
Asset Price Dynamics with Heterogeneous Beliefs and Time
Delays

Kai Li
Finance Discipline Group, UTS Business School

University of Technology, Sydney
PO Box 123 Broadway
NSW 2007, Australia

Principal Supervisor: Prof Xue-Zhong He

Co Supervisor: Prof Carl Chiarella

Co Supervisor: Dr Lei Shi

Thesis submitted for Doctor of Philosophy at the University of Technology, Sydney ·
April 2014 ·



Certificate

I certify that this thesis has not previously been submitted for a degree nor has it been

submitted as part of requirement for a degree except as fully acknowledged within the

text.

I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signed . . . . . . . . . . . . . . . . . . . . . . . .

Date . . . . . . . . . . . . . . . . . . . . . . . .

i



Acknowledgments

The completion of this thesis would not be possible without the encouragement, guidance

and support from my principal supervisor Prof Xue-Zhong (Tony) He. The discussions we

had throughout my PhD candidature have proven to be most helpful. His positive attitude

towards research and work will continue to be a motivation for my future professional

career. I would also like to thank my co supervisors Prof Carl Chiarella and Dr Lei Shi for

their continuous support and the staff and fellow PhD students in the Finance Discipline

Group for providing such a wonderful environment. I appreciate the financial support from

the University of Technology, Sydney (UTS), UTS Business School, Quantitative Finance

Research Centre (QFRC), American Finance Association (AFA) and Financial Integrity

Research Network (FIRN) in contributing to cost of attending numerous national and

international conferences and workshops which provided constant and timely feedback for

my research. Last but not least, I am grateful to the University of Technology, Sydney for

the UTS President’s Scholarship and the UTS International Research Scholarship, which

are of great financial assistance.

ii



Contents

Abstract vii

1 Introduction 1

1.1 Literature Review and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Heterogeneous Agent Models . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 The Momentum and Reversal Effects . . . . . . . . . . . . . . . . . 4

1.1.3 The Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . 5

1.1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Heterogeneous Beliefs and Adaptive Behavior in a Continuous-time As-

set Price Model 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Dynamics of the Deterministic Delay Model . . . . . . . . . . . . . . . . . 16

2.4 Price Behavior of the Stochastic Model . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Herding, Trend Chasing and Market Volatility 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 The Stability Analysis of the Deterministic Model . . . . . . . . . . . . . . 37

3.4 Price Behavior of the Stochastic Model . . . . . . . . . . . . . . . . . . . . 41

3.4.1 The Effect of the Time Horizon . . . . . . . . . . . . . . . . . . . . 44

3.4.2 The Effect of the Herding . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 The Effect of Switching . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Power-law Behavior in Volatility . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 The Effect of the Noises . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



3.5.2 The Effect of the Time Horizon . . . . . . . . . . . . . . . . . . . . 54

3.5.3 The Effect of the Herding . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.4 The Effect of the Switching . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Time Series Momentum and Market Stability 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Time Series Momentum of the S&P 500 . . . . . . . . . . . . . . . . . . . 63

4.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Fundamental Traders . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Momentum and Contrarian Traders . . . . . . . . . . . . . . . . . . 66

4.3.3 Market Price via a Market Maker . . . . . . . . . . . . . . . . . . . 67

4.4 Market Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 The Stabilizing Role of the Contrarians . . . . . . . . . . . . . . . . 69

4.4.2 The Destabilizing Role of the Momentum Traders . . . . . . . . . . 69

4.4.3 The Joint Impact of Momentum and Contrarian Trading . . . . . . 71

4.5 Momentum Profitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 State 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 State 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 State 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Optimality of Momentum and Reversal 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Optimal Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Optimal Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Performance of the Optimal Strategies . . . . . . . . . . . . . . . . 93

5.4.2 Market States, Sentiment and Volatility . . . . . . . . . . . . . . . 103

5.4.3 Comparison with Moskowitz, Ooi and Pedersen (2012) . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 An Evolutionary CAPM under Heterogeneous Beliefs 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iv



6.3 Dynamics of the Deterministic Model . . . . . . . . . . . . . . . . . . . . . 118

6.4 Price Behavior of the Stochastic Model . . . . . . . . . . . . . . . . . . . . 127

6.4.1 The Spill-over Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Time-varying Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Trading Volume and Volatility . . . . . . . . . . . . . . . . . . . . . 131

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusion and Future Research 137

7.1 Continuous-time Heterogeneous Agent Models . . . . . . . . . . . . . . . . 138

7.2 The Momentum and Reversal Effects . . . . . . . . . . . . . . . . . . . . . 139

7.3 The Evolutionary CAPM under Heterogeneous Beliefs . . . . . . . . . . . . 140

Appendix A Proofs of Chapter 2 141

A.1 Market Fraction Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B Proofs and Discussions of Chapter 3 143

B.1 Analytical Solution for the Master Equation . . . . . . . . . . . . . . . . . 143

B.2 Comparison to Chapter 2 and Nonlinear Effect of Herding . . . . . . . . 144

B.3 Price Volatility Comparison to Chapter 2 . . . . . . . . . . . . . . . . . . 146

Appendix C Proofs and Model Extensions of Chapter 4 148

C.1 Time Series Momentum Profit . . . . . . . . . . . . . . . . . . . . . . . . 148

C.2 Proofs and Remarks for the Deterministic Model . . . . . . . . . . . . . . 148

C.3 The General Case with Any Positive τm and τc . . . . . . . . . . . . . . . . 154

C.4 Population Evolution between Momentum and Contrarian Traders . . . . . 155

C.5 Population Evolution among Fundamentalist, Momentum and Contrarian

Traders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Appendix D Proofs and Discussions of Chapter 5 160

D.1 Properties of the Solutions to the System (5.2)-(5.3) . . . . . . . . . . . . 160

D.2 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.3 Rolling Window Estimations . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.4 Regressions on the Market States, Sentiment and Volatility . . . . . . . . 173

Appendix E Proofs of Chapter 6 177

E.1 Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

E.2 Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

v



Bibliography 181

vi



Abstract

With growing populations, the size of economies, and technological innovations, finan-

cial markets are increasingly becoming larger, more diverse, complicated, and volatile.

Shocks from one market can propagate very quickly to other markets, as we saw with the

global financial crisis (GFC) and the ongoing spill-over effects of the European sovereign

debt crisis. These changes have had a profound impact on investor behavior and financial

market and pose a great challenge to traditional asset pricing theory based on rational ex-

pectations and the representative agent paradigm. Over the last three decades, empirical

evidence, unconvincing justification of the assumption of unbounded rationality, and in-

vestor psychology have led to the incorporation of heterogeneity and bounded rationality

into asset pricing and financial market modelling.

This thesis contributes to the development of this literature by modelling boundedly

rational behaviors, including trend chasing, herding, and adaptive switching, and exam-

ining their impact on various types of market behaviors such as price deviations from

the fundamental values, excess volatility, and spill-over effect, which are then explored to

explain momentum and reversal effects, two of the most challenging anomalies to finance

theory in financial markets. This thesis has four main contributions.

(i) Different from the discrete-time heterogeneous agent models developed in the litera-

ture, the thesis provides a unified approach in a continuous-time framework to study

the effect of trend chasing based on historical price information and explore different

mechanisms and impact of trend chasing, herding and switching on various market

behaviors (such as market booms and crashes, long deviations of the market price

from the fundamental price), the stylized facts (such as skewness, kurtosis, excess

volatility, volatility clustering and fat tails of returns), and the long range depen-

dence in return volatility, which are widely observed in financial markets. This is the

focus of Chapters 2 and 3.

(ii) It provides market conditions on the momentum profitability, which underlies the

time series and cross-sectional momentum effects well documented in empirical lit-
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erature. This is the focus of Chapter 4.

(iii) By applying the latest mathematical theory on the maximum principle for control

problem of stochastic delay differential equations (SDDEs) to a geometrical Brow-

nian motion of asset pricing with momentum and mean-reverting effects, Chapter

5 provides an optimal investment strategy that can outperform not only the pure

momentum strategy and pure mean reversion strategy, but also the stock market

index.

(iv) It develops an evolutionary CAPM and shows that rational switching behavior can

destabilize the market and generate a spill-over effect, which is associated with high

trading volumes characterized by significantly decaying autocorrelations of, and pos-

itive correlation between, price volatility and trading volume. This is the focus of

Chapter 6.

Overall, this thesis shows that asset pricing models with heterogeneous beliefs and

boundedly rational behaviors can better explain the mechanisms which generate various

financial market behaviors and market anomalies.
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Chapter 1

Introduction

1.1 Literature Review and Motivation

1.1.1 Heterogeneous Agent Models

Over the last two decades, there is a growing dissatisfaction with models of asset price

dynamics based on the representative agent paradigm (see, for example, Kirman 1993)

and the extreme informational assumptions of rational expectations. As a result, there is

another growing body of literature on heterogeneous agent models (HAMs) in economics

and finance, which considers the financial market as a nonlinear expectation-feedback

system. In such models, traders are boundedly rational (defined in Simon, 1956) in the

sense they are rational with the information they have and use certain heuristics to make

decisions rather than a strict rigid rule of optimization. They do this because of the

complexity of the situation, and their inability to process and compute the expected

utility of every alternative action (see Keynes 1936). HAMs have successfully explained

many types of features (such as market booms and crashes, multiple market equilibria,

long deviations of the market price from the fundamental price), stylized facts (such as

non-normality in return distributions, excess volatility, volatility clustering, fat tails), and

various power laws (such as the long memory in return volatility) observed in financial

markets, see recent survey papers by Hommes (2006), LeBaron (2006) and Chiarella, Dieci

and He (2009).

HAMs date back to Zeeman (1974) who describes the rise and fall of bull and bear mar-

kets by considering the co-existence of two types of agents: fundamentalists and chartists.

Beja and Goldman (1980), Day and Huang (1990) and Chiarella (1992) are among the

first to consider dynamic HAMs. Beja and Goldman (1980) attempt to characterize how

a market maker adjusts prices according to aggregate excess demand. Day and Huang

1



2 1.1 Literature Review and Motivation

(1990) introduce a stylized market maker framework in discrete-time and their model

exhibits complicated, chaotic price fluctuations around a fundamental price with ran-

dom switching bear and bull market episodes. The continuous-time model introduced by

Chiarella (1992) shows interaction of agents with heterogeneous expectations may lead

to market instability. Lux (1995) models the herding behavior through the master equa-

tion and shows that herding can give rise to realistic time series. The seminal papers of

Brock and Hommes (1997, 1998) develop an asset pricing model of heterogeneous beliefs,

bounded rationality and adaptiveness. It is a simple and standard discounted asset pricing

model derived from a mean-variance framework and is extended from a homogenous-belief

case to the heterogeneous one where traders are boundedly rational and update strategies

based upon past performance (such as realized profits). They show that such boundedly

rational behavior of agents can lead to market instability, and the resulting nonlinear

dynamical system is capable of generating complex behavior from local stability to high

order cycles and chaos as the intensity of choice to switch predictors increases. Along this

line, Boswijk, Hommes and Manzan (2007) study the behavior of price to earnings ratio

and offer an explanation for the recent stock prices run-up. Brock, Hommes and Wagener

(2009) incorporate derivatives and investigate the impact of hedging instruments on the

market stability. In another direction, Chiarella and He (2002, 2003b) and Chiarella, He

and Hommes (2006) extend Brock and Hommes models to study the impact of different

time horizons on the price dynamics in discrete-time. Recently, Diks and van der Weide

(2003) introduce the concept of a continuous beliefs system (CBS). This framework is

built around a continuous beliefs space representing the possible point predictors agents

can choose from. On this space a time-dependent beliefs distribution is defined, which is

updated according to a continuous choice model. Based on the CBS, Diks and van der

Weide (2005) examine the effects on price dynamics of a number of behavioral assump-

tions, including herd behavior, a-synchronous updating of beliefs and heterogeneity in the

memory of agents.

The above models with one risky asset and one riskless asset make the first step to

understand price dynamics under the interaction of heterogeneous agents. Within a mul-

tiple risky assets framework, the way agents form and update their beliefs about the

covariance structure of asset returns also becomes an important factor in determining

the dynamics of prices. A number of recent papers deal with the multiple risky assets

decision problem within the HAM paradigm. Westerhoff (2004) considers a multi-asset

model with fundamentalists who concentrate on only one market and chartists who invest

in all markets, and offers reasons for the high degree of co-movements in stock prices

observed empirically. Dieci and Westerhoff (2010, 2012) develop deterministic models to
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study two stock markets denominated in different currencies, which are linked via and

with the related foreign exchange market, and explore potential spill-over effects between

foreign exchange and stock markets. We refer readers to Chiarella, Dieci and Gardini

(2005), Westerhoff and Dieci (2006) and Chiarella, Dieci and He (2007) for the recent

developments in multi-asset market dynamics in the literature of HAMs.

The econometric analysis, especially estimation and calibration, of HAMs is a difficult

and challenging task due to the complexity of the HAMs, together with many parameters,

which makes verification of identification rather difficult, and thus proving the consistency

of the estimation is troublesome. Recently, a growing part of the literature conducts the

task and provides a support to the explanatory power of HAMs. He and Li (2007) study

the source of power-law distributed fluctuations in volatility. Amilon (2008) and Franke

(2010) investigate the sources of different stylized facts. Franke and Westerhoff (2011,

2012) characterize the structural stochastic volatility and estimate the models on daily

returns by the method of simulated moments (MSMs). Chen, Chang and Du (2012)

summarize the ability of HAMs to generate stylized facts in econometrics approach.

Most of the HAMs in the literature are in discrete-time rather than a continuous-time

setup. The discrete-time setup facilitates the economic understanding and mathematical

analysis, it however faces some limitations when dealing with expectations formed over

different time horizons. In discrete-time HAMs, different time horizons used to form

the expectation or trading strategy lead to different dimensions of the system which

need to be analyzed separately (see Chiarella, He and Hommes 2006). In particular,

when the time horizon of historical information used is long, the resulting models are

high dimensional. Very often, a theoretical analysis of the impact of lagged prices over

different time horizon is difficult when the dimension of the system is high. However,

the continuous-time HAMs can overcome the limitation easily.1 Recently, He, Li, Wei

and Zheng (2009) and He and Zheng (2010) extend Brock and Hommes model to a

continuous-time framework characterized by a stochastic delay differential system. They

consider financial markets in which the price trend of the trend followers is formed as a

weighted moving average of historical prices. The model exhibits a powerful advantage

to accommodate different time horizons used by chartists and excavates a double-edged

role of momentum traders. In fact, the continuous-time framework is more realistic since

in reality agents can submit their market orders in practically continuous-time. Another

advantage of the continuous-time framework is the fact that it is hard to specify the

natural time scale of a single time step for the discrete-time models. When comparing

1Early continuous-time HAMs do not consider the time horizons, see, for example, Chiarella (1992), which is further
extended by Chiarella, He, Wang and Zheng (2008) to show that speculative behavior of chartists can cause the market
price to display different forms of equilibrium distributions by applying the theory of random dynamical systems.
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the discrete-time models with real data, this faces people with the choice of whether the

models are suitable for daily, weekly, or monthly data, for instance. Such a choice on

the time-scale is usually rather arbitrary, and often driven by availability of data. The

continuous-time framework, on the other hand, does not necessarily force the researcher to

decide upon the natural time scale up front. These models typically have parameters that

can be interpreted as adjustment speeds and/or memory parameters, allowing the natural

time scale to be estimated from data at any basic frequency in principle.2 Along this line,

this thesis extends the continuous-time HAM in He et al. (2009) to study the impacts of

adaptive switching and herding behavior on the financial market, and to provide further

understanding of the profitability mechanism of momentum and reversal.

1.1.2 The Momentum and Reversal Effects

Two of the most prominent financial market anomalies are momentum and reversal. Mo-

mentum, on the one hand, is the tendency of assets with good (bad) recent performance

to continue outperforming (underperforming) in short-run. Reversal, on the other hand,

concerns predictability of assets that performed well (poorly) over a long period tend

to subsequently underperform (outperform). Momentum and reversal have been docu-

mented extensively for a wide variety of assets. Jegadeesh and Titman (1993) document

momentum for individual U.S. stocks, predicting returns over horizons of 3-12 months

by returns over the past 3-12 months. De Bondt and Thaler (1985) document the re-

versal, predicting returns over horizons of up to five years by returns over the past 3-5

years. Fama and French (1992) document the value effect, which is closely related to

reversal, whereby the ratio of an assets price relative to book value is negatively related

to subsequent performance. Mean reversion in equity returns has been shown to induce

significant market timing opportunities, see Campbell and Viceira (1999), Wachter (2002)

and Koijen, Rodŕıguez and Sbuelz (2009). The evidence has been extended to stocks in

other countries (Fama and French 1998), stocks within industries (Cohen and Lou 2012),

across industries (Cohen and Frazzini 2008), and the global market with different as-

set classes (Asness, Moskowitz and Pedersen 2013). More recently, Moskowitz, Ooi and

Pedersen (2012) investigate time series momentum that characterizes the strong positive

predictability of a security’s own past returns. For a large set of futures and forward con-

tracts, Moskowitz et al. (2012) find time series momentum based on the past 12 month

excess returns persists for 1 to 12 months that partially reverses over longer horizons.

They provide strong evidence on the time series momentum based on the moving aver-

2I would like to thank Cees G.H. Diks (an examiner) for providing the argument.
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age of “look-back” returns. This effect based purely on a security’s own past returns is

related to, but different from, the cross-sectional momentum phenomenon studied exten-

sively in the literature. Through return decomposition, Moskowitz et al. (2012) argue

that positive auto-covariance is the main driving force for time series momentum and

cross-sectional momentum effects, while the contribution of serial cross-correlations and

variation in mean returns is small.

The size and apparent persistence of momentum and reversal profits have attracted

considerable attention, and many theoretical studies have tried to explain the phenomena.

Among which, the three-factor model of Fama and French (1996) can explain long-run

reversal but not short-run momentum. Barberis, Shleifer and Vishny (1998) argue that

these phenomena are the result of systematic errors that investors make when they use

public information to form expectations of future cash flows. Daniel, Hirshleifer and

Subrahmanyam (1998)’s model with a representative agent and Hong and Stein (1999)’s

model with different trader types attribute the under- and overreaction to overconfidence

and biased self-attribution. Barberis and Shleifer (2003) show that style investing can

explain momentum and value effects. Sagi and Seasholes (2007) present a growth options

model to identify observable firm-specific attributes that drive momentum. Vayanos and

Woolley (2013) show the slow-moving capital can also generate momentum. However, the

mechanism which generates momentum and reversal profitability is still not clear.

1.1.3 The Capital Asset Pricing Model

Within the rational expectations and representative agent paradigm, the Sharpe-Lintner-

Mossin (Sharpe 1964, Lintner 1965 and Mossin 1966) Capital Asset Pricing Model

(CAPM) is the most widely-used tool to price risky assets. However, there is considerable

empirical evidence documenting cyclical behavior of market characteristics, including risk

premium, volatility, trading volume, price to dividend ratio, and in particular, market

betas. The conditional CAPM was developed to provide a convenient way to incorporate

a time-varying beta and it exhibits empirical superiority in explaining the cross-section

of returns and anomalies.3 There exists a large literature on time-varying beta models,

but most of it is motivated by econometric estimation. It is often assumed that there are

discrete changes in betas across subsamples but constant betas within subsamples.4 It has

been shown that when betas vary over time, the standard OLS inference is misspecified

and cannot be used to assess the fitness of a conditional CAPM. In addition, most of

3See, for example, Engle (1982), Bollerslev (1986), Bollerslev et al (1988), Dybvig and Ross (1985), Hansen and Richard
(1987), Hamilton (1989, 1990), Braun et al (1990), and Jagannathan and Wang (1996).

4See Campbell and Vuolteenaho (2004), Fama and French (2006), and Lewellen and Nagel (2006)). We point out that
Ang and Chen (2007) treat betas as endogenous variables that vary slowly and continuously over time.
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the econometric models of time-varying beta lack an economic explanation and intuition.

Recently, Chiarella, Dieci and He (2010, 2011) introduce a multi-asset CAPM framework

for analyzing the impact of heterogeneous beliefs on asset prices via the construction of

a consensus belief and find that heterogeneity becomes part of an asset’s systematic risk.

Chiarella, Dieci and He (2013) use this framework in a dynamic setting and demonstrate

the stochastic behavior of time-varying betas and show that there is an inconsistency be-

tween ex-ante and ex-post estimates of asset betas when beliefs are heterogeneous. This

suggests that the methods for estimating asset betas currently used in the literature can

be inappropriate.

1.1.4 Motivation

Although the efficient market hypothesis (EMH) of financial markets (see Fama, 1970) has

been taken as support for the random walk model and financial economists are contented

with this view as the explanation of the time series behavior of observed asset prices for

a long time, a range of empirical studies lead to some questioning of the basic tenets of

the EMH. They include various anomalies of equity markets (see Thaler 1987a, 1987b

and Keim 1988) and stylized facts in asset returns (see Pagan 1996 and Lux 2009). The

dependence of stock prices on past returns (Akgiray 1989 and Pesaran and Timmermann

1995) is also unexplained by the random walk models. The short run price momentum

(Jegadeesh and Titman 1993) and long run reversal (DeBondt and Thaler 1989), two

of the most studied phenomena in financial market, have become central to the market

efficiency debate. The above literature has suggested asset prices can be affected by his-

torical information, however, this fact has not otherwise been considered by the standard

asset pricing theory. Although the recent heterogeneous agent models (HAMs) literature

has started to consider the impact of lagged prices (used by chartists to form their expec-

tations), the roles of the lagged prices, especially the corresponding time horizons have

not been well understood due to the problem of high dimensional systems. This thesis is

largely motivated by the above literature and proposes dynamic asset price models with

heterogeneous beliefs and time delays. It extends the HAMs literature in a discrete-time

framework to a continuous-time framework to provide a unified approach in modelling

different boundedly rational behavior, including trend chasing, adaptive switching and

herding behavior, and to examine their impacts on various market behavior, which are

then explored to explain momentum and reversal effects, two of the most challenging

anomalies to asset pricing theory.
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1.2 Structure of the Thesis

The thesis consists of three main components. The first part, consisting of Chapters

2 and 3, is devoted to examining the impact of historical information, especially the

time horizons on various market behavior, stylized facts and power laws behavior in a

continuous-time framework. Chapters 2 considers the switching mechanism of the adap-

tive behavior of heterogeneous agents based on certain fitness measure (such as cumulated

profits) whereas the herding behavior is incorporated into Chapter 3. The results of Chap-

ter 2 have been published in He and Li (2012). The second part, consisting of Chapters

4 and 5, focuses on the momentum and reversal effects. Chapter 4 extends the models in

the first part to provide market conditions on the momentum profitability with respect

to time horizons and market dominance. By taking advantage of the continuous-time

framework in modelling the time horizons, Chapter 5 explores the optimality of momen-

tum and reversal effects. Chapter 6, the third part of the thesis, extends the models

to a multi-asset case to study the spill-over effect. The results of Chapter 6 have been

published in Chiarella, Dieci, He and Li (2013). Chapter 7 summarizes the main results of

the thesis and related future research is discussed. All proofs and some model extensions

are collected in the Appendices (unless specified otherwise).

Chapters 2 and 3 show that the continuous-time HAMs can provide a better way to

characterize and examine the impact of the time horizons used by agents to form their

expectations. Chapter 2 introduces adaptive behavior of agents who switch their strategies

in a boundedly rational way according to certain fitness measures such as cumulated profits

of strategies. The analysis of the model provides not only some consistent results to the

discrete-time HAMs, such as stabilizing effect of fundamentalists, destabilizing effect of

chartists, and rational routes to market instability, but also a double edged effect of an

increase in lagged prices on market stability. An increase in the using of lagged prices

can not only destabilize, but also stabilize the market price. By including noise traders

and imposing a stochastic process on the fundamental price, we demonstrate that the

model is able to generate various market phenomena and stylized facts. In particular,

we show that switching can generate more realistic long range dependence in volatility.

Based on the model in Chapter 2, Chapter 3 also considers herding behavior and shows

adaptive switching and herding behavior of agents can increase market price fluctuations.

In this chapter, we extensively examine how the market volatility can be affected by trend

chasing, adaptive switching, and herding, which are among the most important factors

affecting market volatility well documented and studied in the empirical literature. We

show that, both herding and trend chasing based on a long time horizon increase the
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fluctuations of market price deviation from the fundamental price and volatility of market

return. With respect to the switching, it reduces the volatility in returns but leads to a

“U”-shaped price volatility as the switching intensity increases. Therefore herding and

switching have an opposite effect on the return volatility. We also show that, although

the trend chasing, switching and herding all contribute to the power-law behavior, the

significant levels for the ACs increase in the time horizon and herding, but an initial

increase and then decrease when the switching intensity increases. In addition, with

the herding, the market noise characterizing noise traders or liquidity trading plays an

essential role in generating the power-law behavior.

According to the time horizons and the states of the market dominance, the thesis

further provides market conditions on momentum profitability, which underlies the mo-

mentum effects well documented in empirical literature. Chapter 4 extends the models in

Chapters 2 and 3 and proposes a continuous-time heterogeneous agent model of investor

behavior consisting of fundamental, contrarian, and momentum strategies. By examining

their impact on market stability explicitly and analyzing the profitability numerically,

we show that the profitability of time series momentum is closely related to the market

states defined by the stability of the underlying deterministic model. In particular, we

show that when the momentum traders dominate the market, the momentum strategy

is profitable when the time horizon is short and unprofitable when the time horizon is

long. Otherwise, the momentum strategy is not profitable for any time horizon. We also

provide some explanation to the profitability mechanism through autocorrelation patterns

and the classical underreaction and overreaction hypotheses.

Chapter 4 shows the profitability of the momentum and contrarian strategies is condi-

tional. In order to achieve an unconditional profitability, Chapter 5 provides an optimal

investment strategy to explore the momentum and reversal effects by applying the latest

mathematical theory on the maximum principle for control problem of stochastic delay

differential equations (SDDEs). In the standard asset price model based on geometric

Brownian motion, the drift is modelled as a weighted average of mean reversion and mov-

ing average. We find that pure momentum and pure mean reversion strategies cannot

outperform the market, however, a combination of them can outperform the market by

taking the timing opportunity with respect to the trend in return and the market volatil-

ity. We show that the optimal strategy can achieve an unconditional profitability in the

sense that the strategy is immune to the market states, investor sentiment and market

volatility. We also show that the profitability pattern reflected by the average return in

most empirical studies can be affected by the wealth effect.

The models introduced in the previous chapters only consider the price dynamics of
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one risky asset. Chapter 6 extends the models to a multi-asset framework of an evolu-

tionary CAPM with heterogeneous beliefs. By analyzing the stability of the underlying

deterministic model, we show that the evolutionary CAPM is capable of characterizing

the spill-over effects, the persistence in price volatility and trading volume, and realistic

correlations between price volatility and trading volume. We show that the spill-over

effect is associated with high trading volumes and persistent volatility characterized by

significantly decaying autocorrelations of, and positive correlation between, price volatil-

ity and trading volume. Also, the stochastic nature of time-varying betas implied by the

equilibrium model may not be consistent with the rolling window estimate of betas used

in the empirical literature. The model provides further explanatory power of the recently

developed HAMs.



Chapter 2

Heterogeneous Beliefs and Adaptive

Behavior in a Continuous-time Asset

Price Model

2.1 Introduction

It is well recognized that the traditional view of homogeneity and perfect rationality in

financial markets faces a number of theoretical limitations and empirical challenges. Over

the last two decades, there is a growing research on heterogeneity and bounded rationality

in financial markets. With different groups of traders having different expectations about

future prices, asset price fluctuations can be caused by an endogenous mechanism. For

instance, the seminal papers of Brock and Hommes (1997, 1998) introduce the concept

of an adaptively rational equilibrium. A key aspect of their models is that they exhibit

expectations feedback. Agents adapt their beliefs over time by choosing from different

predictors or expectation functions based upon their past performance (such as realized

profits). They show that such boundedly rational behavior of agents can lead to market

instability and the resulting nonlinear dynamical system is capable of generating complex

behavior from local stability to high order cycles and chaos as the intensity of choice to

switch predictors increases.

The framework of Brock and Hommes and its various extensions are in a discrete-

time setup. The setup facilitates economic understanding of the role of heterogeneous

expectations and mathematical analysis, it however faces a limitation when dealing with

expectations formed from the lagged prices over different time horizons and a challenge

to characterize the adaptive behavior in a continuous-time. In discrete-time models,

10
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different time horizons used to form the expectations or trading strategies lead to different

dimensions of the systems which need to be analyzed individually. In particular, when

the time horizon of historical information used is long, the resulting models are high

dimensional systems. Very often, a theoretical analysis of the impact of lagged prices over

different time horizons is difficult when the dimension of the system is high1. The recent

development of HAMs in continuous-time in He et al. (2009) and He and Zheng (2010)

overcomes this limitation in discrete-time. In the continuous-time HAM, the time horizon

of historical price information used by chartists is simply presented by a time delay.

The resulting model is characterized mathematically by a system of delay differential

equations2. It provides a uniform treatment on various time horizons used in the discrete-

time models.

Motivated by the continuous-time HAMs developed in He et al. (2009) and He and

Zheng (2010), this chapter intends to characterize the switching mechanism of the adap-

tive behavior of heterogeneous agents in a continuous-time asset pricing model under a

market maker scenario, instead of the Walrasian scenario used in Brock and Hommes

(1998). Within the proposed model, this chapter has three aims. The first is to exam-

ine if the result of Brock and Hommes (1998) on rational routes to market instability

still holds in a continuous-time setup. The second is to study the joint impact of the

adaptive switching mechanism and the increase in time horizon on market stability. The

third is to explore potential of the model to replicate various market behavior, stylized

facts and long range dependence observed in financial markets. In order to focus the

analysis on the roles of time horizons, both He et al. (2009) and He and Zheng (2010) do

not consider adaptive behavior of agents. In this chapter, we follow Brock and Hommes

(1998) to introduce adaptive behavior of agents who switch their strategies in a bound-

edly rational way according to some ‘performance’ or ‘fitness’ measure such as cumulated

profits of strategies over past time horizons. For the corresponding deterministic model,

we first show that the result of Brock and Hommes on rational routes to market insta-

bility in discrete-time holds in continuous-time. That is, the adaptive switching behavior

of agents can lead to market instability as the switching intensity increases, generating

excess volatility. We then show a double edged effect of an increase in the lagged price

information used by the chartists on market stability, meaning that an increase in time

1For example, to examine the role of different moving average rules used by chartists on market stability, Chiarella et
al. (2006) propose a discrete-time HAM whose dimension depends on the time horizon of chartists used in moving average.

