination for learning. This would be an impossible task because the number of attributes and 

the number of combinations are both practically infinite. However, it is possible to choose a small 

set of representative learning approaches using identified attributes and test them in an experiment. 

The results of such experiment will provide insights as to how each key attribute may work in 

supporting learning. The effects of some of the attributes may be confounded in this context, 

however, once a proof of concept study has been conducted to show that some learning 

approaches work more effectively than others and provide better learning and more accurate 

predictions of probabilities, then it is possible to generalise the method and learning approaches 
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for further research. Four such representative learning approaches have been developed for testing 

in this study and they are shown in Figure 2.2.  

 

Figure 2.2 Four Learning Approaches 

As shown in Figure 2.2, each learning approach matches with one experimental condition for 

empirical study. The following paragraphs will summarise these four learning approaches 

separately. 

 

Learning Approach One (Experimental Condition 1): In this approach, learners design their own 

stimuli. The combinations and the time of learning these stimuli are controlled by learners. They 

do not receive feedback after training tasks to inform them about their performance and the stimuli 

are not designed to support any particular learning process. Put simply, learners are self-supported. 

In the context of the empirical study in this research, learners have to learn a consumer choice 

model by constructing examples of choice scenarios by themselves. They learn from the outcomes 

of these scenarios without explanation, and no extra feedback is provided after completing the 

training tasks.  
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Learning Approach Two (Experimental Condition 2): Learners are given a limited set of 

experimental design controlled training tasks to make predictions. These tasks cover the problem 

space efficiently to allow learners to learn from a limited number of combinations. After making 

predictions in each training task, learners receive feedback informing them about the correct 

answers. This learning approach matches with what is traditionally used in probability learning 

studies in psychology. 

Learning Approach Three (Experimental Condition 3):  

Learners are given the same experimental designed training tasks as in Learning Approach Two. 

Learners are given feed forward information before starting training tasks and in-depth cognitive 

feedback after each session of training tasks. The characteristics of information are demonstrated 

explicitly with model parameters shown in probability terms in both verbal and graphic formats. 

Classification methods are not applied, and learners are most likely performing the process to 

develop and refine a list of key features important for outcomes. The expectation is that learners 

are able to integrate feature-level information into the overall concept to improve their prediction 

performance.  

 

Learning Approach Four (Experimental Condition 4): Learners are given the same experimental 

designed training tasks as in Approaches Two and Three. The focus is to learn from feed forward 

information before tasks and cognitive feedback after tasks. Categories and their similarities are 

illustrated and explained in chart and words showing relationships of categories based on class 

model parameters. Cognitive feedback informs learners whether they understood the target 

category and its model. The main expectation is that learners are able to differentiate categories 

through learning the relationship chart and classification outcomes in feedback.  
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Of all the discussions in this chapter, one area has not been addressed but plays a key role in 

learning. This is the discussion regarding methodologies used in evaluation, estimation and 

classification. Learning approaches can be directly applied and felt by learners as conditions for 

learning, but evaluation, estimation and classification occur in the background of a tutoring system. 

This mechanism works through the tutoring system and plays a key role to support and facilitate 

proposed learning approaches. For example, estimation results of learning models provide learners 

with individual level feedback, and classification results inform them whether they are learning the 

correct category. These features are key components of Learning Approach Three and Learning 

Approach Four.  Even for a simpler learning approach such as Learning Approach Two, the main 

feature (outcome feedback) needs to demonstrate correct answers to training tasks based on an 

estimated model. Chapter 3 discusses these methodologies in the context of this thesis. 
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Chapter 3  Evaluation, Estimation and Classification 

3.1 Overview 

Chapter 2 discussed learning theories and proposed four learning approaches under an extended 

learning framework. This chapter discusses methods to evaluate probability predictions, estimate 

learner models and classify responses to known classes. These methods cover both the experiment 

stage by using learners’ responses to training tasks to provide immediate feedback for further 

learning, and post-experiment analysis using collected data to test hypotheses of prediction 

accuracy and model learning. To be more specific, in the experiment stage, for Learning 

Approaches Three and Four, a combination of probability evaluation, model estimation and 

classification are required to generate more complex and dynamic feedback specific to each learner. 

In the subjective probability prediction literature, researchers often use the terms ex ante and ex post 

to describe the stages pre- and post-prediction (e.g. Friedman 1983; Winkler 1996; Winkler & 

Murphy 1968). Methods applied in the ex ante stage should encourage reliable and coherent 

predictions, whereas methods applied in the ex post stage should examine whether experiments 

have achieved expected objectives such as improving accuracy and model learning outcomes. 

 

As mentioned in Chapter 1, in the learning experiment, the mechanism performing evaluation, 

model estimation and classification is built into an intelligent tutoring system. According to Woolf 

(2009), several components are key characteristics of intelligent tutoring systems: knowledge base or 

what is being taught to learners; learner model (also called “student model”) representing the learners’ 

status of knowledge to support their responses for training tasks; evaluation agent performing 

evaluation, estimation, classification and other functionalities; and communication approach providing 

information and instructions to help learners. Among the four components, learning approaches 

discussed in Chapter 2 can be considered as the communication approach. In this research, the 

knowledge base is established from the results of the consumer choice models as discussed in 
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Section 1.3. The remaining two components, learner model and evaluation agent, are the focus of this 

chapter.  

 

The learner model makes continuous learning possible without delay and satisfying the objective of 

advanced feedback can communicate with learners about their own models. The idea is that by 

comparing differences between their own models and a target model, learners can correct errors. 

The evaluation agent is the mechanism performing various functions to capture learner models. A 

similar concept is a “learning machine”, a common term used in the statistical learning theory 

literature (e.g. Cherkassky & Mulier 2007; Vapnik 1999). Exactly as the term suggests, its task is to 

learn from training responses that learners give in training tasks. 

 

The learner model can provide results that are individual and task specific. It can be communicated 

back to learners via feedback designed as learning approaches. Recall the proposed S-P-R-O 

association framework illustrated in Figure 2.1, these methods performed by the evaluation agent 

(learning machine) are the key functions linking response and outcome (R-O) and provide new 

sources of information linking outcome and stimulus (O-S) in a continuous learning loop.  

 

In the post-experiment analysis, identical or more robust analysis approaches to evaluation and 

estimation can be applied. Results can provide evidence to test hypotheses and support research 

findings. Without the restriction of fast computation typically required for dynamic feedback, 

better statistical fits can be expected by using more robust methods. For example, the maximum 

likelihood estimation (MLE) method is more suitable for post-experiment analysis whilst the 

ordinary least squares (OLS) method is better for fast computation. Among the methods of 

evaluation, estimation and classification, classification is used only during experiments for Learning 
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Approach Four designed to use the categorisation learning approach (learning from classes). 

Evaluation and model estimation are important for both stages. 

  

This chapter is organised into three sections. Section 3.2 discusses subjective probability prediction 

theory and evaluation methods using “scoring rules”. Section 3.3 discusses estimation approaches 

developed on the basis of discrete choice model methods. The objective of this discussion is 

twofold. First, it provides theories and methods for developing two types of models for learning 

experiment. One type is an aggregated model and the second type is a model of latent classes. 

Second, the discussion also covers how to estimate each individual learning model. This is applied 

in both pre-experiment and post-experiment analysis. Section 3.4 discusses the classification 

approach relating to categorisation learning in Learning Approach Four. Together these three 

types of analysis define the role performed by the evaluation agent in the tutoring system applied 

during learning and the analysis of collected data in post-experiment hypotheses testing. To 

summarise, the chapter will provide theoretical and methodological discussions of methods and 

models for both the pre-experimental and post-experiment analysis stages. It is important to note 

some exact analysis approaches used in the empirical study will be better articulated in Chapters 4 

and 5 when the experiments are discussed. This chapter focuses on theories and methods 

supporting exact approaches. 

3.2 Evaluating Probability Predictions 

3.2.1 What is Good Probability Prediction? 

Subjective probability is a field with a long history of research. Research in this field generally has 

two objectives: first, it aims to elicit people’s subjective probabilities consistent with common 

probability principles and encourage people to provide honest and accurate predictions; second, it 

studies how to best evaluate people’s subjective probability predictions. It is commonly 
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acknowledged that the foundation for this field was established by de Finetti and Savage during 

the 1930s to 1960s. They jointly developed a theoretical framework which was adopted by 

researchers who studied subjective probabilities. This framework consists of axioms to serve as 

principles for subjective probabilities such as comparability and transitivity, and their applications 

with regard to a behavioural perspective (e.g. Fishburn 1986; Savage 1971, 1972; Suppes 1994). 

The initial focus of the theory is on how best to elicit subjective predictions ex ante. For many 

situations where probability predictions were discussed in the early literature, true probabilities are 

not known a priori at the prediction stage, as for example in forecasting weather events in 

meteorology (e.g. Winkler & Murphy 1968). What are available are two probabilities: the predicted 

probabilities, and the best expected probabilities from assessors. In evaluating predictions, it is 

often the case that these two probabilities or probability distributions are compared. Later research 

focused on how best to evaluate subjective probability predictions by comparing predictions with 

actual probabilities by using a variety of “scoring rules”. The properties and effectiveness of 

various scoring rules became the key subject in this field. Scoring rules can be applied in both ex 

ante assessment and ex post evaluation (Friedman 1983; Gneiting & Raftery 2007; Savage 1971; 

Winkler 1996). Applying scoring rules to evaluate the accuracy of predictions is the main interest 

of this research in relation to this theory. 

 

Consider a general standard to apply regarding whether a subjective probability prediction is a 

good prediction; Winkler and Murphy (1968) proposed two concepts in measuring the “goodness” 

or the quality of subjective probability predictions. The first standard is a normative standard 

examining whether predictions are coherent with people’s true expected probabilities (if actual 

probabilities are not available) or actual probabilities (if they are available). The second standard is 

substantive learning, measuring the knowledge of a person applied in making predictions. Just as 

statistical models can be judged on both prediction accuracy and statistical goodness-of-fit, 
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subjective probability predictions can be judged on their prediction accuracy and knowledge. 

Prediction accuracy can be directly observed by comparing predicted probabilities with actual 

probabilities and applying scoring rules. However, quantifying the knowledge used by a person in 

making predictions is not as simple. This is because knowledge in one’s mind neither can be 

directly observed nor easily elicited because even learners themselves may find it difficult to 

describe explicitly what knowledge is being used in making the predictions. People cannot describe 

tacit knowledge or simply are not aware of the particular knowledge being used. This requires a 

way to develop a model that can approximate their knowledge. This chapter leaves the discussion 

about understanding substantive learning for Section 3.3. Section 3.2 only focuses on evaluating 

the accuracy of using scoring rules. 

 

Knowing the two standards, before thinking about evaluation and estimation methods, the first 

problem is how to best design an elicitation task to capture more information from people. In 

other words, the type of task people are asked to perform to make predictions should be adequate 

to allow the measurement of accuracy and knowledge. Tasks asking people to provide full 

probability predictions on discrete and mutually exclusive events or options can give more 

information than tasks simply asking people to predict one choice or one probability for a single 

event. This is because “probability forecasts can explicitly recognize and quantify uncertainty ... 

probability forecasts are more valuable to decision makers than categorical forecasts” (Winkler 

1996, p. 2). Full probability prediction tasks for discrete and exclusive events also match with the 

fundamental representation given by Savage to evaluate category-based probability predictions 

(Friedman 1983; Gneiting & Raftery 2007; Savage 1971; Winkler 1996). This is discussed in Section 

3.2.2 regarding scoring rules. 
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The idea of asking people to provide full probability predictions for tasks is also supported by 

researchers working in the areas of expert judgement and discrete choice models. For example, 

O’Hagan et al. (2006) gave detailed descriptions of a variety of methods and processes for eliciting 

expert subjective probabilities. One of the methods they proposed is to use a “constant-sum scale” 

that asks subjects to allocate percentages to different choices in given choice scenarios. This 

method was also proposed by Louviere and Woodworth (1983). This method is equivalent to 

asking people to predict probabilities for categories, the main difference being the use of 

percentages instead of probabilities as the former is an easier concept for people to grasp. This 

method is also one of the methods discussed by Louviere and Islam (2008) in comparing 

importance weights and measures. From both mathematical and decision-making perspectives, it 

is not hard to see why full probability prediction is more informative in providing evidence of 

substantive learning because it is much harder for people to answer without the support of 

knowledge. Assume there are four mutually exclusive events for people to predict the probabilities 

that each will occur. The simple task is to predict which event will occur. Whether predicted 

correctly or incorrectly, information gained by this method is limited. To evaluate how a person is 

performing overall requires researchers to accumulate predictions for many tasks to establish the 

probabilities of correct predictions. On the other hand, if the person is asked to predict 

probabilities of all four events such that they sum to 1, it is possible to draw an inference about 

this person’s performance based on the closeness of the predictions to actual probabilities of 

occurrence related to even one task. In the simple category prediction task, a correct prediction 

can be the result of a random pick or the application of other strategies. On the other hand, making 

correct or even close predictions for the four probabilities is impossible without good knowledge 

of the four events being predicted. According to O’Hagan and others, in expert elicitation tasks, 

eliciting multinomial probability distribution is much harder than eliciting single binary probability. 

In return, information gained from the former elicitation is also much greater (O’Hagan et al. 
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2006). In this research, the prediction task of full probability distribution of all options can provide 

data to test both prediction accuracy and substantive learning. 

 3.2.2 Using Scoring Rules to Evaluate Accuracy of Probability Predictions 

This section addresses the key issue of how to evaluate prediction accuracy using scoring rules. 

Using scoring rules to evaluate prediction accuracy is a well-accepted and highly developed 

method. Research on scoring rules started early in the 1950s under the framework of subjective 

probability theory. For example, Brier (1950) proposed the Brier score used in weather forecasts 

to test the accuracy of predictions of mutually exclusive categorical events. Research on scoring 

rules started to evolve from the 1960s. Many forms of scoring rules, properties of scoring rules 

such as strict properness and effectiveness and applications in various fields have been studied 

(e.g. Friedman 1983; Hogarth 1975; Winkler 1996; Winkler & Murphy 1968;). Particular topics 

such as which scoring rule is the most appropriate one for a certain situation are still evident in 

recent research (e.g. Bickel 2007). Researchers from other disciplines such as computer science 

also are interested in scoring rules. For example, researchers studied the use of scoring rules in 

fields such as machine learning, forecasting systems and online algorithm learning (e.g. Dawid, 

Lauritzen & Parry 2012; Skouras & Dawid 1999; Vovk 2001). Two thorough and influential 

reviews were provided by Winkler (1996), and more recently by Gneiting and Raftery (2007) of 

the types of scoring rules and their properties and usage.  

 

To define a scoring rule, Gneiting and Raftery (2007, p. 359) state that, “scoring rules assess the 

quality of probabilistic forecasts (predictions), by assigning a numerical score based on the 

predictive distribution and on the event or value that materializes”. While this definition may sound 

somewhat technical, a simpler expression is that scoring rules are scores generated as a result of 

comparing predicted and actual probabilities. Earlier literature, such as Winkler (1996), discusses 

scoring rules that focus on probabilities of discrete events with a finite number of probabilities. 
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Later literature, such as Gneiting and Raftery (2007), discusses probability distributions and 

densities and the concept of scoring rules used to predict continuous variables. The present 

research is only interested in using scoring rules to evaluate probability predictions of categorical 

variables, in particular a discrete number of decisions and choices in decision making, the context 

of this thesis. 

 

Starting with Savage’s popular representation characterising scoring rules for probability 

predictions for categorical variables, three popular scoring rules of quadratic, spherical and 

logarithmic form are discussed (Gneiting & Raftery 2007; Savage 1971; Winkler 1996). For a 

categorical variable containing  finite number of mutually exclusive options , the 

probability predictions for  are a probability vector  consisting of , and the actual 

probabilities for  are another probability vector  consisting of . To simplify the 

discussion, assuming there are only two options in , the general form of the expected score for 

predicting the two options is (Winkler 1996): 

  (3.1) 

with  as the score for  if  occurs, and  as the score for  if  occurs. If there are  

number of multiple options, the general form then becomes: 

  (3.2) 

Applying the three common scoring rules (quadratic, spherical and logarithmic) to Equation 3.2, 

the general form of three scoring rules with  options are (Winkler 1996): 

 Quadratic:  (3.3) 

 Spherical:  (3.4) 

 Logarithmic:  (3.5) 

All three scoring rules have been mathematically proven to be “strictly proper”. A strictly proper 

scoring rule means a person who makes predictions can maximise this score relative to actual 
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probabilities, and the maximum is unique (Gneiting & Raftery 2007; Winkler 1996). There is 

consensus by all researchers in this field that this is the required property for considering a scoring 

rule. In other words, if a scoring rule cannot be maximised or the maximum is not unique and the 

true value, it cannot be considered as an appropriate scoring rule. The reason why is because it can 

neither be regarded appropriate for eliciting honest predictions nor be regarded appropriate for 

rewarding people who make better predictions. 

 

A key question is which scoring rule is the most appropriate to use, but there is not a simple 

answer. In some cases various forms of quadratic rules such as the Brier score and various forms 

of spherical rules such as Hellinger distance (a pseudo-spherical scoring rule) are appropriate. By 

nature, quadratic rules are Euclidean distance measures, which are suitable when probability 

predictions and actual probabilities are continuous, not dichotomous numbers. Friedman (1983) 

and Nau (1985) discussed “effectiveness” of scoring rules, which is another property besides strict 

properness. Friedman (1983) defines this as the appropriate scoring rule function being monotonic 

and Nau (1985) defines it as functions that meet the transitivity principle. Put simply, measures 

such as the Brier score using squares or square roots of probabilities are appropriate if distance 

measures between probability vectors can be applied. In Chapter 5, a type of distance measure 

(Hellinger distance) will be further discussed and used in analysis.   

 

Logarithmic scoring rules are considered appropriate when there are two or more options involved 

and when models with likelihood ratios associated with maximum likelihood estimation are 

involved (Gneiting & Raftery 2007; Winkler 1996; Winkler & Murphy 1968). Winkler and others 

suggest additional reasons as to why the logarithmic form may be more appropriate in evaluation 

(Winkler 1996). For example, in situations when actual probabilities are only ones and zeros, the 

way to calculate logarithmic based evaluation scores is completely local; that is, the evaluation of 
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the subjective probability for any particular choice does not rely on probabilities of other choices 

and so it does not rely on assumed probability distributions. Another advantage of logarithmic 

scoring rules is that they are sensitive to distance. For example, in situations where there are two 

predictions, the prediction closer to the actual probability will always have a higher logarithmic 

score even if the difference of the two predictions is small. More recently, Bickel (2007) suggested 

that the logarithm rule is the least affected in the ex ante stage by tasks using nonlinear functions 

or when the rank order of predicted options is involved. Bickel also suggested that the logarithm 

rule performs better than quadratic and spherical rules in post-prediction analysis when nonlinear 

utility functions and rank orders are involved. 

 

In Tables 3.1 and 3.2, two examples are given to show how the three scoring rules work for Persons 

A and B, who provided predictions for three mutually exclusive options of . In Table 

3.1, it can be seen that the logarithm scoring rule concludes that a better prediction is made by 

Person A when  actually occurs (probability is 1) and the scoring rule becomes local, which means 

the final score is only determined by the actual and predicted probabilities of . Quadratic and 

spherical scoring rules use all probabilities for evaluation therefore concluding that Person B 

performed better. If we only consider the actual event , then Person A performs better because 

of the higher probability predicted. In Table 3.2, when actual probabilities are not dichotomous, 

the outcomes of all three scoring rules conclude that Person B is a better performer, which is 

evident by direct inspection of the closeness of the predictions. In the case of Table 3.1, it can be 

said that the logarithmic (L) score is appropriate because predicted probabilities for the options 

did not occur (i.e. probability = 0), which has little meaning and can be ignored in evaluation. In 

the case of Table 3.2, when full probabilities are used, all three scoring rules give rise to clearer 

distinctions. Both quadratic (Q) and spherical (S) rules also show clear distinctions as to better 
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performance. In this case, it is acceptable to select any of the three scoring rules. These two 

examples are modified from an example given in Winkler and Murphy (1968). 

Table 3.1 Examples of three “scoring rules” when actual probabilities are 1 or 0 

  

Table 3.2 Examples of three “scoring rules” when actual probabilities are not 1 or 0 

  

There are many forms under each of the scoring rules. For the common forms discussed above, 

the range for quadratic rule is between -1 and 1, the range for spherical scoring rule is between 0 

and 1 and logarithmic scores are unbounded on the lower end with highest end as 0, just as the 

log-likelihood produced by maximum likelihood estimators. Besides the clear connection with log-

likelihood in models using maximum likelihood methods, logarithmic scoring rules also relate to 

entropy minimisation. As pointed out by Gneiting and Raftery (2007), logarithmic scoring rules 

have a direct corresponding connection with Negative Shannon Entropy and are associated with 

Relative Entropy (also called Kullback-Leibler Divergence or KL Divergence). It is a preferred 

scoring rule in several disciplines, such as information technology, because both Negative Entropy 

and Relative Entropy are common measures of information loss.  

 

For the purpose of this research, there is no need to further explain how scoring rules are derived 

mathematically. More advanced mathematics on this topic largely relate to asymptotic probability 
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distributions and do not relate to a finite number of probability predictions on a limited number 

of categorical options for single prediction incidence. In the four learning approaches proposed in 

Chapter 2, scoring rules are only related to Learning Approach Four in classification at the 

experimental stage (a logarithmic rule is used for classifying responses to classes). However, at the 

post-experiment analysis stage, scoring rules are used as the most important measure of the 

accuracy of probability predictions without involving attributes of options.  

 

When attributes of choice options are used to see how much people understand them in making 

predictions, a learner model needs to be identified using these attributes as predictors and predicted 

probabilities as the dependent variable. This is the topic of Section 3.3. 

3.3 Preparing Target Learning Models and Estimating Learner Model 

3.3.1 People’s Knowledge in Probability Predictions and Discrete Choice Models 

Section 3.2 discussed using scoring rules to evaluate probability predictions within the framework 

of subjective probability theory. This section discusses methods for estimating people’s knowledge 

in making probability predictions about discrete options consisting of attributes. The objective of 

estimation is to understand the knowledge used in predicting probabilities, but the fundamental 

method and theory come from estimating people’s preference for and choice of discrete options 

(e.g. Train 2009). Perhaps the only difference between the two is that in the former case, people 

are making inferences based on their knowledge of attributes; in the latter case, people are making 

choices based on their preferred attributes. In both cases, people need to consider the attributes 

of the options.  

 

As mentioned earlier in discussing scoring rules, this research is only interested in discrete and 

mutually exclusive categorical options that have wide implications in judgement and decision 
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making in marketing and other fields. In thinking of the type of models applied in modelling 

discrete categories with probability predictions as outcomes, the commonly acknowledged 

approach is to use discrete choice modelling (DCM) methods such as Multinomial Logit (MNL) 

or other types of DCM models (Louviere, Hensher & Swait 2000; Train 2009). Although DCM is 

not often applied in modelling people’s probability predictions of choice options but their own 

preferential choices, these models can provide a clearer understanding of people’s preferences for 

the attributes. In most DCM studies, the response data is stated preference (SP) data. In this thesis, 

the response data is people’s predictions. There are no real theoretical differences from a choice 

modelling standpoint. A model that represents people’s knowledge in making predictions requires 

estimation of attribute parameters from prediction responses. Similarly, a model that represents 

people’s preferences and choices would be reflected in the same parameter estimates derived from 

choice responses.  

3.3.2 General Framework to Model Choices 

The section starts with a short introduction to Random Utility Theory, the underlying theory for 

choice modelling. Instead of discussing many types of models, this thesis focuses on two classes 

of discrete choice models relating to the learning approaches discussed in Chapter 2. The first class 

is an aggregated model that can be used as the single model for training (Learning Approaches 

One, Two and Three), such as commonly applied MNL model. The second class takes into 

account differences between people by developing separate parameter estimates for classes or 

segments of people. This type of model can be used for categorisation learning (Learning 

Approach Four). Besides being used as target models in preparing for the learning experiment, 

DCM are also used in the learning experiment (Stage 2 of experiment). For example, in Learning 

Approach Three, a real-time MNL model using a weighted least squares method is applied to 

represent the learner model in feedback in the experiment. In the analysis stage of hypothesis 
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testing, individual MNL models are used to generate an individual attribute parameter matrix for 

further testing people’s model learning experience under each experimental condition.  

 

DCM is a common approach to model choices. It targets situations where people choose from a 

discrete number of choice options (Train 2009). In marketing, DCM is used to study consumer 

preferences and choices of products and services, which are common types of decisions that 

consumers make. Random Utility Theory (RUT) is a widely accepted theoretical framework to 

study such problems (e.g. Ben-Akiva & Lerman 1985; Louviere, Hensher & Swait 2000; Manski 

1977; McFadden 1974; Train 2009; Yellot 1977). Under this common framework, choice 

behaviour, the estimated choice model, and stated preference (SP) or reveal preference (RP) data 

all can be studied and compared (Louviere, Hensher & Swait 2000). The concept of RUT can be 

explained by a simple idea. Assume an individual  in population  and a choice option  from a 

finite set of choice options . The utility of choice  is associated with what the individual is 

expecting to gain by choosing , represented by a random variable or a latent index . This term 

consists of two components. The first component is called the “representative utility”, which is a 

systematic and observable component of the utility . The second component is a random and 

unobservable error component . The RUT utility function is therefore: 

  (3.6) 

According to Ben-Akiva and Lerman (1985) and Train (2009), if option  is chosen over option 

it means: 

  (3.7) 

Stated formally, among a set of choice options , the probability of an alternative  being chosen 

by individual  over any other choice alternative , equals the probability of the utility of  being 

greater than the utility of . This also implies that the sum of the two components of utility for  

is greater than the same utility for alternative . 
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It is important to note that in the literature, no restrictions are imposed on which particular 

statistical model should be applied to model . Different models also have different assumptions 

regarding , which lead to different model forms. RUT remains the conceptual framework in 

thinking about and studying choices, and it provides a general framework for deriving and 

estimating different models. 

 

To further specify the  one can use generalised regression forms to model choices under RUT. 

For example, Ben-Akiva and Lerman (1985) expressed this general form as: 

  (3.8) 

In this form,  is the number of product attributes. Similarly, Louviere and Woodworth (1983) 

and Train (2009) also used similar forms: 

  (3.9) 

  (3.10) 

Ben-Akiva and Lerman (1985) pointed out that although it may be intuitively convenient to think 

about  as the mean for , it is theoretically misleading. In Equations (3.9) and (3.10), the 

matrix  refers to explanatory variables or predictors. These variables can appear in many different 

forms, such as in linear or exponential forms, covering both quantitative and qualitative 

information (Louviere, Hensher & Swait 2000). These general forms to model  can be further 

specified into different models. Although the general forms often look as if they are linear models, 

functions for model  are not restricted to linear terms. Nonlinear and non-additive models can 

be accommodated (Ben-Akiva & Lerman 1985; Louviere & Woodworth 1983; Train 2009). As 

Ben-Akiva and Lerman (1985, p. 63) stated, people often do not realise that “linearity in parameters 

is not equivalent to linearity in the attributes”. Any transformation of choice related attributes can 

be valid to estimate parameters and various estimation methods also apply (e.g. maximum 

likelihood estimation, weighted least squares estimation and simulation).  
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With regard to the error component, many assumptions can be made about error distributions as 

well as ways to specify their relationships. Early econometric and psychometric literature discussed 

the case when an error is an independent and identically distributed (IID) random variable. The 

Multinomial Logit Model (MNL) follows this assumption strictly (Manski 1977; McFadden 1974; 

Train 2009). Other models have been developed since the 1970s. Train (2009) provides a detailed 

discussion of different models including Probit, Nested Logit, and Mixed Logit. These models 

vary by the assumptions and treatments of the error term. For example, MNL assumes the error 

distribution is an IID extreme value Type I or Gumbel distribution. Different assumptions about 

statistical properties of the error distribution lead to different models and estimation approaches.  

 

To summarise, RUT is a conceptual framework used to study choice. Important theoretical 

concepts of RUT include: 1) the utility of choice is random and consists of two components: the 

representative component and error component; 2) different exploratory variables can be studied 

and analysed using different models; and 3) the random error component follows a particular 

distribution. Models differ largely due to different assumptions about the error terms and the 

distribution (or lack thereof) of the parameters. 

3.3.3 Model Type One - Aggregated Choice Model 

MNL is the most widely applied model for analysing choices. The theoretical foundation of this 

model was established by McFadden (1974). Ben-Akiva and Lerman (1985) and Train (2009) 

provided detailed discussions of the specifications and properties of this model. MNL can be 

denoted as follows: 

  (3.11) 
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In this form,  represents a set of discrete choice alternatives. If the number of choice alternatives 

is two, MNL is reduced to a binary logit model in which there are only two choice alternatives,  

and . In most situations, there are more than two choice alternatives.  

 

There are a few key properties and assumptions that distinguish MNL from other RUT models. 

If these conditions are violated, then other models should be considered in estimating choice 

probabilities. First, the error term  as shown in the random utility model (form 3.6) is Extreme 

Value Type I or Gumbel distributed. For each choice alternative, the error term is IID. This 

distribution can be characterised by key parameters  and  with the mode equal to , and mean 

equalling  ( ). The variance is  (Ben-Akiva & Lerman 1985; Evans, 

Hastings & Peacock 2000; Train 2009). It is important to note that the above properties of the 

error distribution for MNL are not directly measurable in empirical studies. The important value 

of these properties is that they are the starting point from which to derive the main expression of 

MNL (equation 3.11). Train (2009) and Ben-Akiva and Lerman (1985) provide detailed 

mathematical proofs for Equation 3.11. 

  

The second property of MNL, namely, the Independence from Irrelevant Alternative (IIA) 

property, is important empirically (Hausman & McFadden 1984). The IIA property means 

behaviourally that the probability ratio or relative odds of any two alternatives  and  in any choice 

set are not influenced by adding or removing any other alternatives from that choice set. If a new 

alternative is added to the set it will not influence the ratio of choice probabilities of the two 

existing alternatives. According to Train (2009, p. 49), the IIA expression can be directly derived 

from the probability function of MNL:  

   (3.12) 



80 

 

If IIA is violated behaviourally (identified by available test methods) MNL does not hold and 

alternative models need to be considered.  

 

As mentioned earlier, MNL is the most commonly applied model in studying consumer choices. 

This is largely due to its ease of estimation and widely available software. However, it does have 

major limitations. One such limitation is that it is estimated as an aggregated model and does not 

take into account consumers’ preference heterogeneity (Train 2009). There are more robust but 

also more complex models that take into account preference heterogeneity, nested structure, latent 

variables, latent classes and unequal error variances among sampled consumers (e.g. Ben-Akiva et 

al. 2002; Fiebig et al. 2010; Revelt & Train 1998; Walker 2001).  

 

In this thesis, the main objective is to test whether people can learn from a model to help their 

subjective probability predictions, which suggests starting with a simpler model that is more 

intuitive to learn. In this case, MNL has an advantage over more complex models because it can 

be easily explained and interpreted. It is highly likely that a simpler model like MNL will increase 

the likelihood of learners gaining knowledge quickly to improve predictions. Therefore, a simple 

MNL model is considered as the first candidate to serve as a target model for learning in the 

learning experiment (Learning Approaches One, Two and Three), even though this implies 

preference heterogeneity is neglected for learning.  

3.3.4 Model Type Two – Choice Models with Latent Classes 

The last section discussed the basic choice model. This section discusses choice models with 

several latent classes, each showing its unique choice behaviour. Each class represents a group of 

people with more homogeneous choice behaviour that differs from the other classes. From a 

model learning perspective, learning a model with several latent classes should increase the level 

of difficulty for learners. Learning choices for one group of consumers may only require focusing 
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on explaining the effects of attributes in making choices. Learning the choice behaviour of several 

latent classes may require integrating and differentiating knowledge about different classes and 

may also involve different learning techniques such as categorisation learning. In this section, the 

objective is to examine how to estimate models with latent classes. 

 

As discussed in the last section, aggregated MNL does not model preference heterogeneity. 

Researchers have developed different models to account for heterogeneity. One method is to 

extend fixed parameters of attributes to parameter vectors following some continuous 

distributions. These models compute continuously distributed parameter vectors and provide 

means and standard deviations of the parameters. The most widely known model of this kind is 

the Mixed Logit model (Revelt & Train 1998; Train 2009). Unlike aggregated MNL, mixed models 

assuming parameter distributions can capture individual differences. However, from a model 

learning perspective, continuous distributions on parameters should be difficult for humans to 

interpret and predict. Imagine the burden a learner may encounter if the learning task is to learn 

parameters to make choice predictions, but each parameter varies over a distribution. No previous 

research has demonstrated that people can learn the fixed parameters of an aggregated choice 

model to make probability predictions. Thus it should be even more difficult and also unclear as 

to whether people could understand more complex parameter distributions. Thus, it is reasonable 

to believe that such tasks are much more difficult than learning fixed parameters in aggregated 

models.  

 

On the other hand, learners should be able to better understand intuitively if a complex model can 

be separated into several simple models to represent the choice behaviour of several different 

classes. Within each class people are considered homogeneous in their choice behaviour and their 

attribute parameters are fixed. For example, consumers buying electronic goods can prefer a 
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cheaper price or a famous brand. Considering these two attributes as the main ways that two classes 

of consumers differ, if learners can be told about them, it should be easier for learners to learn and 

compare the two classes and make predictions accordingly. For example, people can predict the 

former class to choose products with cheaper prices whilst predicting the latter class to choose 

famous brands. 

 

Many methods in statistics can be used to generate classes of subjects based on certain 

characteristics, such as cluster analysis (e.g. Field 2005). In the DCM literature, a widely cited model 

is the Latent Class Model (LCM) (e.g. Kamakura & Russell 1989; Louviere, Hensher & Swait 2000; 

Train 2009; Wedel & Kamakura 2000). In the econometric and statistics literature, the LCM is also 

studied, though with greater focus on estimation and less on behavioural interpretation as in the 

DCM literature (e.g. Agresti 2002; Greene 2003). Apart from LCM researchers in choice models, 

economics and statistical learning also are developing new ways to classify and segment people 

based on preference heterogeneity. One of these methods is archetypal analysis initially developed 

by Cutler and Breiman (1994), which has been further investigated in choice modelling and 

statistical learning contexts (e.g. Carson, Bordes & Pailthorpe 1997; Eugster & Leisch 2009; Hastie, 

Tibshirani & Friedman 2009; Li et al. 2003). This section briefly reviews these two methods as 

main candidates to gain a model with latent classes in this research.  

 

Please note, as will be discussed in Section 5.2.2 of Chapter 5, archetypal analysis was found to 

generate consumer classes with better statistical fits and clearer explanations than LCM. Therefore, 

only results from archetypal analysis will be presented in Chapter 5. However, for discussion 

purposes, LCM is briefly covered here. 
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Archetypal Analysis 

The original article on archetypal analysis by Cutler and Breiman (1994) proposed an approach to 

model data points as convex combinations of a few extreme points lying on the boundary of a 

convex hull. These points are named “archetypes” or “pure” types. The central point of this idea 

is that these extreme value points have more influence on other data points; instead of using 

common factor or cluster methods, data points can be classified according to probabilities that fall 

into these “pure” types (Eugster & Leisch 2009). In statistical learning literature, archetypal analysis 

is used as a factorisation or classification method in unsupervised learning (Hastie, Tibshirani & 

Friedman 2009). The main difference in using this method over normal statistical clustering 

analysis is that each data point has different probabilities of falling into each archetype instead of 

falling into a cluster completely.  

 

Cutler and Breiman (1994) did not suggest how this approach can be applied in marketing or 

consumer choice studies. However, using the idea of archetypes in consumer choice problems is 

not difficult to understand. Li et al. (2003) shows an application of this approach in modelling 

consumer choices. In thinking about archetypes, it is natural to assume these pure types are those 

extreme individuals who have the most unambiguous preference rules as to how they make 

choices. For example, extreme types may be those who are clearly cost driven or brand driven. 

These extreme consumers are the archetypes that fall on the boundary of the convex hull to define 

the whole space of consumers. All other consumers fall within the convex hull defined by these 

extreme individuals and can be identified by their combinations of probabilities relating to these 

archetypes. In a geometrical form, Figure 3.1 demonstrates an example of a convex hull defined 

by three archetypes on the boundary with all data points falling within the convex hull. 
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Figure 3.1 All data points fall into a convex hull defined by three archetypes (This example is 
from Eugster & Leisch, 2009, p. 18) 

 

In the context of consumer choice, a consumer choice data set  (e.g. a “most preferred” choice 

data set) contains  consumers and  attributes. Data  is an  matrix. Archetypal analysis 

assumes that given  number of archetypes, data can be modelled with two matrices    (  

matrix representing coefficients of archetypes) and  (  matrix representing coefficients of 

the data set). The aim of the analysis is to identify convex combinations of the data set  ( ) 

which is equal to  such that the residual sum of squares (RSS) is minimised. This is shown in 

the following form of a matrix norm : 

  (3.13) 

There are two constraints applied in this analysis, one for the  matrix and one for the  matrix. 

They are: 

  (3.14) 

and 

  (3.15) 

In other words, these constraints imply that the sum of each individual’s archetype coefficients  
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(  parameters) is equal to 1 with each probability equal to or greater than 0; the sum of all 

coefficients of the data set is also equal to 1 with each parameter greater than or equal to 0 (Eugster 

& Leisch 2009).   

 

Once the probabilities of each individual consumer falling into all archetypes (defined by extreme 

consumers) are known and each archetype’s attribute coefficient are known, the model can be 

estimated as several MNL models, with one MNL per archetype. That is, one can use “all or 

nothing” assignment to assign people into the archetypes, or one can use the  coefficients as 

weights to estimate MNL models for each archetype. 

Latent Class Model (LCM) 

Louviere, Hensher and Swait (2000) give a clear description of how to model consumer choices 

using an LCM. Assume there are a discrete number of classes of consumers and consumers are 

homogeneous in each class; these classes are adequate to describe the joint discrete density of 

attribute parameters. In describing this model, two types of differences are involved; parameter 

differences in  vectors and scale differences in the  vector. Scale differences represent 

differences of error variances among classes. Together, a member  of a latent class  in choosing 

choice alternative  can be denoted as: 

  (3.16) 

where  is the utility of individual  of latent class  in choosing alternative ;  is the 

alternative-specific parameter of alternative  adjusted by a scale parameter  for class ;  

is the attribute matrix  for alternative  multiplied by attribute parameters  for the class and 

further adjusted by the class scale parameter ; and  is conditionally the IID extreme type I 

error within class . 
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This model assumes each class model is a separate MNL following MNL assumptions. The 

probability of alternative  in class  being chosen over all alternatives  is shown as a standard 

MNL model form with the exception of class specific attribute parameters and the scale parameter: 

  (3.17) 

This means that, within each latent class , the probability model is an independent MNL model 

with its own parameters and scale factor. Within each class, the probability of choosing alternative 

 is the product of two probabilities, one probability being the probability of alternative  being 

chosen, and the second probability being the probability of any individual falling into this class. 

The unconditional probability of  being chosen across all latent classes is therefore: 

  (3.18) 

In this form,  is the probability that a person belongs to class . 

As noted in Louviere, Hensher and Swait (2000), a common approach is to constrain the scale 

parameter  for one class to 1, and identify scale parameters for other classes relative to 1. Once 

this is done, parameters  can be estimated with the adjusted scale parameters. Since only utility 

matters, utility differences between classes in making choices are not affected by the value to which 

the first class scale parameter is constrained. Estimating  is more direct and differences of  

parameters across latent classes are easier to interpret.  

Comparing Class Approaches Statistically and Intuitively 

In this research, what learners need to learn are the similarities and dissimilarities of classes to 

make predictions about their choices. Before deciding whether a class model under one method 

can be used as a target model for the learning experiment, it needs to be compared with other 

models. This thesis compares archetypal analysis and LCM in terms of statistical fit and model 

interpretation before deciding to adopt models from archetypal analysis. 
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The DCM literature commonly suggests the use of statistical criteria such as log-likelihood and 

Akaike Information Criterion (AIC) to compare and assess models (e.g. Ben-Akiva & Lerman 

1985; Louviere, Hensher & Swait 2000; Train 2009). These criteria are objective and can be used 

to judge models statistically. However, fuzzier criteria also can be used. For example, in this thesis, 

to find a model to serve as a target model for learning, a more parsimonious model is preferred 

because it has a major benefit for intuitive learning. If learners can learn from a less complex model 

with fewer relationships, better performance should be expected. Another criterion is particularly 

related to the selection of classes. Regardless of which modelling approach is used, the behaviour 

of different classes should be clear and identifiably different. The clearer the definitions of classes, 

the easier it is for learners to understand and compare. 

3.3.5 Estimating Learner Model for Real-Time Feedback 

Sections 3.3.3 and 3.3.4 discussed two types of target models for learning. In a learning experiment 

when learners are learning a target model, it is reasonable to believe that they will make better 

predictions if they better understand the target model. Better understanding of the target model 

can be considered as recognising the differences between their own models and the target model 

and being able to adjust for errors. In the Intelligent Tutoring System literature, a learner model 

or “student model” as it is often called, is the key component indicating what learners believe 

relative to the target knowledge/model (Woolf 2009). This section discusses the method for 

estimating the learner model in the context of this research. 

 

There are two criterions that a learner model should aim to achieve in this research. First, it needs 

to be an individual and dynamically generated model during the experiment so each learner can 

receive immediate feedback before new tasks. This also means that this model may be an 

approximate model only due to limited data and the need for fast estimation methods to avoid 

delay. However, in post-experiment analysis, more robust but slower estimation methods can be 
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used to provide better statistical fits. Second, the learner model should be a valid and meaningful 

model to be compared with the target model. These requirements are essential in developing and 

computing each learner’s own learner model based on his/her training data. 

 

Models consistent with RUT are often computed using MLE, or a combination of MLE and 

simulation. Train (2009) provides detailed descriptions of MLE estimation procedures. MLE 

requires complex and iterative numerical procedures using algorithms such as the Newton-

Raphson method, and there is no guarantee that convergence can be reached with limited training 

data within a limited time. Each iteration brings the estimation closer to convergence but the total 

number of iterations required to generate the best model will vary depending on the data. Doing 

this estimation dynamically during an experiment is computationally difficult, and the estimation 

time and whether the model will converge are uncertain. Therefore, it is not an ideal method for 

estimation during an experiment, but should be excellent for post-experiment analysis. 

 

In widely cited research by Louviere and Woodworth (1983) and other statistical literature on 

categorical analysis (e.g. Agresti 2002; Greene 2003), Weighted Least Squares (WLS) was used as 

an alternative to MLE. WLS is a good alternative because it meets the two requirements discussed 

earlier. The computation simplicity of WLS allows one to produce estimates during an experiment. 

The general form of WLS is simple: to estimate model parameters relating to predictors   (  to 

), the form of WLS is simply an extension of ordinary least square estimation method with a 

weight vector : 

  (3.19) 

As stated in both Agresti (2002) and Greene (2003), weights applied in WLS are flexible and can 

be specified differently. In general, applications dealing with heteroscedasticity to account for 

variance in the error component of a model, weights are often specified as the inverse of the error 
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variance. In general regression models when the error component is assumed to be a normal 

distribution with variance of , weight is often specified as . In models dealing with the 

heteroscedasticity problem when variances are not constant and there is a scale ! in the error 

variance, weights applied in WLS can be specified as  (Greene 2003). In other cases, weights 

can be specified as other relevant variables to improve ordinary least squares estimation. It is easy 

to see that computation for WLS is much simpler than models using MLE because estimation is a 

one step process without further iterations, and the estimation of parameter vectors can be solved 

directly in matrix algebra. 

 

WLS is consistent with other random utility models asymptotically, therefore it can be applied as 

an alternative to MNL using an MLE approach. As pointed out by Agresti (2002), both WLS and 

MLE estimators are asymptotically equivalent and both estimators belong to the class of “best 

asymptotically normal” (BAN) estimators. Indeed, maximum likelihood estimators often start with 

WLS generated estimators and consist of iterative use of WLS. Louviere and Woodworth (1983) 

provide explanations as to why and how to use WLS in estimating choice data collected in discrete 

choice model experiments. According to them, WLS can be considered consistent with other RUT 

models. Indeed, the WLS method in estimating choices amongst alternatives can be considered as 

an MNL using the least squares method. It differs from other MNL models using MLE in its 

approach.  

 

Furthermore, in the particular WLS example provided by Louviere and Woodworth (1983), the 

dependent variable is the logarithmic form of the predicted probability. This is in agreement with 

how probability predictions should be transformed to calculate a performance score in the theory 

of subjective probability assessment discussed in Section 3.2. Predictors are vectors of product 
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attributes and attribute levels similar to any other choice models. Weights applied in the WLS are 

the inverse of the variance, and equivalent here to the probabilities of the alternative being chosen.  

 

The form of the WLS is articulated below to show how it is applied in this experiment to develop 

an individualised learner model based on discussions above. For example, in a training session 

consisting of 16 trial tasks, each with four options, the 16 sets of full probability predictions are 

collected, each set containing four probabilities that sum to 1. In total, there are 64 probabilities 

that can be used for WLS estimation. The dependent variable is a  vector with the log form 

of 64 probabilities ( ). Predictor ( ) is a  matrix with 64 combinations of 

 product attributes or levels. Weights are probabilities on the diagonal in a diagonal matrix: 

 

Using Equation 3.19, estimations can be generated with parameter vector  of  size and one 

parameter for each product attribute or attribute level. As a generalisation, this approach can be 

applied to any number of data points greater or less than 64 as long as the number of parameters 

is less than the size of the data. 

 

Considering the results of this model, if predictions need to be generated for any particular 

alternative  over other alternatives, then taking the exponentials of , the ratio of  for 

alternative  over other alternatives (  yields the probability of  being chosen over 

other alternatives. This is exactly equivalent to the form of the MNL model in Equation 3.11.   

3.4 Classification 

In this section, the term “classification” refers to classifying inputs such as subjective probability 

predictions to classes or groups known a priori, such as consumer groups identified from a 
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consumer study. This is close to a standard definition for classification in statistical learning and 

decision theories (Cherkassky & Mulier 2007). When a person is learning a single target model to 

make predictions, a learner model for this person at a particular learning stage can be estimated by 

the system and used to inform the differences with the target model, as discussed in Section 3.3.5. 

When a person is learning a target model representing a particular class different from several other 

classes, this approach of comparing the learner model with several target models of different 

classes becomes difficult. Nonetheless, it is possible for a person to compare their own learning 

model with several class models to establish which class model is closest to the learner model. This 

method is neither efficient nor intuitive. First, one needs to process a learner model and provide 

comparisons of this model with several class models in computation which can cause a delay in 

the system. Second, the learner needs to receive much more information than required, and a lot 

would be only indirectly relevant. Instead of this approach, if learners can be informed directly 

about which class they belong to, based on their responses, and whether they are learning the right 

class model, the approach would be simpler. This method involves mapping features in response 

data to one class, which is a typical classification problem (Cherkassky & Mulier 2007; Hastie, 

Tibshirani & Friedman 2009).  

3.4.1 Selecting the Appropriate Classification Method 

Classification is a main area of interest in statistical learning and a core feature in areas such as data 

mining. Many different methods are developed for classification (Hastie & Tibshirani 1994; Hastie, 

Tibshirani & Friedman 2009; Lippmann 1994; Mitchell 1997). A general principle for choosing a 

classification method is to apply a simple and direct method, especially with known classes or 

known probabilities of classes. As Cherkassky and Mulier (2007) pointed out, the traditional 

thinking of using regression models or density estimations for classifications is flawed 

conceptually. Among typical statistical learning problems, classification is the simplest and most 

direct compared to more complex problems such as regression or density estimation. The main 
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principle in solving the statistical learning problem is: “do not solve a specified problem by 

indirectly solving a harder problem as an intermediate step” (Cherkassky & Mulier 2007, p. 342). 

Generally speaking, regardless of a large number of classification methods in the literature, there 

are three common classification approaches. Lippmann (1994) referred to them as the probability 

density function (PDF) classifier, the posterior probabilities classifier, and the boundary forming 

classifier. Figure 3.2 illustrates these three kinds of classifiers. 

 

Figure 3.2 Three Classifiers (based on Figures 3 to 5 in Lippmann 1994, pp. 87–88) 

 

Among the three classifiers, the PDF classifier requires some form of statistical analysis as input 

features of certain probability density functions in order to estimate the probabilities of responses 

belonging to different classes. As illustrated in Figure 3.2, in a simple two-class case, given training 

data set as , to estimate a likelihood function of  separately for class  and , the 
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discriminant function for classification is the combination of the likelihood function with 

probabilities of classes in the sample. To estimate PDF, a large amount of data is required; hence, 

this approach is often applied in data mining where large amounts of data and input features are 

available. However, this is not the case, and not the purpose of the classification problem, in this 

research. There is a very limited amount of learning data available in the learning tasks. Second, as 

mentioned earlier, this method is more difficult and indirect compared to a simple classification 

problem. In the experiment for this research, classes are known a priori as a result of either the 

latent class model or the archetypal analysis using consumer choice data collected in Stage 1 of the 

consumer experiment. A simpler classification method should be possible. 

 

A boundary forming classifier may sound convincing because it does not require a full statistical 

model as a PDF classifier but to map training data to pre-defined prototypes. The most common 

boundary forming method is the K-Nearest Neighbour (KNN) approach. The idea is, in a 

geometrical space, an existing class with a new instance (or response) is most similar to, and should 

also be closest, in distance geometrically. Therefore, it becomes a task to search for “neighbours” 

in geometrical space. In this classification task, obviously only one nearest neighbour is needed 

which is the target class that a new instance is closest to. There are several methods used in 

calculating geometrical distances, such as Euclidean distance, Euclidean squared, and city block. 

Without a specific reason, Euclidean distance is commonly used. If both training instances and 

classes can be defined by a feature vector with  features , then the Euclidean 

distance can be calculated as in Equation 3.20 (adapted from Mitchell 1997, p. 232) and the class 

with the smallest number is the class that the training instance belongs to: 

   (3.20) 
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Relating to this research, the feature vector should be attributes of the particular choice problem 

in considering training data. In post-experiment analysis of this research, a boundary method using 

a distance measure is used to calculate how close learner predicted probabilities are to true 

probabilities to identify which learning approach is more effective. This is also related to the 

discussion of scoring rules in Section 3.2. However, this is not the method chosen to be built into 

the training system to provide a real-time classifier and feedback for Learning Approach Four.  

 

In the context of Learning Approach Four, thinking about the training data which can be used in 

classification, probability predictions are given by learners and the probabilities of classes 

(consumer groups) are known a priori. It is appropriate to consider a Bayesian classifier because it 

applies to prior and posterior probabilities directly. 

3.4.2 Bayesian Classifier and Choosing Appropriate Likelihood Function 

Given training data , the posterior probability of a best class  (from all classes ) according to 

Bayes’ Theorem is: 

   (3.21) 

 is the likelihood or conditional probability of data  given that  is true.  is the prior 

probability of  in all classes .  is the prior probability of training data  being observed 

(Mitchell 1997).  

 

Treating  as a constant, the prior probability of any  in  can also be considered equal for 

all classes in learners’ minds (this can be further reinforced if actual proportions of classes are 

indeed close). According to the maximum a posterior (MAP) approach, to identify the best class  

for training data  is to maximise the likelihood or conditional probability , as denoted in 

Equation 3.22: 
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      (3.22) 

A Bayesian classifier applying the MAP approach without adding a loss function for 

misclassification error is called Naïve Bayesian classifier, and with a loss function added, is called 

an Optimal Bayesian Classifier in machine learning literature (Mitchell 1997). If a likelihood 

function for gaining conditional probability is unambiguously clear, a Naïve Bayesian classifier is 

simpler for computational purposes.  

 

In earlier discussions in Section 3.2 on scoring rules, it is clear that scoring rules must be strictly 

proper to gain the accuracy of predictions between two probability distributions. In thinking about 

the problem in this thesis, the training data is the full probability prediction of discrete options 

summing to 1. Probabilities of options given in each training scenario are known for each class. 

The real problem underlying this classification is to calculate several scores using a chosen scoring 

rule and identify the best score. Depending on which scoring rule is chosen to select the closest 

class, the best score can be the minimum or the maximum score. As mentioned in Section 3.2, 

because scoring rules are strictly proper, the closest class is unambiguous because the optimal score 

is unique in any given scenario. In this case, each score calculated using predicted probabilities and 

each class’ probabilities can be simplified as: 

   (3.23) 

In Equation 3.23,  signifies the number of options in a choice scenario for probability prediction, 

 is the known probabilities of options for a class and  is the probabilities predicted by learners. 

This score rule is also the log-likelihood function. Therefore, the class with the maximum score 

below zero is the target class. 
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The above classification approach is the way to classify in each separate training or choice scenario. 

If a summary needs to be given for multiple training scenarios to see how learners have performed 

over time in predicting a certain class, then a mean score can be produced using all scores for that 

particular class in all training scenarios. In some cases, a geometric mean can be used instead of an 

arithmetic mean to show the central tendency if scores are unbounded. The geometric mean of  

number of scores is simply the th root of the product of these scores. 

In short, this section discussed several classification methods in machine and statistical learning. 

For this research, the most appropriate classifier is a Bayesian classifier using a logarithmic scoring 

rule as the likelihood function to calculate posterior probabilities. 

3.5 Summary 

This section discussed theories and detailed methods for all evaluation, estimation and 

classification approaches which are used in supporting the test of learning approaches discussed 

in Chapter 2. Some of these approaches will be used to prepare the proposed learning experiment, 

such as the class models discussed in Section 3.3.4. Some approaches are used in both experiment 

and analysis stages, such as the use of scoring rules. Other approaches such as the idea of a discrete 

choice model is the foundation to develop a detailed method in testing model learning in analysing 

collected learning data. Together, these evaluations, estimation and classification approaches also 

construct the learner (student) model and evaluation agent components in the proposed intelligent 

tutoring system used in this research.  

 

In Chapter 4, the discussion will be focused on the design and analysis of the actual empirical study 

in this research.  
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Chapter 4  Design an Empirical Study 

4.1 Overview 

Chapter 2 proposed four learning approaches and discussed them from a theoretical perspective, 

and Chapter 3 considered methodologies of evaluation, estimation and classification to support 

these approaches in the experiment for this research. By integrating the foregoing discussions, this 

chapter discusses how the empirical study was designed and conducted to test these learning 

approaches and related hypotheses. The experiment was split into two stages. In Stage 1, an online 

consumer survey was conducted to provide data to develop target models used for learning. Stage 

2 was the main learning experiment asking those who completed the Stage 1 survey to learn from 

the target models in the assigned learning approach. Learners were asked to make subjective 

probability predictions to particular scenarios in training tasks. Both stages of the study were 

conducted online without interviewers or tutors. In the Stage 2 learning experiment, an intelligent 

tutoring system incorporating information, techniques and feedback mechanisms was used to 

assist learning. 

 

The reason for using the same respondents in both stages of the experiment is simple to explain. 

In Stage 1, the survey ensured that the respondents selected were interested and qualified to answer 

questions relating to a particular product category. Because of respondents’ interests and relevance, 

they were more likely to be motivated to participate in learning activities. Besides, if all respondents 

completed both stages, a rich set of data could have been collected for each individual for analysis 

and hypotheses testing. To be more specific, the Stage 1 consumer survey collected respondents’ 

own choices and their initial subjective predictions before learning the target models. The Stage 2 

learning experiment collected predictions from respondents (or learners as they were called in 

Stage 2) during two training sessions consisting of 16 tasks each. In total, each learner who 

completed both the Stage 1 survey and Stage 2 experiment provided their own choices for one 
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session (Session 0 with 16 tasks) and predictions in three sessions (Sessions 0, 1 and 2, each with 

16 tasks). These predictions are probabilities about how consumers on average would choose each 

option. To make it simpler for learners, probability predictions were asked as proportions. This is 

a common elicitation method in asking people to elicit probability distributions (O’Hagan et al. 

2006). 

  

This chapter discusses and reports the details of the data collection and experiment plan for each 

stage. The chapter commences by providing some background on the stated preference (SP) 

method and the experimental design method. This is followed by a discussion of the experiment 

plan for the Stage 1 consumer online survey. After Stage 1 is discussed, the chapter will discuss 

the experiment plan and procedure for the Stage 2 learning experiment.  

 

For the convenience of readers, methodologies and procedures for analysis for both the Stage 1 

consumer survey and Stage 2 learning experiment will be discussed in Chapter 5, before analysis 

results are presented and discussed.   

4.2 Overview of Stated Preference and Experimental Design Methods 

The Stated Preference method (SP) is a common approach applied in studying consumer choice 

and is consistent with the RUT framework (Louviere, Hensher, Swait 2000). The SP method uses 

surveys controlled by experimental designs to collect stated preferences and choice data.  