2Although the applications of delay differential equation models to asset pricing and financial market modelling are
relatively new, their applications to characterize fluctuation of commodity prices and cyclic economic behavior have a long
history, see, for example, Haldane (1932), Kalecki (1935), Goodwin (1951), Larson (1964), Howroyd and Russell (1984)
and Mackey (1989). The development further leads to the studies on the effect of policy lag on macroeconomic stability,
see, for example, Phillips (1954, 1957), Yoshida and Asada (2007), and on neoclassical growth model in Matsumoto and
Szidarovszky (2011).
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delay not only can destabilize the market but also can stabilize the market, a very different

feature in the continuous-time HAM which is not presented in the discrete-time HAMs.

This phenomenon is also observed in the continuous-time model in He et al. (2009) and

He and Zheng (2010) without switching, implying that this phenomenon is not due to

the switching mechanism. However, the switching affects the price dynamics significantly

when market becomes unstable. By including noise traders and imposing a stochastic

process on fundamental price, we demonstrate that the model is able to generate various

market phenomena, such as long-term deviations of the market price from the fundamen-

tal price, bubbles, crashes, and stylized facts, including non-normality in asset returns,

volatility clustering, and long-range dependence of high-frequency returns, observed in

financial markets. In particular, we show that the switching can generate more realistic

long range dependence in volatility.

The chapter is based on He and Li (2012) and organized as follows. We first introduce

a stochastic HAM of asset pricing in continuous-time with heterogeneous agents who are

allowed to switch among two types of strategies, fundamentalists and chartists, based on

accumulated profits of the strategies in Section 2.2. In Section 2.3, we apply stability

and bifurcation theory of delay differential equations, together with numerical analysis of

the nonlinear system, to examine the impact of switching and time horizon used by the

chartists on the market stability. Section 2.4 provides some numerical simulation results

of the stochastic model in exploring the impact of switching and the potential of the

model to generate various market behavior and the stylized facts. Section 2.5 concludes.

2.2 The Model

Consider a financial market with a risky asset (such as stock market index) and let P (t)

be the (cum dividend) price of the risky asset at time t. The modelling of the dynamics of

the risky asset follows closely to the current HAMs. However, instead of using a discrete-

time setup and Walrasian scenario, we consider a continuous-time setup and a market

maker scenario (as in Beja and Goldman 1980, Chiarella and He 2003b, Hommes et al

2005 and Chiarella et al. 2006).3 The market consists of fundamentalists who trade

according to fundamental analysis, chartists who trade based on price trend calculated

from weighted moving averages of historical prices over a time horizon, and a market

maker who clears the market by providing liquidity. To focus on price dynamics, we

motivate the excess demand functions of the two types of traders directly, rather than

3As presented in Chiarella et al. (2009), the Walrasian scenario, even though widely used in economic analysis, only
plays a part in one real market (the market for silver in London).
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deriving them from utility maximization of their portfolio investments. The behavior of

the traders is modelled as in He et al. (2009) and He and Zheng (2010). For completeness,

we introduce the demand functions of the fundamentalists and the chartists briefly and

refer readers to He et al. (2009) and He and Zheng (2010) for details.

The fundamentalists believe that the market price P (t) is mean-reverting to the fun-

damental price F (t) that can be estimated based on various types of fundamental in-

formation. They buy (sell) the stock when the current price P (t) is below (above) the

fundamental price F (t). For simplicity, the demand of the fundamentalists, Zf (t) at time

t, is assumed to be proportional to the price deviation from the fundamental price, namely,

Zf (t) = βf [F (t) − P (t)], (2.1)

where βf > 0 is a constant parameter, measuring the speed of mean-reversion of the

market price to the fundamental price, which may be weighted by a risk aversion coefficient

of the fundamentalists, and F (t) is the fundamental price of an exogenous random process

to be specified in Section 2.4.

The chartists are modelled as trend followers. They believe that the future market

price follows a price trend u(t). When the current price is above the trend, the trend

followers believe the price will rise and they like to hold a long position of the risky asset;

otherwise, the trend followers take a short position. We assume that the demand of the

chartists is given by

Zc(t) = tanh
(
βc[P (t) − u(t)]

)
. (2.2)

The S-shaped demand function capturing the trend following behavior is well documented

in the HAM literature (see, for example, Chiarella et al. 2009), where the parameter βc

represents the extrapolation rate of the trend followers on the future price trend when

the price deviation from the trend is small. However, they limit their positions when

the deviation is large. Among various price trends used in practice, we assume that the

price trend u(t) at time t is calculated by an exponentially decaying weighted average of

historical prices over a time interval [t − τ, t],

u(t) =
k

1 − e−kτ

∫ t

t−τ

e−k(t−s)P (s)ds, (2.3)

where time delay τ ∈ (0,∞) represents a price history used to calculate the price trend,

and k > 0 is a decay rate. Equation (2.3) implies that, when forming the price trend, the

trend followers believe the more recent prices contain more information about the future

price movement so that the weights associated to the historical prices decay exponentially
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with a decay rate k. In particular, when k → 0, the price trend u(t) in equation (2.3) is

simply given by the standard moving average with equal weights,

u(t) =
1

τ

∫ t

t−τ

P (s)ds. (2.4)

When k → ∞, all the weights go to the current price so that u(t) → P (t). For the time

delay, when τ → 0, the trend followers regard the current price as the price trend. When

τ → ∞, they use all the historical prices to form the price trend

u(t) =
1

k

∫ t

−∞
e−k(t−s)P (s)ds. (2.5)

In general, for 0 < k < ∞, equation (2.3) can be expressed as a delay differential equation

with time delay τ

du(t) =
k

1 − e−kτ

[
P (t) − e−kτP (t − τ) − (1 − e−kτ )u(t)

]
dt. (2.6)

In the spirit of Brock and Hommes (1997, 1998) and Chiarella et al. (2006), we now

introduce the evolution of market population of agents. Let Nf (t) and Nc(t) be the

numbers of agents who use the fundamental and chartist strategies, respectively, at time

t. Assume that market population of agents Nf (t) + Nc(t) = N is a constant. Denote

by nf (t) = Nf (t)/N and nc(t) = Nc(t)/N the market fractions of agents who use the

fundamental and trend following strategies, respectively. The net profits of the funda-

mental and trend following strategies over a short time interval [t − dt, t] are measured

by, respectively,

πf (t)dt = Zf (t)dP (t) − Cfdt, πc(t)dt = Zc(t)dP (t) − Ccdt, (2.7)

where Cf , Cc ≥ 0 are constant costs of the strategies per unit time. The performances

of the strategies are measured by cumulated and weighted net profits over time intervals

[t − τi, t]
4,

Ui(t) =
ηi

1 − e−ηiτi

∫ t

t−τi

e−ηi(t−s)πi(s)ds, i = f, c, (2.8)

where ηi > 0 and τi > 0 for i = f, c represent the decay parameter and time horizon

respectively used to measure the performance of the fundamentalists and trend followers.

4The time delays used to measure the performances can be different from the delay used by the chartists to calculate the
price trend in general. In addition, comparing to the trend followers, the fundamentalists use historical prices over a longer
time horizon τf with lower decaying rate ηf . The impact of different time horizons and decay rates in the performance is
discussed in footnote 11.
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Consequently,

dUi(t) = ηi

[
πi(t) − e−ηiτiπi(t − τi)

1 − e−ηiτi
− Ui(t)

]
dt, i = f, c. (2.9)

By using the replicator dynamics (see, for example, Chapter 7 in Hofbauer and Sigmund,

1998), the evolution dynamics of the market populations are governed by

dni(t) = βni(t)[dUi(t) − dŪ(t)], i = f, c, (2.10)

where dŪ(t) = nf (t)dUf (t) + nc(t)dUc(t) is the change of the average performance (over

a time interval [t, t + dt]) of the two strategies and β > 0 is a constant, measuring the

switching intensity of agents who change their strategy to a better performing strategy.

In particular, if β = 0, there is no switching among agents, while for β → ∞ all agents

immediately switch to the better strategy.

It can be verified that the above switching mechanism in continuous-time setup is

consistent with the one used in discrete-time HAMs. In fact, the dynamics of the market

fraction nf (t) satisfies

dnf (t) = βnf (t)(1 − nf (t))[dUf (t) − dUc(t)], (2.11)

leading to

nf (t) =
eβUf (t)

eβUf (t) + eβUc(t)
, (2.12)

which is the discrete choice model used in Brock and Hommes (1997, 1998).5 In addition,

when τi → 0, Ui(t) ≈ πi(t), defining the performance by the current profit. When τi → ∞,

Ui(t+dt) ≈ Ui(t)+δiπi(t) with δi = ηidt, defining the performance as cumulated historical

profits that decay geometrically at a rate of δi.

Finally, the price P (t) at time t is adjusted by the market maker according to the

aggregate market excess demand, that is,

dP (t) = μ
[
nf (t)Zf (t) + nc(t)Zc(t)

]
dt + σMdWM(t),

where μ > 0 represents the speed of the price adjustment by the market maker, WM(t)

is a standard Wiener process capturing the random excess demand process either driven

by unexpected market news or noise traders, and σM > 0 is a constant.

To sum up, the market price of the risky asset is determined according to the fol-

lowing stochastic delay differential system with three different time delays and two noise

5The equivalence of (2.11) and (2.12) is demonstrated in Appendix A.1.
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processes6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t) = μ
[
nf (t)Zf (t) +

(
1 − nf (t)

)
Zc(t)

]
dt + σMdWM(t),

du(t) =
k

1 − e−kτ

[
P (t) − e−kτP (t − τ) − (1 − e−kτ )u(t)

]
dt,

dUf (t) =
ηf

1 − e−ηf τf

[
πf (t) − e−ηf τf πf (t − τf ) − (1 − e−ηf τf )Uf (t)

]
dt,

dUc(t) =
ηc

1 − e−ηcτc

[
πc(t) − e−ηcτcπc(t − τc) − (1 − e−ηcτc)Uc(t)

]
dt,

(2.13)

where nf (t) is defined by (2.12), Zf (t) and Zc(t) are defined by (2.1) and (2.2), respectively,

and πi(t) is defined by (2.7) for i = f, c.

In summary, we have established an adaptively heterogeneous belief model of asset

price in a continuous-time. The resulting model is characterized by a five-dimensional

system of nonlinear stochastic delay differential equations, which can be difficult to analyze

directly. To understand the interaction of the deterministic dynamics and noisy processes,

we first study the dynamics of the corresponding deterministic model in Section 2.3. The

stochastic model (2.13) is then analyzed in Section 2.4.

2.3 Dynamics of the Deterministic Delay Model

By assuming that the fundamental price is a constant F (t) ≡ F̄ and there is no market

noise σM = 0, the system (2.13) becomes a deterministic differential system with three

time delays

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)

dt
= μ

[
nf (t)βf (F̄ − P (t)) +

(
1 − nf (t)

)
tanh

(
βc

(
P (t) − u(t)

))]
,

du(t)

dt
=

k

1 − e−kτ

[
P (t) − e−kτP (t − τ) − (1 − e−kτ )u(t)

]
,

dUf (t)

dt
=

ηf

1 − e−ηf τf

[
πf (t) − e−ηf τf πf (t − τf ) − (1 − e−ηf τf )Uf (t)

]
,

dUc(t)

dt
=

ηc

1 − e−ηcτc

[
πc(t) − e−ηcτcπc(t − τc) − (1 − e−ηcτc)Uc(t)

]
,

(2.14)

where

πi(t) = μZi(t)
[
nf (t)Zf (t) +

(
1 − nf (t)

)
Zc(t)

]
− Ci, i = f, c.

6Note that Zf (t) is a stochastic process depending on the stochastic fundamental process F (t) specified later in Eq.
(2.17).
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It is easy to see that (P, u, Uf , Uc) = (F̄ , F̄ ,−Cf ,−Cc) is a unique steady state of the

system (2.14), which consists of the constant fundamental price and the costs of the

strategies per unit time. We therefore call (P, u, Uf , Uc) = (F̄ , F̄ ,−Cf ,−Cc) the fun-

damental steady state. We now study the dynamics of the deterministic model (2.14),

including the stability and bifurcation of the fundamental steady state.

At the fundamental steady state, the market fractions of the fundamentalists and the

chartists become n∗
f := 1/(1+eβC) and n∗

c := 1/(1+e−βC) respectively, where C = Cf−Cc

measures the disparity of the strategy cost rates. Obviously, when C = 0, n∗
f = n∗

c = 0.5,

meaning that the market fractions at the fundamental steady state is independent of the

switching intensity parameter β. However, if it costs agents more to use the fundamental

strategy, that is C > 0, then there are more chartists than the fundamentalists at the

fundamental steady state, that is n∗
c > n∗

f . Furthermore, when C > 0, an increase in β

decreases the steady state market fraction n∗
f of the fundamentalists.

It is known (see Gopalsamy 1992) that7 the stability is characterized by the eigenvalues

of the characteristic equation of the system at the steady state. Denote γf = μn∗
fβf and

γc = μ(1−n∗
f )βc. Then the characteristic equation of the system (2.14) at the fundamental

steady state (P, u, Uf , Uc) = (F̄ , F̄ ,−Cf ,−Cc) is given by8

Δ(λ) := (λ + ηf )(λ + ηc)Δ̃(λ) = 0, (2.15)

where

Δ̃(λ) = λ2 + (k + γf − γc)λ + kγf − kγc +
kγc

1 − e−kτ
− kγce

−(λ+k)τ

1 − e−kτ
. (2.16)

Note that equation (2.16) has the same form as the characteristic equation of the model

studied in He et al (2009) and He and Zheng (2010) except that γf and γc are defined

differently. Hence we can apply Theorems 3.2, 3.3 and 3.4 in He et al. (2009) and Propo-

sition 3.5 in He and Zheng (2010) to system (2.14). For completeness, we summarize the

results as follows and refer the details to He et al. (2009) and He and Zheng (2010).

Firstly, the stability of the steady state do not change for time delay τ > τ̃ , where

τ̃ =
1

k
ln

[
1 +

2kγc

(k + γf − γc)2 + 2 | k + γf − γc |
√

kγf

]
.

That is, there is an upper bound on the time delay for stability change. Secondly, the

7For a general theory of functional differential equations, we refer readers to Hale (1997).
8Interestingly, the time delays τf , τc and decaying rates ηf , ηc introduced in the performance measures in (2.8) do not

appear in the characteristic equation, hence they do not affect the local stability and bifurcation analysis. This is due to the
fact that they are in higher order terms and they affect the nonlinear dynamics, rather than the dynamics of the linearized
system. Their impact on the nonlinear dynamics is addressed there in footnote 11.
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change in stability happens only when there is a τ ∈ (0, τ̃ ] and a non-negative integer n

such that S+
n (τ) = 0 or S−

n (τ) = 0 defined by9

S±
n (τ) = τ − θ±(τ) + 2nπ

ω±(τ)
, τ ∈ (0, τ̃ ], n = 0, 1, 2, · · · ,

where

ω± =

(−a1 ±
√

a2
1 − 4a2

2

) 1
2

, θ±(τ) =

⎧⎪⎨⎪⎩
arccos(a4±), for a3± ≥ 0;

2π + arcsin(a3±), for a3± < 0, a4± ≥ 0;

2π − arccos(a4±), for a3± < 0, a4± < 0

and

a1 = k2 + γ2
f + γ2

c − 2γfγc − 2kγc

1 − e−kτ
, a2 = k2γ2

f +
2k2γfγce

−kτ

1 − e−kτ
,

a3± =
−ω±(τ)(1 − e−kτ )(k + γf − γc)

kγce−kτ
, a4± = 1 − (1 − e−kτ )(ω2

±(τ) − kγf )

kγce−kτ
.

Denote

τ0 = inf
{{

τ̃
}⋃{

τ ∈ (0, τ̃ ] | ∃n ∈ {0, 1, 2, · · · }, S+
n (τ) = 0 or S−

n (τ) = 0
}}

.

Then the local stability and bifurcation of the fundamental steady state with respect to

the time delay of system (2.14) are summarized in the following proposition.

Proposition 2.1 The fundamental steady state of system (2.14) is

(i) asymptotically stable for τ ∈ [0, τ0);

(ii) asymptotically stable for τ > τ̃ when γf > γc − k;

(iii) unstable for τ > τ̃ when γf < γc − k.

In addition, the system (2.14) undergoes Hopf bifurcations at the zero solutions of func-

tions S±
n (τ).

Proposition 2.1 implies that the fundamental steady state is stable for either small or

large time delay when the market is dominated by the fundamentalists (in the sense of

γf + k > γc). Otherwise, when the trend followers become more active comparing with

the fundamentalists (in the sense of γc > γf + k), the fundamental steady state becomes

unstable through Hopf bifurcations when time delay increases. Meanwhile, when the

9We refer to Theorem 3.3 in He et al. (2009) for the properties of functions S±
n (τ).
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trend followers put more weights to the most recent historical prices (so that k is large),

the fundamental price is stabilized. This result is in line with the results obtained in

discrete-time HAMs. In fact, when the time horizon is small, the insignificant price

trend, resulting in weak trading signals, limits the destabilizing activity of the chartists.

Consequently, the fundamentalists dominate the market and the market becomes stable.

However, Proposition 2.1 also indicates a very interesting phenomenon of the continuous-
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Figure 2.1: (a) The plots of S±
n as functions of τ ; (b) the corresponding bifurcation diagram of the market

prices with respect to τ ; and the market price for (c) τ = 3 and (d) τ = 16. Here k = 0.05, μ = 1,
βf = 1.4, βc = 1.4, β = 2, Cf = 0.05, Cc = 0.03, ηf = 0.5, ηc = 0.6, τf = 17, τc = 16, and F̄ = 1.

time model, which is not easy to obtain in a discrete-time model, that is the stability

switching10. That is, the system becomes unstable as time delay increases initially, but

the stability can be recovered when the time delay becomes large enough. Intuitively,

when time horizon is large, the price trend becomes significant, resulting in strong trading

signals. However, the activity of the trend followers, measured by γc and k, is limited by

10This phenomenon is also observed in the continuous-time model in He et al. (2009) and He and Zheng (2010) without
switching, implying that this is not crucially due to the switching mechanism introduced in this chapter. However, the
switching affects the price dynamics significantly when the steady state becomes unstable and/or when the stochastic model
is considered. This is demonstrated by Figs 2.3, 4.1 and 4.3 and the related discussions there.
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the activity of the fundamentalists, measured by γf . Therefore, the market is dominated

by the fundamentalists, leading to a stable market. Fig. 2.1 illustrates such interesting

stability switching phenomenon11. Fig. 2.1 (a) indicates two Hopf bifurcation values

in τ , say τ0 < τ1, determined by two zero solutions of S±
0 (τ). The first one occurs

when S+
0 (τ) crosses 0 at τ = τ0 ≈ 7.45 and the second one occurs when S−

0 (τ) crosses

0 at τ = τ1 ≈ 31.09. Fig. 2.1 (b) plots the corresponding bifurcation diagram of the

market price with respect to τ showing that the fundamental steady state is stable for

τ ∈ [0, τ0) ∪ (τ1,∞) and Hopf bifurcations occur at τ = τ0 and τ = τ1. Figs 2.1 (c) and

(d) illustrate that the fundamental steady state is asymptotically stable for τ = 3 (< τ0)

and unstable for τ = 16 (∈ (τ0, τ1)). Numerical simulations for τ > τ1 (not reported here)

verify the stability of the fundamental steady state. The difference of the stability between

small τ (τ < τ0) and large τ (τ > τ1) is that the speed of the convergence is high for small

delays and low for large delays. We can see that it is the continuous-time model that

facilitates such analysis on the stability effect of lagged price information and stability

switching, an advantage of the continuous-time model over the discrete-time model.
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Figure 2.2: The bifurcation of price with respect to β, here τ = 8.

In the discrete-time Brock and Hommes framework, the rational routes to compli-

cated price dynamics are characterized as the switching intensity β increases. For the

continuous-time model developed in this chapter, this result also holds. Fig. 2.2 plots the

price bifurcation diagram with respect to the switching intensity parameter β. It shows

that the steady state is stable when the switching intensity β is low, but becomes unstable

as the switching intensity increases, bifurcating to stable periodic price with increasing

fluctuations. The periodic fluctuations of the market prices are associated with periodic
11All the numerical results in this chapter are based on k = 0.05, μ = 1, βf = 1.4, βc = 1.4, β = 2, Cf = 0.05, Cc = 0.03,

ηf = 0.5, ηc = 0.6, τf = 17, τc = 16 and F̄ = 1, unless specified otherwise. In particular, we choose ηf = 0.5, ηc = 0.6,
τf = 17 and τc = 16 to take into account that the fundamentalists calculate the weighted cumulated profit over longer time
horizons with small decaying rate in weights comparing to the trend followers. As we indicated earlier, they do not affect
the local stability and bifurcations. However, simulations (not reported here) show that an increase in ηf (or a decrease in
ηc) can increase the fluctuations in price and population switching, but τf and τc appear to have marginal effect on the
fluctuations.
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fluctuations of the market fractions. To illustrate this feature, Fig. 2.3 plots the time
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Figure 2.3: (a) The time series of the market prices P (t) with switching (the blue solid line with high
volatility) and without switching (the red dotted line with low volatility) and the market fraction nf (t) of
fundamentalists (the green dash dot line); (b) the phase plot of (P (t), nf (t)); (c) the density distribution
of the market fraction nf (t) of the fundamentalists.

series of prices P (t) and the market fraction of the fundamentalists nf (t), a phase plot

of the price, and the distribution of the market fraction nf (t) of the fundamentalists for

time delay τ = 16. Based on the bifurcation diagram in Fig. 2.1 (b), the steady state

is unstable for τ = 16. Fig 2.3 (a) shows the periodic fluctuations in both the market

fraction and the market price of the switching model (2.14). To better understand the

impact of agents’ adaptive switching behavior when the fundamental steady state be-

comes unstable, we also plot in Fig. 2.3 (a) the market price of the no-switching model in

He et al. (2009)12. One can see that the switching increases the price fluctuations. The

phase plot in Fig. 2.3 (b) shows that price and fraction converge to a figure-eight shaped

12The parameters in model (2.14) are chosen in such a way so that the steady state population fractions n∗
f and n∗

c are

the same in the two models. Previous stability analysis demonstrates that when the market price of the switching model is
unstable, so is the no-switching model.
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attractor, a phenomenon which is also observed in the discrete-time model in Chiarella

et al. (2006). More interestingly, the period of the fluctuation of the market price is twice

as much as that of the market fraction and the market prices are close to the fundamental

prices whenever the market fractions of the fundamentalists are high. The corresponding

distribution of the market fraction nf (t) of the fundamentalists illustrated in Fig. 2.3 (c)

shows clearly the switching of agents’ trading strategies over the time. Further simula-

tions (not reported here) show that the fluctuations in both price and population fraction

increase as the switching intensity increases.
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Figure 2.4: The relationships of the first bifurcation value τ0 with n∗
f and β.

Regarding the joint impact of the time delay, the switching, and the steady state

market fractions on market stability, we have shown that an initial increase in time delay

destabilizes the fundamental price, however a high steady state market fraction of the

fundamentalists stabilizes the price. Also, an increase in switching intensity destabilizes

the fundamental price. Hence, with respect to the stability of the steady state, a positive

relation between the market fraction of the fundamentalists and the time delay and a

negative relation between the switching intensity and the time delay are expected. The

above intuition is verified in Fig. 2.4 which plots the first bifurcation value τ0 with respect

to the market fraction of the fundamentalists at the fundamental steady state n∗
f in Fig.

2.4 (a) and the intensity β in Fig. 2.4 (b).

We complete this section with an observation. The twin-peak-shaped density distri-

bution in Fig. 2.3 (c) imply that, when the fundamental price is unstable, the market

fractions tend to stay away from the steady state market fraction level most of the time

and a mean of nf (t) below 0.5 clearly indicates the dominance of the chartist strategy.

In summary, the analysis shows that the continuous-time HAM provides a better un-

derstanding of the market dynamics. Apart from providing some consistent results to
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the discrete-time HAMs on rational routes to market instability, we are able to study

the impact of lagged prices used by the chartists on market stability. Also, the adaptive

switching behavior of agents can increase the price fluctuations.

2.4 Price Behavior of the Stochastic Model

In this section, through numerical simulations, we focus on the interaction between the

dynamics of the deterministic model and noise processes and explore the potential power of

the model to generate various market behavior and the stylized facts observed in financial

markets. To complete the stochastic model (3.7), we introduce the stochastic fundamental

price process,

dF (t) =
1

2
σ2

F F (t)dt + σF F (t)dWF (t), F (0) = F̄ , (2.17)

where σF > 0 represents the volatility of the fundamental return and WF (t) is a standard

Wiener process. The market noise WM(t) and fundamental price noise WF (t) can be

correlated and let ρ be their correlation. It follows from (2.17) that the fundamental return

defined by d
(
ln(F (t))

)
is a pure white noise process following the normal distribution with

mean of 0 and standard deviation of σF

√
dt. This ensures that any non-normality and

volatility clustering of market returns that the model could generate are not carried from

the fundamental returns.
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Figure 2.5: The time series of the fundamental price (the blue dotted line) and the market prices of the
switching model (the red solid line) and the no-switching model (the green dash dot line) for two delays
(a) τ = 3 and (b) τ = 16. Here σF = 0.12, σM = 0.05 and ρ = 0.

Firstly, we explore the joint impact of the time horizon τ of the chartists and the

two noise processes on the market price dynamics. For the corresponding deterministic

model (2.14), Figs 2.1 (c) and (d) show that the fundamental steady state is stable for

τ = 3 and unstable for τ = 16, leading to periodic fluctuations of the market price.
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For the stochastic model, with the same random draws of the fundamental price and

the market noise processes, we plot the fundamental price (the blue dotted line) and the

market prices of both the switching model (2.13) (the red solid line) and the no-switching

model with population fractions being n∗
f and n∗

c (the green dash dot line) in Fig. 2.5

for two different values of τ . For τ = 3, Fig. 2.5 (a) demonstrates that the market

price13 follows the fundamental price closely and there is no significant difference for the

market prices with and without switching. For τ = 16, Fig. 2.5 (b) indicates that the

market price fluctuates around the fundamental price in cyclic way, which is underlined by

the bifurcated periodic oscillation of the corresponding deterministic model. In addition,

similar to the deterministic model, the price fluctuations of the stochastic model are high

with switching.

Secondly, we explore the potential of the stochastic model in generating the stylized

facts for daily data observed in financial markets. We choose τ = 3 so that the steady

state is stable14, as illustrated in Fig. 2.1 (c). We study at first the case when the two

stochastic processes are independent, that is ρ = 0. For the stochastic model with both

noisy processes, Fig. 2.6 represents the results of a typical simulation. Fig. 2.6 (a) shows

that the market price (the red solid line) follows the fundamental price (the blue dotted

line) in general, but accompanied with large deviations from time to time. The returns

of the market prices in Fig. 2.6 (b) show significant volatility clustering. Comparing to

the corresponding normal distribution, the return distribution in Fig. 2.6 (c) displays

high kurtosis. The returns show almost insignificant autocorrelations (ACs) in Fig. 2.6

(d), but the ACs for the absolute returns and the squared returns in Figs. 2.6 (e) and

(f) are significant with strong decaying patterns as time lag increases, implying a long

range dependence. These results demonstrate that the stochastic model established in this

chapter has a great potential to generate most of the stylized facts observed in financial

markets.

We may argue that the above features of the stochastic model is a joint outcome of

the interaction of the nonlinear HAM and the two stochastic processes similar to He and

Zheng (2010). With the same random seeds, we report the simulation results in Figs.

2.7 and 2.8 when there is only one stochastic process involved. In Fig. 2.7, there is no

market noise and the fundamental price is the only stochastic process. The time series,

return density distribution, and the ACs of the returns, the absolute returns and the

squared returns do not replicate these stylized facts demonstrated in Fig. 2.6. Alterna-

13In the simulations in this section, time unit is a year, an annual volatility is given by σF = 0.12, and the time step of
numerical simulations is 0.004, corresponding to one day.

14It appears that the stylized facts can also be obtained by choosing τ from its unstable interval. The implications of
different choice of delays on the stylized facts would be interesting.
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Figure 2.6: The time series of (a) the market price (red solid line) and the fundamental price (blue dotted
line) and (b) the market returns; (c) the return distribution; the ACs of (d) the returns; (e) the absolute
returns, and (f) the squared returns. Here σF = 0.12, σM = 0.05 and ρ = 0.
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Figure 2.7: The time series of (a) the market price (red solid line) and the fundamental price (blue dotted
line) and (b) the returns; (c) the return distribution; the ACs of (d) the returns; (e) the absolute returns,
and (f) the squared returns. Here σF = 0.12, σM = 0 and ρ = 0.
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Figure 2.8: The time series of (a) the market price (red solid line) and the fundamental price (blue dotted
line) and (b) the returns; (c) the return distribution; the ACs of (d) the returns; (e) the absolute returns,
and (f) the squared returns. Here σF = 0, σM = 0.05 and ρ = 0.
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tively, in Fig. 2.8 the market noise process is the only stochastic process. It shows that

the return is basically described by a white noise process. Both Figs 2.7 and 2.8 indicate

that the potential of the model in generating the stylized facts is not due to either one

of the two stochastic processes, rather than to both processes. The underlying mecha-

nism in generating the stylized facts, long range dependence, and the interplay between

the nonlinear deterministic dynamics and noises are very similar to the one explored in

He and Li (2007) for a discrete-time HAM. Economically, the fundamental noise can be

very different from the market noise and consequently they affect the market price differ-

ently. Without the market noise, the market price is driven by the mean-reverting of the

fundamentalists (to the fundamental price) and the trend chasing of the chartists; both

contribute to building up market price trend. Due to the randomness of the fundamental

price, there are persistent mean-reverting activities from the fundamentalists that provide

the chartists opportunities to explore the price trend. Therefore, the significant ACs of

the market returns, absolute returns and squared returns in Fig. 2.7 reflect the interaction

of the fundamentalists and the chartists. However, with the market noise and a constant

fundamental price, the price trend is less likely formed and explored by the chartists.