 

There are two main reasons to use the SP method in studying consumer choices. First, based on 

Lancaster’s (1966) consumer theory, utilities of goods and services can be characterised by the 

properties of goods and services. Each unique property can be characterised by a number of levels. 

In DCM literature, the properties of goods and services are identified as “attribute” and “attribute 

level”. Lancaster’s theory established the foundation to allow the measurement of utility through 
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the preference of product attributes. Second, instead of using revealed preference (RP) data which 

contain unknown factors and noise, the SP method allows the use of experimental design to 

control the availability and allocation of attributes and their levels in preference elicitation tasks. 

This way, choices are made under well-defined choice scenarios to reduce statistical biases. These 

advantages of the SP data over RP data are well known (Ben-Akiva et al. 1999; Louviere, Hensher 

& Swait 2000; Swait & Andrews 2003). Another benefit of using the SP method is that some 

hypothetical products that do not exist in a real market can be studied. In an SP choice scenario, 

respondents need to make trade-offs based on what have been given so that demands for any 

potential new products can be observed.  

 

The main advantages of the SP method also match the purpose of experimental design which is 

to effectively control and reduce estimation errors. Experimental designs allow comparisons of 

subjects’ responses to different treatment conditions (Cox & Reid 2000). Not all treatment 

conditions need complex experimental designs. For example, if there is a single attribute with few 

levels to be studied, subjects can be randomly assigned to treatment conditions based on these 

levels. However, problems concerning consumer choices are rarely so simple. Usually 

combinations of two or more attributes and several attribute levels are involved. As best put by 

Louviere, Hensher and Swait (2000), “a design experiment is a way of manipulating attributes and 

their levels to permit testing of certain hypotheses of interest” (p. 84).  

 

The field related to the design of experiment (DOE) is a highly specialised field. Providing a full 

review of this subject in this thesis is neither necessary nor possible. However, understanding the 

nature and implications of DOE is important for the purposes of modelling and hypothesis testing. 

As put by Bliemer and Rose (2010), while developing choice models is to identify and estimate an 

attribute parameter vector  using the collected attribute and their levels  and choice outcomes  
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, creating an experimental design is the inverse problem which is to determine how to gain an 

optimal  to maximise the efficiency to estimate parameter .   

 

In this research, a design is required to collect consumers’ stated preferences for a chosen product 

category to develop target models for learning. As well, a second design is required for building 

training tasks when people are learning from target models and making probability predictions. In 

thinking about both designs, the focus is on modelling and learning the main effects of attributes. 

The reason for not considering attribute interactions in this research is simple; until people can 

demonstrate that they can learn the main effects of attributes from a target model and improve 

their probability predictions, adding interactivity terms can only make the design larger and 

introduce more difficulties during model learning and probability predictions. Therefore, the 

design for the Stage 1 consumer survey should allow the development of models of main effects 

only covering both aggregated and class models. On the other hand, the design for the Stage 2 

learning experiment should also focus on main effects only, allowing the testing of how much 

understanding learners have regarding main effects. 

 

A complete enumeration of all attributes and their levels is called full factorial design. This design 

has attractive statistical properties because all effects including main effects and all way interactions 

can be identified. However, this design is the largest design so it is unnecessary if only some effects 

are of interest (Louviere, Hensher & Swait 2000). Moreover the size of a full factorial design is 

often so large that it prohibits effective practice. If the purpose is to develop main effects models, 

full factorial designs are not a consideration. However, the key difference for many experimental 

design approaches is to identify an efficient or optimal fraction of the full factorial design.  
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Design strategies in selecting a fraction of the full factorial design can be based on anticipated 

models and statistical criteria. Several design strategies for generating fractional designs are 

widespread in literature and practice. For example, researchers can select orthogonal arrays (OA) 

as a starting design and apply certain replication methods to create an orthogonal fractional 

factorial design to eliminate attribute correlations in the design matrix (e.g. Louviere, Hensher & 

Swait 2000). There are also different optimal designs to satisfy certain optimal rules or statistical 

criteria without involving prior information of the model parameters (e.g. Huber & Zwerina 1996; 

Street & Burgess 2007). Recent studies in this field focus on using prior information of parameters 

to generate Bayesian efficient designs (e.g. Bliemer & Rose 2010; Bliemer & Rose 2011; Puckett & 

Rose 2010; Rose et al. 2008; Scarpa, Campbell & Hutchinson 2007). Most of these approaches use 

some starting design from an existing orthogonal array design library, or alternatively are generated 

using special design software. 

 

Applying an orthogonal design is a common practice especially if the area of interest has not been 

previously studied or special software is lacking. This is because eliminating correlations between 

attributes is a desired feature for modelling. However, some have argued that using orthogonal 

arrays does not guarantee the removal of correlations between attributes because correlations 

between attributes do not simply come from attributes and levels (  matrix), but a combination 

of the underlying attribute parameters and attributes ( ) (Puckett & Rose 2010). A widely cited 

paper by Huber and Zwerina (1996) proposed several desired features for an efficient design:  

1) Level balance: all attributes and levels appear an equal number of times in all choice sets; 

2) Orthogonality: any two levels of different attributes appear an equal number of times and 

are uncorrelated; 

3) Minimum overlap: any attribute level should repeat as little as possible in each choice set; 
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4) Utility balance: all choice alternatives in each single choice set should be as equally 

attractive as possible to avoid a dominant alternative. 

 

Some researchers disagree with one or more of these criteria. For example, a critique of “minimum 

overlap” is that it generates a design that can measure main effects but precludes measurement on 

interactions (Street & Burgess 2007). “Utility balance” is also not a desired feature because under 

utility balanced scenarios, all products are equally attractive, hence it will be impossible to observe 

trade-offs in people’s choices (Puckett & Rose 2010). 

 

New ideas are continually being explored in this field. For example, Street and Burgess (2007) 

proposed a method to generate a D-Optimal design for generic choice alternatives. These designs 

cannot be used in alternative-specific SP studies when there are constants applicable to labelled 

choice alternatives (“alternative-specific constant”). This design uses an orthogonal array as a 

starting design for the first alternative and then generator vectors to create the full design; for 

example, the design for the second alternative is a fold-over design of the first alternative. The 

main optimality criterion it follows is to maximise the determinant of the information matrix for 

main effects and/or interactions. D-optimality is not the only statistical principle for optimal 

designs as there are other optimal principles which satisfy other desired statistical properties 

(Atkinson & Donev 1992). 

 

These types of optimal designs have been criticised on the basis of empirical findings. As pointed 

out by Puckett and Rose (2010):  

Whilst optimal designs can be a powerful tool in achieving statistically significant parameter 

estimates under small sample sizes, behavioural factors can outweigh statistical factors in 

determining an appropriate sample size ... one must ensure that stability in parameter 
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estimates has been reached before one can have confidence that the statistically significant 

parameter estimates obtained are also plausible estimates. (pp. 188–189)  

A different type of D-efficient design was proposed. This design can be found when the 

determinant of a variance-covariance matrix of expected maximum likelihood estimator is 

minimised (Bliemer & Rose 2010; Rose et al. 2008). 

  

The idea of applying prior information has become more popular in generating designs for SP 

studies. The benefit of applying prior information is that there should be “significant efficiency 

gains without loss of respondent efficiency” (Scarpa, Campbell & Hutchinson 2007, p. 617). As 

reported by Sándor and Wedel (2001), by applying prior parameter information in an SP study, 

standard errors of estimates can be reduced and expected predictive validity can be increased. In 

practice, it is noticeable that design software such as Ngene (http://www.choice-

metrics.com/features.html) can generate Bayesian efficient designs using prior parameter 

information. 

 

This researcher adopted a standard approach to create the main effects design for the Stage 1 

consumer survey using a publicly available orthogonal array from a widely accepted online library 

of orthogonal arrays maintained by Sloane (http://neilsloane.com/oadir). This design is not as 

small as those efficient designs but it is a less arguable approach that may provide stability in 

parameter estimates. Stability in parameter estimates is important for developing reliable and 

intuitive target models for learners to comprehend. Based on some past research on the same 

product which will be discussed in Section 4.3, a list of the most important attributes and attribute 

levels were selected to develop the choice experiment.  
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Next, based on the modelling results from the Stage 1 analysis, the Stage 2 design was developed 

and modified. This design contains two smaller designs, each with half the set numbers of the 

Stage 1 design, giving training sets for two training sessions. The reason for being able to cut down 

the size of the design for each session is because minor correlations for some alternatives are 

allowed, reflecting the analysis results of Stage 1. The smaller design for each training session is a 

combination of two separate orthogonal arrays. These designs will be discussed further in relevant 

sections. The two designs used in Stage 1 and Stage 2 share some close connections which allow 

the possibility of combining data from two stages for analysis. More importantly, in the Stage 2 

learning experiment, all learners complete identical training tasks but under different learning 

approaches. This allows not only direct comparisons of learning approaches, but also individual 

models and model comparisons. 

4.3 Designing Stage 1 Consumer Survey 

4.3.1 Choosing the Product Category 

The product category chosen for this empirical study is long-haul, cross-country air travel in 

Australia. This researcher commissioned Pure Profile (one of the largest online panel suppliers in 

Australia) to invite their panel members living in Sydney to participate in this online consumer 

survey. Among all those who participated, 519 respondents were qualified for having past 

experience or future interest in travelling from Sydney to other Australian destinations by flying 

cross-country. To provide more background to these cross-country flights, each trip can take four 

or more hours from origin to destination. Some flights may also need to make an intermediate 

stop (i.e. is not a direct flight), which may take even longer. 

 

A good reason for selecting this product category is that it is not a product category with a large 

number of providers and products, unlike some consumer goods, hence, it is likely to generate 
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simpler and more comprehensive target models which will be intuitive for learning. This is an 

advantage for this proof-of-concept study. Another reason for choosing this product category is 

that this category was studied by the Centre for the Study of Choice (CenSoC) at the University of 

Technology Sydney in 2010, using a small pilot study with 200 respondents. With CenSoC’s 

permission, this researcher gained access to the collected data of that study. Analysis results of that 

study provided this researcher with a useful indication of the attributes that are important in 

people’s choices. Although the previous study was conducted to test a different research problem, 

namely brand equity and pricing, the results of that study nonetheless provided useful information 

to refine the present study.  

 

The reason for not using models from the previous study is simple. There have been some major 

changes in the market since the time that study was conducted. For example, competition is 

continuously driving fares lower. There were also several major incidents that might have changed 

the landscape of the domestic air travel market. For example, as widely reported, one of the four 

airlines in the previous study, Tiger Airways, was banned from operation for a period of time by 

the Civil Aviation Safety Authority (CASA) in 2011, due to safety issues. Even though it has 

resumed restricted operations with a small number of flights and limited routes, it is no longer 

considered a main competitor in this market. Other incidents such as the industrial action taken 

by Qantas to ground its entire fleet in October 2011 in response to failed negotiations with unions 

also caused major public debate and upset at the time. These factors make it necessary to re-

investigate consumer choices in this market to have up-to-date consumer models which will 

eventually be used as target models for learning.  

4.3.2 Selecting Attributes 

In the above-mentioned study by CenSoC in 2010, an MNL model as shown in Table 4.1 was 

developed to show the effects of attributes on consumer choices. The results of the 2010 model 
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are shown in Table 4.1. Among all attributes, “fare” was the most important attribute contributing 

to the model followed by “airline” brands. In contrast, “in-flight alcohol” and “number of stops” 

contribute little to people’s choices. Therefore, it is safe to ignore and remove both attributes from 

the new study to make the new consumer choice model simpler and model learning easier. It is 

worth noting that Qantas was the most favoured airline in the previous CenSoc model with a 

positive coefficient more than twice the size of the next favoured airline, Virgin. This situation has 

changed dramatically in the present study based on the analysis results of the Stage 1 consumer 

survey which will be outlined and discussed in Chapter 5. In the new consumer model, Qantas and 

Virgin are almost identical in terms of consumer preference. This is suggestive of a negative impact 

resulting from Qantas’ industrial action or else increasing satisfaction with Virgin. In the new study, 

Tiger was removed from the list of airlines, so only Qantas, Virgin and Jetstar were included in the 

consumer survey as alternatives. In the consumer survey experiment, respondents were asked to 

select a cross-country flight offer from these three airlines, or select not flying at all as an indication 

of dissatisfaction with any of the offers. 

Table 4.1 Model results of the study conducted by CenSoC in 2010 

Conditional (fixed-effects) logistic  Number of obs = 12800 
    Wald chi2(11) = 2806.75 
    Prob > chi2 = 0 
Log likelihood = -3032.77   Pseudo R2 = 0.32 

Most Preferred Options Coef. Std. Err. z P>z 
Qantas 0.46 0.04 12.29 0.00 
Virgin 0.20 0.04 4.67 0.00 
Jetstar -0.17 0.04 -3.79 0.00 
Tiger -0.50    
$450  1.35 0.04 35.85 0.00 
$550  0.44 0.04 10.94 0.00 
$650  -0.86 0.06 -15.26 0.00 
$750  -0.94    

5 hours 0.24 0.02 10.22 0.00 
7 hours -0.24    

Free ticket changes 0.18 0.02 7.53 0.00 
Pay for ticket changes -0.18    

In-flight food & beverages - Free 0.29 0.02 12.49 0.00 
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In-flight food & beverages - Not free -0.29    
In-flight alcohol - Free 0.07 0.03 2.75 0.01 

In-flight alcohol - Not free -0.07    
No stop 0.08 0.23 3.39 0.00 

1 stop -0.08    

4.3.3 Attributes, Experimental Design and Choice Tasks for Stage 1 Survey 

As discussed earlier, this researcher chose an orthogonal main effects (OMEP) design suitable for 

the alternative-specific experiment in this consumer choice study. There are three alternatives 

Qantas, Virgin and Jetstar. Four attributes are common to all alternatives. They are “return airfare”, 

“flying time”, “booking change” and “in-flight food and beverages”. There are four levels for 

“return airfare”: $400, $460, $520, and $580. Decreased fares compared to those applied in the 

previous study by CenSoC reflect reduced fares overall in the current market. There are two levels 

for “flying time”: four hours and six hours. For “booking change”, instead of using “free change” 

or “pay for change” as the levels used in the previous study, it was considered more realistic to ask 

whether a booking change is allowed. This is more relevant in the market especially for the low 

fare budget flight market because a booking change is not allowed for many offers. There are two 

levels “free” and “not free” for the attribute “in-flight food and beverages”, the same as for the 

previous study. 

 

An OMEP design of 32 sets was chosen for this experiment. Respondents were randomly assigned 

to half of the design to complete 16 sets of choice tasks. This design is shown in Appendix 1. The 

main properties of this design are: 1) main effects of all attributes can be independently estimated 

either as generic attributes across all alternatives or as alternative specific attributes (they are 

orthogonal across and within alternatives); and 2) all attribute levels appear an equal number of 

times for each alternative and across all three alternatives (level balanced). Moreover, for both 

blocks (versions) of 16 sets, a level balance is also maintained within each block.  
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To ensure the sample size for this study was adequate, a validation check was effected in the Ngene 

software. The test informed that if using an efficient and orthogonal design of 16 sets, a minimum 

sample size of 55 is required to estimate all the main effects. Therefore, a sample size of over 500 

respondents is more than adequate to identify and estimate attribute effects to give rise to a well-

established target model, and further segment consumers into clusters of reasonable size to 

account for preference heterogeneity among respondents. Since this study uses the same 

respondents for both stages, having over 500 respondents for the Stage 1 study, and assuming a 

drop-out rate of up to 60%, realistically ensures having 200 or more learners for the Stage 2 study. 

Depending on the use of incentives and other factors, and a longitudinal study using the same 

sample, the response rate will no doubt vary over time.  

 

The screenshot version of the questionnaire for the Stage 1 online consumer survey is shown in 

Appendix 3. An example choice task is shown in the following Figure 4.1 (a similar example task 

used in the Stage 2 experiment has been shown in Figure 1.2 in Chapter 1). For each respondent, 

besides asking for their “most preferred” and “least preferred” choices, a prediction task similar 

to that used in the Stage 2 learning experiment, was also included.  
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Figure 4.1 Example choice and prediction task in Stage 1 online consumer survey 

There are three reasons for including the prediction task in the Stage 1 survey. First, respondents 

can become familiar with the forthcoming learning tasks used in the Stage 2 experiment. Second, 

one extra session of prediction responses (Session 0) are available which can be considered as prior 

subjective probability predictions before learners are exposed to target models. This is the learning 

session before Sessions 1 and 2 in the Stage 2 learning experiment. Third, extra prediction 

responses provide extra validation information to eliminate respondents who gave little thought 

to their answers in these tasks. For example, if a respondent chose identical responses on most 

and least preferred questions in all choice sets and gave inconsistent or conflict prediction 

responses, it is highly likely the respondent was not thinking when answering questions. With 

duration also recorded for each choice set, it is easier to eliminate these respondents. In this study, 

34 of the 519 respondents for the Stage 1 survey were considered “bad” respondents and removed 

from the data analysis and the Stage 2 invitation. A combination of criteria as discussed above was 

used for data cleaning. As a result, analysis for the Stage 1 survey was conducted using a cleaned 

data file with 485 respondents. 
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This survey was conducted online using a randomly selected online panel list from Pure Profile. 

The demographics of selected respondents invited to participate, match population statistics from 

the Australian Bureau of Statistics (ABS) closely on key demographic indicators such as age and 

gender to ensure that a good representation of the Australian population was surveyed. 

4.4 Summary of Stage 2 Training and Learning Experiment 

4.4.1 Overview 

Using data collected from the Stage 1 consumer survey, this researcher developed two types of 

models, an aggregated model describing total consumers, and separate models describing three 

different consumer groups (classes). These models were used as target models in the Stage 2 

training and learning experiment. These models and four proposed learning approaches were 

constructed in an online intelligent tutoring system. This system played several roles. First, it 

provided learners with information and feedback required for each learning approach. Second, it 

performed evaluations, estimations and classifications using learners’ prediction responses in real-

time and provided personalised feedback. Third, a common set of training tasks was controlled by 

the system to show to learners at an appropriate time. This tutoring system, including training 

tasks, was built in the form of an online survey. Learners received information and feedback in 

real-time, following instructions specific to each learning approach that they were randomly 

assigned. A document with screenshots and explanatory notes describing the Stage 2 learning 

experiment is shown in Appendix 4. 

 

Respondents who had completed the Stage 1 survey were invited to participate in the Stage 2 

learning experiment. Every learner received 32 identical training tasks which were grouped into 

two sessions. Each task required predictions to be made with knowledge the learners had gained 

from target models under the particular environment designed for each learning approach. In each 
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training task, learners were asked to predict the consumers’ most preferred flight offer and allocate 

100% to four options to represent their predictions of consumer choices for all offers. Responses 

in the allocation task can be easily converted to predictions of probabilities of each offer being 

chosen. There are four options to choose from in each scenario. They are “fly Qantas”, “fly Virgin 

Australia”, “fly Jetstar” and “not fly”. Predictions that learners made were compared with 

probabilities from the target models to generate feedback that learners received depending on the 

particular learning approach. For example, for Learning Approach Two, probabilities from target 

models were simply shown to learners after they made their predictions, but no other information 

was given.  

 

To avoid confusing learners, the system simply refers to probabilities predicted by target models 

as “actual” choices made by consumers. This is reasonable considering predictions made by target 

models are the most accurate predictions of actual choices for any prediction task scenarios. It is 

clear from the Stage 1 analysis that the best performing respondent is still less accurate than target 

models in making predictions of consumer choices (this finding will be covered in detail in Chapter 

5). This is not a surprise finding given the volume of evidence from research comparing model 

and intuitive predictions (e.g. Grove et al. 2000). 

 

The objective of the Stage 2 experiment is to test whether learners can improve subjective 

probability predictions if they also improve their understanding of the relationships in the target 

models; for example, the relationship between return airfare and choice probabilities. The 

assumption is that learners can improve progressively on prediction performance through the 

process of learning target models, but the key objective for the experiment which is also the 

research problem is to find out which approach or approaches are more effective in improving 

learners in making predictions.   
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It is important that all learners are assigned randomly to any of the four learning approaches. The 

four learning approaches proposed in Chapter 2 form the four experimental conditions in which 

different information, or the same information in different forms, different feedback mechanisms 

and procedures, are used following the theoretical ideas behind each approach. All learners 

completed 32 identical training tasks broken down into two sessions. This way, results were directly 

compared. Assigning learners randomly to different learning approaches also helps reduce bias due 

to differences in learners’ characteristics such as their understanding of the problem and socio-

demographics, because each learner had an equal chance of being assigned to any experimental 

conditions. Results were unlikely to be largely influenced by exogenous variables such as 

differences in experience and interest. In other words, the procedures were aimed to isolate 

prediction performance from factors that were not a part of the learning approaches. The 

following section describes the experimental design approach and the four experimental 

conditions in turn. 

4.4.2 Experimental Design for Learner Experiment 

As discussed in Section 4.3.3, the experimental design for the Stage 1 survey is an OMEP design 

with 32 sets, organised in two blocks of 16 tasks (Appendix 1). Each respondent only completed 

one of the two blocks and answered other related questions (such as screening and socio-

demographic questions). For the Stage 2 experiment, because the maximum requirement of the 

intelligent tutoring system is to estimate a model in real-time using individual prediction responses 

for the whole training session (Learning Approach Three), a complete design without blocking 

was desired. To estimate a reliable learner model using responses in training tasks from a session, 

all tasks should be completed. There were two sessions in this experiment so two independent 

designs were needed. Besides this requirement, the elapsed time for each session needed to be 

reasonable to maintain learner interest while they are learning remotely online without help and 

supervision from trainers in person. Therefore, having 32 tasks in a session and 64 tasks in total 
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sounds too long and exhausting for learners. It may cause learners to quit the experiment 

completely or complete the experiment on different days. The latter case introduces extraneous 

factors into the results such as long-term memory. Having too many tasks increases this possibility. 

Controlling each session at 16 tasks and the full survey at 32 tasks can avoid the danger of high 

incompletion rate, multiple online sessions and other extraneous factors. As shown in the data 

collected, which will be discussed in Chapter 5, taking these precautions in designing the 

experiment was the right decision, because all learners were shown to complete the experiment in 

one run on the same day and the final completion rate was about 50% (240 learners after data 

cleaning achieved from 485 invitations). This was achieved without extra incentives given by Pure 

Profile other than normal compensation for a standard survey. The experimental design for the 

two sessions is shown in Appendix 2.   

 

As shown in the screenshot version of the Stage 2 experiment in Appendix 4, there was some 

information inserted between the two training sessions to clearly separate them for learners. 

Information inserted ranged from a simple question on a single screen to feedback on multiple 

screens depending upon the experimental condition to which a learner was assigned.  

 

In finalising the experimental design, and instead of selecting the larger orthogonal design of 32 

sets used in the Stage 1 survey, a smaller design with 16 sets was found to be available in the public 

library of orthogonal arrays maintained by Sloane allowing attributes for up to two alternatives. It 

became possible to use this design to create new designs because the results of the Stage 1 survey 

showed there were no cross-effects in choices made for Qantas and Virgin offers, but minor cross-

effects were shown in choices made for Jetstar offers. It implies that consumers choose Qantas 

and Virgin offers because their offers were considered satisfactory, but they can choose Jetstar 

offers not because Jetstar offers are satisfactory, but Qantas and Virgin offers are poor. This 
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finding suggests two smaller orthogonal arrays of 16 sets can be used instead of one larger 

orthogonal array of 32 sets allowing all three alternatives to be orthogonal. One orthogonal array 

can be used for Qantas and Virgin to ensure their attributes are orthogonal, and the other array 

ensures attributes for Jetstar are orthogonal within itself. By concatenating the two smaller designs, 

Qantas and Virgin are still orthogonal to each other, but some correlations are allowed with Jetstar, 

matching results of the Stage 1 analysis. The design for Session Two is just a variation of the 

Session One design, with some attribute columns reverse ordered.  

4.4.3 Four Experimental Conditions Matching Four Learning Approaches 

Learners were randomly assigned to four experimental conditions with an equal quota target. Of 

all invited 485 respondents who completed the Stage 1 survey, 252 respondents were collected. 

There were exactly 63 learners kept for each experimental condition for analysis and hypothesis 

testing. As mentioned, the four experimental conditions matched the four learning approaches 

proposed in Chapter 2. Table 4.2 provides a summary of these four experimental conditions. 

Sections 4.4.3.1 to 4.4.3.4 briefly summarise each experimental condition. Screenshots of the whole 

experiment and each condition are included in Appendix 4. 

Table 4.2 Four Experimental Conditions 

Experimental 
Conditions 

1 2 3 4 

Learning Approach One Two Three Four 
Training Sessions 2 2 2 2 

Training Tasks 32 (16 per session) 32 (16 per session) 32 (16 per session) 32 (16 per session) 
Self-Regulated 

Learning 
Yes No No No 

Type of Feedback No Outcome Cognitive &  
feed-forward 

Cognitive &  
feed-forward 

KR Approach in 
Feedback 

Not Relevant Not Relevant Attributes stated 
explicitly 

Relationships of 
consumer groups 

shown in chart/texts 
Categorisation 

Learning 
No No No Yes 

Feedback about the 
Stage 1 

Yes Yes Yes Yes 

Feed-Forward 
Information  

before  

General summary of 
Stage 1 predictions 

+  

General summary of 
Stage 1 predictions 

 

General summary of 
Stage 1 predictions 

+ 

General summary of 
Stage 1 predictions 

+ 
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Session One 
Training Tasks 

Self-regulated 
training using DSS 

Attribute-based 
Comparison of 

learner model from 
the Stage 1 survey 
with target model  

Details of three 
consumer groups 

including their 
spatial positions 

related to attributes, 
similarities, and 
dissimilarities 

Prediction Tasks Predicting all 
consumers 

Predicting all 
consumers 

Predicting all 
consumers 

Predicting one 
consumer group 

Real-time Analysis No No Estimating Learner 
Model 

Bayesian Classifier 

Target Model for 
Training 

Aggregated MNL Aggregated MNL Aggregated MNL MNL model for 
each consumer 

group 
 

4.4.3.1 Experimental Condition 1 (EC1) 

All learners in this condition received identical information and the tool so no individualised 

evaluation was required. Learners controlled the number of learning scenarios they wanted to go 

through in an online DSS. This DSS offers “what-if” scenarios so learners can observe outcome 

probabilities to the choice combinations they constructed. In this experiment condition, learners 

could determine how long they wanted to use the DSS before they started training tasks. Learners 

also had total control of scenarios they wanted to construct. A minimum duration of two minutes 

was required by the system during which the DSS was shown to learners the first time. Two 

minutes was not adequate for learning the target model, but it had the effect of bringing it to the 

attention of learners so as to avoid them accidentally skipping the training phase. 

 

There were four steps in the procedure once learners passed the initial introduction. Step One 

allowed learners to have the first practice using the DSS. Step Two was for learners to complete 

the first session of 16 training tasks. Step Three was to allow learners to have the second, also the 

last, practice using the DSS. This time there was no constraint on the minimum time required. 

Learners could decide how long they needed to spend time training on the DSS. Step Four asked 

learners to complete the second session of 16 training tasks. There was no other feedback for 

learners during or after training tasks. Please note, the actual DSS used for training was shown in 
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Figure 1.1 in Section 1.2. It is also included in Appendix 4 as a part of the screenshot copy of the 

experiment. An example training task asking people to make a prediction was shown in Figure 1.2 

in Section 1.2. This information will not be repeated here. 

4.4.3.2 Experimental Condition 2 (EC2) 

This condition aimed to replicate the traditional learning method in training people to make 

probability predictions in MCPL studies (e.g. Cooksey 1996). This approach offered the simplest 

form of feedback. After showing the summary of the Stage 1 predictions (common to all other 

experimental conditions), learners were asked to make predictions in 16 training tasks. They 

received correct answers after each task. After a short break with a separate single response 

question, learners continued with the second session with another 16 training tasks. Again, they 

received correct answers after completing each task. No other type of feedback was used in this 

experimental condition. Outcome feedback was common to all learners because training tasks 

were common to all learners. In this condition, no evaluation, estimation or classification was 

required. Learners needed to think about where to improve and which attributes had caused 

discrepancies in the prediction results. Outcome feedback was prepared beforehand based on 

predictions generated by the aggregated MNL model from the Stage 1 data analysis. The following 

Figure 4.2 is an example showing outcome feedback.  
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Figure 4.2 EC2 - an example of outcome feedback  

4.4.3.3 Experimental Condition 3 (EC3) 

The key characteristic for this experimental condition was the use of attribute level statistical 

information from learner models in feedback. After each session of 16 tasks, prediction responses 

were used for model estimation. Using the WLS method as discussed in Chapter 3, the tutoring 

system estimated an individual model for each learner. This real-time learner model reflected how 

learners made predictions in the newly completed session. Each learner model was compared 

against the target model on all attributes one by one. The results of these comparisons were 

presented to learners in feedback they received. This type of feedback matched the definition of 

cognitive feedback, containing attribute level statistical and behavioural information specific to 

each learner. Each learner’s model was estimated twice by the system, one after each session. 

Because the feedback after Session 2 was not followed by another session of training tasks, it is 

unknown what learners had learned from the second round of feedback. However, this issue was 

compensated by using an extra round of prediction responses, which was the prediction session 

that learners completed in the Stage 1 survey (this researcher names it as Session 0). Learner models 
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and related feedback were presented to learners as feed-forward feedback before they started the 

Session 1 tasks in the Stage 2 experiment. In this way, learners had two opportunities to adjust 

their predictions.  

 

As discussed in Chapter 2, cognitive feedback in the MCPL literature refers to feedback covering 

task information, statistical information about task characteristics, information about learners’ 

characteristics, and in particular, information about functional relationships between attributes and 

outcomes (e.g. Cooksey 1996). From a knowledge representation perspective, the focus of the 

particular feedback was on “features”, or the product attributes. In this condition, only the 

aggregated consumer MNL model was applied for comparison. Figure 4.3 demonstrates an 

example of such feedback. It is based on the attribute “fare” and its relationship with choice 

probabilities. More examples including screenshots of feedback on every attribute are included in 

Appendix 4. To help learners understand how much weight they should give to each attribute in 

making predictions, a summary of attributes’ relative importance was also presented to learners 

and repeated in every round of feedback. Attributes’ relative importance was derived from target 

model’s attribute coefficients. Figure 4.4 shows how this information was presented to learners. 
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Figure 4.3 An example feedback comparing “fare” in a learner model and the target model 

 

Figure 4.4 EC3 - relative importance of attributes 

4.4.3.4 Experimental Condition 4 (EC4) 

The key difference in this condition relative to the previous three conditions is that learners were 

asked to predict choices of one of three randomly selected consumer groups instead of total 

consumers. Therefore, the target model for each learner was one of the three consumer class 

models instead of the aggregated MNL model for all consumers. To ensure learners understood 
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their target groups, similarities and dissimilarities were illustrated in visual format and the features 

of each class were explained in text format. Together they were shown as feed-forward information 

before training tasks (see Appendix 4). After each training task, learners were informed whether 

they were predicting the group the system had asked them to predict. If not, they were told which 

other groups they were actually predicting. After the whole session, learners were given feedback 

showing a summary of their performance over the whole session. This was shown in a line chart 

format demonstrating moving averages of the chosen logarithmic score rule comparing predicted 

probabilities and actual probabilities of the target consumer group (see Section 3.4.2 for more 

background). Figures 4.5 and 4.6 demonstrate the feedback after each task and each session. 

 

 

Figure 4.5 EC4 - an example feedback after each task 
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Figure 4.6 EC4 - an example feedback after each Session 
 

The method for performing the Bayesian classification task using a logarithmic scoring rule (log-

likelihood) was given in Section 3.4.2. To explain briefly, three log-likelihood numbers were 

calculated by the system in real-time using predicted probabilities in each task. These numbers 

were compared by the system and one of the three consumer groups with the highest score (the 

maximum of the three log-likelihood numbers) was denominated as the group being predicted. 

That is, the predicted probabilities are the closest to the actual probabilities of that class. This 

answers the question whether a learner is predicting the right group and serves as key information 

in the after task feedback (Figure 4.6). 

 

Shown in line chart format in Figure 4.6, the key information in the session feedback is a moving 

average of a “performance” indicator. This indicator is actually the average of all likelihood 
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numbers for the correct target group. Behaviourally, the likelihood of the target group may be 

considered as learners’ affinity to the target group. Technically, the system calculates averages of 

likelihood up to 16 tasks of each session for the target group. The likelihood numbers were directly 

calculated first by converting all log-likelihood scores for every task into the exponential form. To 

calculate the average likelihood for  number of tasks starting from task 1, the system calculates 

the geometric mean, which is the th root of the products of all likelihood numbers, as shown in 

Equation 4.1 below: 

  (4.1) 

In the exemplified case in Figure 4.6, a learner was observed to improve quickly in the first few 

tasks, then remain relatively stable in the following tasks. 

4.5 Summary 

Chapter 4 discussed topics related to experimental design and data collection procedures for the 

empirical study for this research. This study was conducted during August 2012 to October 2012 

in the following four steps. First, the researcher collected data for 485 cleaned respondents on 

cross-country air travel from Sydney to any destinations. In each choice set respondents provided 

both their own choices and predicted the choices of all consumers. In this way, an extra session 

of predictions was collected. Second, this researcher conducted an analysis to develop four target 

models which was used for training in the Stage 2 experiment. There was an aggregated model for 

all consumers and three consumer group models. Third, all 485 respondents were invited to 

participate in the Stage 2 learning experiment, though completed by only 252 learners. They had 

been evenly and randomly split into four experimental conditions based on the four learning 

approaches discussed in Chapter 2. Fourth, using prediction data collected in both the Stage 2 

learning experiment and the Stage 1 consumer survey, data analysis was conducted to test the 
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research problem and research hypotheses H1a to H3b and explore other findings. Methodologies 

and results of the analysis will be discussed in detail in Chapter 5.   
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Chapter 5  Methodologies and Results of Analysis 

5.1 Introduction 

Chapter 4 discussed the experimental design and fieldwork plans. This chapter will discuss 

methodologies for data analysis and present the analysis results. For each main type of analysis 

such as testing prediction accuracy and testing target model parameter learning, methodologies 

and results will be discussed and presented together. Answers to the research hypotheses will be 

summarised after the results are presented. Discussions in this chapter will focus on the results 

only and not extended to implications in the broader context of marketing theories and practices. 

That task will be kept for Chapter 6 when the conclusions of this research are drawn.  

 

Background information about respondents such as age, gender, and education are given in 

Appendix 5. This information is not directly relevant to the research problem and hypotheses. 

This researcher was only interested in the findings about learning approaches that could be 

generalised more broadly. However, the background information about the sample is important 

to make sure there is a good coverage of the population and to ensure the findings are not limited 

to an unacceptably small subsection of the population. In this study, respondents were selected 

randomly by Pure Profile to match the population statistics of the Australian Bureau of Statistics 

before invitations were issued to participate in the research. Since this research does not aim to 

make connections between learning and exogenous factors such as age or gender, individual 

differences that might have contributed to certain variations in responses are treated as random 

errors in analysis. As will be discussed later in the chapter, analysis for the Stage 2 learning 

experiment started with individual level estimation to gain key indicators to further test prediction 

accuracy and model attribute learning. In this way individual differences have been largely 

accounted for by individual estimated results.  
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5.2 Analysis Methods and Results for Stage 1 Consumer Survey 

The objective for the Stage 1 consumer survey data analysis is clear; analysis results should provide 

target choice models for the Stage 2 learning experiment. As mentioned before, among the four 

learning approaches, Learning Approaches One, Two and Three adopt an identical target model 

representing choices for all consumers. Learning Approach Four uses different target models to 

be learned; one model for each consumer group.  

5.2.1 Analysis Methods 

A theoretical review of relevant estimation approaches was discussed in Chapter 3. Using choice 

data collected in the Stage 1 survey, two types of analyses can be conducted. The first type of 

analysis was to develop an aggregated, fixed effects MNL model. This model represents choice 

behaviour for all consumers. From a modelling perspective, utility functions in this model for the 

three alternatives, Qantas, Virgin and Jetstar, can be simplified as Equations 5.1 to 5.3.  

  (5.1) 

  (5.2) 

  (5.3) 

 

These are the main effects utility functions for each alternative without cross effects. There are 

good reasons for selecting a simple model of learning. Attributes and attribute levels in this study 

are generic and common for all three airlines, so identical coefficients can be used for generic 

attributes not varied by alternatives. This model is more parsimonious compared to models 

treating attributes as alternative specific. A simple model is an advantage for the Stage 2 experiment 

because it is easier to learn than a complex model. For an unsupervised online experiment that 

gives learners total control of the time they are willing to spend on the experiment, a complex 

model with many parameters can cause a high drop-out rate if the number of training sessions 

increases, or result in insufficient learning if the number of training sessions remains. Therefore, 
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it is unnecessary to use a complex model for this proof of concept study. Once the results of this 

study demonstrate that the learning model is a potentially valid approach to improve subjective 

predictions, more complex models can be tested in future studies.  

 

A simple model can be selected for learning under one condition. That is, the simple model does 

not neglect any important cross effects between alternatives that are well known to learners and 

have a major impact on prediction outcomes. Such importance does not mean these cross-effects 

are statistically significant in a model, but the size of the effect is enough to alter outcomes. A cross 

effect included is also known as the “Mother Logit” model (McFadden, Train & Tye 1977). 

Equation 5.4 provides the utility function for one alternative, Qantas as an example.  

  

  

  (5.4) 

 

The second type of analysis conducted aimed to identify latent classes (consumer groups). On 

preferences and choices, consumers are considered homogeneous within each class but 

heterogeneous between classes. Using the two estimation approaches discussed in Chapter 3, 

Latent Class Modelling (LCM) and archetypal analysis, this analysis was conducted. Results were 

compared on both goodness of fit statistics and explanations of output classes. This will be 

discussed after the results are presented.  

5.2.2 Target Model One – Fixed-Effects MNL Model for All Consumers’ Choices 

Table 5.1 shows the results of a conditional logit model using the choice data of 485 respondents 

of the Stage 1 survey after data cleaning. There are nine independent estimated parameters, three 

for ASCs (Qantas, Virgin and Jetstar), three for return airfare ($400, $460, and $520), one for flying 

time (four hours), one for ticket change (allowed) and one for in-flight food and beverages (free). 
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For each attribute, the effect of the missing level is the negative sum of other independent levels. 

This is due to the effects coding method that was used as a default in preparing choice data.  

Table 5.1 Conditional logit model for cross-country flight offer choices 

Conditional (fixed-effects) logistic  Number of obs = 31040 
    Wald chi2(9) = 1199 
    Prob > chi2 = 0 
     

Log likelihood = -5503.0962   Pseudo  = 0.4884 
Most Preferred Coef. Std. Err. z P>z 

Qantas (ASC) 0.93 0.06 15.31 0.00 
Virgin (ASC) 0.89 0.06 15.30 0.00 
Jetstar (ASC) 0.04 0.06 0.70 0.48 

Not fly (ASC) -1.85    
$400  1.98 0.07 26.82 0.00 
$460  0.51 0.03 15.91 0.00 
$520  -0.81 0.04 -18.89 0.00 
$580  -1.68    

4 hours 0.56 0.03 19.93 0.00 
6 hours -0.56    

Ticket changes allowed 0.22 0.02 10.25 0.00 
Ticket changes not allowed -0.22    

In-flight food & beverages - Free 0.43 0.03 15.83 0.00 
In-flight food & beverages - Not free -0.43    

     
 

From the results, it can be said that alternative specific constants and attribute level coefficients 

are all significant (i.e. although Jetstar ASC is not significant, the alternative specific constants are 

significant as a group. It is also clear from McFadden Pseudo  ( ) with a value of 0.4884, 

that this model has a very good statistical fit. According to McFadden (1979, p. 307), “values of 

0.2 to 0.4 for  represents an excellent fit”. This shows that pre-experimental analysis using past 

study data helped to identify important attributes that mattered most in choices made and, updated 

attribute levels from recent market information greatly increased the relevance of the model to 

consumer choices. It is worth noting that brand effect for Qantas (0.93) dropped significantly 

relative to Virgin (0.89) compared to the last study conducted by the CenSoC study (see Table 4.1). 

In the previous study, the effect for Qantas was more than twice that for Virgin. In this model, 

the two airlines are almost identical. Effects for all attributes match common expectations. 
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Basically, consumers prefer cheaper fares, shorter flying time, flexibility of changing ticket and free 

in-flight food/beverages. The effect size for the cheapest fare $400 (1.98) is almost four times the 

size of the next level $460 (0.51). Fares at $520 and $580 have negative effects on choices. The 

effects of three other attributes are statistically significant but less important to choices in the order 

of flying time, in-flight food/beverages and ticket change.  

 

A mother logit model was also conducted to check whether there were any statistically significant 

cross-effects that were important with large effect sizes. Table 5.2 shows the results of this model. 

From the results, the statistical fit of this model is slightly better than the simple MNL model with 

McFadden Pseudo  at 0.5035 compared to 0.4884 for the previous model. However, there are 

48 more independent parameters in the model. Compared to the simple model, this model only 

improves marginally with many more terms. By examining cross-effects, it becomes clear that there 

are six statistically significant cross-effects (highlighted in bold in Table 5.2), one each for Qantas 

and Virgin and four for Jetstar. The attributes of Qantas and Virgin offers have more impact on 

Jetstar than the reverse. These cross-effects are not as important as main effects by looking at their 

sizes. In this case, the simpler model in Table 5.1 is better suited to be the target learning model 

and no important effects will be missed that have a major impact on prediction results. 

Table 5.2 Mother Logit model including all cross-effects (CEs) 

Conditional (fixed-effects)  Number 
of obs 

= 31040 

  Wald 
chi2(57) 

= 10832.84 

  Prob > chi2 = 0 
Log likelihood = -5341.2225  Pseudo R2 = 0.5035 

Most Preferred Coef. Std. Err. z P>z 
Qantas (ASC) 0.97 0.04 24.94 0.00 
Virgin (ASC) 0.89 0.04 22.16 0.00 
Jetstar (ASC) -0.12 0.05 -2.24 0.03 

Qantas fare - $400 1.63 0.20 8.15 0.00 
Qantas fare - $460 0.62 0.17 3.60 0.00 
Qantas fare - $520 -0.97 0.16 -6.22 0.00 

Virgin fare on Qantas (CE) - $400 0.11 0.22 0.50 0.62 
Virgin fare on Qantas (CE) - $460 -0.07 0.18 -0.40 0.69 
Virgin fare on Qantas (CE) - $520 0.06 0.15 0.42 0.67 
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Jetstar fare on Qantas (CE) - $400 0.02 0.20 0.08 0.94 
Jetstar fare on Qantas (CE) - $460 -0.02 0.17 -0.11 0.91 
Jetstar fare on Qantas (CE) - $520 0.10 0.16 0.59 0.56 

Qantas time – 4 hours 0.20 0.09 2.18 0.03 
Virgin time on Qantas (CE) – 4 hours 0.02 0.09 0.22 0.83 
Jetstar time on Qantas (CE) – 4 hours -0.10 0.11 -0.91 0.36 

Qantas booking change – allowed 0.25 0.09 2.75 0.01 
Virgin booking change on Qantas (CE) - allowed -0.02 0.09 -0.20 0.84 
Jetstar booking change on Qantas (CE) - allowed -0.12 0.10 -1.20 0.23 

Qantas food and beverages – free 0.06 0.09 0.63 0.53 
Virgin food/beverages on Qantas (CE) – free -0.19 0.10 -1.96 0.05 

Jetstar food and beverages on Qantas (CE) – free -0.11 0.10 -1.20 0.23 
Virgin fare - $400 1.79 0.21 8.42 0.00 
Virgin fare - $460 0.51 0.18 2.84 0.01 
Virgin fare - $520 -0.75 0.15 -4.98 0.00 

Qantas fare on Virgin (CE) - $400 -0.28 0.21 -1.35 0.18 
Qantas fare on Virgin (CE) - $460 0.14 0.18 0.77 0.44 
Qantas fare on Virgin (CE) - $520 -0.18 0.15 -1.18 0.24 
Jetstar fare on Virgin (CE) - $400 -0.05 0.20 -0.25 0.81 
Jetstar fare on Virgin (CE) - $460 0.05 0.17 0.27 0.79 
Jetstar fare on Virgin (CE) - $520 -0.04 0.16 -0.27 0.79 

Virgin time – 4 hours 0.61 0.09 6.41 0.00 
Qantas time on Virgin (CE) – 4 hours -0.19 0.09 -2.13 0.03 
Jetstar time on Virgin (CE) – 4 hours -0.14 0.11 -1.29 0.20 

Virgin booking change – allowed 0.35 0.09 3.72 0.00 
Qantas booking change on Virgin (CE) - allowed 0.03 0.09 0.35 0.72 
Jetstar booking change on Virgin (CE) - allowed 0.03 0.10 0.34 0.73 

Virgin food and beverages – free 0.34 0.10 3.43 0.00 
Qantas food and beverages on Virgin (CE) – free -0.15 0.09 -1.64 0.10 
Jetstar food and beverages on Virgin (CE) – free -0.01 0.10 -0.13 0.90 

Jetstar fare - $400 2.10 0.20 10.42 0.00 
Jetstar fare - $460 0.35 0.18 1.99 0.05 
Jetstar fare - $520 -0.51 0.17 -2.95 0.00 

Qantas fare on Jetstar (CE) - $400 -0.32 0.23 -1.41 0.16 
Qantas fare on Jetstar (CE) - $460 -0.14 0.19 -0.73 0.46 
Qantas fare on Jetstar (CE) - $520 -0.08 0.16 -0.52 0.60 
Virgin fare on Jetstar (CE) - $400 0.14 0.23 0.60 0.55 
Virgin fare on Jetstar (CE) - $460 0.15 0.19 0.79 0.43 
Virgin fare on Jetstar (CE) - $520 -0.16 0.16 -0.97 0.33 

Jetstar time – 4 hours 0.49 0.12 4.16 0.00 
Qantas time on Jetstar (CE) – 4 hours -0.37 0.09 -3.89 0.00 
Virgin time on Jetstar (CE) – 4 hours -0.23 0.10 -2.28 0.02 

Jetstar booking change – allowed 0.02 0.10 0.21 0.83 
Qantas booking change on Jetstar (CE) - allowed -0.14 0.10 -1.46 0.15 
Virgin booking change on Jetstar (CE) - allowed -0.08 0.10 -0.86 0.39 

Jetstar food and beverages – free 0.39 0.11 3.67 0.00 
Qantas food/beverages on Jetstar (CE) – free -0.32 0.10 -3.39 0.00 

Virgin food/beverages on Jetstar (CE) – free -0.26 0.10 -2.52 0.01 
 

The results also show that choices for Qantas and Virgin are quite independent of cross-effects 

(with two minor exceptions as highlighted in bold). This means that choices made with regard to 

the Qantas or Virgin offers are largely due to the utilities of these offers and not influenced by 

offers from other airlines. Choices made on Jetstar are more influenced by effects from Qantas 



130 

 

and Virgin. This finding did help to reduce the orthogonal design size for the Stage 2 experiment 

by combining two orthogonal designs, one covering Qantas and Virgin and one for Jetstar. This 

helps to cut the size of the design by half (16 sets instead of 32 sets, see Appendix 2). However, 

some correlations are allowed between the Qantas/Virgin design and the Jetstar design. 

 

In the Stage 1 survey, after respondents provided their own choices, they were also asked to predict 

consumers’ choice probabilities for each set. Without using a more complex method to examine 

how much better the model in Table 5.1 performs over respondents’ subjective predictions, a 

summary table of variations from actual choice probabilities is summarised in Table 5.3. The mean 

differences from actual probabilities were calculated over all respondents, all sets over all 

alternatives in sets. It is clear that the model performs much better than subjective probabilities in 

predicting choices. For example, the mean difference of model predicted probabilities is 0.04 

above or below the actual choice probabilities. Meanwhile, the mean difference of respondents’ 

predicted probabilities is 0.16 above or below the actual probabilities. In fact, the model performs 

better than the best performed respondent in making predictions (±0.07). This is not a surprising 

finding given all the evidence from research in the area of Judgment and Decision Making literature 

(e.g. Dawes 1971; Grove et al. 2000). In the analysis conducted in Stage 2, more rigorous measures 

were used to calculate differences of probability distributions (i.e. strictly proper scoring rules as 

discussed in Chapter 3). For a simple summary of Stage 1, Table 5.3 provides adequate data for 

ease of interpretation. 

Table 5.3 Model predictions and learner predictions vs. actual choice probabilities 

Average differences of probabilities Model vs.  
Actual 

Learner  
Prediction vs. 

Actual 
All Options ±0.04 ±0.16 
Fly Qantas ±0.05 ±0.19 
Fly Virgin ±0.05 ±0.19 
Fly Jetstar ±0.04 ±0.16 
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Not fly ±0.01 ±0.08 
"most preferred" option in all sets ±0.05 ±0.25 
"least preferred" option in all sets ±0.03 ±0.12 

 

5.2.2 Target Model Two – Fixed-Effects MNL Models of Consumer Classes 

Class models were prepared in anticipation of the target models used in Learning Approach Four. 

As discussed in Chapter 3, two methods were used for this analysis, archetypal analysis and Latent 

Class Model (LCM). With consideration of the sample size of learners in this learning approach 

(initially estimated to be around 50 learners), models for two, three, four, and five classes were 

tested, and a decision was made that the three classes approach was the most appropriate one for 

the Stage 2 experiment. First, results for two classes always show one class is more dominant with 

a much higher proportion than the other, and this may trigger different behaviours by learners, 

which is not a feature of this learning approach. Four or more classes introduce too many small 

differences that are not salient enough to differentiate for interpretation. This may be a problem 

for limited sample size and limited online learning time (initially estimated to be about 30 minutes 

maximum online).  

 

A comparison of results for two methods of reaching three classes shows not only archetypal 

analysis has a better fit overall, but also identified more balanced proportions and intuitively more 

meaningful classes (consumer groups). Choosing the three groups identified by the archetypal 

analysis, fixed-effects MNL models were developed and used as target models for Learning 

Approach Four in the Stage 2 experiment. Having a clear definition of each consumer group 

certainly helps explain consumer behaviour to learners. Also, having near evenly split classes can 

suggest to learners that there is a near equal opportunity that a consumer may fall into any of the 

three groups. This helps eliminate possibly irrelevant and unintended heuristics developed by 
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learners using this learning approach. It certainly helps to simplify the classification algorithm by 

ignoring prior class probabilities (see Equation 3.25 in Chapter 3).  

 

As shown in Table 5.4, average Pseudo  indicates the archetypal analysis produced class models 

with high statistical fits. The three classes produced by archetypal analysis also have evenly split 

proportions at 38%, 32% and 30%.  

Table 5.4 Results of archetypal analysis 

 Archetypal 
Log-Likelihood (Sum of 3 Classes) -4670.87 

Pseudo R2 (Average) 0.57 
Pseudo R2 (Class 1) 0.61 
Pseudo R2 (Class 2) 0.45 
Pseudo R2 (Class 3) 0.64 

Proportion % (Class 1) 38% 
Proportion % (Class 2) 32% 
Proportion % (Class 3) 30% 

 

Table 5.5 shows the results of the three fixed-effects models generated by archetypal analysis. 

From the effects of attributes, it is also clear that differences between the three classes are salient 

for interpretation if described in words. Among the three classes, the key characteristic for Class 

1 is the choice of cheapest fares, the key characteristic for Class 2 is the choice of Qantas and 

Virgin, and Class 3 is between the other two classes and selected more on other features such as 

flying time and in-flight food. 

Table 5.5 Results of three fixed-effects models for the three classes by archetypal analysis 

 Class 1 Class 2 Class 3 
Log-Likelihood -1615.76 -1916.33 -1138.79 

Pseudo R2 0.61 0.45 0.64 
Most Preferred Coef. Coef. Coef. 

Qantas (ASC) 0.81 1.54 1.03 
Virgin (ASC) 0.71 1.33 1.25 
Jetstar (ASC) -0.22 -0.21 0.80 

Not fly (ASC) -1.30 -2.66 -3.09 
$400  3.37 0.98 2.17 
$460  0.91 0.52 0.66 
$520  -1.88 -0.40 -0.89 
$580  -2.39 -1.10 -1.94 

4 hours 0.56 0.49 0.92 
6 hours -0.56 -0.49 -0.92 

Ticket changes allowed 0.36 0.32 0.26 
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Ticket changes not allowed -0.36 -0.32 -0.26 
In-flight food & beverages - Free 0.40 0.20 0.92 

In-flight food & beverages - Not free -0.40 -0.20 -0.92 
 

5.3 Analysis Methods and Results for Stage 2 Learning Experiment 

The objective of the analysis for the Stage 2 learning experiment is to test hypotheses H1a to H3b 

regarding prediction accuracy and model learning, especially the comparison between the results 

of Learning Approaches Two and Three with Learning Approach One. Learning Approach Four 

is a separate condition more for exploratory purposes to see whether the idea of categorisation 

learning works. Experimental designs used for all learning approaches are identical and questions 

asked in training tasks are the same for Approaches One, Two and Three. Prediction accuracy and 

target model parameter learning are treated as two distinct types of analysis and they will be 

discussed in separate sections with methods and results. 

 

Before going into details of the analysis, it is worth summarising some response rates, durations 

of the learning experiment and feedback from learners, to gain a better understanding of how 

learners reacted when they were engaged in the experiment.  

5.3.1 Response Rate, Duration and Learners’ Feedback 

Of the 485 respondents from Stage 1 who were invited to complete the learning experiment, 365 

entered the online link for the experiment. Of those, 258 respondents completed the learning 

experiment. To balance four experimental conditions and remove those respondents who were 

most likely not applying effort to learn, six respondents with the shortest duration (all below 10 

minutes) were deleted from data for analysis. In total, 252 respondents (hereafter “learners”) were 

retained in the data set for analysis. The above figures yield a completion rate of 53% of total 

respondents invited to participate. No reminders were sent to invite those 107 respondents who 

appeared to have quit the experiment because this researcher only wanted to retain those who 
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completed the experiment at one sitting. Including learners who completed the experiment in more 

than one sitting, or on separate days, can introduce other unknown exogenous factors such as the 

veracity of participants’ memory capacity. 

 

As show in Table 5.6, the time spent by learners in the experiment varied greatly, and overall the 

learners spent much more time in this learning experiment than for standard online surveys. In 

this case, the mean duration may not be an accurate indicator given the number of outliers 

representing much more than 60 minutes in total. Some participants may have taken a break during 

learning. It is equally possible that the outliers may reflect respondents of more deliberative nature 

who diligently took time to "get it right", then perhaps the nature of the content of each Approach 

gave rise to the variations. By examining the medians and percentiles, it becomes clear that learners 

under each learning approach spent a similar amount time in completing the experiment. Among 

the four approaches, learners under Approach Four spent the longest time in the experiment, 

whilst learners under Approach Three spent the shortest time in the experiment.  

Table 5.6 Duration for Stage 2 Learning Experiment 

Experimental 
Conditions 

1 2 3 4 

Approach One Two Three Four 
Time Spent by 

Learners (in 
minutes) 

 

Median: 31.4 
25 Percentile: 20 
50 Percentile: 31 
75 Percentile: 61 

Median: 32.2 
25 Percentile: 20 
50 Percentile: 32 
75 Percentile: 65 

Median: 28.0 
25 Percentile: 21 
50 Percentile: 28 
75 Percentile: 55 

Median: 34.2 
25 Percentile: 24 
50 Percentile: 34 
75 Percentile: 67 

 

Table 5.7 shows learners’ opinions regarding the four learning approaches. Among the four 

learning approaches, Approach One (online DSS) induced the greatest confidence among learners 

with 69.8% learners saying they would improve using this method. This is followed by Approach 

Two (outcome feedback) at 66.7%. People’s opinions regarding Approach Three and Approach 

Four were more or less evenly divided with around half saying they would improve and the other 

half saying they would not improve. Interestingly, results to be shown in later sections about 
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learners’ actual improvements in their prediction accuracy and model learning, will reveal that 

learners’ own feelings are not necessarily a reliable indicator in this regard. 

Table 5.7 Respondents’ feelings about the four learning approaches after Session 2 

My predictions will 
improve using this 
learning approach 

Learning 
Approach 

One 

Learning 
Approach 

Two 

Learning 
Approach 

Three 

Learning 
Approach 

Four 

Total 

Yes 69.8% 66.7% 50.8% 55.6% 60.7% 
No 30.2% 33.3% 49.2% 44.4% 39.3% 
Total 100.0% 100.0% 100.0% 100.0% 100.0% 

 

The overall willingness to participate in future learning experiments similar to this one was very 

high. As shown in Table 5.8, up to 96.8% of all 252 learners said they would participate in another 

training program like this one. This high proportion is not varied by learning approaches.  

Table 5.8 Respondents’ willingness to participate in future training after Session 2 

If there is another survey 
or training program in 
future, are you interested 
in participating? 