This limits the impact of the speculative behavior of the chartists, which explains the

insignificant ACs of the market returns, absolute returns and squared returns in Fig. 2.8.

With both noise processes, the price trend is difficult to explore (due to the market noise)

and consequently the returns become less predictable. However, the interaction of the

fundamentalists and the chartists becomes intensive due to some large changes in the

fundamental price from time to time, implying the significant ACs in return volatility,

shown in Fig. 2.6 (d)-(f).
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Figure 2.9: (a) The return distributions; the average ACs of (b) the absolute returns and (c) the squared
returns based on 200 simulations for both the switching (the red solid line) and no-switching (the dash-
dotted blue line) models . Here σF = 0.12, σM = 0.05 and ρ = 0.
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To understand the impact of the adaptive switching behavior of agents on the stylized

facts and the AC patterns, based on 200 simulations with different random seeds, Fig.

2.9 reports the return distributions and the average ACs of the absolute returns and the

squared returns of the switching model (2.13) (the red solid line) and the no-switching

model (the blue dash-dotted line). Fig. 2.9 (a) shows that the switching model displays

higher kurtosis than the no-switching model. In addition, Figs. 2.9 (b) and (c) show that

the ACs of both the absolute returns and the squared returns are significantly. However,

the ACs for the switching model decay quickly, which are more close to the AC patterns

observed in financial time series15.
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Figure 2.10: The average ACs of (a) the absolute returns and (b) the squared returns based on 200
simulations for ρ = 0,±0.5,±1. Here σF = 0.12 and σM = 0.05.

Given that the market noise may be correlated with the fundamental price noise, we

now examine the impact of the correlated noises on the AC patterns. Based on 200

simulations for different ρ (0,±0.5,±1), Fig. 2.10 compares the ACs of the absolute and

squared returns, from which we have a number of interesting observations. Firstly, the

ACs are significant and decaying for all correlations, implying that the mechanism in

generating the long range dependence can be independent of the correlation of the two

noise processes. Secondly, the ACs become more significant when the noise processes are

negatively correlated, in particular, when ρ = −1; while they become less significant when

they are positively correlated, in particular, when ρ = 1. Thirdly, not perfectly positively

correlated noises lead to more realistic AC decaying patterns.

We conclude this section with a remark on the predictability of asset returns over

different trading frequency. As one of the stylized facts, the insignificant ACs of daily

returns imply that daily returns are not predictable. However, it is well documented

15In a discrete-time model, He and Li (2007) show that the no-switching model is able to replicate the significant decaying
AC patterns in the absolute and squared returns, but the speed of the decaying is low comparing to the AC patterns observed
in financial time series. Further statistic test would be useful to clarify such difference and we leave this to the future research.
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Figure 2.11: The ACs of the weekly and monthly market returns. Here τc = 16, σF = 0.12, σM = 0.05
and ρ = 0.

(see for example Pesaran and Timmermann 1994, 1995) that weekly and monthly returns

are predictable. Fig. 2.11 illustrates the ACs of (a) weekly and (b) monthly returns.

The significant ACs indicate that weekly and monthly returns are predictable, showing

that the model has potential to replicate the return predictability for different trading

frequency. It would be interesting to explore this potential further.

2.5 Conclusion

This chapter contributes to the development of financial market modelling and asset price

dynamics with bounded rationality and heterogeneous agents. Most of the heterogeneous

agent models developed in the literature are in the discrete-time setup. Among various

issues in this literature, the impact of adaptive behavior on market stability has been well

studied, while the impact of lagged prices (used by chartists to form their expectations)

on market stability has not been well understood due to the problem of high dimensional

systems. This chapter develops a continuous-time framework to study the joint impact

of lagged prices and adaptive behavior of heterogeneous agents. By using the replicator

dynamics in population evolution literature, we extend the discrete choice model used

in discrete-time HAMs to a continuous-time model. The delay differential equations

provide a uniform approach to study the impact of the lagged prices through a time delay

parameter.

The continuous-time model developed in this chapter studies a financial market con-

sisting of adaptive and heterogeneous agents using fundamental and technical strategies.

Agents change their strategies in a boundedly rational way according to a performance

measure of the accumulated profits. The analysis of the model provides not only some
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consistent results to the discrete-time HAMs, such as stabilizing effect of fundamentalists,

destabilizing effect of chartists, and the rational routes to market instability, but also a

double edged effect of an increase in lagged prices on market stability. An increase in the

using of lagged prices can not only destabilize, but also stabilize the market price. More

importantly, the adaptive switching behavior of agents can increase market price fluctu-

ations. By introducing a market noise characterizing noise traders or liquidity trading

and imposing a stochastic process on fundamental price, we demonstrate that the model

is able to generate long deviations of the market price from the fundamental price, bub-

bles, crashes, and most of the stylized facts, including non-normality in return, volatility

clustering, and long range dependence of high-frequency returns, observed in financial

markets. In addition, comparing to the no-switching model, the adaptive behavior of

agents can generate more realistic AC patterns in the absolute and squared returns.

The continuous-time framework developed in this chapter has shown some advantages

comparing to the discrete-time framework, in particular when dealing with the impact of

lagged prices. The framework can be used to study the joint impact on the markets of the

irrational herding behavior and the more rational switching. This is the focus of Chapter 3.

Also, the profitability of different trading strategies, including momentum and contrarian

strategies, are well documented in empirical literature and it would be interesting to

explore these empirical features within the continuous-time framework developed in this

chapter. We leave these studies to Chapter 4.



Chapter 3

Herding, Trend Chasing and Market

Volatility

3.1 Introduction

Trend chasing, switching among different trading strategies and herding behavior are the

most commonly observed boundedly rational behaviors of investors in financial markets.

In Chapter 2, we focus on trend chasing and switching, and show that the proposed model

is able to generate various market phenomena and stylized facts. Herding refers broadly

to the tendency of many different agents to take similar actions at roughly the same time.1

Based on the model in Chapter 2, this chapter also incorporates herding behavior and

studies their joint impact on market volatility.

Large fluctuations in market price, excess volatility in return, and volatility cluster-

ing are the most common stylized facts in financial markets. The question is how these

boundedly rational behaviors of investors contribute to market volatility differently. This

chapter introduces a heterogeneous agent asset pricing model in a continuous-time frame-

work to address this question. We show that herding and trend chasing based on long time

horizon increase market volatility in price and return. However, the effect of switching

is different for price volatility and opposite for return volatility. We also show that these

boundedly rational behavior of investors contribute to the power-law behavior, character-

ized by insignificant autocorrelations (ACs) in the returns and significant and decaying

ACs in the absolute and squared returns; however, their effects are different. More pre-

cisely, the level of the significant ACs increases with the herding and trend chasing based

on long time horizon, but increases initially and then decreases as the switching intensity

1Scharfstein and Stein (1990) attribute it to the reputational concerns and the unpredictable components to investment
outcomes. Banerjee (1992) shows that herd behavior is rational in term of obtaining others’ information.

32
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increases. In general, it is the interaction of nonlinear dynamics and noises that gen-

erates realistic market price dynamics. We show that the market noise characterizing

noise trading or liquidity trading plays more important role than the fundamental noise

in generating the power-law behavior. To our knowledge, this chapter is the first showing

that the herding and switching have opposite effect on the return volatility and different

impact on the power-law behavior.

This chapter is closely related to the recent development of heterogeneous agent mod-

els (HAMs) considering financial markets as expectation feedback systems and hence

asset price fluctuations can be caused by an endogenous mechanism with heterogeneity

and bounded rationality. Various agent-based financial market models have been devel-

oped to incorporate trend chasing, switching and herding. For instance, both Brock and

Hommes (1998) in discrete-time and Chapter 2 in continuous-time show that switching

can generate complex behavior from local stability to high order cycles and chaos. Within

a continuous-time framework, Lux (1995) and Alfarano, Lux and Wagner (2008) model

the herding behavior through the master equation and show that herding can give rise to

realistic time series. Within a discrete-time framework, Hohnisch and Westerhoff (2008)

show how herding behavior at the level of individual economic sentiment may lead to en-

during business cycles, and Franke and Westerhoff (2012) show a strong role for a herding

component when generating realistic moments in financial time series.

This chapter provides a unified framework in a continuous-time model to examine

the joint impact of trend chasing, switching, and herding on market price dynamics and

compare different roles they play in generating market volatility in price and return and

the power-law behavior of stock return volatility. Following Chapter 2, we introduce

a continuous-time financial market with two types of agents, the fundamentalists who

trade on the fundamental value and the trend followers who extrapolate the market price

trend based on weighted moving average price over a finite time horizon. The herding

behavior among the agents is characterized by the master equation. The market price is

determined by a market maker who adjusts the market price to the excess demand from

the fundamentalists and trend followers, together with a noisy demand. The continuous-

time setup chosen in the chapter not only mathematically facilitates the modelling of

the time horizon of the historical price information used by the trend followers, but also

easily accommodates the herding behavior through the master equation with endogenously

determined volatility.

We first examine the dynamics of the underlying deterministic model. Differently from

the adaptive switching model in Chapter 2, we find that the herding mechanism does not

affect the local stability of the steady state fundamental price, although it does affect the
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nonlinear behavior. Based on the analysis of the deterministic dynamics, we then study

the joint impact of trend chasing, herding, and switching on the volatility of market price

and return of the stochastic model. We find that the trend chasing based on historical

prices over a long time horizon always leads to high volatility in both market prices and

stock returns, which is underlined by the destabilizing effect of the trend chasing. Also,

herding and switching have very different effect on the market volatility. A strong herding

contributes to high fluctuation in market fractions and market price and hence generates

high volatilities in prices and returns, while a more intense switching reduces the return

volatility and has a non-monotonic effect on the volatilities of market fractions and prices.

More interestingly, we observe a “hump” shaped volatility in the market fraction and a

“U”-shaped price volatility as the switching intensity increases.

We explore further the potential of the model to generate the power-law behavior in

volatility. Following the HAMs literature, we find that it is the interaction of the nonlinear

dynamics of the underlying deterministic model and the noises that generates the power-

law behavior. We examine the impact of different noises (including fundamental noise,

market noise and market fraction noise), time horizon, switching and herding on the

ACs of the returns, absolute returns, and squared returns. We find that market noise is

the main driving force in generating the power-law behavior. The AC patterns become

more significant as the time horizon and herding increase, but non-monotonic with the

switching. Specifically, an initial increase in the switching intensity leads to an increase

in the significant levels of ACs but a decrease as the switching increases further. In

general, it is the combination of switching and herding, together with the market noise,

that generates realistic power-law behavior.

The chapter is based on Di Guilmi, He and Li (2013) and organized as follows. We first

introduce a stochastic HAM of asset pricing in continuous-time with trend chasing, herd-

ing, switching and heterogeneous beliefs in Section 3.2. In Section 3.3, we apply stability

and bifurcation theory of delay differential equations, together with numerical analysis

of the nonlinear system, to examine the impact of herding, switching and time horizon

used by the trend followers on market stability. The effect of and different role played

by trend chasing, herding and switching on market volatility and power-law behavior are

then discussed in Sections 3.4 and 3.5, respectively. Section 3.6 concludes. All proofs and

some additional results are given in Appendix B.
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3.2 The Model

Consider a financial market with a risky asset (such as stock market index) and let P (t) be

the (cum dividend) price of the risky asset at time t. Following the standard approach of

HAMs, see, for example, Brock and Hommes (1998), we assume that the market consists

of fundamentalists who trade according to the fundamental value of the risky asset, trend

followers who trade based on price trend of a weighted moving averages of historical prices

over a time horizon, and a market maker who clears the market by providing liquidity. The

behavior of the fundamentalists and trend followers is modelled as usual. Different from

the discrete-time HAMs in the literature (for example, Chiarella and He, 2002 and 2003a),

we consider a continuous-time setup to accommodate different time horizon used by the

trend followers and the stochastic master equation characterizing the herding behavior of

agents. The demand functions of the fundamentalists and the trend followers Zi(t), the

net profits πi(t) and the performances of the strategies Ui(t), i = f, c are of the same forms

given by Chapter 2. Instead of studying switching effect in Chapter 2, we characterize

the market fraction dynamics of the fundamentalists and the trend followers ni(t), i = f, c

with herding effect in current chapter.

Denote by a(t) the transition probability of an agent switching from being trend fol-

lower to fundamentalist and by b(t) the probability of the inverse transition. Following

Lux (1995), the probabilities can be quantified by

a(t) = veβ(Uf (t)−Uc(t)), b(t) = veβ(Uc(t)−Uf (t)), (3.1)

where Ui(t), i = f, c is given by (2.8) in Chapter 2, β measures the switching intensity and

v > 0 captures the intensity of herding explained in the following. Let ζ(t) denote the

probability of observing a change of an agent from the trend follower to the fundamentalist

and ξ(t) denote the probability of recording the opposite transition. Both ζ(t) and ξ(t)

are assumed to be proportional to the transition probability of the switching and the

corresponding market fractions to capture the herding behavior. Then the transition

rates can be expressed as

ζ(t) = (1 − nf (t))a(t) = v(1 − nf (t))e
β(Uf (t)−Uc(t)), (3.2)

ξ(t) = nf (t)b(t) = vnf (t)e
β(Uc(t)−Uf (t)). (3.3)

Note that, when β = 0, a large v means a strong herding among the agents. Hereafter,

we use β and v to measure the (performance based) switching and herding, respectively,

among the agents. Following Lux (1995), the master equation measuring the variation of
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probability in a unit of time by taking the number of fundamentalists as a state variable

is given by

dp(Nf , t)

dt
= ζ(t)p(Nf − 1, t) + ξ(t)p(Nf + 1, t) − [ζ(t) + ξ(t)]p(Nf , t), (3.4)

where p(Nf , t) is the probability of recording a number of Nf fundamentalists at time t.

Following Chiarella and Di Guilmi (2011b), the dynamics of population evolution can be

characterized by2

dnf (t) = nf (t)[−(ζ(t) + ξ(t))nf (t) + ζ(t)]dt + σnf
dWnf

(t), (3.5)

where

σnf
(t) =

√
ζ(t)ξ(t)

ζ(t) + ξ(t)
, (3.6)

and Wnf
(t) is the stochastic fluctuation component in the market population fraction of

fundamentalists, which is assumed to be independent from the fundamental noises WF (t).

Finally, the price P (t) at time t is adjusted by the market maker according to the

aggregate market excess demand, that is,

dP (t) = μ
[
nf (t)Zf (t) + nc(t)Zc(t)

]
dt + σMdWM(t),

where Zf (t) and Zc(t) are given by (2.1) and (2.2) respectively, μ > 0 represents the

speed of the price adjustment by the market maker, σM > 0 is a constant and WM(t) is

a standard Wiener process capturing the random excess demand process either driven by

unexpected market news or noise traders,3 which is independent of WF (t) and Wnf
(t).

To sum up, the market price of the risky asset is determined according to the follow-

ing stochastic delay differential system with three different time delays and three noise

2The derivation is given in Appendix B.1.
3The additive noise comes naturally when a demand from noise traders is introduced into the aggregated excess demand

function.
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processes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t) = μ
[
nf (t)Zf (t) +

(
1 − nf (t)

)
Zc(t)

]
dt + σMdWM(t),

du(t) =
k

1 − e−kτ

[
P (t) − e−kτP (t − τ) − (1 − e−kτ )u(t)

]
dt,

dnf (t) = vnf (t)
[(

1 − nf (t)
)2

eβ(Uf (t)−Uc(t)) − n2
f (t)e

β(Uc(t)−Uf (t))
]
dt

+ σnf
dWnf

(t),

dUf (t) =
ηf

1 − e−ηf τf

[
πf (t) − e−ηf τf πf (t − τf ) − (1 − e−ηf τf )Uf (t)

]
dt,

dUc(t) =
ηc

1 − e−ηcτc

[
πc(t) − e−ηcτcπc(t − τc) − (1 − e−ηcτc)Uc(t)

]
dt,

dF (t) =
1

2
σ2

F F (t)dt + σF F (t)dWF (t),

(3.7)

where Zf (t) and Zc(t) are defined by (2.1) and (2.2), respectively, and πi(t) is defined by

(2.7) for i = f, c in Chapter 2. The stochastic differential system (3.7) characterizes the

market price dynamics with heterogeneity in trading strategies, trend chasing, switching,

and herding.

In the following sections, we first conduct a stability analysis of the underlying de-

terministic model. Then we examine the impact of the interaction of the deterministic

dynamics with the noises on the fluctuations of the market population fractions (of using

different strategies) and market volatility in both prices and return. Furthermore, we

explore the power-law behavior in volatility.

3.3 The Stability Analysis of the Deterministic Model

To understand the interaction of the nonlinear deterministic dynamics and the noise

processes, we first study the local stability of the corresponding deterministic system. By

assuming F (t) = F̄ , σM = 0 and considering the mean process of the market fraction of
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the fundamentalists, system (3.7) reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP (t)

dt
= μ
[
nf (t)βf [F (t) − P (t)] +

(
1 − nf (t)

)
tanh

[
βc(P (t) − u(t))

]]
,

du(t)

dt
=

k

1 − e−kτ

[
P (t) − e−kτP (t − τ) − (1 − e−kτ )u(t)

]
,

dnf (t)

dt
= vnf (t)

[(
1 − nf (t)

)2
eβ(Uf (t)−Uc(t)) − n2

f (t)e
β(Uc(t)−Uf (t))

]
,

dUf (t)

dt
=

ηf

1 − e−ηf τf

[
πf (t) − e−ηf τf πf (t − τf ) − (1 − e−ηf τf )Uf (t)

]
,

dUc(t)

dt
=

ηc

1 − e−ηcτc

[
πc(t) − e−ηcτcπc(t − τc) − (1 − e−ηcτc)Uc(t)

]
,

(3.8)

where

πi(t) = μZi(t)
[
nf (t)Zf (t) +

(
1 − nf (t)

)
Zc(t)

]
− Ci, i = f, c.

The system has a steady state4

Q := (P, u, nf , Uf , Uc) = (F̄ , F̄ ,
1

1 + eβ(Cf−Cc)
,−Cf ,−Cc),

in which the market price is given by the fundamental value. We call Q the fundamental

steady state of the system (3.8). At the fundamental steady state, the market fraction

of fundamentalists becomes n∗
f = 1

1+e
β(Cf−Cc) . When Cf = Cc, n∗

f = n∗
c = 0.5, meaning

that the market fractions at the fundamental steady state is independent of the switching

intensity β and the herding parameter v. However, when the fundamental strategy costs

more, that is Cf > Cc, then n∗
c > n∗

f , meaning that there are more trend followers than

fundamentalists at the fundamental steady state.

Denote γf = μn∗
fβf and γc = μ(1 − n∗

f )βc. The characteristic equation of the system

(3.8) at the fundamental steady state is given by Δ(λ) := (λ + 2vn∗
f )Δ̃(λ) = 0, where

Δ̃(λ) = (λ+ ηf )(λ+ ηc)
[
λ2 +(k +γf −γc)λ+kγf −kγc +

kγc

1 − e−kτ
− kγce

−(λ+k)τ

1 − e−kτ

]
. (3.9)

Note that equation (3.9) has the same form as the characteristic equation of the model

studied in Chapter 2. Hence we can apply Proposition 2.1 in Chapter 2 and its correspond-

ing discussions to system (3.8) and the local stability and bifurcation of the fundamental

steady state with respect to the time delay of system (3.8) are summarized in the following

4In addition, the line P = u, nf = 0, Uf = −Cf , Uc = −Cc is a steady state line of the system. This means that the
system has infinite many steady states. Near the line, the solution with different initial values converge to different steady
states on the line. Hence the line is locally attractive. A similar result is found in He et al. (2009) and He and Zheng (2010).
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proposition.

Proposition 3.1 The fundamental steady state Q of system (3.8) is

(i) asymptotically stable for τ ∈ [0, τ0);

(ii) asymptotically stable for τ > τ̃ when γf + k > γc;

(iii) unstable for τ > τ̃ when γf + k < γc.

In addition, system (3.8) undergoes Hopf bifurcations at the zero solutions of functions

S±
n (τ).

Proposition 3.1 implies that the fundamental steady state is stable for either small or

large time delay when the market is dominated by the fundamentalists (in the sense of

γf + k > γc). Otherwise, when the trend followers become more active comparing to

the fundamentalists (in the sense of γc > γf + k), the fundamental steady state becomes

unstable through Hopf bifurcations when time delay increases. Same as the model in

Chapter 2, Proposition 3.1 indicates the interesting phenomenon of continuous-time HAM

again: the stability switching when the fundamentalists dominate the market. That is,

the system becomes unstable as the time delay increases initially, but the stability can

be recovered when the time delay becomes large enough. Intuitively, when time horizon

is small, the price trend becomes less significant, which limits the activity of the trend

followers. As the time horizon increases, the price trend becomes more sensitive to market

price change and hence the trend followers become more active, which destabilizes the

market. However, as the time horizon becomes very large, the price trend becomes smooth

and less sensitive to price changes. Therefore the trend followers become less active and

then, because of the dominance of the fundamentalists, the market becomes stable. We

refer readers to the discussions following Proposition 2.1 in Chapter 2 for more details on

the dynamical properties of system (3.8).

By simulating the nonlinear model (3.8),5 Fig. 3.1 verifies the stability results in

Proposition 3.1. Fig. 3.1 (a) plots the bifurcation diagram of the market price of model

(3.8) with respect to τ , showing that the fundamental steady state is stable for τ ∈
[0, τ0)∪ (τ1,∞) and Hopf bifurcations occur at τ = τ0 ≈ 8.5 and τ = τ1 ≈ 27. Fig. 3.1 (b)

plots the price bifurcation diagram with respect to the switching intensity parameter β. It

shows that the steady state is stable when the switching intensity β is low, but becomes

unstable as the switching intensity increases, bifurcating to stable periodic price with

increasing fluctuations. This result shares the same spirit of rational routes to complicated
5Unless specified otherwise, the following set of parameters are used in all the simulations in this chapter: k = 0.05, μ =

1, βf = 1.4, βc = 1.4, β = 1, Cf = 0.05, Cc = 0.03, ηf = 0.5, ηc = 0.6, τ = 16, τf = 10, τc = 5, v = 0.5 and F̄ = 1.
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(a) Price bifurcation in τ (b) Price bifurcation in β
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Figure 3.1: (a) The bifurcation of the market prices with respect to τ with β = 1; (b) The bifurcation of
market price with respect to β with τ = 8.3; (c) The phase plot of the relationship between the fitness
Uf and the market fraction nf with τ = 16 and β = 1.

price dynamics in the discrete-time Brock and Hommes (1997, 1998) framework. Fig. 3.1

(c) illustrates the phase plot of (Uf , nf ), showing the positive relation between the fitness

Uf and the market fraction nf .
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Figure 3.2: (a) The time series of the market prices P (t) (the blue solid line) and the market fraction
nf (t) of fundamentalists (the green dash dot line); (b) the phase plot of (P (t), nf (t)); and (c) the density
distribution of the market fraction nf (t). Here τ = 16.

Fig. 3.2 provides further insights into the nonlinear dynamics of the market price and

market fraction of the fundamentalists for τ = 16 when the fundamental steady state

is unstable. Fig. 3.2 (a) illustrates the time series of the market prices P (t) and the

market fraction nf (t) of fundamentalists. It shows that the market fractions fluctuate

with the market price. Fig. 3.2 (b) presents the phase plot of (P (t), nf (t)) showing that

the price and fraction converge to a figure-eight shaped attractor, a phenomenon also

observed in the discrete-time model in Chiarella et al. (2006). Fig. 3.2 (c) plots the
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corresponding density distribution of the market fraction nf (t) of the fundamentalists.

The twin-peak-shaped density distribution implies that, when the fundamental price is

unstable, the market fractions tend to stay away from the steady state market fraction

level most of the time and a mean of nf (t) below 0.5 clearly indicates the dominance of

the trend chasing strategy.

Interestingly, the herding parameter v does not affect the local stability of the fun-

damental price and the deterministic price dynamics are very similar to the results in

Chapter 2 without herding. To illustrate the herding effect, we compare this model with

the model in Chapter 2. In Appendix B.2, corresponding to Figs. 3.1 and 3.2, we present

Figs. B.1 and B.2, respectively, for the model in Chapter 2. It is observed that both

models exhibit similar deterministic dynamics in price and market fraction. However, the

nonlinear dynamics can be affected by the herding parameter v. Comparing Fig. 3.2 with

v = 0.5 and Fig. B.3 with v = 0.1 in Appendix B.2, we observe that, when herding among

agents are not very strong indicating by a decrease in the parameter v, the fluctuations of

market price and, in particular, the market fractions of the fundamentalists are reduced.

In other words, a strong herding among agents contributes to high fluctuations in market

fractions, which then results in high volatility in market prices. This effect is further

examined for the stochastic model in the following section.

3.4 Price Behavior of the Stochastic Model

In this section, through numerical simulations, we examine the price dynamics of the

stochastic model by focusing on the impact of the three parameters, the time horizon τ ,

herding v, and switching intensity β, and the two noisy processes characterized by σF and

σM , on market volatility in both price and return. The analysis provides further insights

into the different roles played by herding and switching in financial markets.

We first explore the interaction between the underlying deterministic dynamics and the

two noisy processes by choosing two different values of time horizons. For the deterministic

model (3.8), Fig. 3.1 (a) shows that the time horizon can affect the stability of the

fundamental price. In particular, the fundamental steady state is stable for τ = 3 and

unstable for τ = 16, leading to periodic fluctuations of the market price. For the stochastic

model, we choose the volatility of the fundamental price σF = 0.12 and the volatility of

the market noise σM = 0.15.6 With the same random draws of the fundamental price

and market noise processes, we plot the fundamental price (the blue dotted line) and the

6The constraint nf (t) ∈ [0, 1] is imposed when simulating the stochastic system. In all the simulations, time unit is a
year, and the time step corresponds to one day. Unless specified otherwise, an annual volatility of σF = 0.12 and a market
noise volatility of σM = 0.15 are used in the chapter.
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(b) Prices for τ = 16
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Figure 3.3: The time series of the fundamental price F (t) (the blue dotted line) and the market prices
P (t) (the red solid line) with (a) τ = 3 and (b) τ = 16, and the distributions of the deviations of the
market prices from the fundamental prices P (t) − F (t) with (c) τ = 3 and (d) τ = 16. Here σF = 0.12
and σM = 0.15.

market prices (the red solid line) in Fig. 3.3 for the two different values of τ under the

same set of parameters for Fig. 3.1 (a).7 For τ = 3 and τ = 16, Figs. 3.3 (a) and (b) show

that the market prices fluctuate around the fundamental prices and the fluctuations for

τ = 16 are significantly larger than that for τ = 3. This observation is further supported

by the distribution plots of the deviations of the market prices from the fundamental prices

P (t) − F (t) in Fig. 3.3 (c) for τ = 3 and in Fig. 3.3 (d) for τ = 16. With the standard

deviations of 0.8158 for τ = 3 and 1.2091 for τ = 16, the deviations are more spread

for τ = 16. This is partially underlined by the change in the stability of the underlying

deterministic dynamics. Further simulations (not reported here) show that when the time

horizon increases further to the stabilizing range indicated by Fig. 3.1 (a), the fluctuations

of the market price deviations from the fundamental price become even more significant.

This result illustrates that, when the underlying deterministic dynamics are stable, the

7Because we consider the cum dividend price, there should be an increasing trend in the fundamental price.
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stochastic dynamics can become very unstable with large fluctuations in price deviations.

This is mainly due to the slow convergence of the market price to the fundamental price of

the underlying deterministic model and its interaction with the fundamental and market

noises. Therefore, an increase in time horizon increases the deviations of the market price

from the fundamental price and the fluctuations of the market price.

To examine the effect of herding, with the same parameters and random draws, Fig.

B.4 in Appendix B.3 illustrates the corresponding results of the model in Chapter 2

without herding. It displays similar price patterns but with less significant deviations in

prices (with the standard deviations of 0.2477 for τ = 3 and 0.4703 for τ = 16). The

comparison implies that the herding behavior contributes to the excess volatility of the

market price, a higher acceleration to market highs and lows, and a quicker mean reversion

to the fundamental price.
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Figure 3.4: The time series of the fractions of the fundamentalists with (a) τ = 3 and (b) τ = 16 and the
corresponding distributions with (c) τ = 3 and (d) τ = 16. Here σF = 0.12 and σM = 0.15.

We also plot the corresponding time series and distributions of the market fractions of

the fundamentalists in Fig. 3.4 for both τ = 3 (the left panel) and τ = 16 (the right panel).

Comparing to Fig. B.5 in Appendix B.3 for the model in Chapter 2 (with switching but
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without herding), we obtain two observations. (i) With herding, the market fractions

fluctuate wildly between 0 and 1, are almost uniformly distributed except for the spike

near 0, as shown in Fig. 3.4. However, without herding, the market fractions fluctuate

around the steady state (nf = 0.495) in a small range (from 35% to 75%), illustrated by

both the time series and distribution plots in Fig. B.5. This implies that the herding effect

dominates the switching effect in generating high fluctuations in the market fractions. (ii)

For the market fraction, by comparing the time series and distributions of the market

fractions in Fig. 3.4 for τ = 3 (the left panel) and τ = 16 (the right panel), the effect

of the time horizon is not highly significant. However, note the small peak near 1 for

τ = 16 in Fig. 3.4 (d), the time horizon does affect the market fractions. In general we

observe that herding leads to the dominance of the trend followers in the market, while

an increase in time horizon reduces the dominance of the trend followers and increases

the dominance of the fundamentalists.