Learning 
Approach 

One 

Learning 
Approach 

Two 

Learning 
Approach 

Three 

Learning 
Approach 

Four 

Total 

Yes 98.4% 96.8% 96.8% 95.2% 96.8% 
No 1.6% 3.2% 3.2% 4.8% 3.2% 
Total 100.0% 100.0% 100.0% 100.0% 100.0% 

 

From open-ended feedback, most learners thought the experiment was interesting and helped 

them to improve. For Approach One, the most common feeling in feedback was regarding the 

easy to use feature of the online DSS. For Approach Two, learners mentioned that the training 

method with correct answers given immediately after their responses was like playing a game and 

they had to “gauge” which attributes caused the differences between their answers and actual 

answers. For Approach Three, many mentioned that the comparison of their own models with 

actual consumer models gave them helpful information. However, some did complain that the 

information given was too much and became difficult and confusing for them to process. For 

Approach Four, it was interesting to see the contrast in opinions on the approach. Some said the 

approach worked for them and they improved a lot in later tasks. Others said they did not improve 
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and did not think the method worked for them. Interestingly, some participants who were assigned 

to predict a consumer group, and who were also a member of that group (all learners were 

informed in the beginning which groups they belonged to, see Appendix 4) queried whether the 

feedback they received was correct. They believed they were predicting the right consumer group 

but were told otherwise by the feedback. This researcher speculates that in telling learners which 

groups they belonged to might have provided some learners with a false assumption that they 

could predict independently of the experiment according to their own ideas. 

5.3.2 Testing Prediction Accuracy 

To test hypotheses of prediction accuracy across learning approaches, it is worth summarising 

what data was collected for analysis. All 252 learners were randomly and evenly divided into four 

experimental conditions matching the four learning approaches. Each learner completed 32 

identical prediction tasks in the Stage 2 experiment. The 32 tasks were arranged in two training 

sessions with 16 tasks per session. For Approaches One, Two and Three, learners were asked to 

predict consumers’ choices of the “most preferred” option and the probability for each option. 

For Approach Four, learners were asked to answer the same types of questions but for an assigned 

consumer group. These two sessions were called Session 1 and Session 2 (hereinafter referred to 

as “S1” and “S2”). Besides these two sessions, all learners also had an extra session of prediction 

tasks in the Stage 1 survey immediately following their own choices in each task. This session is 

called Session 0 (hereinafter referred to as “S0”), a prior learning session. For learners trained 

under Approaches One, Two and Three, data for all sessions can be used for analysis because both 

predicted and true probabilities (approximated by the target model) are available for the same 

target consumers. For learners trained under Approach Four, we can only use data in Sessions 1 

and 2 because only in these two sessions were predictions made of assigned consumer groups.  
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Thinking about the data, learners actually made more than one kind of prediction in the training 

tasks. First, learners predicted the “most preferred” option. They chose options directly in S1 and 

S2 and indirectly in S0 by giving the chosen option(s) the highest probability. To test the accuracy 

of this prediction, a simple method is to cross-tabulate the correct answers with predicted answers. 

The results should provide the performance under each learning approach. By aggregating the 

number of correct predictions per learner in each session, a respondent level cross-tabulation can 

also help to answer how many learners improved their prediction accuracy in later sessions. For 

example, if a learner correctly predicted his/her preferred options on 8, 12 and 12 occasions of 

the 16 possible in Sessions 0, 1 and 2 respectively, we can conclude that this learner improved in 

Session 1, did not improve further in Session 2, but overall improved during the whole experiment. 

This individual level analysis can provide indicators as to whether improvements are widely spread 

among learners, or only contributed by a few learners whilst the large bulk of learners performed 

poorly.  

 

For Approach Four, learners made a direct prediction of the probabilities and an indirect 

prediction of the target consumer group they were asked to predict. Only when a learner’s 

prediction was closest to the target group, would the built-in Bayesian classifier inform the learner 

that a correct prediction had been made. To analyse this prediction accuracy, cross-tabulations 

should be adequate because both the learner predicted consumer group and the target consumer 

group are known for each learner and each task. The analysis should inform with regard to 

performance in both S1 and S2.  

 

The above two types of predictions can be analysed by a simple cross-tabular method. The most 

important type of prediction to test prediction accuracy is learners’ predictions of probabilities for 

all four options in each set. These subjective predictions need to be analysed to see how well they 
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match with actual probabilities behind target learning models. For 252 learners, each learner made 

probability predictions covering four options in each of 48 choice sets in three sessions (S0, S1, 

and S2). Excepting S0 for Approach Four, we can compare predicted probabilities with actual 

probabilities in every set across all learners. As discussed in Chapter 3, this analysis should use 

strictly proper scoring rules to test how close the two probability distributions match.  

 

Two discrete probability distributions with four options can be denoted as  and 

, with  representing learners’ predicted probability vector and  representing 

actual probability vector. To test prediction accuracy is to analyse how “close” are the two 

distributions and to further compare the results of this analysis by learning approaches and 

sessions. In comparing the results for the learning approach, an effective method should 

demonstrate a close match between two distributions for both the response and respondent levels. 

For the response level, the results should indicate whether the approach has triggered better 

prediction accuracy overall covering all tasks and all learners. For the respondent level, results 

should indicate whether learners have improved their accuracy and reduced prediction errors in 

later sessions. For this analysis, a scoring rule is required as a key measure to directly show the 

closeness of  and .  

 

According to the literature on scoring rules and general probability theory, an effective way to find 

out how close are two probability distributions with discrete outcomes, is to use a distance function 

(metric) to calculate a positive distance between the two distributions (e.g. Friedman 1983; 

Gneiting & Raftery 2007; Nau 1985; Pollard 2002). Distance functions are strictly proper and have 

properties that other scoring rules do not have such as non-negativity, symmetry and transitivity. 

Moreover, it is also convenient to find a distance function with clear lower and upper bounds and 

the preferred target known a priori.  
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Hellinger distance (hereinafter referred to as “HD”) is often chosen as a distance measure between 

probability densities. It is by nature a Euclidean distance applied to square roots of the probability 

vectors. It is categorised as a generalised spherical scoring rule. Pollard (2002) discussed it as a 

measurement tool in the context of probability and measurement theory. More recently Jose, Nau 

and Winkler (2008) discussed it and its properties, such as symmetry, in the context of scoring 

rules. For two discrete probability vectors with  elements  and , HD 

represents how close or similar are the two distributions. Its formula is shown below in Equation 

5.5. 

  (5.5) 

If all matching probabilities in the two probability distributions are identical, HD equals zero. If 

for every non-zero probability in one distribution, the matching probability in the other 

distribution is zero, then HD equals one. Both are extreme cases and unlikely to occur in real 

predictions. Real HDs are most likely to situate between the two numbers. A lower HD learning 

towards zero represents that a learner is making less errors and is more accurate in prediction. 

 

In analysing prediction accuracy in this experiment, once HDs are calculated for every training set, 

the following two actions can be taken. First, for the response level, all HDs can be used for 

response level analysis. To use common statistical methods for linear and normally distributed 

data, Tukey’s ladder transformations can be applied to find the best transformation to normalise 

HDs. Once HDs are normalised, common statistical methods such as mean comparisons by 

learning approaches and sessions can be conducted easily. The results provide an overall 

comparison of the prediction accuracy of the four learning approaches relative to the three sessions 

for the response level. The alternative method is to use HD or its transformation as the dependent 

variable, using either learning approaches combined with sessions as the independent variable to 
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perform a regression analysis. By comparing coefficients, it should also inform which learning 

approach yields better prediction accuracy and whether the accuracy also improves with successive 

sessions. 

 

The foregoing response level analysis can show which approach performs best by treating each 

HD as an independent data unit, without considering that every 48 HDs came from one learner 

(i.e. as discussed, every learner has 48 HDs calculated, one for each training task). For the 

respondent level, if a learner did improve his/her accuracy in training, the HD should decrease in 

later sessions. For each learner, there are three mean HDs, one for each session (for Approach 

Four, only two mean HDs, one for each of S1 and S2, will be used for analysis). Using this data, 

the model discussed below can be run. The results should inform which learning approach is more 

effective for individual learners, causing them to improve their prediction accuracy more quickly 

in latter sessions.  

 

Taking two sessions for example (S0 and S1), for each learner, we can calculate the difference of 

two mean HDs for two sessions. The difference  can be denoted as . If  is lower 

than , it means the prediction accuracy has been improved in S1, so  should be negative 

and vice versa. Thinking about  as a function of , the model is expressed as: 

  (5.6) 

The intercept  represents a systematic prediction error component. When it is 0, it means a 

learner does not have errors that are systematic over or under prediction errors that will not be 

corrected in S1. The term  determines the relationship of  and . It informs how much 

error is corrected in S1. The term  represents an unknown random error component.  
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In estimating  and , assume there is no systematic error ( ), and that Equations 5.7 to 5.9 

inclusive, present three representative changes to the prediction accuracy from S0 to S1. In 

Equation 5.7, a learner is able to eliminate all prediction errors in S0 and make perfect predictions 

in S1. In Equation 5.8, a learner is able to reduce errors made in S0 by one half. In Equation 5.9, 

a learner does not improve from S0 to S1. In Equation 5.10, the HD in S1 is the negative of HD 

in S0. This is not possible because HD is always positive.  

  (5.7) 

  (5.8) 

  (5.9) 

  (5.10) 

 

The above cases suggest that  is a coefficient greater than or equal to -1 and less than or equal to 

0. If  is equal to -1, it means that all prediction errors are removed completely in S1 and 

predictions are perfect in S1. In comparing two learning approaches, an approach with a lower  

closer to -1 is preferred. Following this principle, testing prediction accuracy can be conducted by 

comparing values of  for different learning approaches. We can conclude that a learning approach 

with lower negative  is more effective in improving prediction accuracy, however, it is also 

important to consider the relative size of . An approach with a higher  suggests that the 

approach produces more systematic over- or under-predictions among learners. Therefore, if an 

approach has a low value of  but a higher , it suggests that learners under this approach are 

adjusting their predictions rapidly, but unfortunately with more numerous systematic errors. If this 

is the case, a competing approach with a higher  but lower  may be preferred. It means that 

although learners are improving their prediction accuracy slowly, they are doing so with a lesser 

number of systematic errors. 
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In summary, to test the prediction accuracy for the two categorical predictions of “most preferred” 

option and consumer group, cross tabulating learners’ predictions by correct answers can be used. 

To test the prediction accuracy of probability predictions, a distance measure as a strictly proper 

scoring rule can be chosen. This researcher selected Hellinger distance (HD) as the scoring rule to 

test the relative proximity of learner predictions and actual probability distributions. Moreover, 

this can be tested for both a response level using all HDs and a respondent level using the mean 

HDs of each learner in each session. The former analysis provides an overall picture of prediction 

accuracy by learning approaches and the latter analysis reveals which approach reflects 

improvement in individual learners in latter sessions.  

5.3.3 Results - Prediction Accuracy 

5.3.3.1 Prediction Accuracy for “Preferred” Option 

The first prediction type checked is the prediction for the “preferred” option in each set. For the 

response level, Table 5.9 shows the proportions of correctly predicted responses in each learning 

approach, separated by sessions. Approach Two has the highest proportion of correct predictions 

at 80.8% representing the mean of sessions S1 and S2 in the Stage 2 learning experiment, 13% 

more than the starting session S0 at 67.8%. Although the mean proportions for Approach One 

and Approach Three at 76.6% and 76.5% respectively, are lower than Approach Two, both 

approaches see learners improve their accuracy in both sessions S1 and S2, this being especially 

the case for Approach Three. For Approach Four, S0 is not relevant because tasks involved in 

sessions S1 and S2 are about a particular consumer segment, so the effective starting session for 

Approach Four is S1. From the results for Approach Four, it can be simply said that learners did 

not improve in S2 over S1. The overall performance of Approach Four in this type of prediction 

is lower than the other three approaches. However, a direct comparison with the other approaches 

would be meaningless because of different prediction tasks involved. 
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Table 5.9 Correct predictions of preferred options for total predictions 

 (n = 1008 responses per cell) 
 Approach One Approach Two Approach Three Approach Four 

Session 0 (Stage 
1) 

68.4% 67.8% 66.5%  

Session 1  75.9% 80.6% 74.9% 70.2% 
Session 2 77.4% 81.0% 78.2% 65.3% 

Average (S1 & S2 
) 76.6% 80.8% 76.5% 67.8% 

 

For the respondent level, each respondent was categorised into three groups: those who predicted 

correctly more often in S2 than in S1 (better), those who predicted correctly an equivalent number 

of times in S1 and S2 (same), and those who predicted correctly less often in S2 than in S1 (worse). 

As shown in Table 5.10, Approach Three had the highest proportion of better performers at 54%, 

with Approach Four having the second highest proportion at 50.8%. These were followed by 

44.4% and 38.1% respectively for Approaches One and Two. It is no surprise that more learners 

improved under Approach Three, but it is surprising that half of the learners actually improved in 

Approach Four. Looking at the Table 5.10 results in totality, it seemed the case that those who did 

not improve in S2 became worse and contributed more to the overall responses of incorrect 

predictions. Learners in Approach Two did not improve much in S2 over S1. However, this is 

partly due to the fact that in S1, the learners had already achieved the highest level of accuracy 

compared to all other approaches, so there were less room for improvement. 

Table 5.10 Respondents’ performance in predicting preferred options 

Individuals who predicted better/same/worse in Session 2 than in Session 1  
(base = 63 respondents per approach) 

 Approach One Approach Two Approach Three Approach 
Four 

S2 > S1 (better) 44.4% 38.1% 54.0% 50.8% 
S2 = S1 (same) 17.5% 33.3% 22.2% 14.3% 
S2 < S1 (worse) 38.1% 28.6% 23.8% 34.9% 

 

Respondents do not always perform consistently across all tasks, as the difficulty level of task sets 

is unequal. Figure 5.1 shows the proportions of respondents who predicted correctly in the 32 sets 
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in S1 and S2. When tasks are easier to predict, learners in every approach performed well in general 

(such as Task sets 7 and 13 in S1). When tasks are difficult, learners in every approach performed 

relatively poorly (such as Task sets 2 and 13 in S2). An interesting finding is that although learners 

in Approach Two performed well overall, in those more difficult tasks (such as Tasks sets 15 and 

16, and Task sets 2 and 13), a lesser number of learners performed well. This may be the unique 

characteristic for “trial-’n-error” learners. Perhaps if similar tasks had not been seen before without 

references for learners to apply, performance could have been worse than in other learning 

approaches. Surprisingly, although learners in Approach Four did not perform well overall, they 

had a more consistent and stable performance in S1 in particular, performing better than learners 

in the other approaches when tasks were difficult in general.  

 

 

Figure 5.1 Proportions of respondents who predicted correctly in S1 and S2 by set 
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5.3.3.2 Prediction Accuracy on Target Consumer Group (Learning Approach Four) 

The second type of predictions relate to Learning Approach Four only. Each of the 63 learners 

was asked to predict probabilities of one of the three consumer groups. Based on the Bayesian 

classifier using posterior probabilities, the intelligent tutoring system can determine which group 

each learner was predicting. The automatic feedback then informed learners whether they had 

predicted the correct group, and if not, which group had been predicted. In Table 5.11, it is clear 

that learner prediction success varies greatly. The worst performing learner in each of sessions S1 

and S2 only predicted correctly on one occasion, whilst the best performer achieved 15 correct 

predictions of a possible 16. The mean number of correct predictions by learners in both sessions 

S1 and S2 were 6.98 and 7.27 respectively, of 16 predictions.  

Table 5.11 Learners’ performance in correctly predicting target consumer group 

 Learners Minimum Maximum Mean Std. 
Deviation 

Session 1 N=63 1 (of 16) 15 (of 16) 6.98 4.99 
Session 2 N=63 1 (of 16) 15 (of 16) 7.27 4.25 

 

It is also interesting to note that people performed differently in predicting the three groups. Since 

learners were all randomly assigned to the three groups, the differences shown in Table 5.12 are 

most likely due to the degree of difficulty arising from the specific nature of a group’s task 

composition.  

Table 5.12 Prediction success achieved by learners (% of total responses) 

Target groups to predict Session 1 Session 2 Total 
Group A 37.2% 36.6% 36.9% 
Group B 75.3% 73.8% 74.6% 
Group C 18.5% 25.9% 22.2% 

Total 43.7% 45.4% 44.5% 
 

Learners predicted Group B most accurately with about 75% success rate for both S1 and S2. 

Group B consumers looked for qualities and cheap fares were less attractive to them than to other 

groups. They preferred Qantas and Virgin over Jetstar clearly. These characteristics were strong 
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signals for learners to assign higher probabilities to the Qantas and Virgin. On the other hand, 

even though Group A consumers strongly preferred the cheapest fare, learners could still 

encounter difficulty in judging what probabilities they should assign to options with cheaper fares 

in a training set. This situation prevails because all groups preferred cheaper fares to a certain 

degree. It is not surprising that learners performed worst in predicting Group C, as Group C has 

a profile which fits between Groups A and B, and the Group C characteristics are not as salient as 

the other two groups. There is therefore a lack of strong signals indicating levels of preference for 

the options. These are valuable insights for the training of people to understand the various 

segments. In other words, there need to be strong signals demonstrating a group’s main 

characteristics, and especially differentiating those characteristics from other groups.  

 

Table 5.13 shows data which gives rise to an interesting finding. That is, learners who belong to 

the target group may not achieve the best prediction performance compared to those who do not 

belong to the target group.  

Table 5.13 Proportion of correct predictions (groups belonged to by groups to predict) 

  Target group to 
predict 

  

Learners Group A Group B Group C Total 
Group A 32.6% 78.7% 29.2% 51.3% 
Group B 21.1% 76.6% 18.8% 32.1% 
Group C 49.6% 65.6% 20.6% 47.0% 

Total 36.9% 74.6% 22.2% 44.5% 
 

This finding is common for all three groups. For example, learners who belonged to Group C 

were more successful in predicting Group A than learners who belonged to Group A (49.6% vs. 

32.6%). Learners who belonged to Group A were more successful in predicting Group B than 

learners who belonged to Group B (78.7% vs. 76.6%). Learners who belonged to Group A were 

more successful in predicting Group C than learners who belonged to Group C (29.2% vs. 20.6%). 
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By informing learners which segments they belonged to, as was done in this experiment, it is 

possible that learners may be induced to adopt false assumption with regard to predictions about 

their own group insofar as they need only follow their own instincts to make predictions about 

their own group. This phenomenon may also explain why, in some open-ended feedback for 

Approach Four, a few learners argued that they were right and the system was in error. 

5.3.3.3 Prediction Accuracy on Probabilities of Options 

The most important type of prediction is probability prediction. In each training set, all learners 

were asked to assign 100% across the four options “fly Qantas”, “fly Virgin”, “fly Jetstar” and 

“not fly” in the set. Percentages can easily be converted to probabilities summing to 1. As discussed 

in Section 5.3.2, Hellinger Distance (HD) was chosen as the scoring rule for this analysis. In 

preparing data, the HD was calculated for each training set using learner predicted probabilities 

and target model approximated probabilities. For each learner, there were 16 HDs for each session. 

For Approaches One, Two and Three, there were 48 HDs in total, 16 for each session. For 

Approach Four, there were 32 HDs in total, 16 for S1 and 16 for S2. This data represented the 

response level data, the main data for analysis. For individual level analysis, three mean HDs were 

calculated for each learner, one for each session. For Approach Four, only two of three mean HDs 

were used for individual level analysis. 

 

As shown in Figure 5.2, the right transformation to normalise response level HD data is to use its 

square root, namely . This transformation is a monotone transformation and does not 

change orders of data in the original HDs. To double check it, Figure 5.3 shows that  aligns 

well with the normal distribution but not so for the original HD. As discussed in Section 5.3.2, the 

mean comparison and linear regression model were run. Using transformed HD data for 

regression analysis yields higher statistical fits than from using the original HD data (e.g.  at 

0.92, instead of 0.60). 
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Figure 5.2 Transformations of Hellinger Distances (HDs) 

 

Figure 5.3 Checking square root and original HD against normal distribution 

 

Tables 5.14 and 5.15 provide both mean comparisons of transformed HDs and regression results 

with transformed HDs as the dependent variable, and a combination of learning approaches and 
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sessions as the independent variable. Means and coefficients are identical for each combination of 

learning approaches and training sessions. It should be noted that the results of S0 for Approach 

Four are not relevant due to the different tasks required in S1 and S2, and are consequently shown 

as struck out in Table 5.14 and not included in Table 5.15. From these results, one key observation 

is worth noting; that is, excepting S1 and S2 for Approach Four, in which variances appear to be 

a little higher than the rest, all other combinations, levels of variances and standard deviations are 

quite close and highly significant at the  level. With these results, in comparing 

combinations of learning approaches and sessions, the means or regression coefficients can be 

compared directly with little concern due to the variances ranging in a narrow band of values.  

 

Table 5.14 Means of transformed HD by learning approaches & sessions 

Session & 
Approach 

Mean 
Sqrt(HD) N Std. 

Deviation Variance 

session 0 
(approach 1) 0.525 1008 0.132 0.017 

session 1 
(approach 1) 0.500 1008 0.137 0.019 

session 2 
(approach 1) 0.500 1008 0.141 0.020 

session 0 
(approach 2) 0.529 1008 0.134 0.018 

session 1 
(approach 2) 0.452 1008 0.139 0.019 

session 2 
(approach 2) 0.436 1008 0.135 0.018 

session 0 
(approach 3) 0.533 1008 0.130 0.017 

session 1 
(approach 3) 0.504 1008 0.146 0.021 

session 2 
(approach 3) 0.489 1008 0.135 0.018 

session 1 
(approach 4) 0.525 1008 0.173 0.030 

session 2 
(approach 4) 0.537 1008 0.167 0.028 

Total 0.503 12096 0.145 0.021 
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Table 5.15 Results of regression analysis with transformed HD as dependent variable 

Source SS df MS Number of obs 11088  
    F(11, 11077) 12464.03  
Model 2811.511 11 255.592 Prob > F 0  
Residual 227.149 11077 0.020506 R-squared 0.9252  
    Adj R-squared 0.9252  
Total 3038.661 11088 0.274049 Root MSE 0.1432  
SQRT(HD) Coef. Std. Err. t P>t [95% Conf. Interval] 
session 0 (approach 1) 0.525 0.005 116.390 0.000 0.516 0.534 
session 1 (approach 1) 0.500 0.005 110.810 0.000 0.491 0.509 
session 2 (approach 1) 0.500 0.005 110.750 0.000 0.491 0.508 
session 0 (approach 2) 0.529 0.005 117.270 0.000 0.520 0.538 
session 1 (approach 2) 0.452 0.005 100.160 0.000 0.443 0.461 
session 2 (approach 2) 0.436 0.005 96.700 0.000 0.427 0.445 
session 0 (approach 3) 0.533 0.005 118.190 0.000 0.524 0.542 
session 1 (approach 3) 0.504 0.005 111.720 0.000 0.495 0.513 
session 2 (approach 3) 0.488 0.005 108.300 0.000 0.480 0.497 
session 1 (approach 4) 0.525 0.005 116.310 0.000 0.516 0.533 
session 2 (approach 4) 0.537 0.005 119.040 0.000 0.528 0.546 

 

As shown in Table 5.16, two points can be stated. First, all approaches have the same  in S0 

which means learners under all approaches are not statistically different in terms of prediction 

accuracy before training. Second, the reduction of prediction errors in S1 and S2 are statistically 

significant. Among all approaches, Approach Two yielded the best outcomes in terms of 

prediction accuracy. First, the magnitude of improvement in prediction accuracy is the largest, with 

decremental  at 0.093 (i.e. from 0.529 to 0.436), being more than twice that of the second 

best performer, Approach Three with decremental  as 0.044 (i.e. from 0.533 to 0.489). 

Second, improvements in prediction accuracy were continuous from S0 through S1 to S2. Both 

Approaches Two and Three performed better than Approach One. Results for Approach One 

showed that although learners improved in S1 compared to S0, there were no further 

improvements in S2. Results for Approach Four showed a contrary tendency to the other 

approaches, with prediction accuracy decreasing from S1 to S2. 
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Table 5.16 Comparing prediction accuracy by learning approaches & sessions 

Learning 
Approach 

Session Sqrt(HD) Accuracy (HD) 

1 0 0.525 - 
1 1 0.500 Improved 
1 2 0.500 Unchanged 
2 0 0.529 - 
2 1 0.452 Improved 
2 2 0.436 Improved 
3 0 0.533 - 
3 1 0.504 Improved 
3 2 0.489 Improved 
4 1 0.525 - 
4 2 0.537 Decreased 

 

Alternatively, using the means of HDs from starting and finishing sessions, an analysis was 

conducted with a model similar to Equation 5.6 ( ). The starting 

session for Learning Approaches One, Two and Three is S0, and for Approach Four is S1. The 

end session is S2 for all approaches. This analysis can provide answers as to whether learners 

improved in the last session compared to the beginning session. It is worth noting that when the 

means of HDs were calculated for each learner by averaging 16 HDs from 16 tasks, it can be the 

case that even two HD means are identical, but the actual situations may be quite different. For 

example, in one case, all individual HDs are close to the mean. In the other case, all individual 

HDs are dispersed away from, and to either side of the mean. Therefore, the former analysis of 

response level HDs is a better indicator when ranking learning approaches because it covers all 

scenarios, treating each prediction task separately. However, analysis for the respondent level is 

also necessary because it summarises learners’ performance. Table 5.17 and Figure 5.4 display 

regression results and scatter plots based on the regression function.  
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Table 5.17 A summary of model fits for regression analysis using mean HDs 

Source SS df MS Number of 
obs 

= 252 

    F(  8,   244) = 26.59 
Model 0.995 8 0.124 Prob > F = 0 
Residual 1.141 244 0.005 R-squared = 0.466 
    Adj R-

squared 
= 0.448 

Total 2.137 252 0.008 Root MSE = 0.068 
HD_end session Coef. Std. Err. t P>t [95% 

Conf. 
Interval] 

approach 1_alpha 0.072 0.035 2.030 0.043 0.002 0.142 
approach 2_alpha 0.071 0.036 1.990 0.048 0.001 0.141 
approach 3_alpha 0.128 0.036 3.600 0.000 0.058 0.198 
approach 4_alpha 0.112 0.027 4.140 0.000 0.059 0.165 
approach 1_beta -0.326 0.117 -2.780 0.006 -0.557 -0.095 
approach 2_beta -0.537 0.116 -4.630 0.000 -0.766 -0.309 
approach 3_beta -0.572 0.114 -5.000 0.000 -0.798 -0.347 
approach 4_beta -0.330 0.084 -3.950 0.000 -0.495 -0.165 

 

As discussed in Section 5.3.2, the ideal value for intercept  is zero which indicates there are no 

over or under system predictions. The ideal value for slope  is -1 which indicates that all 

prediction differences can be corrected. An approach with smaller  and smaller  is preferred. 

Table 5.17 shows estimated  and  for each approach. Figure 5.4 shows a scatter plot for each 

approach with regression line using estimated  and . To make comparison easier, the reference 

line with ideal  and  is also shown in each scatter plot.  
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Figure 5.4 Prediction accuracy improvements from starting session to end session by approach 

Although Approach Three shows learners’ prediction accuracy is improving the fastest, the 

systematic error captured by  is much larger than with Approaches Two and One. This is clear 

according to coefficients in Table 5.17 although not so clear pictorially in Figure 5.4. Overall, 

Approach Two is the most effective approach to improving prediction accuracy fastest with the 

least systematic error in prediction. The advantage of Approach Three over Approach One is not 

obvious, because even though learners under Approach Three are improving faster the systematic 

error component is also largest. One could argue that the large systematic error for Approach 

Three may be caused by outliers (in Figure 5.4), nevertheless, we cannot conclude decisively 

without consulting other data because the same point can be made with regard to Approach One. 
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Approach Four was examined separately because the tasks were different. From the results, it 

appears that learners under Approach Four were improving but the systematic error component 

was large.  

 

Table 5.18 demonstrates the proportions of learners who improved their prediction accuracy over 

the sessions. This was based on smaller mean HDs in a later session than an earlier session because 

smaller HDs represent more accurate predictions. Three comparisons were included: being S1 

over S0 (excluding Approach Four), S2 over S1 and the last session (S2) over the beginning session 

(either S0 or S1). Examining overall improvement from S0 to S2 (or S1 to S2 for Approach Four), 

these results show that Approach Two is the best in improving prediction accuracy effectively, 

because the percentage of learners who improved in the last session over the first session was the 

highest at 89% among all approaches (i.e., 89% of learners had lower mean HDs in S2 than S0). 

Approach Three is slightly better than Approach One (70% versus 67%). Approach Four is less 

effective in improving the prediction accuracy of learners. 

Table 5.18 Proportions of learners who improved their prediction accuracy 

 Learners Session 1 over  
Session 0 

Session 2 over 
Session 1 

Overall 
 

Learning Approach 1 63 67% 51% 67% 
Learning Approach 2 63 89% 67% 89% 
Learning Approach 3 63 62% 71% 70% 
Learning Approach 4 63 NA (different tasks) 40% 40% 

 

Another finding regarding Approach Four is that levels of prediction accuracy for probabilities are 

different depending on which target segment is predicted. This finding is similar to the previous 

findings in predicting consumer groups as discussed in Section 5.3.3.2. Table 5.19 shows that 

average transformed HDs for target consumer groups are different. Prediction accuracy is the 

highest among learners who predicted Group B. Group B is followed by Group A and Group C 
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with regard to accuracy. This order is the same as the order discovered in predicting consumer 

groups as shown in Table 5.12. 

Table 5.19 Average transformed HDs by target segments for Approach Four 

  N Mean Std. Deviation Minimum Maximum 
Group A 1 Session 1 21 0.538 0.083 0.430 0.702 

2 Session 2 21 0.567 0.072 0.452 0.721 
Group B 1 Session 1 21 0.505 0.078 0.400 0.711 

2 Session 2 21 0.505 0.077 0.402 0.754 
Group C 1 Session 1 21 0.592 0.092 0.456 0.772 

2 Session 2 21 0.598 0.064 0.499 0.703 

 

5.3.4 Summary of Hypotheses H1a, H2a and H3a 

This section summarises the results and provides answers to research hypotheses H1a, H2a and 

H3a. Hypothesis H1a assumes that Approach Two is more effective than Approach One in 

improving prediction accuracy. Hypothesis H2a assumes that Approach Three is more effective 

than Approach One using the same measure. Hypothesis H3a treats Approach Four separately 

and assumes it helps learners improve their prediction accuracy without comparing it to other 

learning approaches.  

H1a states that: 

Learners who receive outcome feedback after each training task (Approach Two) make 

more accurate probability predictions than those who perform self-regulated learning using 

a “plain vanilla” MDSS (Approach One).  

Based on the results discussed in Section 5.3.3, learners using Approach Two were more accurate 

predictors than learners using Approach One, and they reached the highest level of accuracy 

among all four approaches in session S1 and maintained that same level of accuracy in session S2. 

These results were also shown to be statistically significant in results such as Table 5.15. Based on 

the full probabilities of all options, which is the focus of this hypothesis, Approach Two is more 

effective than Approach One in two respects: it is more accurate in both S1 and S2 based on all 
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predictions made, and there are more learners who improved their prediction accuracy in later 

sessions than in earlier sessions. Overall, Approach Two is a more effective approach than 

Approach One in every respect with regard to improving prediction accuracy. 

 

H2a states that: 

Learners who receive diagnosis of their own model after training tasks (Approach Three) 

make more accurate predictions than those who perform self-regulated learning using a 

“plain vanilla” MDSS (Approach One).  

The results clearly show that Approach Two is the most effective approach among all approaches 

in helping learners improve their prediction accuracy. It is not so clear with regard to Approach 

Three. Regarding the first type of prediction for the preferred option, Approach Three performed 

at a similar level as Approach One based on total numbers of correct predictions made. Approach 

Three performed better than Approach One with more learners improving their prediction 

accuracy in S2 than in S1 (see Table 5.10). For the full probability predictions, Approach Three is 

more effective in improving prediction accuracy based on all predictions made (see Table 5.16). 

However, in terms of the total number of learners who improved their accuracy in the last session 

over the first session, Approach Three is close to Approach One. Overall, Approach Three is more 

effective but its advantage over Approach One is much less than over Approach Two. 

 

H3a states that: 

Learners who receive class information and classification feedback after training tasks 

(Approach Four) improve their predictions of probabilities matching a particular class with 

more tasks and feedback given in training.  

Due to task differences, Approach Four was not compared with other learning approaches. This 

hypothesis is more exploratory in nature to ascertain whether by giving learners class information 
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as feed-forward information and providing classification feedback after each task can induce 

learners to improve their prediction accuracy. As discussed, besides full probability predictions, 

two other types of predictions were also made; a direct prediction for the “preferred” option and 

an implicit prediction for the consumer group. One observation is that learners’ predictions vary 

greatly under this learning approach. When a result is based on the response level, it shows 

prediction accuracy was not improved in session S2 compared to S1, excepting the prediction 

accuracy for the consumer group improved slightly (see Table 5.11). When a result is based on the 

respondent level, it shows a good number of learners actually improved. For example, 50.8% of 

learners improved their prediction accuracy for the “preferred” option in S2 (Table 5.10) and 40% 

of learners improved their prediction accuracy for full probabilities in S2 (Table 5.18). Depending 

on the consumer groups assigned for prediction purposes, and whether the learners belonged to 

the same group, the learners’ implicit predictions for target consumer groups can vary greatly. 

Learners’ accuracy in predicting full probabilities also vary greatly depending on the target segment. 

To conclude, under Approach Four the prediction accuracy varied based on target segments and 

individual differences. Some learners improved their accuracy and others did not. 

5.3.5 Testing Target Model Parameter Learning 

5.3.5.1 The Nature of Testing Model Parameter Learning 

Testing whether learners understand the attribute parameters in a model from predictions they 

made in tasks, is more challenging than testing prediction accuracy from the same data. Unlike the 

testing of prediction accuracy, prediction data alone does not tell us whether learners understand 

the underlying target parameters. To make the task even more difficult in this experiment, it is not 

a static problem because learners completed multiple sessions, so the actual question is not only 

about testing the model understanding for a particular session, but testing whether and how fast 

learners improved their understanding over more than one session, from the point where they 
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started before the learning sessions. Moreover, several learning approaches need to be compared 

in this process. There are no existing methods or models, enabling us to solve this problem, in 

either the learning or the DCM literature. In this respect, the analysis is unique in terms of using 

the limited data in hand, which comprises two probabilities, learner predicted and target model 

approximated probabilities, and the experimental design matrix covering all attributes of options 

for prediction.  

 

One can argue that people cannot articulate the exact values of attribute parameters they have in 

mind when making predictions, even though they may be able to describe them in general terms. 

For example, some learners provided feedback that consumers always chose the cheapest fare. 

Knowledge of attribute parameters is implicit and it takes effect jointly when in the process of 

making predictions. When learners are learning target model parameters, the knowledge of 

attributes keeps changing with the more information received. At any particular time, a learner’s 

knowledge of an attribute parameter is a mixture of the learner’s existing knowledge plus updates 

from newly received information.   

 

In the session prior to learning the target model (S0), learners made their own choices with regard 

to flight options but also made predictions of what they believed consumers would choose. In this 

process, they relied on their own knowledge to make predictions and make choices. It is reasonable 

to believe that their judgements in these two processes should be quite similar whether the task is 

to predict or to choose. Assume the learners’ parameters of an attribute form a distribution of 

some type. To make it simpler for discussion, we can assume this distribution is normal. In this 

context, a key location parameter is a mean which can be used to represent the estimated parameter 

in an aggregated model. Please note, this example is only used to explain the idea of learners 

converging to a fixed parameter. It is not suggesting that a coefficient in a target model has to be 
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the mean of individual parameters. Depending on responses, experimental designs, distributions 

of individual parameters and other factors, the coefficient can be any value relating to the 

parameter distribution.  

 

The distribution for attribute parameters in the starting state is shown in red in Figure 5.5. In the 

learning experiment, the estimated fixed-effect model was used as the target model to train 

learners. For each independent attribute term, the target model coefficient was the mean (or other 

value) identified from the prior learning parameter distribution. Using different learning 

approaches, the experiment was designed to make learners converge to this fixed parameter. This 

is shown in Figure 5.5.  

  

 
Figure 5.5 Model learning process – converging to a fixed parameter 

New distributions of learners’ individual parameters in this converging process are shown in blue 

and green for S1 and S2. This figure demonstrates the expected behaviour of learners if converging 

to the target fixed parameter. For some learning approaches or attribute term, learning may not 

occur, in which case this convergence process will not be observed. The second graph in Figure 

5.5 shows the situation if the target model is not a model covering all individuals but a segment of 

individuals. In summary, informing learners to learn from a fixed-effects model is to train learners 
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to essentially converge to fixed parameters. If learning is effective, we should observe that the 

differences between the learners’ own parameters and target model parameters for attributes keep 

reducing, eventually approaching zero for no differences. 

 

The forgoing process is not observable because neither changes of learner parameters nor 

differences of learner and target model parameters are directly observable. Inferences must be 

made from the data and some initial analysis results. The focus of the initial analysis is to identify 

differences between the learner and target model parameters for each of the attribute terms. For 

each attribute term, initial analysis should provide a coefficient showing how large or small is the 

difference between learner and target model parameters. The estimated coefficients from the initial 

analysis can then be used as the new data points for follow-up analysis summarising and comparing 

overall differences between learning approaches and sessions, to make inferences about whether 

learners have improved convergence to the target parameter with more training tasks.  

 

The initial analysis is basically a regression analysis with attributes as independent variables and 

differences of learner and model as the dependent variable. This analysis was conducted on an 

individual level, separated by sessions. For each learner, there should be three sets of attribute 

coefficients, one for each session. The dynamic problem of whether learners have improved by 

reducing differences in later sessions is not answered by initial analysis. In the follow-up analysis, 

the objective is to use coefficients from the initial analysis to operate a model and ascertain whether 

these coefficients fluctuate from one session to another. This analysis solves the abovementioned 

dynamic problem and answers research hypotheses H1b to H3b for the target model parameter 

learning. In the initial analysis, coefficients of attribute terms represent the contributions of 

attributes to the differences between learner and model parameters. Therefore, the smaller the size 

of an attribute coefficient, the lesser is the role it plays in causing differences between learners and 
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the target model. In the following section, models for the initial analysis and follow-up analysis 

will be given and discussed. 

5.3.5.2 Models and Analysis Methods in Testing Model Parameter Learning 

In the initial analysis, differences between learner and model probabilities are regressed against 

independent attribute terms in the designed matrix. This analysis provides key information needed 

for follow-up analysis; that is, how much each attribute term contributes to differences between 

subjective predictions and the target model.  

 

In calculating differences between the two, instead of calculating raw probabilities, differences 

were calculated based on log-odds. Odd and log-odd are basic concepts in categorical analysis 

models such as MNL and log-linear model (Agresti 2002). For example, following IIA principle 

for MNL, the odd of choosing A over choosing B is a function of the odd of utility A over utility 

B as shown in Equation 5.11.  

   (5.11) 

In psychological learning literature, the generalised matching law model developed by Baum (1974) 

also adopts log-odds to identify the relationship between responses and reinforcements. The 

model basically states that the odd of observing A over B is proportional to the odd of reinforcing 

A over B:  

   (5.12) 

In this model, if slope term  and constant  are both equal to one, then there is a perfect match 

between responses and reinforcements. 

 

Supported by ideas from models such as the above, the initial analysis model can be developed. 

Starting with the following notations, the basic terms used in this model can be defined as: 
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 - Probability of alternative  predicted by a learner in choice sets  for training session  

 - Probability of alternative  predicted by a learner in choice sets  for training session  

 - Probability of alternative  given by target model in choice sets  for training session  

 - Probability of alternative  given by target model in choice sets  for training session  

 

“Fly” options in experimental design (i.e. fly Qantas, fly Virgin and fly Jetstar) can be regarded as 

alternative  and the “not fly” option can be regarded as alternative . In each set, the log-odd of 

probability of any  over probability of  can be calculated for both the learner predicted 

probabilities and the target model approximated probabilities separately, as shown in Equations 

5.13 and 5.14. 

   (5.13) 

   (5.14) 

In training sets, the attribute levels for any alternative  are known a priori and they are indifferent 

to learner probabilities or model probabilities, so  is true. Attributes for the “not fly” 

option are always coded as 0, so  is true. If Equation 5.14 is subtracted from 

Equation 5.13, we have a function with differences of learner and model on “fly” options as the 

dependent variable, and the experimental design matrix for attributes as independent variables: 

   (5.15) 

Log-odd differences, or the first component, may be simplified as . The term in the first bracket 

 can be simplified as , and  can be simplified as . This can be further 

simplified as Equation 5.16: 

   (5.16) 
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In other words, it states that the difference between learner and model is a function of attribute 

design matrix, and the coefficients of attributes represent the differences between learners’ values 

of attributes and the target model’s value of attributes. In estimating this model, analysis shall give 

 consisting of true parameter  and errors. It is important to process this analysis for each 

individual learner, separately for each of the three training sessions. The results provide individual 

levels estimated as  for each of the three sessions:  for S0,  for S1 and  for S2. 

Since there are nine independent attribute terms in the target models (e.g. Qantas and $400 fare), 

for any session , there should be nine coefficients in  or .  

 

After this initial analysis, follow-up analysis should focus on testing whether learners have an 

improved understanding of attribute parameters from the beginning session to the end session, or 

find a function to define the relationship between  of S0,  of S1 and  of S2. If learning 

of a model parameter is improving, the contribution or effect size of this attribute on the learner 

and model differences should decrease, which means  is smaller than  and  is smaller 

than . Generally speaking,  for an attribute term  is expected to decrease if training 

continues indefinitely, and eventually it should approach zero. Approaching zero means that 

learners’ understanding of a model parameter is almost perfect so this attribute term has no further 

impact on the differences of learners and the target model.  

 

It is easier to demonstrate the follow-up analysis using just two hypothetical sessions,  and . 

For an attribute term  in a target model for learning, the difference of coefficients for two sessions 

 and  can be denoted as . We consider  as a function of , as shown 

in Equation 5.17: 

   (5.17) 
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Using individual level estimated  and  for analysis, regression analysis following 

Equation 5.17 should generate an estimated intercept  and estimated slope . The remaining 

problems are to know the ideal values and possible ranges for these two terms to enable us to 

compare values of these two terms across learning approaches. It is not difficult to see that the 

best value for  is zero; intuitively, it means in session , there is no difference between 

learners and the target model regarding this attribute. If  is not zero and  is zero, it means 

learners are able to correct any differences regarding the target attribute in one single step (session 

 over session ). Continuing Equation 5.17, we have: 

   

   (5.18) 

Clearly, the ideal  should be zero and ideal  should be -1. This researcher terms this ideal 

scenario as a “one step clearance”. It means that virtually all differences between the learner and 

model regarding this attribute are cleared. Although this is highly unlikely, it gives ideal values for 

 and . Please note, the above discussion was made in expected values, and  terms in Equations 

5.17 and 5.18 were assumed to be 0.  

 

If an estimated  is not zero, it suggests that there is a systematic misunderstanding of the target 

attribute parameter. If this is the case, even if we have an ideal  close to -1, it means learners are 

learning quickly but unfortunately converging to a wrong value for the attribute with systematic 

misunderstanding of the target parameter. Rapid speed learning should see  close to -1. If learning 

is ongoing, the value range should be  or . If  is outside this range, there 

is no learning. In comparing two estimated  for two learning approaches, the better learning 

approach should always have an estimated  closer to -1.  
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In estimating the follow-up model as denoted in Equation 5.17, it is worth noting that the 

independent variable is not a directly observed variable but individual coefficients estimated from 

the initial analysis. As Hausman (2001) pointed out, in estimating the linear regression model in 

which independent variables are not direct observed variables but indirect variables with errors, 

often a downward phenomenon can be observed. This means that estimated coefficients may have 

smaller magnitudes than true parameters. This researcher understands the limitation that using 

estimated parameters  from the initial analysis contains estimation errors that may influence 

the precision of estimated  and  in the follow-up analysis. However, since the key interest is to 

determine overall which approach is more effective in helping learners to learn target model 

parameters, errors in data may reduce the efficiency of the follow-up estimation but should not 

alter the order of approaches in the results. In other words, estimated  and  may not be the 

most precise measures but arguably errors in data (initial analysis parameters) should influence all 

approaches equally, therefore findings related to the order of approaches in terms of effectiveness 

should hold. To further validate the assumption that the chosen analysis method gives consistent 

estimators of  and , this researcher compared the results when all attributes were estimated 

together in one model and separately in different models. Both approaches give almost identical 

 and  for every attribute. Therefore, the method given in Equation 5.17 should yield consistent 

estimation results empirically. 

 

To further validate the results regarding orders of approaches, all nine attribute terms in the  

vector may be combined to yield a single indicator for overall comparison between learning 

approaches and sessions. This indicator may be calculated by using a Euclidean norm to obtain a 

single distance measure covering all nine attributes as shown in Equation 5.19:  

   (5.19) 
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For each respondent, distance measures can be calculated this way covering all three sessions. They 

are , , . Regression analysis can be processed with this overall indicator as 

dependent variable, and learning approaches and training sessions as independent variables as 

show in Equation 5.20: 

   (5.20) 

The results of this analysis may be used to validate the findings from the attribute by attribute 

analysis following the model in Equation 5.17, to ascertain whether a conclusion as to 

effectiveness, drawn from summarising the separate orders, agrees with the conclusion from this 

analysis. 

5.3.6 Results – Target Model Parameter Learning 

5.3.6.1 Initial Analysis - Individual Level Coefficients  

As discussed in Section 5.3.5, the first step in the whole process was to conduct an analysis based 

on Equation 5.16 to obtain three sets of coefficients,  for S0, S1 and S2. Each set of  

includes nine coefficients, one for each independent attribute term. Figure 5.6 employs nine 

histograms to portray the distributions of individual coefficients for each attribute term for each 

starting session (S0 for Approaches One, Two and Three, and S1 for Approach Four). Figure 5.7 

shows the distributions for each end session (S2 for all approaches).  
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Figure 5.6 Distributions of individual coefficients of attributes for starting session 
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Figure 5.7 Distributions of individual coefficients of attributes for end session 

Two observations can be made by inspection of these histograms: first, although the coefficients 

are not exactly normally distributed, in general, there is a clear central tendency for the individual 

coefficients to concentrate around the distribution mean. Therefore by comparing means, it is 

possible to initially obtain coarse comparisons between starting and end sessions to ascertain 

whether the differences in attributes of learner models and target model, have decreased in the last 

session following training. Second, the variances of coefficients for attribute terms are not the 

same. This means, the extent of differences for learner models and the target model are different 
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for attributes. For example, the coefficients of three airlines have much larger ranges than 

coefficients of flying time, ticket change and in-flight food, suggesting learners differ more in 

judging some attributes than other attributes.  

Table 5.20 Means and standard deviations of individual coefficients for starting and end sessions 

  N Mean Std. Deviation 

Qantas Starting Session 252 -1.247 1.413 
End Session 252 0.002 1.892 

Virgin Starting Session 252 -1.438 1.402 
End Session 252 -0.419 1.792 

Jetstar Starting Session 252 -0.882 1.350 
End Session 252 0.136 1.857 

$400 fare Starting Session 252 -1.420 0.828 
End Session 252 -0.726 1.161 

$460 fare Starting Session 252 -0.388 0.417 
End Session 252 -0.526 0.661 

$520 fare Starting Session 252 0.678 0.536 
End Session 252 0.631 0.646 

4 hours flying Starting Session 252 -0.522 0.273 
End Session 252 -0.491 0.355 

ticket change 
allowed 

Starting Session 252 -0.199 0.201 
End Session 252 -0.160 0.344 

free in-flight food Starting Session 252 -0.344 0.289 
End Session 252 -0.119 0.357 

 

Table 5.20 provides a summary of means and standard deviations of individual coefficients from 

the initial analysis. Although it may be observed that differences between learner models and target 

models are decreasing, as shown by the reduced means of coefficients, to test whether learners 

improved their understanding of target model parameters over the sessions and to compare the 

effectiveness of learning across approaches, more rigorous follow-up analysis was conducted using 

these individual coefficients. 
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5.3.6.2 Follow-up Analysis - Using  to Test Model Parameter Learning 

Using sets of individual coefficients,  for S0,  for S1 and  for S2, regression analysis 

using Equation 5.17 was conducted. On the following pages, each of the nine attribute terms are 

discussed with the results portrayed using graphs and tabular data. In the analysis discussed below, 

the “starting” session refers to S0 for Approaches One, Two and Three and S1 for Approach 

Four. The “end” session refers to S2 for all four approaches. The model uses the differences 

between coefficients of the end session and starting sessions as the dependent variable and 

coefficients of the starting session as the independent variable (end session over starting session). 

The model summarises the model parameter learning over the whole period of learning therefore 

it is a key indicator for comparisons between approaches. In the following sections, any terms with 

“***” are significant at the  level, any terms with “**” are significant at the  level 

and any terms with “*” are significant at the  level. To make comparisons easier to observe 

in the graphs, a reference line of the ideal formula with  equals 0 and  equals -1 is shown in 

each graph as the solid line. The actual regression line of data (individual coefficients) is shown by 

dotted line. 

Qantas 

Figure 5.8 demonstrates four scatter plots with the  axis showing individual coefficients of Qantas 

in the starting session and the  axis showing differences of individual coefficients between the 

end and starting sessions. The same results are tabulated in Table 5.21. From the results, it is clear 

that Approach Three performs best in terms of model parameter learning with low  and  close 

to -1. Approach Two is the second best performer which is less effective than Approach Three 

but much better than the other two approaches. Approach Four reflects very slow improvement 

in model learning but at least the improvement is in the right direction (between -1 to 0) and the 

systematic error is also low. The worst performer is Approach One with a large and significant 

systematic error component and slope which is in the wrong direction showing declining 
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performance with positive  (between 0 and 1). The ranks for the four approaches are provided 

in Table 5.21. 

 

Figure 5.8 Difference between end and starting coefficients, over starting coefficient (Qantas) 

Table 5.21 “Qantas” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 0.184      2.173*** 4 
Learning Approach 2 -0.669*** 0.870*** 2 
Learning Approach 3 -0.873*** 0.131      1 
Learning Approach 4 -0.150*    -0.258      3 
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Virgin 

Figure 5.9 and Table 5.22 demonstrate the results for Virgin. Approach Two is clearly the most 

effective approach to improved learning of the target model parameter of Virgin, with low 

systematic error and close to -1 slope. It is followed by Approach Three with low systematic error 

in  and  a bit further from -1 than was the case in Approach Two. These two approaches are 

followed by Approach Four, with higher systematic error and slower pace of improvement. Again, 

Approach One is the worst of the four with high systematic error in  and a slope  very distant 

from -1 (it is positive therefore in reverse direction). 

 

Figure 5.9 Difference between end and starting coefficients, over starting coefficient (Virgin) 
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Table 5.22 “Virgin Australia” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 0.145      1.796*** 4 
Learning Approach 2 -0.905*** 0.079      1 
Learning Approach 3 -0.669*** 0.070      2 
Learning Approach 4 -0.223*    -0.450*** 3 

 

Jetstar 

Figure 5.10 and Table 5.23 demonstrate the results for Jetstar. Although systematic error is slightly 

higher than Approach Three, parameter learning speed is much faster in Approach Two. Again, 

Approach Four ranks third with a slow learning speed occasioned by lower systematic errors. 

Approach One performs the worst with high systematic error and a slope quite distant from -1. 

 

Figure 5.10 Difference between end and starting coefficients, over starting coefficient (Jetstar) 
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Table 5.23 “Jetstar” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 0.122      1.327*** 4 
Learning Approach 2 -0.972*** 0.738*** 1 
Learning Approach 3 -0.606***  0.563*    2 
Learning Approach 4 -0.172**   -0.431*** 3 

 

$400 fare 

Figure 5.11 and Table 5.24 demonstrate the results for the $400 fare. Approach Two remains the 

best performer with low systematic error and a slope closest to -1. Approach Three performs 

poorly for this attribute with the highest system error and a slope quite distant from -1. It ranks 

last in this case. For Approaches One and Four, although the slopes are similar at -0.266 and -

0.201 respectively, Approach Four has the lowest systematic error for this attribute, thus Approach 

Four ranks second and Approach One ranks third.  

 

Figure 5.11 Difference between end and starting coefficients, over starting coefficient ($400 fare) 
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Table 5.24 “$400 fare” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.266      0.446      3 
Learning Approach 2 -0.710*** -0.211      1 
Learning Approach 3  0.194        1.184**  4 
Learning Approach 4 -0.201*** -0.013      2 

 

$460 fare 

Figure 5.12 and Table 5.25 demonstrate the results for the $460 fare. There are no significant 

differences among the approaches regarding systematic errors therefore we can compare slopes 

directly. Approach Two remains the best performer with a slope closest to -1. Approach Three is 

the second best performer with a slope next closest to -1. Approach One ranks third and Approach 

Four ranks fourth. 

 

Figure 5.12 Difference between end and starting coefficients, over starting coefficient ($460 fare) 
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Table 5.25 “$460 fare” parameter learning by learning approaches 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.697**   -0.396*** 3 
Learning Approach 2 -0.949*** -0.487*** 1 
Learning Approach 3 -1.125***  -0.511*** 2 
Learning Approach 4 -0.583*** -0.428*** 4 

 

$520 fare 

Figure 5.13 and Table 5.26 demonstrate results for the $520 fare. Although the systematic error 

component for Approach Two is a marginally higher than for Approach One, by comparing slopes 

and scatter plots against the reference line, Approach Two is arguably still the most effective 

among the four approaches. This is closely followed by Approach One as the second most 

effective approach.  

 

Figure 5.13 Difference between end and starting coefficients, over starting coefficient ($520 fare) 
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Approach Three is ranked third. Its slope is similar to Approach One but its systematic error is 

higher. From observation of both scatter plot and slope, Approach Four ranks the last in terms of 

the effectiveness of model parameter learning. It is also obvious that individual coefficients vary 

more than with other approaches, which means there were more individual differences in this 

approach. 

Table 5.26 “$520 fare” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.686*** 0.291      2 
Learning Approach 2 -0.801*** 0.555*** 1 
Learning Approach 3 -1.331*** 0.937*** 3 
Learning Approach 4 -0.462*** 0.283**   4 

 

flying time 4 hours 

Figure 5.14 and Table 5.27 demonstrate the results for “flying time 4 hours”. Systematic errors for 

Approaches One, Two and Three are very close, so are their slopes. Approach Two is the best 

performer followed by Approach One and Approach Three. Approach Four ranks fourth with a 

slope much further from -1. 
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Figure 5.14 Difference between end and starting coefficients, over starting coefficient (4 hours) 

Table 5.27 “Flying time 4 hours” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.823*** -0.427*** 2 
Learning Approach 2 -0.827*** -0.422*** 1 
Learning Approach 3 -0.796*** -0.407*** 3 
Learning Approach 4 -0.349*** -0.085      4 

 

Ticket change allowed 

Figure 5.15 and Table 5.28 demonstrate the results for the attribute “ticket change allowed”. 

Systematic errors for all four approaches are similar and lower compared to the systematic errors 

in other attributes. Among the four approaches, Approach Two once again ranks first in improving 

learning of model parameters. It is followed by Approach Three and Approach One. Approach 
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Four ranks the last, however, compared to other attributes, Approach Four performs better for 

this attribute. 

 

 

Figure 5.15 Difference between end and starting coefficients, over starting coefficient (change 
allowed) 

Table 5.28 “Ticket change allowed” parameter learning by learning approaches 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.546*** -0.117**   3 
Learning Approach 2 -0.750*** -0.131**   1 
Learning Approach 3 -0.652*** -0.131**   2 
Learning Approach 4 -1.213*** -0.125      4 
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Free in-flight food & beverages 

Figure 5.16 and Table 5.29 demonstrate the results for the attribute “free in-flight food & 

beverages”. Systematic errors for all four approaches are not high which means that learners learnt 

this attribute quite well. Although differences among Approaches One, Two and Three are quite 

small, by comparing slopes, the rank order of approaches in terms of effectiveness is Approach 

One, Approach Three and Approach Two. Although learners under Approach Four were learning, 

the rate of learning is much slower. Again, it ranks fourth as in most other attributes. 

 

Figure 5.16 Difference between end and starting coefficients, over starting coefficient (free food) 
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Table 5.29 “free food & beverages” parameter learning by learning approach 

 Overall 
(slope) 

Overall 
(alpha) 

Rank 

Learning Approach 1 -0.849*** 0.012      1 
Learning Approach 2 -0.662*** 0.072      3 
Learning Approach 3 -0.808*** -0.009      2 
Learning Approach 4 -0.377*** -0.183*** 4 

 

Table 5.30 summarises the rankings of all attributes, averaging the combination of all airlines and 

fare terms. Approach Two ranks first among all attributes but one, and it is the overall best 

performer. Approaches Three and One are in close proximity and each approach performs well 

for some attributes and poorly for others. In light of the overall averages for all nine attributes, 

Approach Three is slightly better than Approach One. Approach Four ranks last of all four 

approaches. However, if we carefully re-examine all attributes with regard to the slopes and 

intercepts shown in Tables 5.21 to 5.29, Approach Four always exhibited the right direction of 

improvement with relatively low systematic errors among all four approaches. In fact, the only 

reason that Approach Four has been ranked last is due to its slower learning pace as reflected in 

the slopes being more distant from -1 than other approaches. This is largely influenced by some 

learners who were not learning effectively, as shown by more scattered patterns of data points in 

graphs.  