One of the innovative features of the model is that the market fraction is determined

by the stochastic master equation (3.5) with endogenously determined volatility (3.6).

Because of the dependence of the transition rates on the time horizon τ , the switching β

and herding v, the volatility also depends on τ, β and v. Therefore the variations in the

market fractions can affect the deviation of the market price from the fundamental price

and return volatility. In general, the impact on market volatility can be different for price

and return. To provide further insights into the different roles of the herding, switching

and time horizon on fluctuations of market fractions and market volatility, we consider

three cases focusing each of the three parameters of τ, v and β with some typical choices

of the other two parameters. In each case, we examine the impact on the endogenously

determined volatility of the market fractions (of the fundamentalists), σnf
, the volatility

of the price deviations, σ(P −F ), and the volatility of the market returns, σ(r). Based on

the common set of the parameters, we run 100 simulations for each parameter combination

and plot the averages of σnf
, σ(P − F ) and σ(r) and denote by σ̄nf

, σ̄(P − F ) and σ̄(r),

respectively.

3.4.1 The Effect of the Time Horizon

For τ ∈ [0, 20], we conduct Monte Carlo simulations and plot σ̄nf
, σ̄(P − F ) and σ̄(r) in

the upper panel for β = 0.1, 1, 2 and the lower panel for v = 0.01, 0.1, 0.5 in Fig. 3.5, from

which we can draw two observations about the volatility.
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Figure 3.5: The average variations of market fraction volatility σ̄nf
(a) and (d), price deviation volatility

σ̄(P − F ) (b) and (e), and return volatility σ̄(r) (c) and (f) with β = 0.1, 1, 2 (and v = 0.5) in the upper
panel and v = 0.01, 0.1, 0.5 (and β = 1) in the lower panel, respectively, with respect to time horizon
τ ∈ [0, 20].
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(i) All the volatilities, in terms of σ̄nf
, σ̄(P −F ) and σ̄(r), increase as the time horizon

and herding increase.8 For τ = 0, the trend followers are not participating in the market

and the lower volatilities simply reflect the resulting volatilities of the market noise and

fundamental noise. In this case, herding plays no role in market volatility in both the

price and return (as indicated by the constant volatility for various β and v when τ = 0

in the middle and right panels). As τ increases, all the volatilities increase significantly.

This effect becomes less significant for the market fraction volatility σ̄nf
after an initial

increase in τ (from 0 to about 5). The increase in the price deviation volatility in the

time horizon is underlined by the destabilizing effect of τ on the underlying deterministic

dynamics. Because of the fluctuations in the market fractions, we observe an increase in

the return volatility as well. We also observe the same effect as the herding parameter v

increases in the low panel of Fig. 3.5. Due to the independence of the local stability to

the herding, this result reflects more on the interaction of nonlinearity and noises.
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Figure 3.6: The average variations of market fraction volatility σ̄nf
(a) and (d), price deviation volatility

σ̄(P − F ) (b) and (e), and return volatility σ̄(r) (c) and (f) with τ = 0, 3, 16 (and β = 1) in the upper
panel and β = 0.1, 1, 2 (and τ = 16) in the lower panel, respectively, with respect to v ∈ [0, 1].

8Except σ̄nf for time horizon and large β that the volatility seems to decrease as time horizon increases further. This
is related to the non-monotonic impact of β on the volatilities illustrated in Fig. 3.7.
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(ii) Switching has a non-monotonic impact on the volatilities of market fraction and

market price, but reduces the return volatility as the switching intensity increases. Figs.

3.5 (a) and (b) show that the volatilities of market fraction and market price deviations

are non-monotonic as β increases. An initial increase in β leads to an increase in the

volatility of market fraction but the effect reverses as β increases further, implying a

“hump” shaped effect on the volatilities of market fraction. However, we also observe

a “U”-shaped effect on the volatility of price deviation. This non-monotonic feature is

explored further in the following discussion. Furthermore, Fig. 3.5 (c) shows that the

volatilities of market return decrease in β, an opposite effect to the herding. Such different

impact of the switching and herding on volatility of price and return has not been explored

in the literature. This provides some insights into the distinct role played by switching

and herding in market volatility. If one argues that switching is a more rational behavior

than herding, the result indicates that herding can increase the return volatility, while

switching can reduce the return volatility.

3.4.2 The Effect of the Herding

For v ∈ [0, 1], we plot σ̄nf
, σ̄(P − F ) and σ̄(r) for τ = 0, 3, 16 in the upper panel and

for β = 0.1, 1, 2 in the lower panel in Fig. 3.6 based on Monte Carlo simulations. It

provides consistent observations as in the previous case. When the herding parameter v

and the time horizon τ increase, all the volatilities increase. However an increase in the

switching parameter reduces the average volatility of return, as illustrated in Fig. 3.6 (f).

Also Figs. 3.6 (d) and (e) show that the switching has a non-monotonic impact on the

volatilities of market fraction and price. Consistently with the previous observations, the

herding increases the fluctuations of the market price from the fundamental price and

return fluctuations.

3.4.3 The Effect of Switching

For β ∈ [0, 2], we plot σ̄nf
, σ̄(P − F ) and σ̄(r) for τ = 0, 3, 8, 16 in the upper panel and

for v = 0.01, 0.1, 0.5 in the lower panel in Fig. 3.7 based on Monte Carlo simulations.

When β = 0, the market fractions are driven purely by the herding behavior. In general,

we observe consistent results in terms of the impact of time horizon and herding obtained

in the previous two cases. However, there is a significantly non-monotonic relationship

between the volatilities and the switching intensity β. We observe a “hump” shaped

volatility in the market fraction (in Figs. 3.7 (a) and (d)), a “U”-shaped price volatility

(in Figs. 3.7 (b) and (e)), and a decreasing volatility in returns (in Figs. 3.7 (c) and (f))
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as the switching parameter β increases. Interestingly, an initial increase in the switching

leads to higher market fraction volatility and lower market price volatility, following by

the decreasing volatility in fractions and the increasing volatility in price deviations when

β increases beyond certain threshold value. This result explains the phenomenon in Fig.

3.5 (a) that for large β, an increase in the time horizon τ leads to an initial increase in the

market fraction volatility, but a dramatic decline when τ increases further. It also implies

that large fluctuations in the market fractions reduce the market price deviation from the

fundamental price when the switching intensity is low, but the effect becomes opposite

when the switching intensity is high. However, a strong switching always reduces return

volatility. Therefore, we can have a market with high fluctuations in market price and

low volatility in returns at the same time.
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Figure 3.7: The average variations of market fraction volatility σ̄nf
(a) and (d), price deviation volatility

σ̄(P − F ) (b) and (e), and return volatility σ̄(r) (c) and (f) with τ = 0, 3, 16 (and v = 0.5) in the upper
panel and v = 0.01, 0.1, 0.5 (and τ = 16) in the lower panel, respectively, with respect to β ∈ [0, 1].

In summary, the impact on the volatility can be very different for price and return.

The trend chasing over a long time horizon and herding always lead to high volatility.

However the switching and herding have an opposite effect on the market return volatility.
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Although the switching has significant and non-monotonic impact on the market volatility,

it can actually reduce return volatility. The analysis demonstrates different mechanisms

of herding and switching in explaining volatilities in price and return.

3.5 Power-law Behavior in Volatility
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(c) NIKKEI 225
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Figure 3.8: The ACs of the returns (the bottom lines), the squared returns (the middle lines) and the
absolute returns (the upper lines) for (a) the DAX 30, (b) the FTSE 100, (c) the NIKKEI 225, and (d)
the S&P 500.

After exploring the impact of the time horizon, herding, and switching on market

volatility in the previous section, we are now interested in their impact on the power-

law behavior in volatility. It has been well explored in the HAM literature that it is

the interaction of the nonlinear dynamics of the underlying deterministic model and the

noises that generate the power-law behavior. Both switching and herding mechanisms

have been explored, but a comparison of different mechanism is missing in the literature.

This section is devoted to such a comparison. We first examine the impact of the noises

and then of the time horizon, switching and herding on the ACs of the returns, absolute
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returns, and squared returns with the two noises.

To motivate the analysis, we first present the ACs of the returns, absolute returns,

and squared returns for market daily closing price indices of the DAX 30, the FTSE 100,

the NIKKEI 225, and the S&P 500 from 01/02/1984 to 31/07/2013 from Datastream in

Fig. 3.8. Note that all the ACs for the returns are not significant, but they are significant

and decaying for the absolute and squared returns. This phenomenon is referred as the

power-law behavior or long memory in market volatility in empirical literature, see He

and Li (2007) and references cited there.

3.5.1 The Effect of the Noises

For the two exogenously given fundamental and market noises, we examine the impact

of the noises by considering three combinations of (i) both the fundamental and market

noises; (ii) the market noise only; and (iii) the fundamental noise only.

We first consider the effect of the fundamental and market noises with σF = 0.12

and σM = 0.15. Fig. 3.9 represents the results of a typical simulation based on the

same set of parameters in Fig. 3.3 with τ = 16. The results demonstrate that the

stochastic model established in this chapter is able to generate market price deviations

from the fundamental value (in Fig. 3.9 (a)), most of the stylized facts (including volatility

clustering in Fig. 3.9 (b), high kurtosis in in Fig. 3.9 (c)), and the power-law behavior in

volatility (insignificant autocorrelations (ACs) for returns in Fig. 3.9 (d), but significant

decaying ACs for the absolute returns and the squared returns in Figs. 3.9 (e) and (f))

observed in financial markets.

Next we consider the effect of the market noise. With the same parameters and ran-

dom seeds, Fig. 3.10 shows that the model is able to generate a similar result to the

previous case with the two noises, although the level of the significant ACs is lower. This

implies that, even with a constant fundamental value, the model has a great potential in

generating the power-law behavior. This result is significantly different from the switching

model in Chapter 2, in which the model is not able to generate the power-law behavior

without fundamental noise.

Finally, we consider the effect of the fundamental noise. Fig. 3.11 shows that the

model is not able to generate the volatility clustering and the power-law behavior, which

is consistent with the model in Chapter 2. Meanwhile the market returns, absolute returns

and squared returns exhibit highly significant ACs with strong decaying patterns, which

is mainly due to the strong effect of the deterministic dynamics of the price process.

To further investigate the effect of the fundamental noise on the AC patterns, Fig. 3.12
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Figure 3.9: The effect of the two noises: the time series of (a) the market price (red solid line) and the
fundamental price (blue dotted line) and (b) the market returns; (c) the return distribution; the ACs of
(d) the returns; (e) the absolute returns, and (f) the squared returns. Here σF = 0.12 and σM = 0.15.
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Figure 3.10: The effect of the market noise only: the time series of (a) the market price (red solid line)
and the fundamental price (blue dotted line) and (b) the market returns; (c) the return distribution; the
ACs of (d) the returns; (e) the absolute returns, and (f) the squared returns. Here σF = 0 and σM = 0.15.
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Figure 3.11: The effect of the fundamental noise only: the time series of (a) the market price (red solid
line) and the fundamental price (blue dotted line) and (b) the market returns; (c) the return distribution;
the ACs of (d) the returns; (e) the absolute returns, and (f) the squared returns. Here σF = 0.12 and
σM = 0.
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Figure 3.12: The effect of the fundamental noise: the ACs of (a) the absolute returns and (b) the squared
returns based on 100 simulations with τ = 16, v = 0.5 for σF = 0.12 (the red solid line) and σF = 0 (the
blue dash-dotted line).

compares the ACs of the absolute returns and the squared returns for σF = 0.12 (the red

solid line) and σF = 0 (the blue dash-dotted line) based on 100 simulations. The ACs

of the absolute returns and squared returns are significant and decaying. However, with

the market noise σF = 0.12, the ACs decay quickly than those for σF = 0. This indicates

that the market noise plays a key role in generating the power-law behavior, though it is

not the only factor, as argued in He and Li (2007).

The previous analysis on the effect of the time horizon, switching, and herding shows

that they play different roles in generating volatility in market price and return. We now

further investigate their effect on the the power-law behavior. Similarly, we consider three

cases focusing on each of the three parameters of τ, v and β. For each case, we examine

the impact on the AC patterns of the absolute and squared returns. Based on the common

set of the parameters, we run 100 simulations for each parameter combination and plot

the average ACs for the absolute and squared returns.9

3.5.2 The Effect of the Time Horizon

First, we present in Fig. 3.13 the effect of the time horizon on the AC patterns for the

absolute returns (the left panel) and the squared returns (the right panel). We observe

that the trend chasing based on different time horizons contributes to the significant

decaying AC patterns for both the absolute and squared returns. Also the significant

levels of the ACs increase as the time horizon increases, in particular, when the time

horizon is large. This suggests that a commonly observed slow decaying AC patterns in

the discrete-time HAM literature (see for example He and Li (2007)) might be due to the

9The average ACs for the returns are insignificant in all three cases reported.
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Figure 3.13: The effect of the time horizon: the ACs of (a) the absolute returns and (b) the squared
returns based on 100 simulations with v = 0.5, β = 1, σF = 0.12, σM = 0.15 for τ = 0, τ = 3 and τ = 16.

long time horizons used for modeling the trend chasing. In other words, trend chasing

based on short time horizons contributes to more realistic power-law behavior in volatility.

Intuitively, technical analysis such as trend following strategy is mainly used for short-term

investment comparing to the fundamental analysis for long-term investment. Therefore

the trend chasing based on short-time horizon contributes to volatility in financial markets.
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Figure 3.14: The effect of the herding: the ACs of (a) the absolute returns and (b) the squared returns
based on 100 simulations with τ = 16, β = 1, σF = 0.12, σM = 0.15 for v = 0.01, v = 0.1 and v = 0.5.

3.5.3 The Effect of the Herding

Second, we present in Fig. 3.14 the effect of the herding on the AC patterns for the

absolute returns (the left panel) and the squared returns (the right panel), showing the

contribution of the herding to the power-law behavior in volatility. Similar to the effect of

the time horizon, an increase in the herding increases the level of the significant ACs for
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both the absolute and squared returns. However, differently from the effect of the time

horizon, the ACs decay quickly under the herding.
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Figure 3.15: The effect of the switching: the ACs of (a) the absolute returns and (b) the squared returns
based on 100 simulations with v = 0.5, τ = 16, σF = 0.12, σM = 0.15 for β = 0.1, β = 0.5, β = 1 and
β = 2.

3.5.4 The Effect of the Switching

Third, we present in Fig. 3.15 the effect of the switching on the AC patterns for the

absolute and squared returns. It shows that the switching contributes to the power-law

behavior. Interestingly, different from the effect of the time horizon and herding, the level

of the significant ACs for both the absolute and squared returns is not monotonic with

respect to the switching intensity β. The level increases significantly when β increases

from 0.1 to 0.5, and then less significantly when β increases to 1, but decreases when β

increases further to 2. In particular, the ACs for the absolute returns decay very quickly,

comparing to the effect of the herding. This observation, together with the discussion in

Subsection 3.4.3, suggests that an increase in the switching can reduce the return volatility

and generate the power-law behavior at the same time. This provides further support on

the explanatory power of the adaptive switching in financial markets initiated in Brock

and Hommes (1998).

In summary, we have explored different mechanisms of the switching and herding on the

market volatility and power-law behavior in particular. We show that both contribute to

the power-law behavior, however the effect is monotonically increasing with the herding,

but not monotonic for the switching.

Finally, we investigate the question if pure herding is enough to explain the power-law

behavior by considering the case with σF = 0 and τ = 0. In this case, the fundamental

value becomes constant and the trend followers become naive traders who take the current
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Figure 3.16: The ACs of (a) the absolute returns and (b) the squared returns based on 100 simulations
with v = 0.5, τ = 0, σF = 0, σM = 0.15 for β = 0 and β = 1.

price as the expected future market price and hence do not trade in the market anymore.

Thus the market is driven by pure herding mechanism. Fig. 3.16 illustrates the significant

and decaying AC patterns in both the absolute and squared returns, although the AC level

for the squared returns is significantly lower comparing to the cases discussed previously.

Interestingly, there is no significant difference in the AC patterns of the absolute return

between no switching (β = 0) and the switching (β = 1). This result is consistent with

Alfarano et al. (2005) who show that a pure herding model with fundamentalists and

noise traders can generate power-law behavior. As a robustness check, we present Fig.

3.17 with three different values of v. Similar to Fig. 3.14, we observe more significant AC

patterns as the herding parameter v increases.
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Figure 3.17: The ACs of (a) the market returns; (b) the absolute returns and (c) the squared returns
based on 100 simulations with τ = 0, β = 0, σF = 0, σM = 0.15 for v = 0.01, v = 0.1 and v = 0.5.

Comparing to the AC patterns of the market indices in Fig. 3.8, we may argue that the

switching generates similar AC patterns to the NIKKEI 225 and the S&P 500 with quickly
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decaying AC patterns, while the herding generates similar AC patterns to the DAX 30 and

FTSE 300 with relatively slow decaying AC patterns. Whether this observation suggests

different market behavior in different markets is an empirical and challenging question.

Our analysis explores different mechanism in explaining volatility in different markets.

To complete this chapter, I want to compare the mechanisms of the model introduced

in Chapters 2 and 3 leading to the stylized facts. First, we have examined the impacts on

stylized facts of the main components of the models in Chapters 2 and 3, including different

noise processes, time horizons, switching and herding behaviors, and their different roles in

generating stylized facts. Second, the model in Chapter 2 can be regarded as a continuous-

time version of Brock and Hommes (1998)’s model and the mechanisms have been studied

in detail in various extensions of Brock and Hommes (1998), see, for example, He and Li

(2007). Third, the model in Chapter 3 examines the joint impact of switching and herding.

The herding behavior has been demonstrated to contribute various stylized facts in the

literature, see, for example, Lux (1995) and Alfarano et al. (2008). In all, we find that it

is the interaction of the nonlinear deterministic dynamics and the noises that generates

stylized facts. In order to generate the stylized facts, we need two noise processes for the

model in Chapter 2 but only one noise process for the model in Chapter 3 when herding

is considered. Therefore, we conclude that the market noise plays a more important role

than the fundamental noise in contributing to the stylized facts.

3.6 Conclusion

Market volatility is one of the most important features in financial markets and the

question is what drives it. To answer this question, one way is to consider how agents

behave in financial markets. This chapter incorporates trend chasing, adaptive switching,

and herding, three well documented and studied behavioral elements in the empirical

literature, into an asset pricing model in a continuous-time framework and shows that

they all contribute to market volatility in a different manner.

Most of the asset pricing models with heterogeneous agents are in discrete-time focusing

on trend chasing over short time horizon and adaptive switching. Herding is commonly

modelled by the master equation in a continuous-time setting. Therefore the roles of

trend chasing, switching and herding in market volatility have been studied in separate

frameworks. Within a continuous-time framework, this chapter is the first, to our knowl-

edge, to combine trend chasing based on different time horizon, switching and herding

together to examine their roles on market volatility in price and return. We show that,

both the herding and trend chasing based on long time horizon increase the fluctuations of
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market price deviation from the fundamental price and volatility of market return. With

respect to the switching, it reduces the volatility in returns but leads to a “U”-shaped

price volatility as the switching intensity increases. Therefore herding and switching have

an opposite effect on return volatility. We also examine the explanatory power of the

model in generating the power-law behavior in return volatility. We show that, although

the trend chasing, switching and herding all contribute to the power-law behavior, the sig-

nificant levels for the ACs increase in the time horizon and herding, but an initial increase

and then decrease when the switching intensity increases. In addition, with herding, the

market noise plays an essential role in generating the power-law behavior.

The model proposed in this chapter provides a unified framework to deal with trend

chasing, switching and herding in financial markets. The results provide some further

insights into different mechanism of generating bubbles and crashes, excess volatility, and

power-law behavior in volatility. Whether a particular market is dominated by herding

or switching is an empirical question which is left for future research.



Chapter 4

Time Series Momentum and Market

Stability

4.1 Introduction

This chapter extends the model in Chapter 2 by incorporating many heterogeneous strate-

gies based on different lagged prices and studies the mechanism which generates the

profitability of time series momentum. Time series momentum investigated recently in

Moskowitz et al. (2012) characterizes the strong positive predictability of a security’s own

past returns. For a large set of futures and forward contracts, Moskowitz et al. (2012)

find a time series momentum or “trend” effect based on the past 12 month excess returns

persists for 1 to 12 months that partially reverses over longer horizons. This effect based

purely on a security’s own past returns is related to, but different from, the cross-sectional

momentum phenomenon studied extensively in the literature. Through return decompo-

sition, Moskowitz et al. (2012) argue that positive auto-covariance is the main driving

force for time series momentum and cross-sectional momentum effects, while the contri-

bution of serial cross-correlations and variation in mean returns is small. This chapter

provides an explanation on the profitability of time series momentum over short horizons

and reversal over longer horizons.

To explain the time series momentum, we introduce a simple continuous-time asset

pricing model of financial market consisting of three types of agents based on typical

fundamental, momentum, and contrarian trading strategies. Fundamental agents trade

based on the expectation of mean-reversion of market price to the fundamental price;

while momentum and contrarian agents trade respectively based on the continuation and

reverse of the past prices trends over different time horizons. The market price is deter-

60
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mined via a market maker mechanism. The model, characterized by a stochastic delay

integro-differential system, provides a unified approach to examine the impact of different

time horizons of momentum and contrarian strategies on market stability and profitabil-

ity of these strategies. We show that profitability is closely related to market dominance

and stability. In particular, we show that: (i) momentum trading destabilizes the mar-

ket, while contrarian trading stabilizes the market; (ii) the profitability of momentum

strategies is related positively to the dominance of momentum traders and negatively

to the time horizon used for estimating the price trend and, when the market is domi-

nated by momentum traders, short horizon momentum strategies stabilize the market, but

longer horizon momentum strategies destabilize the market; (iii) the market under-reacts

in short-run and over-reacts in long-run, leading to profitability of momentum strategy

with short horizons and loss with longer horizons. Therefore the analysis provides some

insights into the profitability of time series momentum documented in Moskowitz et al.

(2012).

The size and apparent persistence of momentum profits have attracted considerable

attention. De Bondt and Thaler (1985) and Lakonishok, Shleifer and Vishny (1994) find

supporting evidence on the profitability of contrarian strategies for a holding period of

3-5 years based on the past 3 to 5 year returns. In contrast, Jegadeesh and Titman

(1993, 2001) among many others, find supporting evidence on the profitability of momen-

tum strategies for a holding period of 3-12 months based on the returns over past 3-12

months.1 It is clearly that the time horizons and holding periods play crucial roles in

the performance of contrarian and momentum strategies. Many theoretical studies have

tried to explain the momentum,2 however, as argued in Griffin, Ji and Martin (2003), “the

comparison is in some sense unfair since no time horizon is specified in most behavioral

models”. This chapter provides a uniform treatment on various time horizons used in mo-

mentum and contrarian trading strategies and develops a simple financial market model

of heterogeneous agents in a continuous-time framework to study the impact of different

time horizons on the market. To our knowledge, this chapter is the first to analyze a

financial market model with all three types of fundamental, momentum, and contrarian

strategies in a continuous-time framework.

1In addition to individual stock momentum, Moskowitz and Grinblatt (1999) show industry momentum for a holding
period of 1-12 months based on the past 1-12 months and long-run reversals. George and Hwang (2004) find the momentum
in price levels by investigating 52-week high. Recently, Novy-Marx (2012) find the term-structure momentum that is
primarily driven by firm’s performance 12 to 7 months prior to portfolio formation.

2Among which, the three-factor model of Fama and French (1996) can explain long-run reversal but not short-run
momentum. Daniel et al. (1998) model with single representative agent and Hong and Stein (1999) model with different
trader types attribute the under and overreaction to overconfidence and biased self-attribution. Sagi and Seasholes (2007)
present a growth option model to identify observable firm-specific attributes that drive momentum. Recently, Vayanos and
Woolley (2013) show the slow-moving capital can also generate momentum.
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The state of the market is also a critically important factor that affects the profitability

as shown in Griffin et al. (2003) and Lou and Polk (2013).3 Different investment strategies

play different roles in market stability and have different implications on the market states.

Intuitively, momentum strategies are based on the hypothesis of underreaction with the

expectation that the future price will follow the price trend. Consequently the strategies

tend to destabilize the market price when momentum traders dominate the market. While

contrarian strategies are based on the hypothesis of overreaction with the expectation

that the future price will go against the price trend. Therefore the strategies can stabilize

the market when contrarian traders dominate the market. However, the joint impact of

both strategies on market stability can be complicated, depending on the states of the

market dominance. We show that (i) when the market is dominated by fundamental and

contrarian traders, the market is stabilizing and the momentum strategies do not generate

profit; (ii) when the activity of the momentum traders is balanced by the activities of the

fundamental and contrarian traders, there is a significant overreaction in short horizon and

hence the momentum trading becomes not profitable; (iii) when the market is dominated

by the momentum traders, the market is destabilized and can under-react in short-run but

over-react in long-run. The results are consistent with the “crowded trading” proposed by

Lou and Polk (2013) that “the underreaction or overreaction characteristic of momentum

is time-varying, crucially depending on the size of the momentum crowd”. In addition, we

find that, with momentum crowd, the momentum trading leads to gain for the strategies

with short horizons and loss for the strategies with longer horizons.

This chapter is closely related to the literature on the use of technical trading rules.

Despite the efficient market hypothesis of financial markets in the academic finance liter-

ature (Fama 1970), the use of technical trading rules based on past returns, in particular

momentum and contrarian strategies, still seems to be widespread amongst financial mar-

ket practitioners (Allen and Taylor 1990). The profitability of these strategies and their

consistency with the efficient market hypothesis have been investigated extensively in

the literature, see for example, Frankel and Froot (1986) and Brock, Lakonishok and

LeBaron (1992). This chapter also extends the deterministic delay differential equation

models in economics and contributes to the recent development in heterogeneous agent

models (HAMs) of financial markets.

This chapter is based on He and Li (2014) and organized as follows. We first present

3Cooper, Gutierrez and Hameed (2004) find that short-run (6 months) momentum strategies make profits in the up
market and lose in the down market, but the up-market momentum profits reverse in the long-run (13-60 months). Hou,
Peng and Xiong (2009) find momentum strategies with short time horizon (1 year) are not profitable in “down” market, but
return significant profits in “up” market. Similar results of profitability are also reported in Chordia and Shivakumar (2002)
that commonly using macroeconomic instruments related to the business cycle can generate positive returns to momentum
strategies during expansionary periods and negative returns during recessions.
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some empirical evidence on the time series momentum in financial market index in Section

4.2. Section 4.3 proposes a stochastic HAM in continuous time with time delays to

incorporate fundamental, momentum and contrarian traders. To better understand the

model, Section 4.4 follows the standard approach in HAMs and focuses on the dynamics of

the underlying deterministic model to examine the impact of these strategies, in particular

the different time horizons, on market stability. Section 4.5 examines the stochastic model

numerically and investigates the connection between market stability and profitability.

Section 4.6 concludes. All the proofs and model extensions are included in Appendix C.

4.2 Time Series Momentum of the S&P 500

This section provides some evidence on time series momentum in the S&P500. Most

momentum literature is cross-sectional. The time series momentum is explored recently

in Moskowitz et al. (2012) who show that a security’s own past returns have strong positive

predictability for its future return among almost five dozen diverse futures and forward

contracts. Similar to Moskowitz et al. (2012), we apply the momentum strategy based on

the standard moving average rules (MA) to the monthly data of the total return index of

the S&P 500 from Jan. 1988 to Dec. 2012 obtained from Datastream.

We first define the trading signal for momentum trading. Let P (t) be the log (cum

dividend) price of a stock index at time t. The trading signal can be defined by

S
(1)
t :=sign

(
Pt − Pt−1 + · · · + Pt−m

m

)
=sign

( 1

m

[
mΔPt−1 + (m − 1)ΔPt−2 + · · · + ΔPt−m

])
, (4.1)

which is a decaying weighted average of past return over a horizon of m-month. Alterna-

tively, motivated by Moskowitz et al. (2012), we also consider the trading signal defined

by

S
(2)
t := sign

( 1

m

[
(ΔPt−1 − rf,t−1) + (ΔPt−2 − rf,t−2) + · · · + (ΔPt−m − rf,t−m

])
, (4.2)

which is an equally weighted average excess return over the past m periods.

The mean profit of a momentum strategy with m-month horizon and n-month holding

period (m,n = 1, 2, · · · , 60) is calculated as follows. The strategy is to long (short) one

unit of index for n months when the trading signal is positive (negative). Hence, at each

time t, we have n long/short positions in the index (except for t < n − 1). The average

(log) excess return of the momentum strategy at time t is calculated by the average
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monthly returns of n positions in the index,[
1

n

n∑
k=1

S
(i)
t−k

]
× (ΔPt − rf,t

)
, i = 1, 2, (4.3)

where rf,t is the 1 month Treasury bill rate.

(m \ n) 1 3 6 12 24 36 48 60
1 2.63 3.77∗∗ 1.99 3.43∗∗∗ 2.28∗∗ 1.96∗∗ 1.68∗ 1.34
3 1.38 2.91 3.36∗ 3.80∗∗ 3.40∗∗ 2.92∗∗ 2.50∗ 2.29∗

6 6.03∗∗ 5.01∗ 4.62∗∗ 4.39∗∗ 3.25∗ 2.45 2.21 2.02
12 7.52∗∗ 6.54∗∗ 5.93∗∗ 5.00∗∗ 2.95 2.23 2.18 2.25
24 6.57∗∗ 7.87∗∗∗ 6.16∗∗ 5.03∗ 3.08 2.37 2.30 2.55
36 6.72∗∗ 6.76∗∗ 5.55∗ 3.47 2.38 2.08 2.21 2.76
48 4.34 2.07 1.52 1.22 0.67 1.15 1.47 2.30
60 1.05 0.66 -0.56 -0.44 0.06 0.72 1.17 2.27

Table 4.1: The annualized percentage (log) excess returns of the momentum strategies (4.1) for the S&P
500 with the horizon (m) and holding (n) from 1 to 60 months period. Note: ∗, ∗∗, ∗∗∗ denote the
significance at 10%, 5% and 1% levels, respectively.
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Figure 4.1: The t-statistic of the average excess return of the momentum strategies the S&P 500 based
on (4.1) for time horizon from 1 to 60 months periods and holding periods equal to horizon (n = m), 1
month (n = 1) and 6 month periods (n = 6).

With the trading signal defined by (4.1),4 Table 4.1 reports the annualized (log) excess

returns of the momentum strategies for the S&P 500 with the horizon (m) and holding

(n) from 1 to 60 months. It shows that the momentum strategies are profitable for time

horizons and holding periods up to 3 years. In particular, the profits become significant

(up to about 7% p.a.) for time horizons from 6 month to 3 years and holding periods from

1 to 12 months. Fig. 4.1 reports the t-statistic of the excess return of the momentum

strategies investing in the S&P 500 for time horizon from 1 to 60 months periods and
4With the trading signal defined by (4.2), similar results are obtained and reported in Table C.1 and Fig. C.1 in Appendix

C.1.
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holding period equals to the time horizon (n = m), 1 month (n = 1) and 6 month periods

(n = 6). It shows that the momentum strategies are significantly profitable for short

holding periods from 1 to 6 months with time horizons from 6 to 30 months with the

corresponding t-statistics being above 1.96, the critical value at 95% confidence level.

(m \ n) 1 3 6 12 24 36 48 60
1 0.050 0.128 0.093 0.187 0.134 0.114 0.099 0.078
3 0.026 0.070 0.106 0.137 0.138 0.122 0.105 0.095
6 0.116 0.109 0.118 0.123 0.105 0.083 0.075 0.068
12 0.145 0.135 0.129 0.116 0.077 0.062 0.060 0.061
24 0.126 0.159 0.131 0.114 0.074 0.061 0.058 0.064
36 0.129 0.135 0.117 0.076 0.056 0.051 0.054 0.068
48 0.083 0.042 0.032 0.026 0.016 0.027 0.035 0.055
60 0.020 0.014 -0.012 -0.010 0.001 0.017 0.027 0.000

Table 4.2: The Sharpe ratio of the momentum strategies (4.1) for the S&P 500 with the horizon (m) and
holding (n) from 1 to 60 months period.

We also report the Sharpe ratio of the strategies to adjust for risk, which is defined as

the ratio of the mean excess return on the (managed) portfolio and the standard deviation

of the portfolio return. If a strategy’s Sharpe ratio exceeds the market Sharpe ratio, the

active portfolio dominates the market portfolio (in an unconditional mean-variance sense).

For empirical applications, the (ex post) Sharpe ratio is usually estimated as the ratio of

the sample mean of the excess return on the portfolio and the sample standard deviation of

the portfolio return. The average monthly return on the total return index of the S&P 500

over the period January 1988–December 2012 is 0.76% with an estimated (unconditional)

standard deviation of 4.30%. The Sharpe ratio of the market index is 0.108. The Sharpe

ratio of the strategy based on (4.1) and (4.3) is documented in Table 4.2. Tables 4.1

and 4.2 are perfectly consistent. Specifically, when Table 4.1 shows a momentum strategy

with certain time horizon and holding period generates significantly positive excess return,

Table 4.2 also shows this strategy can outperform the market correspondingly according

to the Sharpe criteria.

4.3 The Model

In this section, we establish an asset pricing model of single risky asset to characterize

the time series momentum.
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4.3.1 Fundamental Traders

Let P (t) and F (t) denote the log (cum dividend) price and (log) fundamental value F (t),

respectively of a risky asset at time t.5 The fundamental traders believe that the market

price6 P (t) is mean-reverting to the fundamental price F (t), which can be estimated

based on some fundamentals. They buy (sell) the stock when the current price P (t) is

below (above) the fundamental price F (t) of the stock. For simplicity, we follow Chapter

2 and assume that the excess demand of the fundamental traders, Df (t) at time t, is

proportional to the deviation of the market price P (t) from the fundamental value F (t),

namely,

Df (t) = βf

(
F (t) − P (t)

)
, (4.4)

where βf > 0 is constant, measuring the speed of mean-reversion of P (t) to F (t), which

may be weighted by the risk aversion coefficient of the traders. For simplicity, we assume

that the fundamental return follows a pure white noise process:

dF (t) = σF dWF (t), F (0) = F̄ , (4.5)

where σF > 0 represents the volatility of the fundamental return and WF (t) is a standard

Wiener process.

4.3.2 Momentum and Contrarian Traders

Both momentum and contrarian traders trade based on their estimated market price

trends, although they behave differently. Momentum traders believe that future market

price follows a price trend um(t). When the current market price is above the trend, they

expect future market price to rise and therefore they take a long position of the risky asset;

otherwise, they take a short position. Different from the momentum traders, contrarians

believe that future market price goes opposite to a price trend uc(t). When the current

market price is above the trend, they expect future market price to decline and therefore

they take a short position of the risky asset; otherwise, they take a long position.

The price trend used for the momentum traders and contrarians can be different in

general. Among various price trends used in practice, the standard moving average (MA)

rules with different time horizons are the most popular ones,

ui(t) =
1

τi

∫ t

t−τi

P (s)ds, i = m, c, (4.6)

5Notice that different from Chapters 2 and 3, we model log prices in this chapter rather than prices.
6For convenience, the price is referred to the log price in this chapter, unless specified otherwise.
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where the time delay τi ≥ 0 represents the time horizon of the MA.7 We therefore assume

that the excess demand of the momentum traders and contrarians are given, respectively,

by

Dm(t) = gm

(
P (t) − um(t)

)
, Dc(t) = gc

(
uc(t) − P (t)

)
, (4.7)

where the S-shaped demand function gi(x) for i = m, c satisfies

gi(0) = 0, g′
i(x) > 0, g′

i(0) = βi > 0, xg′′
i (x) < 0, for x �= 0, (4.8)

and parameter βi represents the extrapolation rate of the price trend when the market

price deviation from the trend is small. Notice the trading signal of the strategy (4.7)

is consistent with (4.1). In the following discussion, we take gi(x) = tanh(βix), which

satisfies condition (4.8).8

4.3.3 Market Price via a Market Maker

Assume net zero supply in the risky asset and let αf , αm and αc be the market population

fractions of the fundamental, momentum, and contrarian traders, respectively, with αf +

αm+αc = 1 and αi > 0 for i = f, m, c.9 Then the aggregate market excess demand for the

risky asset, weighted by the population weights, is given by αfDf (t)+αmDm(t)+αcDc(t).

Following Beja and Goldman (1980) and Farmer and Joshi (2002), we assume that the

price P (t) at time t is set via a market maker mechanism and adjusted according to the

aggregate excess demand, that is,

dP (t) = μ[αfDf (t) + αmDm(t) + αcDc(t)]dt + σMdWM(t), (4.9)

where μ > 0 represents the speed of the price adjustment by the market maker, WM(t) is

a standard Wiener process capturing the random excess demand process driven by either

unexpected market news or noise traders, and σM ≥ 0 is constant. WM(t) is assumed to

be independent of the Wiener process for the fundamental price WF (t).10 Based on Eqs.

7The price trend ui(t) can be regarded as the logarithm of the geometric mean of market price over the past τi periods.
In particular, ui(t) → P (t) as τi → 0, implying that the price trend is given by the current price.

8 Chiarella (1992) provides an explanation for the increasing and bounded S-shaped excess demand function. For
example, traders may seek to allocate a fixed amount of wealth between the risky asset and a bond so as to maximize their
expected utility of consumption. The demand becomes bounded due to wealth constraints. From behaviorial point of view,
traders may become cautious when the deviation is large. This together leads approximately to an S-shaped increasing
excess demand function.

9To simplify the analysis, we first assume that the market fractions are constant. When agents are allowed to switch
among different strategies based on some fitness measure (see Chapter 2), the market fractions become time-varying. An
analysis of this extension is given in Appendices C.4 and C.5.

10The two Wiener processes can be correlated. We refer readers to Chapter 2 for the impact of the correlation on the
price behavior and the stylized facts in financial market.
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(4.4)-(4.9), the market price of the risky asset is determined by

dP (t) =μ

[
αfβf

(
F (t) − P (t)

)
+ αm tanh

(
βm

(
P (t) − 1

τm

∫ t

t−τm

P (s)ds
))

+ αc tanh
(
− βc

(
P (t) − 1

τc

∫ t

t−τc

P (s)ds
))]

dt + σMdWM(t), (4.10)

where the fundamental price F (t) is defined by (4.5). Therefore, the asset price dynamics

is determined by the stochastic delay integro-differential equation (4.10).

We are interested in the connection between market stability and profitability of the

trading strategies. Given the complex structure of the nonlinear model, we follow the

standard approach in the HAM literature and combine the stability analysis of the un-

derlying deterministic model with numerical simulation of the stochastic model. The

stability analysis provides some insight into the effect of the interaction and dominance

of different types of traders on market stability. It helps us to understand the relation

between different states of market stability and profitability of trading strategies. Note

that it is the interaction of deterministic dynamics and noise processes that provides a

complete picture of the price dynamics of the stochastic model. In the following section,

we first examine the stability of the corresponding deterministic delay integro-differential

equation model.

4.4 Market Stability

By assuming a constant fundamental price F (t) ≡ F̄ and no market noise σM = 0, system

(4.10) becomes a deterministic delay integro-differential equation, which represents the

process of the mean value of the market return

dP (t)

dt
=μ

[
αfβf

(
F̄ − P (t)

)
+ αm tanh

(
βm

(
P (t) − 1

τm

∫ t

t−τm

P (s)ds
))

+ αc tanh
(
− βc

(
P (t) − 1

τc

∫ t

t−τc

P (s)ds
))]

. (4.11)

It is easy to see that P (t) = F̄ is the unique steady state price of the system (4.11). We

therefore call P = F̄ the fundamental steady state.

In this section, we study the dynamics of the deterministic model (4.11) by focusing

on the local stability of the fundamental steady state. Denote γi = μαiβi (i = f, m, c),

which characterize the activity of type-i traders.11 In general, the dynamics depend on

11Intuitively, the speed of the price adjustment μ of the market maker measures the activity across the market. Both
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the behavior of fundamental, momentum, contrarian traders, market maker, and time

horizons. To understand the different impact of fundamental, momentum and contrarian

traders, we first consider two special cases where only momentum traders or contrarians

are involved.

4.4.1 The Stabilizing Role of the Contrarians

Contrarian trading strategies are based on the hypothesis of market overreaction. Intu-

itively, contrarians can induce market stability. To support the intuition, we consider a

market with the fundamental and contrarian traders only, that is, αm = 0. In this case

the system (4.11) reduces to

dP (t)

dt
= μ

[
αfβf

(
F̄ − P (t)

)
+ αc tanh

(
− βc

(
P (t) − 1

τc

∫ t

t−τc

P (s)ds
))]

. (4.12)

The following proposition confirms the stabilizing role of the contrarians.12

Proposition 4.1 The fundamental steady state price P = F̄ of the system (4.12) is

asymptotically stable for all τc ≥ 0.

Proposition 4.1 shows that the market consisting of fundamental and contrarian in-

vestors is always stable, and the result is independent of the time horizon and extrapola-

tion of the contrarians.13

4.4.2 The Destabilizing Role of the Momentum Traders

Momentum trading strategies based on the hypothesis of market underreaction are aimed

to explore the opportunities of market price continuity. Intuitively, when the market is

dominated by fundamental traders, the market is expected to reflect the fundamental price

and then the impact of the momentum traders on market stability can be very limited.

However, when the market is dominated by the momentum traders, the extrapolation of

the market price continuity can have significant impact on market stability. To explore

the impact, we now consider a market consisting of the fundamentalists and momentum

the population size αi and behavior activity βi qualify the trading behavior of type-i traders. Therefore, γi measures the
activity or dominance of type i traders.

12All the proofs can be found in Appendix C.2.
13Note that this result is different from that in discrete-time HAMs, in which market can become unstable when activity

of contrarians is strong, see for example, Chiarella and He (2002). This difference is due to the continuous adjustment of
the market price. The impact of any strong activity from the contrarians becomes insignificant over a small time increment.
Hence the time horizon used to form the MA becomes more irrelative in this case.
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traders only, that is αc = 0. In this case, system (4.11) reduces to

dP (t)

dt
= μ

[
αfβf

(
F̄ − P (t)

)
+ αm tanh

(
βm

(
P (t) − 1

τm

∫ t

t−τm

P (s)ds
))]

, (4.13)

and the price dynamics can be described by the following proposition.

Proposition 4.2 The fundamental steady state price P = F̄ of the system (4.13) is

(i) asymptotically stable for all τm ≥ 0 when γm <
γf

1+a
;

(ii) asymptotically stable for either 0 ≤ τm < τ ∗
m,l or τm > τ ∗

m,h and unstable for τ ∗
m,l <

τm < τ ∗
m,h when

γf

1+a
≤ γm ≤ γf ; and

(iii) asymptotically stable for τm < τ ∗
m,l and unstable for τm > τ ∗

m,l when γm > γf .

Here a = max{− sin x/x; x > 0}(≈ 0.2172), τ ∗
m,1 = 2γm/(γf − γm)2, τ ∗

m,l(< τ ∗
m,1) is the

minimum positive root of equation

f(τm) :=
τm

γm

(γf − γm)2 − cos

[√
2γmτm − (γf − γm)2τ 2

m

]
− 1 = 0, (4.14)

and τ ∗
m,h(∈ (τ ∗

m,l, τ
∗
m,1)) is the maximum one among all the roots of (4.14) which are less

than τ ∗
m,1.

Proposition 4.2 shows that the impact of the time horizon used in forming the MA

for the momentum traders depends on γm and γf , which measure the dominance of the

momentum and fundamental traders, respectively, with respect to their extrapolation and

market fraction. On the one hand, when the fundamental traders dominate momentum

traders (so that γm < γf/(1 + a)), the market is always stable and time horizon plays no

role in market stability. On the other hand, when momentum traders dominate funda-

mental traders (so that γm > γf ), the market is stable when time horizon is small (so that

τm < τ ∗
m,l), but becomes unstable when the time horizon is large (so that τm > τ ∗

m,l). In

fact, the difference between price and the price trend based on the MA becomes insignif-

icant when the time horizon is small and strong activity from the momentum traders has

very limited impact on market stability, yielding the stability for small horizon. How-

ever, due to the smoothness of the MA when the time horizon is longer, the difference

can become significant, which, together with strong activity from the momentum traders,

makes the market become unstable. When the activity of the trend followers is balanced

by that of the fundamental traders (so that γf/(1 + a) ≤ γm ≤ γf ), the market is stable

when the time horizon is either short (so that τm < τ ∗
m,l) or longer (so that τm > τ ∗

m,h),
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but becomes unstable with medium time horizon (so that τ ∗
m,l < τm < τ ∗

m,h). This is an

unexpected result. Intuitively, when time horizon is short, the price trend follows the

price closely, which limits the trading opportunity for the momentum traders. When

horizon is longer, the price trend becomes insensitive to the price changes. However, due

to the balanced activity from the fundamental traders, the extrapolation activity of the

momentum traders is limited. Therefore, in both cases, the market becomes stable.

4.4.3 The Joint Impact of Momentum and Contrarian Trading

The previous analysis shows the different role of the time horizon used in the MA by

either the contrarians or momentum traders. We analyze the market stability when both

strategies are employed in the market. For simplicity, we consider τm ≡ τc := τ in the

rest of the chapter and leave the general case with different τm and τc in Appendix C.3.

It is found that this special case can well reflect the impact of different types of traders’

activities on the stability and further on their profitability. Let τ ∗
1 = 2(γm − γc)/(γf −

γm + γc)
2, and τ ∗

l (< τ ∗
1 ) and τ ∗

h(∈ (τ ∗
l , τ ∗

1 )) be the minimum and maximum positive roots

which are less than τ ∗
1 , respectively, of the equation

h(τ) :=
τ

γm − γc

(γf − γm + γc)
2 − cos

[√
2(γm − γc)τ − (γf − γm + γc)2τ 2

]
− 1 = 0.

In this case, the market stability of the system (4.11) can be characterized by the following

proposition.

Proposition 4.3 If τm ≡ τc := τ , then the fundamental steady state price P = F̄ of the

system (4.11) is

(1) asymptotically stable for all τ ≥ 0 when γm < γc +
γf

1+a
;

(2) asymptotically stable for either 0 ≤ τ < τ ∗
l or τ > τ ∗

h and unstable for τ ∗
l < τ < τ ∗

h

when γc +
γf

1+a
≤ γm ≤ γc + γf ; and

(3) asymptotically stable for τ < τ ∗
l and unstable for τ > τ ∗

l when γm > γc + γf .

Despite the activity of both momentum and contrarian traders, Proposition 4.3 shares

the same message to Proposition 4.2 with respect to the joint impact of the time horizons

and the activity of the momentum traders on market stability, except that the activity

of the fundamental traders in Proposition 4.2 is measured jointly by the activities of the

fundamental and contrarian traders in Proposition 4.3. Given the stabilizing nature of

the contrarian strategy indicated in Proposition 4.1, this is not unexpected. The three
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conditions:

(1) : γm < γc +
γf

1 + a
, (2) : γc +

γf

1 + a
≤ γm ≤ γc + γf , (3) : γm > γc + γf

in Proposition 4.3 characterize three different states of market stability, which have dif-

ferent implications to the profitability of momentum trading strategy. For convenience,

market state k is referred to condition (k) for k = 1, 2, 3 in the following analysis.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

τ
∗

1τ

h(τ)

(a) The function h(τ)

0 1 2 3 4 5 6 7
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

τ

P

(b) Price bifurcation

Figure 4.2: (a) The function h(τ); (b) the corresponding bifurcation diagram for market state 2. Here
γf = 20, γm = 22.6 and γc = 5.

To illustrate the price dynamics in different market state, we now conduct numerical

analysis.14 For market state 1, the fundamental price is stable, independent of the time

horizon. For market state 2, Fig. 4.2 (a) illustrates the three Hopf bifurcation values

τ ∗
l ≈ 0.23, τ ∗

3 ≈ 0.41, and τ ∗
h ≈ 5.10. Correspondingly, Fig. 4.2 (b) shows that the

fundamental steady state price P = F̄ is stable when τ ∈ [0, τ ∗
l ) ∪ (τ ∗

h ,∞) and unstable

when τ ∈ (τ ∗
l , τ ∗

h). The stability switches twice.15 For market state 3, Fig. 4.3 (a)

illustrates the first (Hopf bifurcation) value τ ∗
l ≈ 0.22, which leads to stable limit cycles

for τ > τ ∗
l , as shown in Fig. 4.3 (b). The stability switches only once at τ ∗

l .

The above numerical analysis clearly illustrates that dependence of the market price

dynamics on the time horizon is different in different market states. We show in the

following section that the market states also have different implications on the under-

reaction/overreaction and momentum profitability. We complete the discussion of this

section by considering a very special case when αm = αc, βm = βc and τm = τc, that is

14The numerical results in this chapter (except for the Appendices C.4 and C.5) are based on αf = 0.3, αm = 0.4,
αc = 0.3, μ = 5 and F̄ = 1, unless specified otherwise.

15Simulations (not reported here) show that the speed of the convergence when the fundamental steady state becomes
stable after switching from instability as τ increases is very slow, although F is stable. The properties on the number of
bifurcations and the stability switching are further illustrated in Fig. C.3 in Appendix C.2. There are some interesting
properties on the nature of bifurcations related to Proposition 4.3, including the number of bifurcations, stability switching
and the dependence of the bifurcation values on the parameters. We provide the detailed analysis in Appendix C.2.
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Figure 4.3: (a) The function h(τ); (b) the bifurcation diagram of the market price for market state 3.
Here γf = 2, γm = 20 and γc = 10.

the momentum and the contrarian traders have the same population, extrapolation rate

and time horizon. In this case, system (4.11) reduces to dP (t)/dt = γf (F̄ − P (t)). The

destabilizing effect of momentum traders is completely offset by contrarians, which leads

to the global stability of the fundamental price.

4.5 Momentum Profitability

This section numerically examines the profitability of the time series momentum trading

strategies. We show that the profitability is closely related to the market states defined

according to the stability analysis in the previous section. In particular, we show that,

in market state 3, the momentum strategy is profitable when the time horizon is short

and unprofitable when the time horizon is long. In other market states, the strategy is

not profitable for any time horizon. We also provide some explanation to the profitability

mechanism through autocorrelation and time series analysis.

As in the previous section, we focus on the special case when momentum and contrarian

traders use the same time horizon and holding period. The profit is calculated using a

buy-and-hold strategy on the number and position determined by the demand function of

the trading strategy.16 It follows from Eq. (4.7) that the excess demands of momentum

16Alternatively, the profit can be calculated based on buy-and-hold strategy on one unit of position taking, as in Section
4.2. However, we find that this does not affect the profitability results obtained in this section.
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and contrarian traders with time horizon τ are given, respectively, by

Dm(t) = tanh
(
βm

(
P (t) − 1

τ

∫ t

t−τ

P (s)ds
))

,

Dc(t) = tanh
(
− βc

(
P (t) − 1

τ

∫ t

t−τ

P (s)ds
))

.

(4.15)

Based on buy and hold strategy, the spot profits yielded by using the fundamental, mo-

mentum, contrarian trading strategies, and the market maker at time t can be calculated

by

Ui(t) = Di(t)
(
P (t + τ) − P (t)

)
, i = f, m, c, M, (4.16)

where the excess demand of the fundamental strategy Df (t) is defined by Eq. (4.4) and the

excess demand of the market maker is given by DM(t) = −(αfDf (t)+αmDm(t)+αcDc(t)
)
,

which is based on the liquidity provided to clean the market. In addition, we also calculate

the average accumulated profit yielded over a time interval [t0, t] by

Ūi(t) =
1

t − t0

∫ t

t0

Di(s)
(
P (s + τ) − P (s)

)
ds, i = f, m, c, M. (4.17)
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Figure 4.4: (a) The average spot profits of trading strategies based on 1000 simulations; (b) the average
accumulated profits based on a typical simulation for market state 1. Here γf = 15, γm = 15 and γc = 3
and τ = 0.5.

We now examine the profitability in different market states. In the rest of the chapter,

the time unit is one year and the time step Δt is one month. Given 14.9% annually

standard deviation of the log return for the S&P 500 index used in Section 4.2, we choose

σM = 0.15 for the annual market volatility and σF = 0.1 for the annual volatility of the

fundamental price.
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Figure 4.5: The average ACs of market return based on 1000 simulations for market state 1 with (a)
τ = 0.5 and (b) τ = 3. Here γf = 15, γm = 15 and γc = 3.

4.5.1 State 1

In market state 1, the market is dominated jointly by the fundamental and contrarian

traders (so that γm < γc + γf/(1 + a)). In this case, the stability of the fundamental

price of the underlying deterministic model is independent of the time horizon. Based

on 1,000 simulations, Fig. 4.4 (a) reports the average spot profits of different strategies

and Fig. 4.4 (b) illustrates the average accumulated profits based on a typical simulation.

They show that the contrarian and fundamental strategies are profitable, but not the

momentum strategy and the market maker. Note that the amounts of profit/loss are

small, which is underlined by the stable market price.

To understand the mechanism of the profitability, we present the average return auto-

correlations (ACs) based on 1000 simulations in Fig. 4.5 for τ = 0.5 in (a) and τ = 3 in

(b). It shows some significant and negative ACs for small lags and insignificant ACs for

large lags. This indicates market overreaction in short-run and hence the fundamental

and contrarian trading can generate significant profits. There is no significant and pos-

itive ACs, indicating no market underreaction, and hence the momentum trading is not

profitable.

4.5.2 State 2

In market state 2, the momentum traders are active, but their activities are balanced by

the fundamental and contrarian traders (so that γc + γf/(1 + a) ≤ γm ≤ γc + γf ). In

this case, the stability of the underlying deterministic model is illustrated in Fig. 4.2,

showing that the fundamental price is stable for either short or longer time horizons,

but unstable for medium time horizons. With the same parameters used in Fig. 4.2, we
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Figure 4.6: (a) The average spot profits based on 1,000 simulations; (b) the average accumulated profits
based on a typical simulation for market state 2. Here γf = 20, γm = 22.6, γc = 5 and τ = 0.5.

illustrate the profitability of the different trading strategies in Fig. 4.6. It shows that

the fundamental and contrarian trading strategies are profitable, but not the momentum

traders and the market maker. Further simulations (not reported here) show the same

result with different time horizons, although the losses/profits increase as time horizon

increases.
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Figure 4.7: The average ACs of market return based on 1000 simulations for market state 2 with (a)
τ = 0.5 and (b) τ = 3.

As in market state 1, we also calculate the return ACs with the same set of parameters

as Fig. 4.2. Fig. 4.7 presents the average ACs based on 1000 simulations for time horizon

τ = 0.5 in (a) and τ = 3 in (b), showing some significantly negative ACs, in particular for

τ = 0.5, over short lags. This indicates the profitability of the fundamental and contrarian

trading due to market overreaction, but not for the momentum trading. Therefore, both

states 1 and 2 lead to the same conclusion on the profitability, although the amount of

profit/loss in state 2 is higher than in state 1.
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(c) Average spot profits for τ = 3
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Figure 4.8: The average spot profits based on 1000 simulations for (a) τ = 0.5 and (c) τ = 3 and the
average accumulated profits based on a typical simulation for (b) τ = 0.5 and (d) τ = 3 for market state
3. Here γf = 2, γm = 20 and γc = 10.
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4.5.3 State 3

In market state 3, the market is dominated by the momentum traders (so that γm >

γc + γf ). The stability of the underlying deterministic model is illustrated in Fig. 4.3,

showing that the fundamental price is stable for short horizons, but unstable for longer

horizons. With the same set of parameters in Fig. 4.3, we reports the profitability of

the different trading in Fig. 4.8. It shows clearly that, for short horizon τ = 0.5, the

fundamental and momentum trading strategies are profitable, but not the contrarians, as

illustrated in Figs. 4.8 (a) and (b). However, for longer horizon τ = 3, the fundamental

and contrarian strategies are profitable, but not the momentum traders, see Figs. 4.8 (c)

and (d).
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Figure 4.9: Time series of price P (t) and price trend u(t) for (a) τ = 0.5 and (b) τ = 3.

To explore the profit opportunity of the momentum trading with different time hori-

zons, we plot the time series of the price and price trend in Fig. 4.9 (a) for τ = 0.5 and

Fig. 4.9 (b) for τ = 3, based on the same simulation in Fig. 4.8 (b) and (d), respectively.

There are two interesting observations. (i) For short horizon τ = 0.5, the market price

fluctuates due to the unstable steady state of the underlying deterministic system. When

the market price increases, the price trend follows the market price closely and increases

too, as illustrated in Fig. 4.9 (a). This implies that, with short holding period, the

momentum trading strategy is profitable by taking long positions. Similarly, when the

market price declines, the price trend follows. Hence the momentum trading is profitable

by taking short positions. Therefore, the momentum trading is profitable (except for the

starting periods of sudden changes in the price tendency). (ii) For longer horizon τ = 3,

the market price fluctuates widely due to the unstable fundamental value of the underlying

deterministic system. The relation between market price and price trend is similar to the

case for the short horizon, as illustrated in Fig. 4.9 (b). However, a longer horizon makes
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the price trend less sensitive to the changes in price. Also, since the holding period is also

longer, the momentum trading mis-matches the profitability opportunity. For example,

when the market price reaches a peak at t ≈ 50 (months), which is higher than the trend,

the momentum traders buy the stocks. After holding the stocks for 3 years, they sell at a

much lower price at t ≈ 86, implying a loss from the momentum strategy. This illustrates

that, with longer horizon, the momentum trading is not profitable.
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Figure 4.10: The average ACs of market return based on 1000 simulations for market state 3 with (a)
τ = 0.5 and (b) τ = 3.

To provide further insight into the profitability mechanism, we calculate the return ACs

and present the results in Fig. 4.10. It shows clearly the market underreaction in short

run and overreaction in long run, characterized by significantly positive ACs for short

lags and negative ACs for long lags for both short and longer horizons. With the short

horizon and holding period, the momentum trading is profitable due to the underreaction

in short-run (Fig. 4.10 (a)). However with the long time horizon, the momentum trading

is no longer profitable for long holding period due to the overreaction in long-run (Fig.

4.10 (b)), although it can be profitable with short holding period due to the underreaction

illustrated in Fig. 4.10 (b), which is verified in Fig. 4.11 with 3 years horizon and 6 month

holding period. This result is consistent with Lou and Polk (2013).

It would be interesting to see if the model is able to replicate the time series momentum

profit explored for the S&P 500 in Section 4.2 based on the momentum strategies (4.1)

and (4.2). Table 4.3 reports the annual excess returns of various momentum trading

strategies based on (4.1) investing in the model generated data in market state 3 for time

horizon and holding period from 1 to 60 months. Fig. 4.12 reports the corresponding

t-statistic of the average excess return of the momentum strategies for time horizon from 1

to 60 months periods and holding period equals to horizon, 1 month and 6 month periods.

Similar results based on trading strategy (4.2) are reported in Table C.2 and Fig. C.2 in
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Figure 4.11: (a) The average spot profits based on 1,000 simulations; (b) the average accumulated profits
based on a typical simulation for market state 3 with 3 years horizon and 0.5 year holding period.

(m \ n) 1 3 6 12 24 36 48 60
1 1.23 3.30 3.05∗∗ 3.09∗∗∗ 1.71∗∗ 0.44 -0.17 -0.42
3 2.78 3.21 4.73∗∗ 4.16∗∗ 2.68∗∗ 0.25 -0.42 -0.55
6 2.48 3.85 5.74∗∗ 5.09∗∗ 2.29 -0.37 -1.41 -1.15
12 6.89∗∗ 7.87∗∗ 8.12∗∗∗ 5.91∗∗ 1.48 -1.78 -2.50∗ -1.99
24 9.92∗∗∗ 9.89∗∗∗ 7.40∗∗ 2.89 -2.71 -4.82∗∗ -3.82∗ -2.14
36 8.84∗∗ 5.43 2.16 -1.79 -6.22∗∗ -7.57∗∗∗ -5.44∗∗ -3.34∗

48 5.00 2.41 -0.01 -3.66 -7.76∗∗∗ -8.52∗∗∗ -5.91∗∗∗ -3.57∗

60 2.50 -0.03 -2.01 -5.25 -9.00∗∗∗ -9.19∗∗∗ -6.15∗∗∗ -3.63∗

Table 4.3: The annualized percentage (log) excess returns of the momentum strategy (4.1) for the time
series generated from the model in market state 3 with the horizon (m) and holding (n) from 1 to 60
months period. Note: ∗, ∗∗, ∗∗∗ denote the significance at 10%, 5% and 1% levels, respectively.