Table 5.30 Summary (mean) rankings of learning approaches 

 Airline Fare Flying 
Time 

Ticket 
Change 

Food & 
Beverages 

Overall 

Learning Approach 1 4 2.7 2 4 1 2.8 
Learning Approach 2 1.3 1 1 1 3 1.3 
Learning Approach 3 1.7 3 3 3 2 2.3 
Learning Approach 4 3 3.3 4 2 4 3.6 

 

By combining all individual coefficients for the nine independent variables to create a 

representative coefficient for each individual for each session, the regression analysis was 

conducted in accord with Equation 5.20. This regression analysis provides coefficients for each 
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combination of learning approach and session. By comparing these coefficients, we can tell which 

approach caused learners to improve their prediction performance the most, as shown by the 

lowest coefficient (lower coefficients here represent which approach has less influence on 

differences between the target model and learners). These results validate the results of previous 

analysis using individual coefficients for each attribute. Approach Two is again the most effective 

approach in helping learners to learn the target model parameters. The coefficient for S2 under 

this approach is 1.514, the lowest for session S2 among all approaches. The Approach Three 

coefficients for S2 are again quite close to Approach One. However, given that the level of 

improvement for Approach Three is greater than for Approach One (2.035-1.726=0.309 

compared to 1.950-1.723=0.227), Approach Three is considered a more effective approach. 

Approach Four is again shown to be not effective compared to the other three approaches. 

Table 5.31 Average learning of model parameters by approach & session 

Source SS df MS Number of obs = 693 
    F( 11,   682) = 668.77 
Model 2277.661 11 207.06 Prob > F = 0 
Residual 211.158 682 0.310 R-squared = 0.915 
    Adj R-squared = 0.914 
Total 2488.818 693 3.591 Root MSE = 0.556 
       
Norm of coefficients Coef. Std. Err. t P>t [95% Conf. Interval] 
session 0 (approach 1) 1.950 0.070 27.820 0.000 1.812 2.088 
session 1 (approach 1) 1.623 0.070 23.150 0.000 1.486 1.761 
session 2 (approach 1) 1.723 0.070 24.580 0.000 1.586 1.861 
session 0 (approach 2) 1.979 0.070 28.230 0.000 1.841 2.117 
session 1 (approach 2) 1.374 0.070 19.600 0.000 1.236 1.511 
session 2 (approach 2) 1.514 0.070 21.600 0.000 1.377 1.652 
session 0 (approach 3) 2.035 0.070 29.030 0.000 1.898 2.173 
session 1 (approach 3) 1.673 0.070 23.860 0.000 1.535 1.810 
session 2 (approach 3) 1.726 0.070 24.630 0.000 1.589 1.864 
session 1 (approach 4) 2.088 0.070 29.780 0.000 1.950 2.226 
session 2 (approach 4) 2.090 0.070 29.820 0.000 1.953 2.228 

 

The analysis results yield an identical order for the four learning approaches in terms of helping 

model parameter learning. The consequent ranked approaches are in the order of Approach Two, 

Three, One and Four.  
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For Approach Four, a separate analysis was undertaken to ascertain the impact of target segments 

on model parameter learning. Table 5.32 shows that the results are consistent with the findings 

when testing prediction accuracy. That is, target segments have a significant impact on both 

prediction accuracy as well as target model parameter learning. Learners performed best in learning 

model parameters if the target segment to predict was consumer group B. The order of consumer 

groups A and C in the model parameter learning is different to the order found in testing prediction 

accuracy, namely that learners predicted consumer group C performed best.  

Table 5.32 Average learning of model parameters by session & target segment (Approach Four) 

Source SS df MS Number of obs = 126 
    F(  4,   122) = 297.99 
Model 575.192 4 143.798 Prob > F = 0 
Residual 58.872 122 0.483 R-squared = 0.907 
    Adj R-squared = 0.904 
Total 634.064 126 5.032 Root MSE = 0.695 
Norm of coefficients Coef. Std. Err. t P>t [95% Conf. Interval] 
session 1 (approach 4) 2.134 0.124 17.240 0.000 1.889 2.379 
session 2 (approach 4) 2.136 0.124 17.260 0.000 1.891 2.381 
Target segment A 0.478 0.152 3.150 0.002 0.178 0.778 
Target segment B -0.615 0.152 -4.060 0.000 -0.915 -0.315 
Target segment C 0.000      

 

5.3.7 Summary of Hypotheses H1b, H2b and H3b 

This section summarises the results and provides a basis to respond to research hypotheses H1b, 

H2b and H3b. Hypothesis H1b assumes that Approach Two is more effective than Approach 

One in helping learners to understand the target model. Hypothesis H2b assumes that Approach 

Three is more effective than Approach One for the same measure. Hypothesis H3b treats 

Approach Four separately and assumes it helps learners gain an understanding of a target class’ 

model. It was not compared to other learning approaches due to incomparable tasks.  

 

H1b states that: 
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Learners who receive outcome feedback (Approach Two) after each training task have a 

better understanding of the target model than those who perform self-regulated learning 

using a “plain vanilla” MDSS (Approach One). 

  

Based on the results discussed in Section 5.3.6, the evidence is clear that Approach Two is the best 

learning approach to help learners improve quickly in understanding target model parameters. This 

result is consistent in the learning involving all attributes in the target model. On the other hand, 

Approach One, regardless of learners’ positive feedback and ease of use, performs poorly on some 

key attributes. It is not only the case that there is a large systematic error component in many 

attributes, but learners are leaning towards increasing and decreasing the gap between their own 

ideas and target model. Why outcome feedback has performed so well is an interesting finding in 

itself, because it does not match the findings of other researchers in the MCPL field (e.g. Cooksey 

1996). This finding will be discussed further in Chapter 6. 

 

H2b states that: 

Learners who receive a diagnosis of their own model after training tasks (Approach Three) 

gain a better understanding of the target model than those who perform self-regulated 

learning using a “plain vanilla” MDSS (Approach One).  

As discussed and shown in the results, Approach Three is more effective than Approach One but 

not to the same degree as Approach Two. For some attributes such as brand, Approach Two 

performed much better than Approach One in helping learners gain an improved understanding 

of target parameters quickly, but on some attributes Approach Two ranked behind Approach One. 

A further point of discussion is why providing more information has not achieved outcomes as 

great as expected. Approach Two does provide the most insights and in-depth analysis not only 

related to the task itself, but also to learners. Therefore, a more interesting discussion should also 
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cover a comparison of Approaches Three Two as well. This will also be further discussed in 

Chapter 6. 

 

H3b states that: 

Learners who receive class information and classification feedback after training tasks 

(Approach Four) gain a better understanding of a target class’ model with more tasks and 

feedback given in training. 

As earlier discussed, although in a comparison to Approaches One, Two and Three, the Approach 

Four seems to perform poorly, there is no doubt that learners were learning the model parameters. 

Learners have shown they were improving in the right direction to reduce the differences between 

their own judgements and the target consumer group’s model. Moreover, due to other factors such 

as different levels of difficulties in learning target groups and whether learners had made incorrect 

assumptions about a consumer group if they happened to be members of that same group, the 

results showed a pattern of more individual differences. This pattern is evident in studying the 

graphs related to each attribute. This implies that some respondents who performed poorly may 

have influenced the results and overall performance of the approach. Whether this phenomenon 

is due to the constraints of the learning approach itself, or due to differences in consumer groups, 

will be further discussed in Chapter 6.  

5.4 Summary 

This chapter covered methodologies and results testing prediction accuracy and target parameter 

learning. Among all four approaches, for both prediction accuracy and target model parameter 

learning, Approach Two performed the best among all approaches. Approach Three was found 

to be more effective than Approach One on both measures, but its advantages are much smaller 

than Approach Two compared to Approach One.  
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The exploratory nature of Approach Four and the assignment of different tasks, determined that 

it should be tested separately to other approaches. The results indicated that there are great 

individual differences in terms of performance for both measures. The best performance of 

learners was in improving the number of times they predicted the correct consumer group. On 

increasing prediction accuracy of full probabilities, less than half of the learners improved in S2 

over S1. Others did not improve. With regard to model parameter learning, learners were 

improving in the right direction with less systematic errors than for other approaches, but the pace 

of improvement was much slower than for other approaches. It is possible that learning class 

models under this approach required much more time. 

 

In Chapter 6, these findings will be further discussed by extending the implications theoretically 

and practically, and proposals will be made for future research directions.  
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Chapter 6 Conclusions and Implications 

6.1 Introduction 

Chapter 5 discussed analysis methods and presented the analysis results for the empirical study 

without extending discussions to the broader context of this research. Chapter 6 aims to fulfil this 

objective by further considering the contribution made by the present research to theory and 

practice, and suggesting some potential implications.  

 

Section 6.2 links the research findings to the key research problem, improving subjective 

predictions of probabilities through learning from an external model to bridge the gap between 

two sources in making the predictions, namely, intuition and the model. In this section, each 

learning approach tested in the empirical study is discussed in relation to the key characteristics of 

learning reviewed in Chapter 2. Section 6.3 discusses the contributions that this research makes to 

marketing and decision-making theories and its practical implications. Section 6.4 concludes the 

thesis by considering the limitations of this research and suggesting possible direction for future 

research. 

6.2 Conclusions of Research Problem and the Four Learning Approaches 

Key conclusions can be made regarding the research problem and the hypotheses of four learning 

approaches which are strongly supported by the analysis results. We will discuss them sequentially.  

6.2.1 Conclusion regarding the Research Problem 

The most important finding of this research is that people can gain substantive understanding of 

key attributes of a target problem through learning from a formal model. As a result, they can 

improve the accuracy of subjective predictions. This is a positive response for the research 

direction proposed by this research. That is, the gap between intuitive predictions and model 

predictions can be narrowed and the quality of predictions and decision making can be improved. 
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The research problem as stated in Chapter 1 is about finding effective ways to help people improve 

their subjective predictions of probabilities through learning from formal analytical models. As 

explained in Chapter 5, in model learning, learners are converging to parameters of the model. 

During the process, subjective predictions are made by a person’s updated mental models. We 

know from overwhelming evidence in judgement and decision making literature that models often 

outperform even the predictions of the acknowledged experts (e.g. Grove et al. 2000). However, 

it is also clear that decisions and predictions in practice, including marketing, are mostly made by 

people using their current state of knowledge (e.g. Burke & Miller 1999). Therefore, the solution 

that this research advocates is to improve people’s own knowledge so updated intuition becomes 

more reliable in making predictions and furthermore in making decisions. Without this premise as 

the key consideration, findings of the research problem cannot be valued.  

 

Thinking more about the nature of probability prediction, as mentioned in Chapter 1, probability 

predictions are levels of certainty with regards to propositions (e.g. events, choices and 

preferences). This is widely acknowledged by researchers (e.g. Winkler 1996). To establish levels 

of certainty, people either need to accumulate evidence, especially the frequency of events 

occurring in the past, to form their beliefs inductively, or to gain knowledge from certain sources 

to make deductive inferences based on new incidences. If we consider marketers gaining 

experience from practice as a way to establish their beliefs of marketing events through inductive 

learning, then becoming trained using formal models is to gain knowledge from external sources 

which allows the making of deductive inferences. This contrast of inductive and deductive 

inference is so relevant that it can be used to describe all approaches to the accretion of knowledge 

for predictions. Considering any learning approach tested in this research, it can be said that they 

are all combinations of the two types of inferences. For example, Approach One is mainly an 

inductive learning approach, and Approach Three is the opposite, mostly relying on deductive 
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inferences. These approaches are fundamental epistemological methods for gaining knowledge 

and establishing beliefs common to many generalised problems. The fact of subjective predictions 

is that the inferences people make, need to be supported by a knowledge base. This research 

proposes that knowledge base can be established from learning a reliable model. The further 

question is “how” to establish knowledge base effectively. Chapter 2 reviewed some key learning 

characteristics from learning theories in psychology and cognitive science. Four learning 

approaches were nominated for testing. 

6.2.2 Conclusion on Learning Approach One 

Learning Approach One allows learners to use a “plain vanilla” style MDSS to conduct “what-if” 

analysis by themselves. The learning process is unsupervised and unguided. “Plain vanilla” style 

MDSS is the default form of decision aid in marketing practice. It covers many business intelligent 

tools such as dashboards and data visualisation tools. A common attribute of these tools is that 

they offer self-selected features to build example scenarios but offer little or no explanation as to 

outcomes. These tools are primarily built for the purpose of prediction or reporting, but not 

learning. If this tool is used as a learning tool, it requires people to perform self-regulated learning 

and select their own scenarios but offers no further assistance about how inferences were made. 

From testing Hypotheses 1a to 2b, this approach was not as effective as other approaches offering 

feedback to experimental design controlled training tasks (Approaches Two and Three) in both 

prediction and model learning.  

 

The key characteristic of learning relating to this Approach One was covered in Section 2.3.2 

regarding self-regulated learning versus controlled experiment. With the flexibility of selecting own 

tasks and the attractiveness of user friendly features, the preference of learners in favour of this 

tool and approach are high according to open-ended feedback. In the context of a preferred 

interface and features, there is no evidence available showing that learners may effectively converge 
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to a desired level of understanding of the target model and make more accurate predictions, 

compared to other approaches.  

 

In light of unsatisfactory results that may emerge from this learning approach, the first possible 

interpretation is that neither learners’ preference nor the system’s technical features have direct 

relationships to prediction outcomes or model parameter learning. One argument this researcher 

put forward in Chapter 2 is that there should be more fundamental aspects in learning than 

interface design or visualisation features of a training tool. The characteristics of a learning 

approach should be task- and problem-specific, such as when we consider the hierarchy of 

feedback. Researchers studying self-regulated learning pay great attention to issues such as learners’ 

motivation, initiative, perseverance and adaptive skills and they believe that a preponderance of 

these characteristics among learners generates good learning results (e.g. Zimmerman 2008). This 

was not the case for learners assigned to this approach.   

 

The second possible interpretation is that learners cannot converge to the target model parameters 

to make more accurate predictions, if training scenarios are self-selected. When experimental 

design was discussed in Chapter 4, the most important reason offered for using experimental 

design was to identify a small and limited number of tasks and sets that can efficiently represent 

the problem space, because the number of combinations of attributes and levels is large and 

unmanageable. This is the case for the airline choice in this experiment. The number of 

combinations is a large number in the thousands (the total combination was 32,768 for the airline 

choice problem). In these circumstances it is difficult to believe that learners are able to select a 

set of well-represented combinations through self-selection.  
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In marketing practice, certain analyses are often conducted using SP or RP data with the models 

and analysis results built into a model-based MDSS, thus expecting marketers to improve their 

understanding of the target problem in order to make better predictions and eventually better 

decisions. The present research finds that this tool and learning Approach One are not effective 

in assisting marketers to better understand the target model and thus improve their predictions of 

probabilities. 

6.2.3 Conclusion on Learning Approach Two 

As pointed out in Section 2.3.3, feedback is the focal point for studies in learning. The single key 

characteristic relating to Learning Approach Two is outcome feedback. It is the approach for 

providing immediate correct answers to learners after they have made predictions. As clearly 

demonstrated by the results, this approach performed the best in both improving prediction 

accuracy and model parameter learning. This finding conflicts with commonly held views by many 

MCPL researchers (e.g. Cooksey 1996; Hammond Summers & Deane 1973; Kluger & DeNisi 

1996). According to these researchers, outcome feedback is supposed to perform worse than 

cognitive feedback, including in-depth statistical information regarding tasks and a summary of 

learners’ performance (Learning Approach Three). In this experiment with a real choice problem 

related to airline offers, Approach Two improved learners’ predictions faster than any other 

approach in the first session and maintained that position until the end of the second session. Why 

did this approach perform so well in this experiment? What could have made the experiment 

outcome different? These are important questions to further explore the research hypotheses, 

comparing this approach with the default approach (Approach One). From the results, there were 

no real differences between learners associated with different approaches when they started the 

training. Approach Two also performed well on all attributes. Therefore, individual differences 

and particular attributes are unlikely to have been the explanation because all other approaches 

asking learners the same questions included exactly the same training tasks (Approaches One and 
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Three). It is most likely that the use of interactive feedback in combination with experimental 

design contributed greatest to the performance of Approach Two. 

 

According to MCPL researchers, the reason why outcome feedback may perform poorly is because 

this type of feedback provides neither direction nor detailed information on what to improve. In 

other words, outcome feedback lacks information to help learners identify and improve the 

particular areas that caused the errors. This belief is shared by other MCPL researchers and a 

general idea is that there is a negative relationship between outcome feedback and prediction 

performance (e.g. Steinmann 1976). It is implied that learners cannot learn from a trial and error 

style of inductive learning approach. Instead, they should be provided with in-depth feedback 

advising them the reasons behind the errors so that they may adjust their judgements. Based on 

the evidence of this research, it seems the abilities of the participants to achieve success through 

trial and error learning, were underestimated.  

 

Empiricists always believe that inductive learning is a natural psychological process. As Godfrey-

Smith (2003) puts it, there is more than one type of inductive learning. For example, projection is 

one type of inductive learning in which the purpose is not to reach the ideal conclusion but to use 

existing or past evidence to make a better prediction of the next case. Gradually, understanding 

can be accumulated to reach an ideal point. Perhaps this was the approach that learners were 

taking. It was certainly evident in learners’ open-ended feedback that more than one learner 

considered this exercise as a good “game” in which they had to gauge where to improve. Also 

from feedback received, it is known that participants learned more when they achieved a close 

prediction or a very poor prediction. This is a clear indication of projecting future similar cases 

from past cases, either good or bad ones. This learning can be viewed as an inductive learning 

approach from “example comparison” (i.e. new case compared to past cases), a one key approach 
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proposed by Komatsu (1992) in discussing concept learning in Section 2.3.5. Another important 

factor is that in this approach, well-selected sets of training tasks based on experimental design 

were used so the problem space is evenly covered in a small but efficient number of sets. This was 

discussed in the previous section. Experimental design such as this, applied to a real-life problem 

where people make choices, was considered unimportant in MCPL studies by psychologists. Often 

hundreds if not thousands of training sets were used without an efficient or orthogonal design.  

 

To summarise this approach, it is worthwhile mentioning the debate between Hogarth and 

Edwards on human capacities in improving probability assessment, as discussed in Section 2.3.2 

(Edwards 1975; Hogarth 1975). It now seems reasonable, given the evidence of this research, that 

there is merit in Edwards’ argument that humans do not have any inherent disadvantages when 

they have shown poor performance or lack of learning in probability assessment experiments. Bad 

experiment outcome can be caused by poorly designed experiment. At least in this study, when a 

proper experimental design was used to control training tasks, people showed they could 

effectively learn model parameters and improve their prediction accuracy. 

6.2.4 Conclusions on Learning Approach Three 

The type of learning that Learning Approach Three aims to trigger involves several capacities of 

learners. First, learners need to be able to synthesise and integrate key pieces of information from 

cognitive feedback. It is a continuous generalisation process. Alternatively, it can also be thought 

as a “feature abstraction” process as addressed by Komatsu (1992). Second, learners need to be 

able to apply deductive inferences to new cases on the basis of their gains from learning. From the 

results and learners’ open-ended feedback, it seems clear that difficulties that learners had in 

integrating different key information to establish a new mental model is the key problem. As some 

learners put it, this process is too difficult with too many pieces of information to consider.  
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Recalling the main experimental conditions that were applied in Approach Three, as summarised 

in Table 4.2, this approach provided learners with detailed statistical information about each 

attribute and the choice probabilities of each level, as well as each attribute’s weight in determining 

overall probabilities in feed-forward information before learners attempted the training tasks. 

Moreover, this information was provided by comparing each learner’s own model with the target 

model. After each session, newly updated information was provided to each learner based on the 

analysis of their previous session. This process matched the concept of appropriate cognitive 

feedback as suggested by MCPL researchers, thus no problem arose as a consequence of providing 

inadequate information (e.g. Cooksey 1996; Hammond, Summers & Deane 1973; Kluger & 

DeNisi 1996).  

 

Cognitive feedback and feed-forward information are supposed to perform best in helping learners 

to deal with complex learning problems. In contrast, simple outcome feedback is supposed to 

impede learning in complex tasks. This is not borne out by the findings of this research. Approach 

Three did not perform as well as Approach Two, although it performed better than Approach 

One. From this experiment with Approach Three, the evidence seems to support the following 

proposition: that trying to completely update mental models that learners previously applied 

through a single round of in-depth cognitive feedback with a great amount of information, is not 

the best approach to use. Such an approach may rely upon too many skill sets and too great an 

effort from learners, but it may be an even harder for learners to apply newly gained and undigested 

knowledge in new tasks, in order to gain immediate improvement. It is quite possible that if this 

approach is used in real-life training, more training sessions would be required, as applying 

deductive inferences from the newly updated mental model is essentially a harder task for most 

learners, than trial and error learning. 
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Another important point to discuss relating to Approach Three, is knowledge representation (KR). 

In Section 2.3.4 when KR was discussed, the focus was on the contrast between propositional and 

imagery representations. In Approach Three, the attention was clearly focussed on propositional 

KR. As Anderson (1978) explained, propositional KR has nothing to do with the actual form of 

information such as verbal or graphic formats, but instead, refers to the representation of concepts 

with true values and clear evaluation rules in unambiguous statements, descriptions or other 

formats. In Approach Three, clearly the “represented world” is a choice model with coefficients. 

The difficulty in representing this knowledge resides in the differences of coefficients and 

probabilities. Differences between coefficients and differences of probabilities are not the same. 

Building a computer-based model driven by MDSS is not difficult because it can be built as precise 

knowledge following exact rules, as in the MNL model. Coefficients are first converted to utilities 

and probabilities are then calculated from proportions of utilities. The same method cannot be 

expected to be performed by human brains because of the large volume of calculations. Even if 

learners can calculate probabilities with external help from tools, they most likely would fall into 

the same dilemma described in the “Chinese room” scenario as discussed in Section 2.2.3, which 

means that no real knowledge was gained even though the mechanism worked efficiently to 

provide answers (Searle 1980). Therefore, the challenging problem for KR when teaching a precise 

and complex model is to identify the most appropriate reasoning and semantics for KR. 

Representing MNL or similar models in KR by showing probabilities of attribute levels being 

chosen in each attribute may not be the only or the best approach for KR. This area should be 

further explored to ascertain what form of KR is the best at helping people understand the model 

and be able to synthesise knowledge to make better probability predictions.  

6.2.5 Conclusions on Learning Approach Four 

The results have shown that learners under this approach made slow improvement in both model 

learning and prediction accuracy. The most obvious improvement appears to be that learners’ 
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predictions tend to reflect the consumer group they were assigned to predict. Their improvement 

in parameter learning was slow but headed in the right direction. One finding that stands out is 

that learners varied greatly in their prediction accuracy and parameter learning. One factor 

contributing to this variation was the target consumer groups that learners were assigned to predict. 

The results show that if the behaviour of a target group is more salient to explain, they tend to 

perform better.  

 

In designing this learning approach, one key characteristic was category learning through 

prototypes (e.g. Markman & Ross 2003). As discussed in Section 2.3.5, a prototype does not refer 

to particular features or examples but the central tendency of a category (Rosch 1973). Such central 

tendencies are shared among all members in this category, and a category matching the prototypes 

is much easier to learn than a category that does not match. This can be used to explain the exact 

finding from this research. That is, a consumer cluster better matched with one prototype is easier 

to learn, while a consumer group that shares characteristics of more than one prototype is more 

difficult to learn. In this experiment, three consumer clusters were gained from archetypal analysis 

which provided extreme examples, such as people who strongly prefer the cheapest price or those 

who strongly prefer major airlines. However, not every cluster was defined by strong 

characteristics. In one of the three clusters (Group C), the definition was a mixture of several not 

so strong characteristics which were also similar to other clusters. The only difference in these 

characteristics among clusters is the degree of impact on preference behaviour. In the former case 

when a cluster has a single strong characteristic, learners were obviously performing better. When 

a cluster has a mixture of several features, learners did not perform as well.  

 

Another point to discuss relates to feedback. In Approach Four the only feedback is similar to an 

outcome feedback informing learners whether they were predicting the right consumer group 
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based on results of a Bayesian classifier. While this feedback was useful in helping them approach 

the right consumer group, perhaps by adding outcome feedback showing probabilities of the target 

group, or all three groups, could help learners improve their probability predictions as well. 

Although the intention was to test whether learners can learn from similarities and dissimilarities 

of categories, from feed-forward information provided before and during the learning tasks, it is 

possible to include extra feedback on the true probabilities of the three groups, because they are 

also an important part of similarities and dissimilarities. This will be mentioned again in Section 

6.5 as a topic for further research. 

 

On knowledge representation (KR), Approach Four uses both graphic and verbal information to 

establish a mental image of consumer groups. This idea was formed by combining ideas of 

researchers in KR supporting imagery KR such as Kosslyn and the Conceptual Spaces theory of 

Gärdenfors (e.g. Gärdenfors 2000; Kosslyn 1981). In reality, this researcher is not convinced that 

all learners understand the purpose of this learning approach or whether they have constructed 

appropriate mental images to help them in their probability predictions. From the feedback of 

learners, some did not find this approach helpful. For other learners, it was the opposite effect as 

they found this approach quite useful. The proportion of learners represented by the two groups 

is roughly fifty-fifty, half in each group, based on results outlined in Chapter 5. From the 

experience of this research, in testing an approach built on rather abstract theory in cognitive 

science lacking suitable measurement and experimental methods, existing experimental methods 

are inadequate. Either the observation method or a different design needs to be developed. The 

most difficult aspect is how to determine whether a feature design based on an abstract concept 

can be realistically handled by an experimental condition and then determine what measurement 

process can be used to test it.  
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The positive message arising from studying Approach Four is that even though this approach is 

only an exploratory study and did not show satisfactory results, it highlights problems that are 

more obvious in testing abstract theories from cognitive science. Unlike testing theories from 

psychology in which observed behaviour has long served as primary evidence, learning theories 

from cognitive science such as theories relating to mental images, category learning and other 

mental process require new sources of observation data from experiments. The general trend of 

marketing researchers showing more interest in neuroscience and eye-tracking experiments is 

certainly a good start. 

6.3 Contributions and Implications 

This research has made several unique theoretical contributions to marketing and decision making 

and decision support research.  

 

First, in studying marketing decision support systems, the current focus is on either a model itself, 

or building computer systems to effectively support a model and its adoption in an organisation. 

This is a tradition emanating from areas such as operations research and marketing engineering in 

which research on MDSS was grounded. Learning theories from either traditional disciplines such 

as psychology, or new disciplines such as cognitive science, have had no impact in this area of 

research so far. This research integrates learning theories from these disciplines, decision support 

systems, a consumer choice model and intelligent tutoring mechanisms in order to bridge the gap 

between intuitive and the mechanistic judgements of models. There is a new direction in which 

decision support can be conducted, i.e. training decision makers through a tutoring system, 

supported by appropriate learning approaches improves decision makers’ own knowledge. 

 

The second contribution is that this research integrates both an experimental design and real-life 

consumer choice model with probability learning research. Probability learning research is 



199 

 

traditionally the research area of researchers in Social Judgement Theory under the MCPL 

framework, or psychologists working in the field of subjective probability assessment and forecast. 

Researchers working in choice modelling and experimental design have different research interests 

working in different fields. This research brings the two areas into a learning experiment in which 

learning approaches can be experimentally controlled and the learning subject is, for the first time, 

a real-life choice model. The results are satisfactory and more research such as this can certainly 

be conducted. 

 

The third contribution is in proposing an extended framework for learning. In learning theories 

developed in psychology by behavioural psychologists, the standard framework is the traditional 

S-R-O association framework treating learning as a repeated loop from stimulus to response then 

to outcome. In this framework, the only observable component is response. Outcome is the 

evaluation of response. This research extended this standard framework to S-P-R-O with learners’ 

mental processes included. This emphasises the importance of the association between stimulus 

and process, and process with response. Even though it still lacks observation and measurement 

methods in experiment in capturing process, this researcher believes that by applying a particular 

stimulus, certain learning process can be facilitated and triggered. The learning process plays an 

important role between stimulus and response and process determines the response and outcome. 