Appendix C.1. We see that both the profit and t-statistic patterns generated from the

model are very similar to the S&P 500 reported in Section 4.2. The results are consistent

with Moskowitz et al. (2012) who find that the time series momentum strategy with 12

months horizon and 1 month holding is the most profitable among others.

To complete this section, we add the following remarks. (i) The analysis of this chapter

focuses on the same time horizon and holding period. An extension to different time

horizon and holding period is presented in Appendix C.3. (ii) Simulations (not reported

here) show that the level of profitability of momentum (contrarian) strategy is positively

(negatively) related to βm and negatively (positively) related to βc. Also, the level of

profitability of both momentum and contrarian strategies is positive related to the price

adjustment speed μ. (iii) The time horizon τ can affect the profitability greatly. Recall

that the stability of the system depends on γi = μαiβi (i = f, m, c) and τ completely and

the profitability is closely related to the market states. (iv) When investors switch their

trading strategies based on some fitness functions, we extend the model in Appendices
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Figure 4.12: The t-Statistic of the average excess return of the momentum strategy (4.1) investing in the
model generated data in market state 3 for time horizon from 1 to 60 months periods and holding equal
to horizon (n = m), 1 month (n = 1) and 6 month periods (n = 6).

C.4 and C.5 and show that the profits/losses can be enhanced due to the switching among

different trading strategies.

4.6 Conclusion

Based on market underreaction and overreaction hypotheses, momentum and contrarian

strategies are widely used by financial market practitioners and their profitability has

been extensively investigated by academics. However, most behavioral models do not

specify the time horizon, which plays crucial a role in the performance of momentum

and contrarian strategies. Following the recent development in the heterogeneous agent

models literature, this chapter proposes a continuous-time heterogeneous agent model of

investor behavior consisting of fundamental, contrarian, and momentum strategies. The

underlying stochastic delay integro-differential equation of the model provides a unified

approach to deal with different time horizons of momentum and contrarian strategies,

which play an important role in the profitability empirically. By examining their impact

on market stability explicitly and analyzing the profitability numerically, this chapter ex-

amines the profitability of the time series momentum trading strategies. We show that

the profitability is closely related to the market states defined by the stability of the un-

derlying deterministic model. In particular, we show that, in market state 3 where the

momentum traders dominate the market, the momentum strategy is profitable when the

time horizon is short and unprofitable when the time horizon is long. In other market

states, the strategy is not profitable for any time horizon. We also provide some expla-

nation to the profitability mechanism through autocorrelation patterns and the classical

underreaction and overreaction hypotheses. In addition, we show that the momentum
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strategy works in the stock index.

Although the model proposed in this chapter is very simple, it provides some insight

into the time series momentum documented in recent empirical literature. As we discussed

in the introduction, the time series momentum plays a very important role in explaining

cross-sectional momentum, which had been widely researched in the literature. Motivated

by the results obtained in this chapter, one can extend the market of one risky asset to one

with many risky assets so that the profitability of portfolios constructed from momentum

and contrarian strategies can be examined. We would expect the same mechanism can be

used to explain cross-sectional momentum. In addition, it has been shown that volatility

can affect the autocorrelations in returns and hence affect profitability and even trading

volume. This could be examined by using the setup in this chapter. We leave these to

future research.



Chapter 5

Optimality of Momentum and

Reversal

5.1 Introduction

Chapter 4 shows the profitability of the momentum and contrarian strategies is condi-

tional. In order to achieve an unconditional profitability, this chapter studies the opti-

mality of trading strategies to reflect the short-run momentum and long-run reversal in

financial markets. We extend the standard asset pricing model under geometric Brownian

motion to incorporate a weighted average of mean reversion and moving average into the

drift. When the preference is given by the log utility function, we obtain the optimal

portfolio, which includes Merton’s optimal portfolio as a special case. We show that a

combined momentum and reversal strategy is optimal. To demonstrate the optimality of

the strategy, we estimate the model to the S&P 500 index and show that neither pure

momentum nor pure mean reversion strategies can outperform the market; however, the

optimal strategy combining the momentum and mean reversion can outperform the mar-

ket. In fact, different from the momentum strategy which is based on trend only, the

optimal strategy takes not only the trend in return but also the market volatility into

account. Through regression analysis, we further show that the optimal strategies are

immune to market states, investor sentiment and market volatility.

The asset pricing model developed in this chapter takes not only the mean reversion but

also the momentum effect into account directly. Therefore the historical prices underlying

the momentum component affect the asset prices, resulting in a non-Markov process

characterized by stochastic delay differential equations (SDDEs). This is very different

from the Markov asset price process well documented in the literature (Merton 1969,

83
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1971), where the dynamic programming method through HJB equation is most frequently

used in solving the stochastic control problem. It becomes very challenging to solve the

optimal control problem for DDEs because it involves infinite-dimensional PDEs. To

overcome this challenge, we explore the latest development in the theory of maximum

principle for control problem of SDDEs. By assuming the log utility preference, we derive

the optimal strategies in closed form. This helps us to study the impact of historical

information on the profitability of different strategies based on different time horizons.1

This chapter is closely related to the literature on momentum and reversal, two of the

most prominent financial market anomalies; in particular, time series momentum. Mo-

mentum, on the one hand, is the tendency of assets with good (bad) recent performance

to continue outperforming (underperforming) in short-run. Reversal, on the other hand,

concerns predictability of assets that performed well (poorly) over a long period tend to

subsequently underperform (outperform). Momentum and reversal have been documented

extensively for a wide variety of assets. Jegadeesh and Titman (1993) document momen-

tum for individual U.S. stocks, predicting returns over horizons of 3-12 months by returns

over the past 3-12 months. De Bondt and Thaler (1985) document the reversal, predicting

returns over horizons of up to five years by returns over the past 3-5 years. Fama and

French (1992) document the value effect, which is closely related to reversal, whereby the

ratio of an assets price relative to book value is negatively related to subsequent perfor-

mance. Mean reversion in equity returns has been shown to induce significant market

timing opportunities (Campbell and Viceira 1999, Wachter 2002 and Koijen et al. 2009).

The evidence has been extended to stocks in other countries (Fama and French 1998),

stocks within industries (Cohen and Lou 2012), across industries (Cohen and Frazzini

2008), and the global market with different asset classes (Asness, Moskowitz and Peder-

sen 2013). More recently, Moskowitz et al. (2012) investigate time series momentum that

characterizes strong positive predictability of a security’s own past returns.

This chapter is largely motivated by the empirical literature testing trading signals

with combination of momentum and reversal. Balvers and Wu (2006) and Serban (2010)

empirically show that a combination of momentum and mean-reversion strategies can

outperform the pure momentum and pure mean reversion strategies for equity markets and

foreign exchange markets respectively. Asness, Moskowitz and Pedersen (2013) highlight

that studying value and momentum jointly is more powerful than examining each in

isolation.2 Koijen et al. (2009) proposes a theoretical model in which stock returns exhibit

1The impact of the time horizon on the profitability has been extensively investigated in the empirical literature, see, for
example, De Bondt and Thaler (1985) and Jegadeesh and Titman (1993). However, due to the technical challenge, there
are few theoretical results on it.

2They find that separate factors for value and momentum best explain the data for eight different markets and asset
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momentum and mean reversion effects. They study the dynamic asset allocation problem

with CRRA utility. However, the modelling of momentum in this chapter is very different

from Koijen et al. (2009). In Koijen et al. (2009), the momentum is calculated by all the

historical returns with geometrically decaying weights. This reduces the pricing dynamics

to a Markovian system. In this chapter, the momentum is measured by the standard

moving average over a moving window with a fixed “look-back period”, which is consistent

with the momentum literature. Also, Koijen et al. (2009) focuses on the performance of

the hedging demand implied by the model, while the focus of this chapter is on the

performance of the optimal strategies.

By estimating the model to the S&P 500, we are able to demonstrate that the optimal

strategies based on the pure momentum and pure mean reversion models cannot outper-

form the market but a combination of them can outperform the market. The optimal

strategies not only reflect the trading signal based on momentum and reversal effects,

but also take the volatility into account. The robustness of the optimality of the opti-

mal strategies are also tested in short run and long run, with different estimations, out

of sample predictions, market states, investor sentiment and market volatility. Finally,

we compare the performance of the optimal strategies with the time series momentum

strategies used in Moskowitz et al. (2012). With different proxies, including the utility of

wealth, Sharpe ratio and average return, we show that the profitability pattern reflected

by the average return in most of the empirical literature underperform comparing to the

optimal strategies.

This chapter is based on He, Li and Li (2014) and organized as follows. We first present

the model and derive the optimal asset allocation in Section 5.2. We then estimate the

model to the S&P500 in Section 5.3 and examine the performance of the optimal strategies

in Section 5.4. Section 5.5 concludes. All the proofs and the robustness analysis are

included in Appendix D.

5.2 Optimal Asset Allocation

In this section, we introduce an asset pricing model and study the optimal asset allocation

problem.

classes. Furthermore, they show that momentum loads positively and value loads negatively on liquidity risk; however,
an equal-weighted combination of value and momentum is immune to liquidity risk and generates substantial abnormal
returns.
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5.2.1 The Model

We consider a financial market with two tradable securities, a risky asset S and a riskless

asset B satisfying
dBt

Bt

= rdt, (5.1)

where the riskless interest rate r is a constant. The uncertainty is represented by a filtered

probability space (Ω,F , P, {Ft}t≥0) on which a two-dimensional Brownian motion Zt is

defined. Let St be the price of the risky asset or the level of a market index at time t and

the dividends are assumed to be reinvested. Following Koijen et al. (2009), we assume

the instantaneous return of the risky asset is arrived at via a momentum term mt and a

long-run mean reversion term μt and the dynamics of stock returns is given by

dSt

St

=
[
φmt + (1 − φ)μt

]
dt + σ′

SdZt, (5.2)

where φ is a constant, measuring the weight to the momentum component, σS is a two-

dimensional volatility vector, and Zt is a two-dimensional vector of independent Brownian

motions. The mean reversion process μt is a stationary variable, defined by an Ornstein-

Uhlenbeck process,

dμt = α(μ̄ − μt)dt + σ′
μdZt, α > 0, μ̄ > 0 (5.3)

where μ̄ is the constant long-run expected rate of return, α is the rate at which μt converges

to μ̄, and σ′
μ a two-dimensional vector of instantaneous volatilities. The momentum term

mt is defined by a stardard moving average (MA) of past returns over [t − τ, t],

mt =
1

τ

∫ t

t−τ

dSu

Su

. (5.4)

The modelling of momentum in this chapter is motivated by the time series momentum

Moskowitz et al. (2012) who demonstrate that the average return over a past period (say,

12 months) is a positive predictor of its future returns, especially the return for the next

month. This is different from Koijen et al. (2009). In Koijen et al. (2009), the momentum

at time t is defined by

Mt =

∫ t

0

e−w(t−u) dSu

Su

,

which is based on the past returns over [0, t] with geometrically decaying weights. The

advantage of Mt is that the process Mt can be treated as a Markovian process. Note that

the weights over [0, t] are not added up to one. Thus Mt cannot be treated as the standard
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average of past returns. Also Mt is not rolling forward with a fixed time window. The

momentum mt introduced in this chapter is the standard moving average over a moving

window [t − τ, t] with “look-back period” of τ > 0 and the weights over the period are

added up to one. This definition is consistent with the empirical momentum literature,

which explores the price trends based on the returns over a fixed “look-back period”.

The resulting asset price model (5.2)-(5.3) is characterized by a stochastic delay integro-

differential system, which is non-Markovian. We show in Appendix D.1 that the process

has a pathwisely unique solution and asset price is always positive for given initial values

over [−τ, 0].

5.2.2 Optimal Asset Allocation

Consider a typical long-term investor who maximizes the expected utility of the terminal

wealth. Assume that the preferences of the investor can be represented by a log utility

function. Let Wt be the wealth of the investor at time t and πt is the fraction of the

wealth invested in the stock. Then the change in wealth follows

dWt

Wt

=
{
πt[φmt + (1 − φ)μt − r] + r

}
dt + πtσ

′
SdZt. (5.5)

The investment problem of the investor is given by

J(W,m, μ, t, T ) = sup
(πu)u∈[t,T ]

Et[ln WT ], (5.6)

where T is the terminal time of the investment, and J(W,m, μ, t, T ) is the value function

corresponding to the optimal investment strategy. Then we show in Appendix D.2 that the

optimal dynamic strategic allocation can be characterized by the following proposition.

Proposition 5.1 For an investor with log utility, the optimal strategic allocation to stocks

is given by

π∗
t =

φmt + (1 − φ)μt − r

σ′
SσS

. (5.7)

The optimal portfolio (5.7) reflects the myopic behavior of the investor with log utility.

Two special cases are interesting. First, when φ = 0, the asset price does not depend on

the momentum and follows a standard geometric Brownian motion process

dSt

St

= μtdt + σ′
SdZt.
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In this case, the optimal portfolio reduces to (5.7) becomes

π∗
t =

μt − r

σ′
SσS

, (5.8)

which is the standard optimal strategy when the drift is mean-reverting. In particular,

when μt = μ is a constant, the optimal portfolio (5.8) collapses to π∗
t = μ−r

σ′
SσS

, which is

the optimal portfolio in Merton (1971).

Secondly, when φ = 1, the asset price depend only on the momentum. Correspondingly,

the optimal portfolio (5.7) reduces to

π∗
t =

mt − r

σ′
SσS

. (5.9)

If we consider the trading signal indicated by the excess return mt − r only, with τ =

12, the optimal portfolio (5.9) is consistent with the time series momentum strategy in

Moskowitz et al. (2012) by constructing portfolios based on the monthly excess returns

over the past 12 months and holds it for 1 month. Moskowitz et al. (2012) demonstrate

that this strategy performs the best among all the momentum strategies with look-back

period and holding period from 1 month to 48 months. If we take only the position and

construct simple buy-and-hold momentum strategy over a large range of look-back period

and holding period investigated in Moskowitz et al. (2012), (5.9) shows that the time

series momentum strategies can be optimal when the mean-reverting is not significant

in markets. This explains the dependence of the momentum profitability on market

conditions and volatility. Note that the optimal portfolio (5.9) defines the optimal wealth

fraction invested in the risky asset, depending on not only the excess return but also the

volatility.

In general, the optimal portfolio (5.7) implies that a weighted average of momentum

and mean-reverting strategies is optimal. Intuitively, it takes into account of both the

short-run momentum and long-run reverting, which are well supported empirically. It is

the simple form of the optimal portfolio (5.7) that facilitates the comparison of the per-

formance with other trading strategies and the market. As demonstrated by the following

analysis, its empirical implication can be very significant.

5.3 Model Estimation

To demonstrate the optimality of the optimal portfolio (5.7), we estimate the model to

the S&P 500 in this section. In line with Campbell and Viceira (1999) and Koijen et al.
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(2009), the mean-reversion variable is affine in the (log) dividend yield as follow,

μt = μ̄ + ν(Dt − μD) = μ̄ + νXt,

where ν is a constant, Dt indicates the (log) dividend yield with E(Dt) = μD, and Xt =

Dt − μD denotes the de-meaned dividend yield. Thus the asset price model (5.2)-(5.3)

become ⎧⎪⎨⎪⎩
dSt

St

=
[
φmt + (1 − φ)(μ̄ + νXt)

]
dt + σ′

SdZt,

dXt = −αXtdt + σ′
XdZt,

(5.10)

where σX = σμ/ν.

The uncertainty in system (5.10) is driven by two independent Brownian motions.

Without loss of generality, the volatility matrix of the dividend yield and return is pa-

rameterized to be lower triangular,

Σ =

(
σ′

S

σ′
X

)
=

(
σS(1) 0

σX(1) σX(2)

)
.

That is, Σ is the Cholesky decomposition of the instantaneous variance matrix. Thus,

the first element of Zt is the shock to the return and the second element of Zt is the

dividend yield shock that is orthogonal to return shock. This setup follows Sangvinatsos

and Wachter (2005) and Koijen et al. (2009).

By discretizing the continuous-time model at a monthly frequency to be consistent

with the momentum and reversal literature, system (5.10) results in a bivariate Gaussian

vector autoregression (VAR) model for the simple return and dividend yield, which are

observable,⎧⎨⎩ Rt+1 =
φ

τ
(Rt + Rt−1 + · · · + Rt−τ+1) + (1 − φ)(μ̄ + νXt) + σ′

SΔZt+1,

Xt+1 = (1 − α)Xt + σ′
XΔZt+1,

(5.11)

where Rt = (St − St−1)/St−1 is the simple return of the stock at time t.3

We estimate the model (5.11) with maximum likelihood method by employing monthly

S&P 500 data over the period January 1871–December 2012 obtained from the home page

of Robert Shiller. We set the instantaneous short rate to r = 4% annually. As in Campbell

and Shiller (1988a, 1988b), the dividend yield is defined as the log of the ratio between

the last period dividend and the current index. We construct the total return index using

3Different from Koijen et al. (2009), we use the simple return to construct mt and also discretize the stock price process
into simple return rather than log return to be consistent with the momentum and reversal literature.
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Figure 5.1: The estimates of (a) α; (b) φ; (c) μ̄; (d) ν; (e) σS(1); (f) σX(1) and (g) σX(2) as functions of
τ .
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the price index series and the dividend series.
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Figure 5.2: (a) Akaike information criterion, (b) Bayesian information criterion and (c) Hannan–Quinn
information criterion for τ ∈ [1, 60].

The estimated parameters in monthly terms are illustrated in Fig. 5.1 for τ ranging

from 1 month to 5 years. As one of the key parameters of the model, Fig. 5.1 (b)

shows that the momentum effect φ is statistically different from 0 for τ ≥ 10, indicating

a significant momentum effect. Note that φ increases to 50% for τ ∈ [20, 30] and then

decreases gradually when τ increases further. Other estimate results in terms of the level

and significance in Fig. 5.1 are consistent with Koijen et al. (2009).

Obviously, the estimations depend on time horizon τ . To explore the optimal value for

τ , we compare different information criteria for different τ , including AIC, BIC and HQ

from 1 to 60 months in Fig. 5.2. AIC, BIC and HQ reach their minima at τ = 23, 19 and

20 respectively, implying that the average returns over a past time period of 1.5—2 years

can predict future return best. The increasing pattern of the criteria for longer τ indicates

the return trend based on longer time horizon window has less explanatory power.
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Figure 5.3: The estimates of σS(1) for the pure momentum model (φ = 1) for τ ∈ [1, 60].

To compare the performance of the optimal strategy, comparing with pure momentum



92 5.3 Model Estimation

or mean-reverting strategies, we also estimate the index to the model with φ = 1 and φ = 0

respectively. For the pure momentum model (φ = 1), Fig. 5.3 illustrates the estimates

of σS(1) for τ ∈ [1, 60]. It shows that the volatility of the index decreases dramatically

for small time horizons and becomes stable for large time horizons. It demonstrates that

the past returns over up to one year can explain part of the return volatility but longer

historical returns have less power in explaining return volatility. We also compare different

information criteria for different τ . AIC, BIC and HQ all reach their minima at τ = 11

(not reported here). It implies that the average returns over the past 11 months can

predict future return best for the pure momentum model.

Parameters α μ̄ ν σS(1) σX(1) σX(2)

Estimates (%) 0.55 0.37 2.67 ∗ 10−5 4.11 -4.07 1.36
Bounds (%) (0.07, 1.03) (0.31, 0.43) (-0.46, 0.46) (3.97, 4.25) (-4.22, -3.92) (1.32, 1.40)

Table 5.1: The estimates of the parameters for the pure mean reversion model.

Table 5.1 reports the estimated parameters for the pure mean reversion model (φ = 0).

The results are comparable to those for the full model illustrated in Fig. 5.1.
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Figure 5.4: The log-likelihood ratio test for the pure mean-reversion model (φ = 0) for τ ∈ [1, 60].

For comparison, we use a log-likelihood ratio test. We compare the full model (5.2)-

(5.3) to the pure mean reversion model (φ = 0) and Fig. 5.4 reports the log-likelihood

ratio test with 95% confidence interval. It illustrates that the full model is significantly

better than the pure mean reversion model for τ ≤ 29. This result is consistent with

the literature that there is no momentum effect for large time horizon and the returns

exhibit mean reversion in the long run. Therefore, we should not expect the full model

with longer time horizons to fit the data better than the pure mean reversion model. We

also compare the full model to the pure momentum model (φ = 1) with respect to each

τ and find that the full model is significantly better than the pure momentum model for
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all τ (not reported here).

To avoid look ahead bias, we also estimate the models using rolling window data and

report the results in Appendix D.3. In summary, we estimate the model to the index

and show that the optimal strategy fits the data better with 1.5-2 year time horizons and

also better than pure momentum and mean-reverting models. This observation is further

supported by performance analysis in the following section.

5.4 Performance

Based on the estimation in the previous section, we examine the optimality of the optimal

portfolio in this section. We first examine the performance of the optimal trading strategy

(5.7) by using two proxies: the utility of portfolio wealth and the Sharpe ratio. Then we

study the sensitivity of the performance of the optimal strategies to the market states,

investor sentiment and market volatility. Finally, following the momentum and reversal

literature, we implement some empirical analysis by focusing on the returns implied by

the optimal strategy.

5.4.1 Performance of the Optimal Strategies

This subsection provides empirical evidence on the optimality of the trading strategy

(5.7). We use two proxies to measure the performance of the optimal portfolio, the utility

of the optimal portfolio wealth and the Sharpe ratio.

The Full Model

To measure the performance of the optimal strategy (5.7), we compare the realized utility

of the optimal portfolio wealth invested in the S&P 500 index with different look-back

period τ and 1-month holding period to the utility of a passive holding investment in the

S&P 500 index with an initial wealth of $1. We consider the look-back period τ from 1

month to 60 months and invest monthly. For comparison, all the portfolios start at the

end of January 1876, (after 60 months of January 1871 to calculate the trading signals).

As the benchmark, the log utility of an investment of $1 to the index from January 1876

to December 2012 is equal to 5.7649. For a fixed look-back period τ ∈ {1, 2, · · · , 60},
say, τ = 12, we calculate the moving average mt at any point of time (in month) from

January 1876 to December 2012 using the index levels over the time period. With the

initial wealth of $1 at January 1876 and the estimated parameters for τ = 12 in Fig. 5.1,

we calculate the monthly investment of the optimal portfolio wealth Wt based on (5.7).
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Figure 5.5: The utility of wealth from January 1876 until December 2012 for the optimal portfolio with
τ ∈ [1, 60] and the passive holding portfolio.

For τ = 1, 2, · · · , 60, Fig. 5.5 (a) illustrates the utility of the portfolio wealth from

January 1876 until December 2012 for the optimal portfolio with τ ∈ [1, 60] and the

passive holding portfolio. For better visibility, we also plot the utility of terminal wealth

in Fig. 5.5 (b). Both of them show that the optimal strategies outperform the market

index at the end of investment period for τ ∈ [1, 20].

Moskowitz et al. (2012) document the momentum strategy based on 12-month horizon

performs the best. So we examine the performance for τ = 12 closely. Fig. 5.6 illustrates

the time series of the optimal portfolio and the utility of wealth from January 1876 until

December 2012 for τ = 12. We also plot the corresponding index level and simple return

of the total return index of S&P 500 in Fig. 5.6 (a) and (b) over the same time period. It

shows that the index return and π∗
t are positively correlated, with a correlation of 0.3346.

However, the correlations become 0.3498 and 0.1349 for τ = 11 and τ = 27, at which

the terminal utility has its maximum and minimum respectively as illustrated in Fig.

5.5. From Fig. 5.6 (d), it seems that the profits are mainly contributed by the Great

Depression in 1930s. Moskowitz et al. (2012) also find that the time series momentum

strategy delivers its highest profits during the most extreme market episodes. We also

study the performance using the data from January 1940 to December 2012 to avoid the

Great Depression periods. Based on the new estimation (not reported here), we find that

the optimal strategies still outperform the market and the performances of the strategies

for the recent time period become even better for all time horizons. This indicates that

the optimal strategy can outperform the market independent of market condition.

To provide further evidence, we conduct a Monte Carlo analysis. For τ = 12, with the

corresponding estimated parameters in Fig. 5.1, we simulate the model (5.10). Fig. 5.7

(a) illustrates the average portfolio utility based on 1,000 simulations, together with 95%
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Figure 5.6: The time series of (a) the total return index level and (b) the simple return of the total
return index of S&P 500; (c) the optimal portfolio and (d) the utility of wealth from January 1876 until
December 2012 for τ = 12.
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(b) One sided t statistics

Figure 5.7: (a) average utility and (b) one sided t-test statistics based on 1000 simulations for τ = 12.

confidence levels. It shows that first, the average performance of the optimal portfolio is

better than S&P 500’s. Secondly, the utility for the S&P 500 falls into the area and hence

the average performance of the optimal strategy is indifferent from the market index. We

also plot the two black dashed bounds for the 60% confidence level. It shows that, at 60%

confidence level, the optimal strategy significantly outperforms the index. Fig. 5.7 (b)

illustrates the one sided t-test statistics to test ln W ∗
t > ln W SP500

t . The t-statistics are

above 0.84 in most of the time, which indicates a critical value at 80% confidence level

Therefore, with 80% confidence, the optimal strategy significantly outperforms the index.
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Figure 5.8: Average terminal utility based on 1000 simulations for τ ∈ [1, 60].

For τ ∈ [1, 60], Fig. 5.8 illustrates the average terminal utility based on 1,000 simula-

tions, which displays a different terminal performance from Fig. 5.5. In fact, the terminal

utility in Fig. 5.5 is based on only one specific trajectory (the real stock index), but

Fig. 5.8 provides average performance based on 1,000 trajectories. We can see that the

average terminal utility reaches its peak at τ = 24, which is consistent with the result
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based on the information criteria in Fig. 5.2, especially the AIC. Therefore, we show that

the simulated average terminal utility is a better proxy characterizing the utility of the

portfolio wealth. According to this proxy, the optimal strategies outperform the market

for most of the time horizons τ .
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Figure 5.9: The Sharpe ratio for the optimal portfolio with τ ∈ [1, 60] and the passive holding portfolio
from January 1881 until December 2012.

We also use Sharpe ratio to test the performance, which is defined as the ratio of

the mean excess return on the (managed) portfolio and the standard deviation of the

portfolio return. If a strategy’s Sharpe ratio exceeds the market Sharpe ratio, the active

portfolio dominates the market portfolio (in an unconditional mean-variance sense). For

empirical applications, the (ex post) Sharpe ratio is usually estimated as the ratio of the

sample mean of the excess return on the portfolio and the sample standard deviation of

the portfolio return. The average monthly return on the total return index of the S&P 500

over the period January 1871–December 2012 is 0.42% with an estimated (unconditional)

standard deviation of 4.11%. The Sharpe ratio of the market index is 0.021.

Next, we consider the optimal strategies (5.7). The return of the optimal portfolio

wealth at time t is given by

R∗
t = (W ∗

t − W ∗
t−1)/W

∗
t−1 = π∗

t−1Rt + (1 − π∗
t−1)r. (5.12)

Fig. 5.9 illustrates the Sharpe ratio for the optimal portfolio with τ ∈ [1, 60] and compares

to the passive holding portfolio from January 1881 until December 2012. If we consider

the optimal portfolio as a combination of the market portfolio and a risk free asset,

then the optimal portfolio is on the capital market line and hence it should have equally

good performance as the market according to the Sharpe criterion. However Fig. 5.9

demonstrates that the optimal portfolio (blue line) outperforms the market (black line)

on average for small time horizon by taking the timing opportunity. Interestingly, the
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results are perfectly consistent with the measure of terminal utility illustrated in Fig.

5.5.4 In conclusion, we have shown that the optimal strategies outperform the market

index.

The Pure Momentum Model

We now examine the performance of the pure momentum strategy and compare with the

market index.
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Figure 5.10: The utility of terminal wealth for τ ∈ [1, 60].

Based on the estimated parameters in Fig. 5.3, Fig. 5.10 illustrates the utilities of all

the optimal portfolios for the pure momentum model (φ = 1) at December 2012. It shows

that the pure momentum strategies underperforms the index with all the time horizons

from 1 to 60 months.

Fig. 5.11 illustrates the time series of the optimal portfolio and the utility of wealth

from January 1876 until December 2012 for τ = 12 for the pure momentum model. By

comparing to Fig. 5.6 for the full model, the leverage of the pure momentum strategies is

much higher indicated by the higher level of π∗
t . The optimal strategies for the pure mo-

mentum model suffer from high risk and hence perform worse than the optimal strategies

for the full model. Therefore, the pure momentum strategy underperforms the market

and the optimal strategy.

4This result is different from Marquering and Verbeek (2004) who argue that Sharpe ratio performance and the utility-
based performance can be inconsistent because “Sharpe ratio does not appropriately take into account time-varying volatil-
ity.” However, if and when Sharpe ratio is a good measure is not the focus of this chapter.
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Figure 5.11: The time series of (a) the optimal portfolio and (b) the utility of wealth from January 1876
until December 2012 for τ = 12 for the pure momentum model.

The Pure Mean Reversion Model

Similarly, we examine the performance of the pure mean reversion model and compare it

with the market index.

Based on the estimates in Table 5.1, Fig. 5.12 illustrates the time series of the optimal

portfolio and the utility of wealth from January 1876 until December 2012 for the pure

mean reversion model. The performance of the strategy is about the same as the stock

index, but worse than the optimal strategy (5.7) for the full model illustrated in Fig. 5.5.