The design stimulus, including its contents KR and the learning approach, can be considered a 

complete “process design” which is to determine how to trigger the desired learning process. With 

further development in theories and techniques to capture process, it is likely that a focus on 

learning can be put on S-P and P-R associations. 

 

The final theoretical contribution is in measuring the effectiveness of learning. In past research of 

probability, the only key measure is prediction accuracy. In this research, a new measure of 
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"substantive learning" was introduced. The accuracy measure is a normative standard 

corresponding to how closely the predicted and actual probabilities match. In past research of 

learning, a variety of analysis methods were used to measure accuracy. In this research, strictly 

proper scoring rules developed in the subjective probability assessment literature were emphasised 

and held as the most appropriate approach for analysing prediction accuracy between different 

probability distributions. “Substantive learning” specifically refers to gaining knowledge of key 

characteristics of the target problem, which in this research means understanding the parameters 

of a target training model (Hogarth 1975; Winkler 1996; Winkler & Murphy 1968). In this research, 

inferences were made based on an individual based regression model informing the impact of 

attributes to the differences of predicted and actual probabilities. In different contexts or different 

problems, inferences can be made using other types of models. However, learning is not directly 

observable in data; a two-step process is required with the first step providing a primary model 

and the second step providing inferences about learning. 

 

One possible practical implication is to combine current model-based MDSSs with Intelligent 

Tutoring Systems (ITSs) to better support marketers. Model-based MDSSs provide answers to 

marketers’ “what-if” queries. This tool ensures that predictions and decisions made by decision 

makers can be verified. ITS can be used to help marketers understand models and become better 

judges overall in making prediction and decisions. As proposed by Blattberg and Hoch (1990), 

intuition and a model can work jointly to produce better results in marketing decision making. If 

we consider MDSS as fundamentally an interactive and visualised model, then ITS is a tool to 

improve intuition. This is a new and unfamiliar field for those who work in the area of choice 

models and decision support tools. MDSS is more familiar to people who work in the computer 

science, training and education fields. It has been used widely from school education to training 

pilots. Learning theories and different learning approaches are fundamental to these systems 
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(Woolf 2009). Having an extra tool like ITS to train end-users (marketers and decision makers) to 

understand models may provide more benefits than improving the features of existing tools such 

as data visualisation or interface design perspectives.  

6.4 Limitations and Future Research 

As mentioned in Chapter 1, this research is a proof-of-concept study integrating several disciplines 

to identify a new direction to improve probability predictions and people’s intuition overall. The 

limitations of this study can be summarised in two points. First, due to the lack of previous 

research, some learning approaches especially Learning Approach Four are of an exploratory 

nature. At a minimum, some areas may be adjusted and improved to further test the same learning 

approach. For example, probability feedback can be incorporated and more sessions included. It 

is possible due to the differences in learning approaches, that one approach may naturally require 

more time and practice than other approaches. Although a process was proposed in the extended 

S-P-R-O framework and learning approaches and information were designed to trigger a certain 

desired mental process, there is no way to directly observe or capture this mental process to 

determine what learners relied upon during that process. This is not a limitation of this research 

alone but a limitation applicable to all studies of learning relying on observable response data.  

 

There are several further research directions which are possible based on the findings of this 

research. First, the findings from this study can be re-tested using different product categories or 

choice models especially models with more parameters. One of the foci could be on whether 

Learning Approach Two also performs well when models become more complex. Another focus 

can be Learning Approach Three to ascertain whether the presentation of the same statistical 

information may be altered and become more effective. Research of the approaches could be 

further split into more conditions; for example, using an experimental design to control certain 

feedback elements, or a component of the learning approach. This refinement of the experiment 
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may further indicate which element is more crucial in driving effective learning. With the research 

findings from this study, it should be possible to test a learning approach in detail to understand 

the effect of each relative attribute. For researchers in the areas of judgement and decision-making, 

this experiment can be conducted among different groups; for example, among marketers who are 

working in a related industry to ascertain whether the combination of MDSS and ITS works more 

effectively than using MDSS alone. The results of this stream of research may have important 

managerial implications. The research can also be focused on developing new methodologies for 

probability learning studies. For example, we could aim to develop new ways to better capture and 

analyse underlying processes that learners adopt when making predictions. Some research in a 

laboratory environment may be required to closely examine learners’ activities during learning.  

 

These possible future research directions are certainly not an exclusive list. Researchers and 

practitioners may find other useful connections to topics and areas in which they are working. The 

positive message that flows from this is: theories and practices in marketing, psychology, cognitive 

science and computer science are in vastly better shape today than at the time when many of the 

studies cited in this thesis were conducted. Researchers and practitioners can certainly better equip 

themselves to further explore this traditional yet innovative field of subjective probability learning 

and prediction. 
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Appendix 1 Experimental Design for Stage 1 Survey 
 

Block Subset Alternative Fare Flying time Ticket Change Food/Beverages 
1 1 Qantas $580 6 hours Allowed Not Free 
1 1 Virgin $520 4 hours Not allowed Free 
1 1 Jetstar $400 6 hours Not allowed Not Free 
1 2 Qantas $460 4 hours Not allowed Not Free 
1 2 Virgin $580 6 hours Allowed Free 
1 2 Jetstar $400 6 hours Not allowed Not Free 
1 3 Qantas $520 6 hours Allowed Not Free 
1 3 Virgin $580 6 hours Allowed Not Free 
1 3 Jetstar $460 4 hours Allowed Free 
1 4 Qantas $460 6 hours Allowed Free 
1 4 Virgin $520 6 hours Not allowed Free 
1 4 Jetstar $580 4 hours Not allowed Free 
1 5 Qantas $520 6 hours Not allowed Not Free 
1 5 Virgin $400 6 hours Allowed Free 
1 5 Jetstar $520 4 hours Not allowed Not Free 
1 6 Qantas $400 4 hours Not allowed Not Free 
1 6 Virgin $520 4 hours Not allowed Not Free 
1 6 Jetstar $460 4 hours Allowed Free 
1 7 Qantas $460 6 hours Not allowed Free 
1 7 Virgin $460 6 hours Not allowed Not Free 
1 7 Jetstar $400 4 hours Allowed Not Free 
1 8 Qantas $400 6 hours Not allowed Free 
1 8 Virgin $400 4 hours Allowed Free 
1 8 Jetstar $460 6 hours Not allowed Free 
1 9 Qantas $460 4 hours Allowed Not Free 
1 9 Virgin $400 6 hours Allowed Not Free 
1 9 Jetstar $580 6 hours Allowed Free 
1 10 Qantas $580 4 hours Not allowed Free 
1 10 Virgin $580 4 hours Allowed Free 
1 10 Jetstar $580 4 hours Not allowed Free 
1 11 Qantas $580 6 hours Not allowed Not Free 
1 11 Virgin $460 4 hours Not allowed Not Free 
1 11 Jetstar $580 6 hours Allowed Free 
1 12 Qantas $400 4 hours Allowed Not Free 
1 12 Virgin $460 4 hours Not allowed Free 
1 12 Jetstar $520 4 hours Not allowed Not Free 
1 13 Qantas $520 4 hours Allowed Free 
1 13 Virgin $460 6 hours Not allowed Free 
1 13 Jetstar $460 6 hours Not allowed Free 
1 14 Qantas $580 4 hours Allowed Free 
1 14 Virgin $400 4 hours Allowed Not Free 
1 14 Jetstar $400 4 hours Allowed Not Free 
1 15 Qantas $520 4 hours Not allowed Free 
1 15 Virgin $520 6 hours Not allowed Not Free 
1 15 Jetstar $520 6 hours Allowed Not Free 
1 16 Qantas $400 6 hours Allowed Free 
1 16 Virgin $580 4 hours Allowed Not Free 
1 16 Jetstar $520 6 hours Allowed Not Free 
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Block Subset Alternative Fare Flying time Ticket Change Food/Beverages 
2 1 Qantas $460 6 hours Not allowed Not Free 
2 1 Virgin $520 4 hours Allowed Not Free 
2 1 Jetstar $520 6 hours Not allowed Free 
2 2 Qantas $580 4 hours Not allowed Not Free 
2 2 Virgin $400 6 hours Not allowed Free 
2 2 Jetstar $460 6 hours Allowed Not Free 
2 3 Qantas $580 4 hours Allowed Not Free 
2 3 Virgin $580 6 hours Not allowed Not Free 
2 3 Jetstar $520 6 hours Not allowed Free 
2 4 Qantas $520 4 hours Allowed Not Free 
2 4 Virgin $520 4 hours Allowed Free 
2 4 Jetstar $580 4 hours Allowed Not Free 
2 5 Qantas $520 6 hours Allowed Free 
2 5 Virgin $400 4 hours Not allowed Not Free 
2 5 Jetstar $580 6 hours Not allowed Not Free 
2 6 Qantas $400 4 hours Not allowed Free 
2 6 Virgin $460 6 hours Allowed Not Free 
2 6 Jetstar $580 6 hours Not allowed Not Free 
2 7 Qantas $400 6 hours Allowed Not Free 
2 7 Virgin $400 6 hours Not allowed Not Free 
2 7 Jetstar $400 4 hours Not allowed Free 
2 8 Qantas $460 4 hours Allowed Free 
2 8 Virgin $580 4 hours Not allowed Not Free 
2 8 Jetstar $460 4 hours Not allowed Not Free 
2 9 Qantas $580 6 hours Allowed Free 
2 9 Virgin $460 6 hours Allowed Free 
2 9 Jetstar $520 4 hours Allowed Free 
2 10 Qantas $400 6 hours Not allowed Not Free 
2 10 Virgin $580 6 hours Not allowed Free 
2 10 Jetstar $580 4 hours Allowed Not Free 
2 11 Qantas $460 6 hours Allowed Not Free 
2 11 Virgin $460 4 hours Allowed Free 
2 11 Jetstar $460 6 hours Allowed Not Free 
2 12 Qantas $580 6 hours Not allowed Free 
2 12 Virgin $520 6 hours Allowed Not Free 
2 12 Jetstar $460 4 hours Not allowed Not Free 
2 13 Qantas $520 4 hours Not allowed Not Free 
2 13 Virgin $460 4 hours Allowed Not Free 
2 13 Jetstar $400 4 hours Not allowed Free 
2 14 Qantas $520 6 hours Not allowed Free 
2 14 Virgin $580 4 hours Not allowed Free 
2 14 Jetstar $400 6 hours Allowed Free 
2 15 Qantas $400 4 hours Allowed Free 
2 15 Virgin $520 6 hours Allowed Free 
2 15 Jetstar $400 6 hours Allowed Free 
2 16 Qantas $460 4 hours Not allowed Free 
2 16 Virgin $400 4 hours Not allowed Free 
2 16 Jetstar $520 4 hours Allowed Free 
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Appendix 2 Experimental Design for Stage 2 Tasks 
 

Session Subset Alternative Fare 
Flying 
time 

Ticket 
Change Food/Beverages 

1 1 Qantas $580 4 hours Not allowed Free 
1 1 Virgin $580 4 hours Not allowed Free 
1 1 Jetstar $400 4 hours Allowed Not Free 
1 2 Qantas $460 6 hours Allowed Free 
1 2 Virgin $460 6 hours Not allowed Not Free 
1 2 Jetstar $400 6 hours Allowed Free 
1 3 Qantas $580 4 hours Allowed Not Free 
1 3 Virgin $460 6 hours Allowed Free 
1 3 Jetstar $520 4 hours Allowed Not Free 
1 4 Qantas $460 6 hours Not allowed Not Free 
1 4 Virgin $580 4 hours Allowed Not Free 
1 4 Jetstar $400 6 hours Not allowed Not Free 
1 5 Qantas $400 4 hours Not allowed Not Free 
1 5 Virgin $400 6 hours Allowed Not Free 
1 5 Jetstar $580 6 hours Not allowed Not Free 
1 6 Qantas $520 6 hours Allowed Not Free 
1 6 Virgin $520 4 hours Allowed Free 
1 6 Jetstar $580 4 hours Allowed Not Free 
1 7 Qantas $400 4 hours Allowed Free 
1 7 Virgin $520 4 hours Not allowed Not Free 
1 7 Jetstar $520 4 hours Not allowed Free 
1 8 Qantas $520 6 hours Not allowed Free 
1 8 Virgin $400 6 hours Not allowed Free 
1 8 Jetstar $580 4 hours Not allowed Free 
1 9 Qantas $580 6 hours Allowed Free 
1 9 Virgin $400 4 hours Allowed Not Free 
1 9 Jetstar $520 6 hours Allowed Free 
1 10 Qantas $460 4 hours Not allowed Free 
1 10 Virgin $520 6 hours Allowed Free 
1 10 Jetstar $400 4 hours Not allowed Free 
1 11 Qantas $580 6 hours Not allowed Not Free 
1 11 Virgin $520 6 hours Not allowed Not Free 
1 11 Jetstar $460 4 hours Not allowed Free 
1 12 Qantas $460 4 hours Allowed Not Free 
1 12 Virgin $400 4 hours Not allowed Free 
1 12 Jetstar $460 6 hours Not allowed Not Free 
1 13 Qantas $400 6 hours Allowed Not Free 
1 13 Virgin $580 6 hours Not allowed Free 
1 13 Jetstar $580 6 hours Allowed Free 
1 14 Qantas $520 4 hours Not allowed Not Free 
1 14 Virgin $460 4 hours Not allowed Not Free 
1 14 Jetstar $520 6 hours Not allowed Not Free 
1 15 Qantas $400 6 hours Not allowed Free 
1 15 Virgin $460 4 hours Allowed Free 
1 15 Jetstar $460 4 hours Allowed Not Free 
1 16 Qantas $520 4 hours Allowed Free 
1 16 Virgin $580 6 hours Allowed Not Free 
1 16 Jetstar $460 6 hours Allowed Free 
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Session Subset Alternative Fare 
Flying 
time 

Ticket 
Change Food/Beverages 

2 1 Qantas $400 4 hours Not allowed Not Free 
2 1 Virgin $400 4 hours Not allowed Not Free 
2 1 Jetstar $580 4 hours Allowed Free 
2 2 Qantas $520 6 hours Allowed Not Free 
2 2 Virgin $520 6 hours Not allowed Free 
2 2 Jetstar $580 6 hours Allowed Not Free 
2 3 Qantas $400 4 hours Allowed Free 
2 3 Virgin $520 6 hours Allowed Not Free 
2 3 Jetstar $460 4 hours Allowed Free 
2 4 Qantas $520 6 hours Not allowed Free 
2 4 Virgin $400 4 hours Allowed Free 
2 4 Jetstar $580 6 hours Not allowed Free 
2 5 Qantas $580 4 hours Not allowed Free 
2 5 Virgin $580 6 hours Allowed Free 
2 5 Jetstar $400 6 hours Not allowed Free 
2 6 Qantas $460 6 hours Allowed Free 
2 6 Virgin $460 4 hours Allowed Not Free 
2 6 Jetstar $400 4 hours Allowed Free 
2 7 Qantas $580 4 hours Allowed Not Free 
2 7 Virgin $460 4 hours Not allowed Free 
2 7 Jetstar $460 4 hours Not allowed Not Free 
2 8 Qantas $460 6 hours Not allowed Not Free 
2 8 Virgin $580 6 hours Not allowed Not Free 
2 8 Jetstar $400 4 hours Not allowed Not Free 
2 9 Qantas $400 6 hours Allowed Not Free 
2 9 Virgin $580 4 hours Allowed Free 
2 9 Jetstar $460 6 hours Allowed Not Free 
2 10 Qantas $520 4 hours Not allowed Not Free 
2 10 Virgin $460 6 hours Allowed Not Free 
2 10 Jetstar $580 4 hours Not allowed Not Free 
2 11 Qantas $400 6 hours Not allowed Free 
2 11 Virgin $460 6 hours Not allowed Free 
2 11 Jetstar $520 4 hours Not allowed Not Free 
2 12 Qantas $520 4 hours Allowed Free 
2 12 Virgin $580 4 hours Not allowed Not Free 
2 12 Jetstar $520 6 hours Not allowed Free 
2 13 Qantas $580 6 hours Allowed Free 
2 13 Virgin $400 6 hours Not allowed Not Free 
2 13 Jetstar $400 6 hours Allowed Not Free 
2 14 Qantas $460 4 hours Not allowed Free 
2 14 Virgin $520 4 hours Not allowed Free 
2 14 Jetstar $460 6 hours Not allowed Free 
2 15 Qantas $580 6 hours Not allowed Not Free 
2 15 Virgin $520 4 hours Allowed Not Free 
2 15 Jetstar $520 4 hours Allowed Free 
2 16 Qantas $460 4 hours Allowed Not Free 
2 16 Virgin $400 6 hours Allowed Free 
2 16 Jetstar $520 6 hours Allowed Not Free 
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Appendix 3 Stage 1 Consumer Survey Screenshots 
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Note: if respondents answer "Under 18", thank and terminate. 
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Note: if respondents are not from Sydney, thank and terminate. 
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Note: if respondents choose "no" in both questions, thank and terminate. 



211 

 

 

Note: if respondents choose "no" in this question, thank and terminate. 
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Note: this is followed by scenarios 2 to 16.  
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Appendix 4 Stage 2 Learning Experiment Screenshots 

 



222 

 

Common to All Learning Approaches 

 

 

Note: this is a hidden question not shown to respondents. Respondents are randomly assigned to one of the four learning approaches (experimental 

conditions) by the tutoring system.  
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Learning Approach Four 

 
Note: this is a hidden question not shown to respondents. Respondents are randomly assigned to learn one of the three consumer groups.  
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Common to All Learning Approaches 

 

Note: in the following section, all respondents are provided with general feedback to what they completed in the Stage 1 survey to warm up for training. 
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Common to All Learning Approaches 
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Common to All Learning Approaches 

 

Note: this feedback describes each respondent’s prediction performance made in the Stage 1 survey. Without introducing complex statistical concepts, 
each respondent’s own performance is compared with the average performance of all respondents. This comparison is done on the difference 
between the predicted number of consumers choosing each travel option with actual number of consumers who selected each option in the Stage 1 
survey.  Because no respondents in the Stage 1 survey were found to be more accurate than the aggregated MNL model in prediction choices, the last 
part of the feedback regarding the model is identical for all respondents.   
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Common to All Learning Approaches 

 

Note: learners are informed beforehand on the steps they will go through in this training program. These steps are different for each learning approach.  
 
In the following screens, a tutoring system for each of the four learning approaches will be shown separately from the beginning to the end of the 
program. 
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Learning Approach One 
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Learning Approach Two 
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Learning Approach Three 
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Learning Approach Four 
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Learning Approach One 

 

Note: a minimum of two minutes’ practice was required for using DSS to learn. This is controlled by the delayed appearance of the “Next” button. This 
is to deter learners from going through this exercise too quickly or by accident without obtaining any useful information before starting to do the 
training tasks. There is no restriction on the maximum time allowed. 
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Learning Approach One 
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Learning Approach Three 

 

Note: this section provides learners with feed-forward information based on their prediction performance in the Stage One survey (labelled Session 
0). Based on predictions in Session 0, a comparison is made between each learner’s own model and the aggregated MNL model. The utilities of both 
models are transformed into probabilities for ease of explanation. 
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Learning Approach Three 
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Learning Approach Three (Continued) 
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Learning Approach Three (Continued) 
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Learning Approach Three (Continued) 
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Learning Approach Three (Continued) 
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Learning Approach Three (Continued) 
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Learning Approach Four 
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Learning Approach Four (Continued) 

 



243 

 

Learning Approach Four (Continued)
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Learning Approach Four (Continued) 
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Common to All Learning Approaches
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Learning Approaches One, Two and Three (learners are asked to predict all consumers)
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Learning Approaches Four (learners are asked to predict a particular group of consumers)
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Learning Approaches Two (feedback after each task) 

 
Learning Approaches Four (feedback after each task) 
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Note: learners receive individualised feedback informing them whether they were predicting the correct consumer group or were predicting a different 
group. If they were predicting an incorrect group, they were asked to pay attention to the differences between the target group and the incorrect 
predicted group. 
 
Learners continued with Tasks 2 to 16 until the Session One was completed. There was no feedback received between tasks. 
After the 16 Session One tasks, the program asked the following question before starting the Session Two training and tasks. 
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Common to All Learning Approaches 
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Learning Approaches One 

 

Note: for the second round of training on DSS, there was no restriction on the minimum time. Learners could totally control their own learning. 
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Learning Approaches One 
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Learning Approaches Three 

 
Note: after Session One, individual learner models were processed by the system and feedback was shown to learners in similar fashion to Feedback 

One. 
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Learning Approaches Three 
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Learning Approaches Three (Continued) 
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Learning Approaches Three (Continued) 
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Learning Approaches Three (Continued) 
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Learning Approaches Three (Continued) 
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Learning Approaches Three (Continued) 
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Learning Approaches Four 
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Learning Approaches Four 
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Common to All Learning Approaches 
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Learning Approaches One, Two and Three (learners are asked to predict all consumers) 
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Learning Approaches Four (learners are asked to predict a particular group of consumers) 
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Learning Approach Two (feedback after each task in the Session Two)
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Learning Approach Four (feedback after each task in the Session One)
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Learning Approach Four (feedback after each task in the Session One)

 

Note: Learners continued with Tasks 18 to 32 until the Session Two was completed. There was no feedback received between tasks. 
After the 16 Session Two tasks, the program asked the following question before closing. 
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Common to All Learning Approaches
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Appendix 5 Socio-Demographic Background of Respondents 
 Stage 1 Stage 2 

 n=485 LA1 
(n=63) 

LA2 
(n=63) 

LA3 
(n=63) 

LA4 
(n=64) 

Total 
(n=252) 

Gender (%) 

Male 45% 38% 48% 54% 43% 46% 

Female 55% 62% 52% 46% 57% 54% 
Age Group (%) 

18-24 years 6% 3% 10% 5% 11% 7% 

25-34 years 27% 29% 22% 35% 24% 27% 

35-44 years 26% 25% 25% 21% 22% 23% 

45-54 years 19% 21% 21% 22% 17% 20% 

55-64 years 18% 17% 21% 16% 19% 18% 

65-74 years 4% 3% 2% 2% 6% 3% 

75 years and over 0% 2%       0% 
Where do you live? (%) 

Sydney 100% 100% 100% 100% 100% 100% 
In the past 24 months, have you done any long-haul, cross-country travel by air where you purchased the tickets yourself? (%) 

Yes 59% 63% 57% 65% 57% 61% 

No 41% 37% 43% 35% 43% 39% 
Are you planning to do any such travel by air in the next 24 months? (%) 

Yes 96% 97% 95% 92% 98% 96% 

No 4% 3% 5% 8% 2% 4% 
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 Stage 1 Stage 2 

 n=485 LA1 
(n=63) 

LA2 
(n=63) 

LA3 
(n=63) 

LA4 
(n=64) 

Total 
(n=252) 

What is your present marital status? 

Never married 21% 19% 17% 16% 29% 20% 

Widowed 1%   2%     0% 

Divorced 5% 8% 6% 2% 3% 5% 

Separated but not divorced 3% 8%   2% 2% 3% 

Married 59% 54% 62% 65% 62% 61% 

Living with long term partner 11% 11% 13% 16% 5% 11% 
Which of the following best describes your work status? 

Employed Full time 65% 67% 60% 65% 57% 62% 

Employed Part Time 19% 17% 21% 22% 22% 21% 

Unemployed 4% 5% 3% 5% 5% 4% 

Not in the labour force - Retired from labour force 8% 5% 11% 8% 10% 8% 

Not in the labour force - Intends to look for work in the future 4% 6% 5%   6% 4% 
What is the highest year of school you have completed? 

Year 12 or equivalent 82% 81% 78% 89% 86% 83% 

Year 11 or equivalent 4% 3% 3% 3% 5% 4% 

Year 10 or equivalent 12% 13% 17% 6% 8% 11% 

Year 9 or equivalent 1%       2% 0% 

Year 8 or equivalent 1%   2%     0% 

Year 7 or below 0% 2%   2%   1% 

Did not go to school 0% 2%       0% 
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 Stage 1 Stage 2 
 n=485 LA1 

(n=63) 
LA2 

(n=63) 
LA3 

(n=63) 
LA4 

(n=64) 
Total 

(n=252) 
What is the highest non-school qualification you have? 

Postgraduate Degree or equivalent 21% 27% 19% 14% 22% 21% 
Graduate Diploma and Graduate Certificate from university or equivalent 9% 8% 8% 13% 6% 9% 

Bachelor Degree or equivalent 31% 27% 33% 41% 33% 34% 
Advanced Diploma and Diploma from university/TAFE or equivalent 14% 21% 10% 14% 13% 14% 
Certificate or equivalent (e.g. Certificate III & IV or Certificate I & II) 13% 10% 16% 11% 14% 13% 

None of the above 12% 8% 14% 6% 11% 10% 
Which one of the following categories best describes your annual gross personal income (before tax)? 

Nil Income 2% 2% 3% 2% 3% 2% 
$1-$7,799 (i.e. $1-$149 a week) 3% 5% 5% 3% 5% 4% 

$7,800-$12,999 (i.e. $150-$249 a week) 2% 3% 3% 2% 3% 3% 
$13,000-$20,799 (i.e. $250-$399 a week) 3%   3% 2% 3% 2% 
$20,800-$31,199 (i.e. $400-$599 a week) 6% 10% 8% 5% 5% 7% 
$31,200-$41,599 (i.e. $600-$799 a week) 5% 8% 6% 6% 8% 7% 
$41,600-$51,999 (i.e. $800-$999 a week) 7% 2% 6% 10% 5% 6% 

$52,000-$67,599 (i.e. $1,000-$1,299 a week) 11% 13% 5% 3% 11% 8% 
$67,600-$83,199 (i.e. $1,300-$1,599 a week) 15% 11% 11% 14% 16% 13% 

$83,200-$103,999 (i.e. $1,600-$1,999 a week) 14% 11% 14% 17% 11% 13% 
$104,000 or more (i.e. $2,000 or more a week) 16% 16% 16% 19% 13% 16% 

Prefer not to answer 15% 21% 19% 17% 17% 19% 
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 Stage 1 Stage 2 
 n=485 LA1 

(n=63) 
LA2 

(n=63) 
LA3 

(n=63) 
LA4 

(n=64) 
Total 

(n=252) 
Which one of the following categories best describes your annual total household gross income (before tax)? 

Nil Income 0% 2%       0% 
$1-$7,799 (i.e. $1-$149 a week) 0%     2% 2% 1% 

$7,800-$12,999 (i.e. $150-$249 a week) 0% 2%       0% 
$13,000-$18,199 (i.e. $250-$349 a week) 0%   2%     0% 
$18,200-$25,999 (i.e. $350-$499 a week) 1%     2%   0% 
$26,000-$33,799 (i.e. $500-$649 a week) 3% 5%     3% 2% 
$33,800-$41,599 (i.e. $650-$799 a week) 2% 3% 2% 3% 3% 3% 
$41,600-$51,999 (i.e. $800-$999 a week) 4% 8% 3%   5% 4% 

$52,000-$62,399 (i.e. $1,000-$1,199 a week) 5% 2% 6% 5% 6% 5% 
$62,400-$72,799 (i.e. $1,200-$1,399 a week) 5% 3%   5% 5% 3% 
$72,800-$88,399 (i.e. $1,400-$1,699 a week) 6% 3% 8% 6% 8% 6% 

$88,400-$103,999 (i.e. $1,700-$1,999 a week) 12% 8% 14% 5% 10% 9% 
$104,000-$129,999 (i.e. $2,000-$2,499 a week) 13% 13% 13% 16% 16% 14% 
$130,000-$155,999 (i.e. $2,500-$2,999 a week) 11% 6% 11% 14% 16% 12% 
$156,000-$181,999 (i.e. $3,000-$3,499 a week) 8% 6% 5% 6% 5% 6% 
$182,000-$207,999 (i.e. $3,500-$3,999 a week) 4% 5% 3% 5%   3% 
$208,000 or more (i.e. $4,000 or more a week) 9% 14% 5% 16% 6% 10% 

Prefer not to answer 17% 21% 29% 16% 16% 20% 
Which of the following best describes your household? 

Couple family with no children 28% 30% 27% 32% 29% 29% 
Couple family with children 43% 35% 46% 46% 43% 42% 

One parent family 5% 6% 3% 5% 5% 5% 
Other family household 4% 3% 6%   3% 3% 
Single person household  10% 13% 6% 3% 8% 8% 

Group household (i.e. shared) 10% 13% 11% 14% 13% 13% 
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