Out of Sample Tests

In this subsection, we implement some out of sample tests to the optimal strategies by

splitting the whole data set into two sub-sample periods. We use the first sample period

to estimate the model and then apply the estimated parameters to the second part of the

data to examine the performance of the strategies.

Many studies (see, for example, Jegadeesh and Titman 2011) show that (cross-

sectional) momentum strategies perform poorly after the subprime crisis. We now fo-
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Figure 5.12: The time series of (a) the optimal portfolio and (b) the utility of wealth from January 1876
until December 2012 for the pure mean reversion model.
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Figure 5.13: The utility of wealth from January 2008 until December 2012 for the optimal portfolio with
τ ∈ [1, 60] and the passive holding portfolio with out of sample data of the last 5 years.
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cus on the performance of the optimal strategies after the subprime crisis and use the

last 5 years’ data to test the performance. Fig. 5.13 illustrates the utility of wealth for

τ ∈ [1, 60] for the out of sample tests based on the last 5 years. It clearly shows that the

optimal strategies still outperform the market for time horizons up to 2 years.
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Figure 5.14: The time series of (a) the optimal portfolio and (b) the utility of wealth from January 2008
until December 2012 for τ = 12 with out of sample data of last 5 years.

To better understand the performance of the out of sample tests, we fix the time

horizon τ = 12 and examine the time series of the optimal portfolio and the utility of the

portfolio wealth from January 2008 until December 2012 in Fig. 5.14. It is clear that the

optimal strategy outperforms the market over the who sub-sample period, in particular,

during the financial crisis period around 2009.
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Figure 5.15: The utility of terminal wealth for τ ∈ [1, 60] based on the out of sample period of the last
71 years.

As another out of sample test, we split the whole data set into two equal periods:

January 1871-December 1941 and January 1942-December 2012. We estimate the model

to the first sub-sample period and do the out of sample test over the second sub-sample

period. Notice the data in the two periods are quite different. The market index increases

gradually in the first period but fluctuates widely in the second period as illustrated in
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Fig. 5.6 (a). For the out of sample test, Fig. 5.15 illustrates the utility of terminal wealth

for τ ∈ [1, 60] using sample data of the last 71 years. It becomes clear that the optimal

strategy still outperforms the market for τ ∈ [1, 14].
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Figure 5.16: The time series of (a) the optimal portfolio and (b) the utility of wealth from January 1942
until December 2012 for τ = 12 for the out of sample tests with out of sample data of last 71 years.

With fixed τ = 12, Fig. 5.16 illustrates the corresponding time series of the optimal

portfolio and the utility of the portfolio wealth by conducting the out of sample test from

January 1942 until December 2012. It shows that the utility of the optimal strategy grows

gradually and outperforms the market index. We also use the last 10 years and 20 years

data as the out of sample data and find the results are robust.

We also conduct the performance analysis based upon rolling window estimation and

report the results in Appendix D.3. The results are consistent with the main findings

above. Overall, the analyses have demonstrated the optimality of the optimal trading

strategy based on a large range of time horizons, in particular, we demonstrate the out-

performance based on 12 month time horizon.
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5.4.2 Market States, Sentiment and Volatility

In addition to the time horizon, the cross-sectional momentum literature has shown that

the momentum profitability is also sensitive to market states, investor sentiment and

market volatility. For example, Cooper et al. (2004) find that short-run (6 months)

momentum strategies make profits in the up market and lose in the down market, but

the up-market momentum profits reverse in the long-run (13-60 months). Hou et al.

(2009) find momentum strategies with short time horizon (1 year) are not profitable

in “down” market, but profitable in “up” market. Similar results of profitability are

also reported in Chordia and Shivakumar (2002) that commonly using macroeconomic

instruments related to the business cycle can generate positive returns to momentum

strategies during expansionary periods and negative returns during recessions. Baker

and Wurgler (2006, 2007) find that investment sentiment affects the cross-section stock

returns and the aggregate stock market. Wang and Xu (2012) find that market volatility

has significant power to forecast momentum profitability. For the time series momentum,

however, Moskowitz et al. (2012) find that there is no significant relationship of the time

series momentum profitability with either market volatility or investor sentiment.

We are interested in the dependence of the performance of the optimal strategy on

market states, investor sentiment and market volatility. We regress the excess return of

different strategies, including the optimal strategies for the full model, the pure momentum

model and the pure mean reversion model and the time series momentum strategy, on

different proxies for the market states, investor sentiment and market volatility. The

regression results are reported in Appendix D.4. Overall, we find that the coefficients for

all the regressions are insignificantly different from 0. In fact, the optimal strategies have

optimally taken these factors into account and hence the returns of the optimal strategies

have no significant relationship with these factors. Therefore, the optimal strategies are

immune to the market states, investor sentiment and market volatility.

5.4.3 Comparison with Moskowitz, Ooi and Pedersen (2012)

The momentum strategies in the empirical studies are based on trading signals. In this

section, we implement analysis following the empirical momentum literature, especially

Moskowitz et al. (2012). First, to verify the profitability of the time series momentum

strategy, we examine the excess return of buy-and-hold strategies when the position is

determined by the sign of the optimal portfolio strategy (5.7) with different combinations

of time horizons and holding periods (τ, h).
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(τ \ h) 1 3 6 9 12 24 36 48 60
1 0.1337 0.1387 0.1874∗ 0.1573∗ 0.0998 0.0222 0.0328 0.0479 0.0362

(1.28) (1.84) (3.29) (2.83) (1.84) (0.42) (0.63) (0.90) (0.66)
3 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972

(0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93) (0.93)
6 0.2022 0.2173∗ 0.2315∗ 0.1462 0.0700 -0.0414 0.0199 0.0304 0.0014

(1.93) (2.28) (2.60) (1.75) (0.88) (-0.58) (0.32) (0.53) (0.02)
9 0.3413∗ 0.3067∗ 0.2106∗ 0.1242 0.0333 -0.0777 -0.0095 0.0000 -0.0450

(3.27) (3.12) (2.28) (1.45) (0.41) (-1.16) (-0.17) (0.00) (-1.11)
12 0.1941 0.1369 0.0756 -0.0041 -0.0647 -0.0931 -0.0234 -0.0137 -0.0587

(1.85) (1.40) (0.80) (-0.04) (-0.76) (-1.30) (-0.41) (-0.30) (-1.46)
24 -0.0029 -0.0513 -0.0776 -0.0591 -0.0557 -0.0271 0.0261 -0.0020 -0.0082

(-0.03) (-0.51) (-0.79) (-0.62) (-0.61) (-0.34) (0.40) (-0.03) (-0.15)
36 0.0369 0.0602 0.0517 0.0419 0.0416 0.0657 0.0351 0.0273 0.0406

(0.35) (0.59) (0.52) (0.43) (0.44) (0.81) (0.49) (0.42) (0.64)
48 0.1819 0.1307 0.1035 0.0895 0.0407 -0.0172 0.0179 0.0500 0.0595

(1.74) (1.30) (1.06) (0.93) (0.43) (-0.21) (0.24) (0.70) (0.86)
60 -0.0049 -0.0263 -0.0800 -0.1160 -0.1289 -0.0396 0.0424 0.0518 0.0680

(-0.05) (-0.26) (-0.81) (-1.20) (-1.41) (-0.49) (0.55) (0.69) (0.92)

Table 5.2: The average excess return (%) of the optimal strategy for different look back period τ (different
row) and different holding period h (different column).

Based on the index, for a given look-back period τ , we take long/short positions based

on the sign of the optimal portfolio (5.7). Then for a given holding period h, we calculate

the monthly excess return of the strategy (τ, h). Table 5.2 reports the average monthly

excess return (in %) of the optimal strategy by skipping one month between the portfolio

formation period and holding period to avoid the 1-month reversal in stock returns for

different look back period (in the first column) and different holding period (in the first

row). The average return is calculated using the same method as in Moskowitz et al.

(2012). To calculate the momentum component and evaluate the profitability of holding

period, we calculate the excess return of the optimal strategy over the period from January

1881 (10 years after January 1871 with 5 years for calculating the trading signals and 5

years for holding periods) to December 2012.

For comparison, Tables 5.3 reports the average return (%) for the optimal strategies

for the pure momentum model.5 Notice that Tables 5.2 and 5.3 indicate that the (9, 1)

strategy performs the best.6 Note that the results are inconsistent with the results in the

previous subsections using the processes of utility of wealth as a measure of performance.

This is because the optimal strategy not only explores the return signal but also takes the

5Notice the position is completely determined by the sign of the optimal strategies. Therefore, the position used in Table
5.3 is the same as that of the time series momentum strategies in Moskowitz et al. (2012).

6This is consistent with the finding in Moskowitz et al. (2012), which documents (9, 1) is the best strategy for equity
market although 12-month horizon is the best for most asset classes.
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(τ \ h) 1 3 6 9 12 24 36 48 60
1 -0.0144 0.0652 0.0714 0.0689 0.0568 -0.0040 0.0006 0.0010 -0.0133

(-0.14) (0.89) (1.34) (1.52) (1.37) (-0.12) (0.02) (0.04) (-0.57)
3 0.1683 0.1915∗ 0.1460 0.1536∗ 0.0764 -0.0360 -0.0290 -0.0143 -0.0395

(1.61) (2.16) (1.91) (2.20) (1.17) (-0.69) (-0.72) (-0.45) (-1.38)
6 0.2906∗ 0.2633∗ 0.2635∗ 0.1884∗ 0.1031 -0.0484 -0.0130 0.0157 -0.0281

(2.78) (2.79) (3.01) (2.29) (1.34) (-0.75) (-0.26) (0.40) (-0.77)
9 0.4075∗ 0.3779∗ 0.2422∗ 0.1538 0.0545 -0.0735 -0.0217 -0.0047 -0.0460

(3.91) (3.78) (2.62) (1.76) (0.66) (-1.05) (-0.38) (-0.10) (-1.12)
12 0.2453∗ 0.1660 0.0904 0.0122 -0.0748 -0.1195 -0.0602 -0.0454 -0.0798

(2.35) (1.67) (0.94) (0.13) (-0.86) (-1.63) (-1.02) (-0.95) (-1.88)
24 0.0092 -0.0242 -0.0800 -0.0962 -0.0955 -0.0682 -0.0081 -0.0140 -0.0211

(0.09) (-0.24) (-0.81) (-1.03) (-1.06) (-0.88) (-0.13) (-0.24) (-0.39)
36 -0.0005 0.0194 0.0219 0.0212 0.0113 0.0030 0.0127 0.0241 0.0206

(-0.01) (0.19) (0.23) (0.22) (0.12) (0.04) (0.18) (0.37) (0.33)
48 0.0779 0.0733 0.0231 0.0019 -0.0392 -0.0676 -0.0004 0.0435 0.0382

(0.74) (0.73) (0.24) (0.02) (-0.42) (-0.83) (-0.01) (0.61) (0.55)
60 -0.0568 -0.0852 -0.1403 -0.1706 -0.1986 -0.1091 -0.0043 0.0157 0.0239

(-0.54) (-0.84) (-1.41) (-1.77) (-2.15) (-1.36) (-0.06) (0.22) (0.34)

Table 5.3: The average excess return (%) of the optimal strategy for different look back period τ (different
row) and different holding period h (different column) for the pure momentum model.

volatility into account.7 Therefore, we argue that the profitability pattern characterized

by the average returns (or excess returns) used by most of the empirical momentum

literature may not be reflected at portfolio wealth level. This conclusion is also confirmed

by comparing with Fig. 5.9. In fact, the Sharpe ratio in Fig. 5.9 characterizes both the

return and risk. We can see that Fig. 5.9 has a similar profitability pattern to Table 5.2,

especially the first column, but different from Fig. 5.8 for the average terminal utility of

wealth.

We also study the average Sharpe ratio for the time series momentum strategy (green

line) documented empirically for different time horizons and the strategy (momentum &

mean reversion) (red dotted line) which is similar to the time series momentum strat-

egy except that we use the sign of the optimal strategy sign(π∗
t ) as the trading signal

instead of the average excess return over a past period for the time series momentum

strategy. For comparison, we also plot the Sharpe ratio for the optimal portfolio and the

passive holding portfolio illustrated in Fig. 5.9. Fig. 5.17 shows the average Sharpe ratio

for the above four strategies with τ ∈ [1, 60] from January 1881 until December 2012.

There are three observations from Fig. 5.17. First, the time series momentum strategy

outperforms the market for short time horizons and the momentum and mean reversion

strategy outperforms the market for both short and long time horizons. This is mainly

7In fact, Wang and Xu (2012) find that market volatility has significant power to forecast momentum profitability.
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Figure 5.17: The average Sharpe ratio for the optimal portfolio, the momentum and mean reversion
portfolio and the time series momentum portfolio with τ ∈ [1, 60] and the passive holding portfolio from
January 1881 until December 2012.

due to the short run momentum and long run reversal effects. The second observation is

that, by taking the mean reversion effect into account, the momentum and mean rever-

sion strategy performs slightly better than the time series momentum strategy. Finally,

the optimal strategy significantly outperforms both the momentum and mean reversion

strategy and the time series momentum strategy. Notice the only difference between the

optimal strategies and the momentum and mean reversion strategy is that the former

considers the size of the portfolio position, while the latter only takes one unit position.

This implies that, in addition to price trend, volatility is another very important factor

for the timing opportunity.

Following Eq. (5) in Moskowitz et al. (2012), we study the performance of the cumu-

lative excess return. That is, the return at time t is given by

R̂t+1 = sign(π∗
t )

0.1424

σ̂S,t

Rt+1, (5.13)

where 0.1424 is the sample standard deviation of the total return index. Following

Moskowitz et al. (2012), the ex ante annualized variance σ̂2
S,t for the total return in-

dex is calculated as the exponentially weighted lagged squared month returns as before

σ̂2
S,t = 12

∞∑
i=0

(1 − δ)δi(Rt−1−i − R̄t)
2. (5.14)

To ensure no look ahead bias contaminates the results, we use the volatility estimates at

time t − 1 applied to time t returns throughout the analysis.

Fig. 5.18 illustrates the terminal values of the log cumulative excess return of the

optimal strategy (5.7) and time series momentum strategy with τ ∈ [1, 60] and the passive
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Figure 5.18: Terminal log cumulative excess return of the optimal strategy (5.7) and time series momen-
tum strategy with τ ∈ [1, 60] and passive long strategy from January 1876 until December 2012.

long strategy from January 1876 until December 2012.8 It illustrates that the optimal

strategies outperform the time series momentum strategies. The time series momentum

strategies outperform the market for small time horizons. The terminal values of the log

cumulative excess return have similar patterns as the average Sharpe ratio in Fig. 5.17.
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Figure 5.19: Log cumulative excess return of the optimal strategy (5.7) and momentum strategy with
τ = 12 and passive long strategy from January 1876 until December 2012.

With a 12 month time horizon, Fig. 5.19 illustrates the log cumulative excess return

of the optimal strategy (5.7) and momentum strategy and the passive long strategy from

January 1876 until December 2012. It shows that, first, the optimal strategy has the

highest growth rate and the passive long strategy has the lowest growth rate. Secondly,

we can replicate the pattern in Fig. 3 of Moskowitz et al. (2012), which documents that

the time series momentum strategy outperforms the passive long strategy. Notice the time

series momentum strategy documented in Fig. 5.19 should have the same performance
8Notice the passive long strategy introduced in Moskowitz et al. (2012) is different from the passive holding strategy

studied in previous sections. Passive long means holding one share of the index each period, however, passive holding in
this chapter means investing $1 in the index in the first period and holding it until the last period.
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as the optimal strategy for the pure momentum model if we only consider the sign of

the average excess return over the past period in (5.13). However, we have documented

in the previous subsections that the optimal strategy for the pure momentum model

performs badly if we also take the volatility into account. Therefore, we argue that the

momentum strategies documented empirically may not work when the performance is

measure at portfolio wealth level. In fact, the profits of the diversified TSMOM portfolio

in Moskowitz et al. (2012) are mainly contributed by the bonds when scaling for the

volatility in equation (5).

To conclude this section, by comparing the results for the optimal strategies and the

time series momentum strategy in Moskowitz et al. (2012), we find that the trend is

important. To explore it, the buy/sell signal (based on π∗
t ) is more important than

the size of the portfolio. Also, this chapter studies the S&P 500 index over 140 years

of data, while Moskowitz et al. (2012) focus on the futures and forward contracts that

include country equity indexes, currencies, commodities, and sovereign bonds. Despite a

large difference between the data investigated, we find similar patterns for the time series

momentum in the stock index and replicate their results with respect to the stock index.

5.5 Conclusion

To characterize the short-run momentum and long-run mean reversion in financial mar-

kets, we propose a continuous time model of asset price process with the drift as a weighted

average of mean reversion and moving average components to explore the momentum and

reversal effects. By applying the maximum principle for control problem of SDDE, we

derive the optimal strategies analytically. We show the optimality of the optimal strategy

comparing to pure momentum, pure mean reversion strategies, and market index. The

optimality is immune to the market states, investor sentiment and market volatility. The

profitability pattern reflected by the average return in most empirical literature may not

be reflected at portfolio wealth level.

The model proposed in this chapter is simple and stylized. The weights to the mo-

mentum and mean reversion components are constant. When market conditions change,

the weights can be different. Hence it would be interesting to model their dependence on

market conditions. This can be modelled, for example, based on the replicator dynamics

introduced in Chapter 2, or as a Markov switching process, or based on some rational

learning process. The optimization problem is solved under log utility in this chapter,

which avoids the intertemporal effect under general power utility functions which is con-
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sidered in Koijen et al. (2009). Furthermore, we can consider stochastic volatilities of the

index process. Finally, an extension to a multi-asset model to study the cross-sectional

optimal strategies would be helpful to understand the cross sectional momentum.



Chapter 6

An Evolutionary CAPM under

Heterogeneous Beliefs

6.1 Introduction

Most theoretical models on conditional CAPM are based on the representative agent

economy by assuming perfect rationality and homogeneous beliefs. However, empirical

evidence along with unconvincing justification of the assumption of unbounded ratio-

nality and investor psychology, have led to the incorporation of both heterogeneity in

beliefs and bounded rationality into asset pricing and financial market modelling, see the

surveys of the recent developments in the HAMs literature: Hommes (2006), LeBaron

(2006), Lux (2009) and Chiarella et al. (2009). However, most of the HAMs analyzed

in the literature involve a financial market with only one risky asset and are not in the

context of the CAPM. Recently, some attempts have been made to develop HAMs with

many assets.1 Within a mean-variance framework, Chiarella et al. (2010, 2011) study

a multi-asset CAPM through a consensus belief. In a dynamic setting, Chiarella et al.

(2013) demonstrate the stochastic behavior of time-varying betas and show that there

can be inconsistency between ex-ante and ex-post estimates of asset betas when agents

are heterogeneous and boundedly rational.

The aim of this chapter is to extend the models described in the previous chapters with

one risky asset to an evolutionary CAPM within the framework of HAMs to examine the

1We refer readers to Chiarella et al (2005), Westerhoff and Dieci (2006), Chen and Huang (2008) and Marsili, Raffaelli and
Ponsot (2009) for developments in multi-asset market dynamics in the literature of HAMs. In particular, Westerhoff (2004)
considers a multi-asset model with fundamentalists who concentrate on only one market and trend followers who invest in all
markets; Dieci and Westerhoff (2010, 2012) explore deterministic models to study two stock markets denominated in different
currencies, which are linked via the related foreign exchange market; Chen and Huang (2008) develop a computational multi-
asset artificial stock market to examine the relevance of risk preferences and forcasting accuracy to the survival of investors;
and Marsili et al. (2009) introduce a generic model of a multi-asset financial market to show that correlation feedback can
lead to market instability when trading volumes are high.

110
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impact of adaptive behavior of heterogeneous agents in a market with many risky assets.

This chapter is closely related to Chiarella et al. (2013), but also differs from it in several

respects. In Chiarella et al. (2013), the heterogeneous beliefs are modelled at the return

level and agents do not change their strategies. A spill-over effect of market instability

from one asset to others due to behavior change of agents is demonstrated through nu-

merical simulations. In this chapter, the heterogeneous beliefs are modelled at the price

level and agents are allowed to change their strategies based on a fitness function similar

to that used by Brock and Hommes (1997 and 1998). The advantage of this setting is

that we are able to examine the stability and spill-over effects analytically. We extend

the single-period static model in Chiarella et al. (2010) to a dynamic equilibrium asset

pricing model. As in Chiarella et al. (2013), we incorporate two types of investors, funda-

mentalists and trend followers, into the model. It is found that the instability of one asset,

characterized by large fluctuations of market prices from the fundamental prices, can spill

over to other assets when agents increasingly switch to better performing strategies. The

spill-over effect is also associated with high trading volumes and persistent volatility, char-

acterized by significantly positive and geometrically decaying autocorrelations in volume

and volatility over long time horizons. Also the correlations between trading volume and

volatility of risky assets are positive when asset payoffs are less correlated. These impli-

cations show that the evolutionary CAPM developed in this chapter can provide insight

into market characteristics related to trading volume and volatility. Also consistent with

Chiarella et al. (2013), we show that the commonly used rolling window estimates of time-

varying betas may not be consistent with the ex-ante betas implied by the equilibrium

model.

The chapter is based on Chiarella, Dieci, He and Li (2013) and organized as follows.

Section 6.2 sets up a dynamical equilibrium asset pricing model in the context of the

CAPM to incorporate heterogeneous beliefs and adaptive behavior of agents. Section

6.3 examines analytically the stability of the steady state equilibrium prices of the cor-

responding deterministic model. In Section 6.4, we conduct a numerical analysis of the

stochastic model to explore the spill-over effects, together with the relation between trad-

ing volumes and volatility, and the consistency of time-varying betas between ex-ante and

rolling window estimates. Section 6.5 concludes. All proofs are given in Appendix E.

6.2 The Model

We consider an economy with I agents, indexed by i = 1, · · · , I, who invest in portfolios

consisting of a riskless asset with risk free rate rf and N risky assets, indexed by j =
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1, · · · , N (with N ≥ 1). Let pt = (p1,t, · · · , pN,t)
� be the prices, dt = (d1,t, · · · , dN,t)

�

be the dividends and xt := pt + dt be the payoffs of the risky assets in period t (from

t − 1 to t). Let zi,t be the risky portfolio of agent i (in terms of the number of shares of

each risky asset), then the end-of-period portfolio wealth of agent i is given by Wi,t+1 =

z�i,t(xt+1 − Rfpt) + RfWi,t, where Rf = 1 + rf .

Optimal Portfolio

Assume that agent i has a constant absolute risk aversion (CARA) utility ui(x) = −e−θix,

where θi is the CARA coefficient. Assuming that the wealth of agent i is conditionally

normally distributed, agent i’s optimal investment portfolio is obtained by maximizing

the certainty-equivalent utility of one-period-ahead wealth2

Ui,t(Wi,t+1) = Ei,t(Wi,t+1) − θi

2
V ari,t(Wi,t+1). (6.1)

Following Chiarella et al. (2010), the optimal portfolio of agent i at time t for time period

t + 1 is then given by

zi,t = θ−1
i Ω−1

i,t [Ei,t(xt+1) − Rfpt], (6.2)

where Ei,t(xt+1) and Ωi,t = [Covi,t(xj,t+1, xk,t+1)]N×N are respectively the conditional

expectation and variance-covariance matrix of agent i about the end-of-period payoffs of

the risky assets, evaluated at time t.

Market Equilibrium

Assume that the I investors can be grouped into H agent-types, indexed by h = 1, · · · , H,

where the agents within the same group are homogeneous in their beliefs as well as risk

aversion. The risk aversion of agents of type h is denoted by θh. We also denote by Ih,t

the number of investors in group h and by nh,t := Ih,t/I the market fraction of agents of

type h in period t. Let Eh,t(xt+1) and Ωh,t = [Covh,t(xj,t+1, xk,t+1)]N×N be respectively the

conditional expectation and variance-covariance matrix of type-h agents at time t. Let

s = (s1, · · · , sN)� be the N -dimensional vector of average risky asset supply per agent.

A supply shock to the market, denoted by a vector of random processes,3 is assumed to

follow ξt+1 = ξt + σκκt+1, where κt+1 is a standard normal i.i.d. random variable with

2As is well known, the maximization of (6.1) is equivalent to maximizing the expected value of the above-defined CARA
utility of wealth, maxzi,t Ei,t(ui(Wi,t+1)), provided that Wi is conditionally normally distributed in agent i’s beliefs.

3The matrix σκ is not necessarily a diagonal matrix, that is, the supply noise processes of the N assets can be correlated.
The same also holds for σζ in the dividend processes (6.5).
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E(κt) = 0 and Cov(κt) = I. Then the market clearing condition becomes

H∑
h=1

nh,tθ
−1
h Ω−1

h,t [Eh,t(xt+1) − Rfpt] = s + ξt. (6.3)

Consensus Belief

We follow the construction in Chiarella et al. (2010 and 2013) to define an aggregate or

consensus belief. Define the “average” risk aversion coefficient θa,t := (
∑H

h=1 nh,tθ
−1
h )−1,

which is a market population fraction weighted harmonic mean of the risk aversions of

different types of heterogeneous agents. Specifically, if all agents have the same risk

aversion coefficient θh = θ, then the “average” risk aversion coefficient θa,t = θ.4 Then

the aggregate beliefs at time t about variances/covariances and expected payoffs over the

time interval (t, t + 1) are specified, respectively, as

Ωa,t = θ−1
a,t

( H∑
h=1

nh,tθ
−1
h Ω−1

h,t

)−1
,

Ea,t(xt+1) = θa,tΩa,t

H∑
h=1

nh,tθ
−1
h Ω−1

h,tEh,t(xt+1).

(6.4)

The dividend process dt is assumed to follow a martingale process

dt+1 = dt + σζζt+1, (6.5)

where ζt+1 is a standard normal i.i.d. random variable with E(ζt) = 0 and Cov(ζt) = I,

independent of κt+1. Moreover, agents are assumed to have homogeneous and correct

conditional beliefs about the dividends (the unconditional expectation of which is as-

sumed to be constant, E(dt) = d). Following Chiarella et al. (2010 and 2013), the

market equilibrium prices (6.3) can therefore be rewritten as if they were determined by

a homogeneous agent endowed with average risk aversion θa,t and the consensus beliefs

{Ea,t,Ωa,t}, namely

pt =
1

Rf

[Ea,t(pt+1) + dt − θa,tΩa,t(s + ξt)]. (6.6)

Note that at time t the dividends dt are realized and agents formulate their beliefs about

the next period payoff xt+1 = pt+1 + dt+1, based on the realized prices up to time t − 1

and the dividends dt.
4This is the case that we use for the numerical analysis in Section 6.4.
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Fitness

Following the discrete choice model (discussed for instance by Brock and Hommes (1997

and 1998)) the market fractions nh,t of agents of type h are determined by their fitness

vh,t−1, where the subscript t − 1 indicates that fitness depends only on past observed

prices and dividends. The fraction of agents using a strategy of type h is thus driven by

“experience” through reinforcement learning. That is, given the fitness vh,t−1, the fraction

of agents using a strategy of type h is determined by the discrete choice model,

nh,t =
eηvh,t−1

Zt

, Zt =
∑

h

eηvh,t−1 , (6.7)

where η > 0 is the switching intensity of choice parameter measuring how sensitive agents

are to selecting a better preforming strategy.5 If η = 0, then agents are insensitive to past

performance and pick a strategy at random with equal probability. In the other extreme

case η → ∞, all agents choose the forecast that performed best in the last period. An

increase in the intensity of choice η can therefore represent an increase in the degree of

rationality with respect to the evolutionary selection of strategies.

Given the utility maximization problem (6.1) of agents, we use a fitness measure that

generalizes the ‘risk-adjusted profit’ introduced in Hommes (2001) (see Hommes and Wa-

gener (2009) for a discussion about different choice of fitness functions and the relation

between them), namely we set

vh,t = πh,t − πB
h,t − Ch, (6.8)

where Ch ≥ 0 measures the cost of the strategy,

πh,t := z�h,t−1(pt + dt − Rfpt−1) − θh

2
z�h,t−1Ωh,t−1zh,t−1 (6.9)

and

πB
h,t :=

(
θa,t−1

θh

s

)�
(pt + dt − Rfpt−1) − θh

2

(
θa,t−1

θh

s

)�
Ωh,t−1

(
θa,t−1

θh

s

)
. (6.10)

Note that (6.9) can be naturally interpreted as the risk-adjusted profit of type h agent.

It represents the realized profit adjusted by the subjective risk undertaken by investor

h, which is consistent with investors’ utility-maximizing portfolio choices. Expression

(6.10) can be interpreted as the (risk-adjusted) profit on portfolio zB
h,t−1 := θa,t−1

θh
s, which

represents a ‘benchmark’ portfolio for agents of type h at time t − 1. The portfolio
5In fact, η is inversely related to the variance of the noise in the observation of random utility.
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zB
h,t−1 is proportional to the market portfolio. The proportionality coefficient θa,t−1

θh
takes

into account the fact that the shares of the market portfolio of agents are positively

correlated to their risk tolerance (1/θh). In the case that all agents have the same risk

aversion (so that θa,t−1 = θh), they all take the market portfolio. Put differently, the

performance measure (6.8) views strategy h as a successful strategy only to the extent

that it outperforms its market benchmark in terms of risk-adjusted profitability. More

precisely, portfolio zB
h,t represents the portfolio that agents of type h would select at time t

if all agents had identical beliefs (whichever they are) about the first and second moment

of xt+1. In this case agents would (possibly) differ only in terms of their risk aversion and

they would hold zh,t = zB
h,t for all h. According to the fitness measure vh,t := πh,t−πB

h,t−Ch,

their portfolios would thus have identical performance (apart from the costs). In other

words, the selected fitness measure vh,t is not affected by mere differences in risk aversion

and accounts only of the profitability generated by the competing investment rules. Note

that, in the case of zero supply of outside shares, the market clearing equation (6.3) leads

to Ea,t(xt+1)/Rf = pt. This is the case considered in Hommes (2001) for a single-risky-

asset model. The market thus behaves as if it were ‘risk-neutral’ at the aggregate level6

in this particular case and the performance measure reduces to the risk-adjusted profit

considered in Hommes (2001).

Fundamentalists

Now we propose a model with classical heterogeneous agent-types and consider two types

of agents, fundamentalists and trend followers, with h = f and h = c, respectively. Fol-

lowing He and Li (2007), the fundamentalists realize the existence of non-fundamental

traders, such as trend followers to be introduced in the following discussion. The funda-

mentalists believe that the stock price may be driven away from the fundamental value

in the short-run, but it will eventually converge to the expected fundamental value in the

long-run. Hence the conditional mean of the fundamental traders is assumed to follow

Ef,t(pt+1) = pt−1 + α(Ef,t(p
∗
t+1) − pt−1), (6.11)

where p∗
t = (p∗1,t, · · · , p∗N,t) is the vector of fundamental prices and the parameter

α = diag[α1, · · · , αN ] with αj ∈ [0, 1] represents the speed of price adjustment of the

fundamentalists toward their expected fundamental value or it reflects how confident

they are in the fundamental value. The parameter αj can be different for different risky

assets. In particular, for αj = 1, the fundamental traders are fully confident about the

6Of course, risk aversion does affect decisions at the agent-type level.
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fundamental value of risky asset j and adjust their expected price in the next period

instantaneously to the expected fundamental value. For αj = 0, the fundamentalists be-

come naive traders of asset j. We also assume that the fundamentalists have constant

beliefs about the covariance matrix of the payoffs so that Ωf,t = Ω0 := (σjk)N×N .

Fundamental Prices

To define the fundamental price p∗
t , we consider a ‘standard CAPM’ with homogeneous

beliefs where all agents have correct beliefs about the fundamental prices and are fully

confident about their expected fundamental values (that is α = diag[1, · · · , 1]). We also

assume that their average risk aversion coefficient is constant over time, θa,t = θ, and so are

their common second-moment beliefs, Ω0.
7 Correspondingly we define the fundamental

price as

p∗
t =

1

rf

(dt − θΩ0(s + ξt)), (6.12)

which is a martingale process under the assumptions about the exogenous dividend and

market noise processes, so that

p∗
t+1 = p∗

t + εt+1, εt+1 =
1

rf

(σζζt+1 − θΩ0σκκt+1) ∼ Normal i.i.d. (6.13)

In this case, it follows from Eq. (6.6) that the equilibrium price is given by pt = p∗
t .

Thus we can treat the benchmark CAPM case as the ‘steady state’ of the dynamics of

the heterogeneous beliefs model.

Trend Followers

Unlike the fundamental traders, trend followers are technical traders who believe the

future price change can be predicted from various patterns or trends generated from the

historical prices. They are assumed to extrapolate the latest observed price change over

a long-run sample mean price and to adjust their variance estimate accordingly. More

precisely, their conditional mean and covariance matrices are assumed to satisfy

Ec,t(pt+1) = pt−1 + γ(pt−1 − ut−1), Ωc,t = Ω0 + λVt−1, (6.14)

where ut−1 and Vt−1 are sample means and covariance matrices of past market prices

pt−1,pt−2, · · · , the constant vector γ = diag[γ1, · · · , γN ] > 0 reflects the trend following

7Without switching, the average risk aversion θ is constant and corresponds to the harmonic mean of the risk aversion
coefficients of all agents. In our simulations, we will set θ = θ∗a, the average risk aversion coefficient at the steady state
solution of the model.
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strategy, and γj measures the extrapolation rate and high (low) values of γj correspond

to strong (weak) extrapolation by trend followers, and λ measures the sensitivity of the

second-moment estimate to the sample variance. This specification of the trend followers

captures the extrapolative behavior of the trend followers, who expect price changes to

occur in the same direction as the price trend observed over a past time window. Assume

that ut−1 and Vt−1 are computed recursively as

ut−1 = δut−2 + (1 − δ)pt−1,

Vt−1 = δVt−2 + δ(1 − δ)(pt−1 − ut−2)(pt−1 − ut−2)
�. (6.15)

Effectively, the sample mean vector and variance-covariance matrix are calculated based

on the all historical prices pt−1,pt−2, · · · , spreading back to −∞ with geometric decaying

probability weights (1 − δ){1, δ, δ2, · · · }. Therefore, as δ decreases, the weights on the

latest prices increase but decay geometrically at a common rate of δ. For γ > 0 and large

δ, momentum traders calculate the trend based on a long time horizon. In particular,

when δ = 0, Ec,t(pt+1) = pt−1 and Vt−1 = 0, implying naive behavior by the trend

followers. However, when δ = 1, ut−1 = u0 and Vt−1 = V0, and therefore Ec,t(pt+1) =

pt−1 + γ(pt−1 − u0), so that trend followers are momentum traders.

The Complete Dynamic Model

Based on the analysis above, the optimal demands of the fundamentalists and trend

followers are given, respectively, by

zf,t = θ−1
f Ω−1

o [pt−1 + dt + α(p∗
t − pt−1) − Rfpt] (6.16)

and

zc,t = θ−1
c [Ω0 + λVt−1]

−1[pt−1 + dt + γ(pt−1 − ut−1) − Rfpt]. (6.17)
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Finally, the general dynamic model (6.6) reduces to the random nonlinear dynamical

system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt =
θa,t

Rf

Ωa,t

[nf,t

θf

Ω−1
0

(
pt−1 + α(p∗

t − pt−1)
)

+
nc,t

θc

(Ω0 + λVt−1)
−1
(
pt−1 + γ(pt−1 − ut−1)

)− s − ξt

]
+

1

Rf

dt,

p∗
t =

1

rf

(dt − θ∗aΩ0(s + ξt)),

ut = δut−1 + (1 − δ)pt,

Vt = δVt−1 + δ(1 − δ)(pt − ut−1)(pt − ut−1)
�,

nf,t =
1

1 + e−ηvΔ,t−1
,

ξt = ξt−1 + σκκt,

dt = dt−1 + σζζt,

(6.18)

where

θa,t =
(nf,t

θf

+
nc,t

θc

)−1

, Ωa,t =
1

θa,t

(nf,t

θf

Ω−1
0 +

nc,t

θc

(Ω0 + λVt−1)
−1
)−1

,

vΔ,t := vf,t − vc,t =

(
zf,t−1 − θa,t−1s

θf

)�(
pt + dt − Rfpt−1 −

θf

2
Ω0(zf,t−1 +

θa,t−1s

θf

)

)
−
(
zc,t−1 − θa,t−1s

θc

)�(
pt + dt − Rfpt−1 −

θc

2
(Ω0 + λVt−2)(zc,t−1 +

θa,t−1s

θc

)

)
− CΔ,

nc,t = 1 − nf,t, CΔ = Cf − Cc ≥ 0.

In summary, we have established an adaptively heterogeneous beliefs model of asset

prices under the CAPM framework. The resulting model is characterized by a stochastic

difference system with seven variables, which is difficult to analyze directly. To understand

the interaction of the deterministic dynamics and noise processes, we first study the

dynamics of the corresponding deterministic model in Section 6.3. The stochastic model

(6.18) is then analyzed in Section 6.4.

6.3 Dynamics of the Deterministic Model

By assuming that the fundamental price and the dividend are constants p∗
t = p∗, dt =

d̄, and there is no supply shock ξt = 0, the system (6.18) becomes the deterministic
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dynamical system8⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt =
θa,t

Rf

Ωa,t

[nf,t

θf

Ω−1
0

(
pt−1 + α(p∗ − pt−1)

)
+

nc,t

θc

(Ω0 + λVt−1)
−1
(
pt−1 + γ(pt−1 − ut−1)

)− s
]

+
1

Rf

d̄,

ut = δut−1 + (1 − δ)pt,

Vt = δVt−1 + δ(1 − δ)(pt − ut−1)(pt − ut−1)
�,

nf,t =
1

1 + e−ηvΔ,t−1
.

(6.19)

The dynamical system (6.19) should not be interpreted as a deterministic approxi-

mation of stochastic system (6.18), based on some type of asymptotic convergence, but

rather just as a system obtained by setting the dividend, the supply and the fundamental

price at their unconditional mean levels. The analysis of this ‘deterministic skeleton’ is a

common practice in the heterogeneous-agent literature, and it is aimed at gaining some

initial insights into the impact of the parameters on the underlying dynamics. Although

the properties of the deterministic skeleton do not carry over to the stochastic model in

general, important connections between the dynamical structure of the stochastic model

and that of the underlying deterministic model exist and have been highlighted in recent

literature on stochastic heterogeneous-agent models (see, e.g. Chiarella et al. 2011 and

Zhu et al. 2011).

The system (6.19) has a unique steady state (pt,ut,Vt, nf,t) = (p∗,p∗,0, n∗
f ), where,

following Eq. (6.12), the fundamental steady state price, p∗, is given by

p∗ =
1

rf

(d̄ − θ∗aΩ0s) (6.20)

and n∗
f = 1/(1 + eηCΔ). Hence, at the steady state, n∗

c = 1 − n∗
f and θa,t = θ∗a =

1/(n∗
f/θf + n∗

c/θc). Let θ0 := θf/θc. Note that if θf = θc = θ, then θa,t = θ and θ0 = 1.

For the N2 + 5N + 2 dimensional system (6.19), we are able to obtain the following

proposition on the local stability of the steady state. The proof is given in the Appendix

E.2.

Proposition 6.1 For the system (6.19),

(i) if Rf ≥ δ(1+γj) for all j ∈ {1, · · · , N}, then the steady state (p∗,p∗,0, n∗
f ) is locally

asymptotically stable;
8The state variables pt, ut, Vt and nf,t in Eq. (6.19) can be expressed in terms of pt−1, ut−1, Vt−1, nf,t−1, pt−2,

ut−2, Vt−2 and nf,t−2, which have N , N , N(N + 1)/2, 1, N , N , N(N + 1)/2 and 1 dimensions respectively. So the
dimension of the system (6.19) is N2 + 5N + 2. For instance, when N = 1, it is an 8-dimensional system.
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(ii) if Rf < δ(1+γj) for all j ∈ {1, · · · , N}, then the steady state is locally asymptotically

stable when CΔ �= 0 and η < η̂j := 1
CΔ

ln
Rf−δ(1−αj)

θ0[δ(1+γj)−Rf ]
for all j ∈ {1, · · · , N} and

undergoes a Hopf bifurcation when η = η̂j for some j ∈ {1, · · · , N}. If CΔ = 0, then

the steady state is locally asymptotically stable when θ0γj < αj + (1 + θ0)(
Rf

δ
− 1) for

all j;

(iii) if Rf < δ(1 + γj) for some j ∈ Jo ⊆ {1, · · · , N}, then the steady state is locally

asymptotically stable when η < η̂m := minj∈Jo η̂j and undergoes a Hopf bifurcation

when η = η̂m.

The results in Proposition 6.1 are significant with respect to the intuitive and simple

conditions on the stability of the steady state for such a high dimensional system. First,

when the trend followers are not very active (so that γj ≤ Rf/δ − 1), the steady state of

the system is stable. Second, the stability condition (ii) is equivalent to

Rf

δ
− 1 < γj <

(
Rf

δ
− 1)(1 + θ0e

ηCΔ) + αj

θ0eηCΔ
, j = 1, · · · , N.

Hence, even when the trend followers are active (so that γj > Rf/δ − 1), the system

can still be stable when the fundamentalists dominate the market at the steady state

or, equivalently, the switching intensity is sufficiently small. In short, Proposition 6.1

shows clearly that increases in Cc, αj and θc stabilize the system, while increases in Cf ,

δ, γ and θf destabilize the system. Intuitively, the fundamentalists play a stabilizing role

in the market. The activity of fundamentalists is enhanced with an increase in αj or

decreases in Cf (since a decrease in Cf increases the market fraction of fundamentalists)

and θf (since a decrease in θf increases fundamentalists’ long/short position when the

fundamental price moves away from the market price).

To understand how the impact of switching in a market with many risky assets is

different from a market with a single risky asset, we consider a special case where agents

invest in a market with one risk-free asset and one risky asset, say asset j. In this case,
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system (6.19) reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pj,t =
d̄j

Rf

+
1

Rf

(
nf,t

θf σ2
j

+ nc,t

θc(σ2
j +λVj,t−1)

)[nf,t

(
pj,t−1 + αj(p

∗
j − pj,t−1)

)
θfσ2

j

+
nc,t

(
pj,t−1 + γj(pj,t−1 − uj,t−1)

)
θc(σ2

j + λVj,t−1)
− sj

]
,

uj,t = δuj,t−1 + (1 − δ)pj,t,

Vj,t = δVj.t−1 + δ(1 − δ)(pj,t − uj,t−1)
2,

nf,t =
1

1 + e−ηvΔ,t−1
.

(6.21)

The dynamics of the system (6.21) can be characterized by the following proposition (the

proof is given in the Appendix E.1).

Proposition 6.2 For the system (6.21),

(i) if Rf ≥ δ(1 + γj), then the steady state (p∗j , p
∗
j , 0, n

∗
f ) of the system is always locally

asymptotically stable;

(ii) if Rf < δ(1 + γj), then the steady state is locally asymptotically stable when η < η̂j

and CΔ �= 0 and undergoes a Hopf bifurcation when η = η̂j. When CΔ = 0, the

steady state is locally asymptotically stable if θ0γj < αj + (1 + θ0)(
Rf

δ
− 1).

By comparing the local stability conditions in Propositions 6.1 and 6.2, one can see that

the stability conditions of each risky asset due to the increasing switching intensity are

independent of the parameters specific to any other asset and, surprisingly, the correlations

among risky assets have no impact on the local stability properties.9 This result is due

to the peculiar properties of the Jacobian matrix and the adaptive behavior considered

(this becomes clear from the proofs in the appendices E.1 and E.2). Hence the local

stability properties of asset j in the multi-asset model are exactly the same as if asset j

was considered in isolation (that is, in the model with only risky asset j and the risk-free

asset).

Propositions 6.1 and 6.2 provide an initial insight into the mechanisms governing the

joint price dynamics of multiple risky assets, showing that locally instability plays a very

small role in the spill-over phenomena that we will discuss in what follows, but globally

the instability of one asset can spill over to the other assets due to its correlations with

other assets.
9Mathematically, this is due to the fact that the fitness measure and the variance-covariance matrices are in higher order

terms. Certainly they can affect the nonlinear dynamics, but not the dynamics of the linearized system.
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To better understand the implications of Propositions 6.1 and 6.2 and the price dy-

namics of the model, we consider an example of two risky assets and a riskless asset

with

Ω0 =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
and set10 s = (0.1, 0.1)�, θf = 1, θc = 1, λ = 1.5, Cf = 4, Cc = 1, ρ12 = 0.5, δ = 0.98,

γ = diag[0.3, 0.3] and α = diag[0.4, 0.5]. We choose the annual values11 of the following

parameters: rf = 0.025, σ1 = 0.6, σ2 = 0.4 and d̄ = (0.08, 0.05)�. In this chapter, we

consider monthly time steps (i.e. K = 12).

−1 −0.5 0 0.5 1
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(a) Steady-state prices
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(b) Steady-state market fraction

Figure 6.1: (a) The fundamental steady state price p
∗ = (p∗1, p

∗
2) as a function of the correlation ρ12 with

η = 1; (b) The equilibrium market fractions of fundamentalists n∗
f as a function of the switching intensity

η.

Based on this set of parameters, the model has the following implications. First,

the equilibrium steady state fundamental price decreases when the correlation coefficient

increases and, when the fundamental strategy costs more than the trend follower strategy,

the steady state market fraction of the fundamentalists reduces as the switching intensity

increases. These results are illustrated in Figs. 6.1 (a) and (b) respectively for the two-

asset system (6.19). In fact, Eq. (6.20) determines the dependence of the steady state

fundamental price on the parameters. Fig. 6.1 (a) illustrates a negative linear relationship

between the fundamental steady state price p∗ = (p∗1, p
∗
2) and the correlation ρ12.

Secondly, as implied by Propositions 6.1 and 6.2, asset prices become unstable as

the switching intensity η increases. This is illustrated in Fig. 6.2. With the chosen

parameters, one can verify that Rf < δ(1 + γj) for j = 1, 2, and the bifurcation values for

10The set of parameters is fixed in all numerical analysis unless specified otherwise.
11The annualised parameters are converted to monthly, weekly and daily parameters in the standard way, by rescaling

rf , Ω0, α, d̄, γ, Cf and Cc via the factor 1/K, where the frequency K is set to 12 (monthly), 50 (weekly), 250 (daily). As
shown in Chiarella et al. (2013), the parameter δ is converted to Kδ/[1 + (K − 1)δ] to preserve the average memory length
of the time average of past returns.
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Figure 6.2: The bifurcations of the two risky asset prices with respect to η (a) and (b), the two-asset
model (6.19); and (c) and (d) the single risky asset model (6.21).

asset one and two are η̂1 ≈ 2.2384 and η̂2 ≈ 3.0485 respectively. According to Proposition

6.1, when η < η̂1 the two prices are stable; when η̂1 < η < η̂2, the price of asset two is still

stable, however the price of asset one becomes unstable; when η > η̂2, the prices of both

assets become unstable.12 Fig. 6.2 plots the price bifurcation diagrams with respect to the

switching intensity parameter η for both system (6.19) with two risky assets and system

(6.21) with one risky asset. For the single risky asset model, Figs. 6.2 (c) and (d) show

that an increase in the switching intensity η makes the steady state price unstable, leading

to the complicated price dynamics documented in Brock and Hommes (1998). With two

risky assets, Figs. 6.2 (a) and (b) show that the steady state is stable when the switching

intensity η is low, but becomes unstable as the switching intensity increases. The time

series of prices and the market fraction of the fundamentalist in Figs. 6.3 (a)-(c) provide

further evidence on the analysis above. At first, both assets and the market fraction are

stable and constant when η = 1.5 is small (Fig. 6.3 (a)). As η increases to 2.5, asset

12Note that here we use the words ‘stable’ and ‘unstable’ in a loose, yet intuitive, sense. Strictly speaking, the local
asymptotic stability of the steady state of the multi-asset model is lost when η = minj η̂j , as stated in Proposition 6.1.
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Figure 6.3: Time series plots of p1,t, p2,t and nf,t in the two-asset model ((a)-(c)) and of p1,t in the
single-asset one model ((d)-(f)) with η = 1.5 in (a) and (d); η = 2.5 in (b) and (e); and η = 3.5 in (c)
and (f).

one and then asset two become unstable as illustrated in Fig. 6.3 (b). As η increases to

3.5, both asset prices become unstable (see Fig. 6.3 (c)). Also the price of risky asset

one of the two-asset model is more irregular compared to the regular fluctuations in Fig.

6.3 (f) of the one asset model. Also, as the switching intensity η increases, even small

fluctuations in the market fractions of agents can cause large fluctuations in asset prices.

Thirdly, the model displays a very interesting spill-over effect, which can be very dif-

ferent from portfolio effect. As we discussed earlier, the stability is a local result and the

stability conditions of the risky assets are independent among the risky assets. When

one asset becomes unstable, one would expect the spill-over of instability of the asset to

spread to the other assets due to the portfolio effect. However, this may not always be

the case, as demonstrated in Fig. 6.4. For η = 2.5, Fig. 6.4 (a) shows that the price is

unstable for asset one, but stable for asset two. Intuitively, the price fluctuations in asset

one would be caused by changing portfolio positions taken by the two types of agents for

asset one, which is confirmed by Fig. 6.4 (c). However, this intuition does not carry over
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to asset two for which the price is constant but the portfolio positions taken by agents

for the asset are also varying, as illustrated in Fig. 6.4 (d). The portfolio variations due
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Figure 6.4: The time series of (a) the prices and market fraction; (b) portfolio values of the fundamentalists
and trend followers; and portfolio positions of two types of agents in asset one (c) and asset two (d). Here
η = 2.5.

to the portfolio effect lead to the fluctuations of the portfolio values of the agents that

are illustrated in Fig. 6.4 (b). How can this happen? As a matter of fact, there are two

reasons behind this interesting phenomenon. First, the variations of the risky assets in

the portfolios are caused by the correlation between risky assets (reflected in both Ω0 and

Vt) and the time-varying population fractions. Hence, even when the price of asset two

is constant, the portfolio positions of agents in asset two may not be constant. Secondly,

the spill-over effect is a nonlinear rather than a linear effect, meaning that the stability of

asset two in the nonlinear system is observed when the initial values are near the steady

state values; otherwise, stability may not be maintained. Fig. 6.5 shows how the insta-

bility of asset one spill over to asset two for η ∈ (η̂1, η̂2) increases from 2.24 in (a) to 2.5

in (b) and then to 3.04 in (c) when the initial prices are far away from the steady state

price levels. Note that asset two is locally stable for η ∈ (η̂1, η̂2). Hence the spill-over
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effect reflects the dynamics of the nonlinear system. In fact, we do observe such spill-over

effects in the bifurcation plots in Fig. 6.2. Note that the first small price jump of asset

one in Fig. 6.2 (a) after the initial bifurcation (at η = η̂1) occurs at η = η̂2, which is the

bifurcation of the second asset in the single asset model (in Fig. 6.2 (d)). This implies

that, when asset two becomes unstable, there is a spill-over effect from asset two to asset

one characterized by the price jump of asset one near η̂2. Interestingly, as the intensity

increases further, say η ≈ 3.4, the fluctuations of asset one increases significantly, which

is demonstrated by the large price jump of asset one for η > 3.4.
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Figure 6.5: The market prices for η = 2.24 (a), 2.5 (b) and 3.04 (c) when initial values are far away from
the steady state.

In addition, numerical simulations (not reported here) show that an increase in ρ12 leads

to increases in the fluctuations of the prices when the system (6.19) becomes unstable.

Intuitively, as the correlation of the two risky assets increases, diversification becomes less

effective, hence assets become more risky, and consequently the fundamental equilibrium

prices decrease (in order to have a high expected return). Also, simulations show (not

reported here) that market prices become more volatile when the trend followers are less

concerned about the sample variance; that is when λ becomes small, even though λ does

not affect the local stability of the system (6.19). In fact, when λ becomes small, the

demand of the trend followers increases so that they become more active in the market,

leading to a more volatile market.

In summary, we have shown that the rational behavior of agents in switching to better

performing strategies can lead to market instability and a non-linear spill-over of price

fluctuations from one asset to other assets. The nonlinear dynamics due to the spill-over

effect can lead to high trading volume and high volatility. This becomes clearer in the

discussion of the stochastic model in the next section.
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6.4 Price Behavior of the Stochastic Model

In this section, through numerical simulations, we first focus on the spill-over effect by

examining the interaction between the dynamics of the deterministic model and the noise

processes and explore the potential power of the model to explain price deviations from

the fundamental prices and also high volatility. We then provide an evolutionary capital

asset pricing model (ECAPM) and compare the ex-ante betas with the rolling window

estimates of the betas used in the literature. Finally we study the relationship between

the price volatility and trading volumes. We choose σκ = diag[0.001, 0.001] and σζ =

diag[0.002, 0.002], representing 0.1% and 0.2% standard deviations of the noisy supply

and dividend processes respectively in this section.
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Figure 6.6: The time series of the fundamental price (the dotted line) and the market prices (the solid
line) of the two-asset model with (a) η = 1.5 and (b) η = 3.5, and the corresponding market fractions of
the fundamentalists in (c) and (d).



128 6.4 Price Behavior of the Stochastic Model

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

t

P

p1

p*
1

p2

p*
2

(a) Prices

0 1000 2000 3000 4000 5000
0.406

0.4062

0.4064

0.4066

0.4068

0.407

0.4072

0.4074

0.4076

0.4078

0.408

t

nf

(b) Market fractions

0 1000 2000 3000 4000 5000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

V
a

lu
e

s
 o

f 
th

e
 R

is
k

y
 P

o
rt

fo
li

o
s

Fundamentalists
Trend Followers

(c) Portfolio values

0 1000 2000 3000 4000 5000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

Po
si

tio
ns

 in
 A

ss
et

 O
ne

Fundamentalists
Trend Followers

(d) Positions in asset One
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Figure 6.7: The time series of prices (a), market fractions of the fundamentalists (b), the portfolio values
of two types of agents (c), the portfolio positions in asset one (d) and asset two (e) of the stochastic
model with η = 2.5.

6.4.1 The Spill-over Effect

First, we examine the spill-over effect by exploring the joint impact of the switching

intensity η and the two noise processes on the market price dynamics. To examine the

impact of stability of the deterministic model on the price dynamics, in particular, the

time-varying betas, for the stochastic model, with the same random draws of the dividend

and supply noise processes, Fig. 6.6 plots the fundamental price (the blue and green

dotted lines) and the market prices (the red and black solid lines) in (a) and (b) and

the corresponding market fractions of the fundamentalists of the two-asset model for two

different switching intensities η. For η = 1.5, Figs. 6.6 (a) and (c) demonstrate that the

market price follows the fundamental price closely with about 40% of the fundamentalists.

This is underlined by the stable fundamental steady state of the deterministic model (6.19)

illustrated in Fig. 6.3 (a). For η = 3.5, Figs. 6.6 (b) and (d) indicate that the market

price fluctuates around the fundamental price in a cyclical fashion with about 29% of

the fundamentalists, which is underlined by the bifurcation of periodic oscillations of the
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corresponding deterministic model (see Fig. 6.3 (c)). Corresponding to Fig. 6.4 for the

deterministic model, Fig. 6.7 plots the time series of the prices in (a), the market fraction

of the fundamentalists in (b), the portfolio values of the two agents in (c), the portfolio

positions in asset one (d) and asset two (e) of the stochastic model. The large fluctuations

of the stochastic model, in particular in the portfolio values and the portfolio positions,

compared to the deterministic model reflect the impact of the nonlinear interaction of the

spill-over effects and the noise processes.

6.4.2 Time-varying Betas
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Figure 6.8: Time series of (a) the market prices; (b) the returns; (c) the proportions of the total market
wealth invested in risky assets; (d) the ex-ante betas of the risky assets; and the estimates of the betas
using rolling windows of (e) 100 and (f) 300 with η = 1.5.

Next, we examine the stochastic nature of the time-varying beta coefficients of the evo-

lutionary CAPM. The value of the market portfolio s at time t in the market equilibrium

is given by Wm,t = p�
t s and the payoff is Wm,t+1 = x�

t+1s. Hence, under the consensus
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belief

Ea,t(Wm,t+1) = Ea,t(xt+1)
�s, V ara,t(Wm,t+1) = s�Ωa,ts. (6.22)

Define the returns of risky asset j and the market portfolio m, respectively, by

rj,t+1 =
xj,t+1

pj,t

− 1, rm,t+1 =
Wm,t+1

Wm,t

− 1, (6.23)

from which

Ea,t(rj,t+1) =
Ea,t(xj,t+1)

pj,t

− 1, Ea,t(rm,t+1) =
Ea,t(Wm,t+1)

Wm,t

− 1.

Following Chiarella, Dieci and He (2011), we obtain the standard CAPM-like return
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Figure 6.9: Time series of (a) the market prices; (b) the returns; (c) the proportions of the total market
wealth invested in risky assets; (d) the ex-ante betas of the risky assets; and the estimates of the betas
using rolling windows of (e) 100 and (f) 300 with η = 3.5.

relation

Ea,t(rt+1) − rf1 = βa,t[Ea,t(rm,t+1) − rf ], (6.24)
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where

βa,t = (β1,t, · · · , βN,t)
�, βj,t =

Cova,t(rm,t+1, rj,t+1)

V ara,t(rm,t+1)
(6.25)

are the beta coefficients in market equilibrium. Notice that the betas in Eq. (6.25) are ex-

ante in the sense that they reflect the market equilibrium condition under the consensus

belief Ea,t and Ωa,t. In addition, Eq. (6.23) also implies rm,t+1 = ω�
t rt+1, leading to

ω�
t βa,t = 1, where ωt = Pts/(p�

t s) with Pt = diag[p1,t, · · · , pN,t] are the proportions of

the total wealth (ex dividend) in the economy invested in the risky assets at time t.

To examine the time-varying betas of the stochastic model, we choose two switching

intensities η = 1.5 and 3.5 as before. The time series of the market prices, fractions of

the fundamentalists, the proportions of the market portfolio invested in the two risky

assets, the ex-ante betas of the risky assets, and the estimates of the betas using rolling

windows of 100 and 300 are illustrated in Fig. 6.8 for η = 1.5 and in Fig. 6.9 for η = 3.5.

For η = 1.5, the fundamental price of the deterministic model is stable, the variation

of the beta coefficients in Fig. 6.8 (d) is large but less significant compared to the beta

coefficients in Fig. 6.9 (d) for η = 3.5 (where the fundamental price of the deterministic

model is unstable). Both the pattern and the level of the beta coefficients for η = 1.5 are

very different from those for η = 3.5. More importantly, both Figs. 6.8 and 6.9 show that

the rolling estimates of the betas do not necessarily reflect the nature of the ex-ante betas

implied by the CAPM, which is consistent with the results in Chiarella et al. (2013).

Interestingly, the estimated betas for window of 100 are more volatile compared to the

ex-ante betas. However, an increase in the rolling window from 100 to 300 in (e) and (f)

of Figs. 6.8 and 6.9 smooths the variations of the beta estimates significantly, leading to

a similar pattern to the ex-ante betas.

6.4.3 Trading Volume and Volatility

Finally, we examine the dynamic relation between price volatility and trading volume.

As in Banerjee and Kremer (2010), the price volatility is measured by the price difference

|pj,t − pj,t−1| and the trading volume at time t is defined by

Xt = min{nf,t−1, nf,t}|zf,t − zf,t−1| + min{nc,t−1, nc,t}|zc,t − zc,t−1|
+ |nf,t − nf,t−1|X̂t, (6.26)

where

X̂t =

⎧⎨⎩|zf,t − zc,t−1|, nf,t ≥ nf,t−1,

|zc,t − zf,t−1|, nf,t < nf,t−1.
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(b) Prices of asset two
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Figure 6.10: The time series of market prices and fundamental price of asset one (a) and asset two (b);
the portfolio positions in asset one (c) and asset two (d); the price volatility and trading volume of asset
one (e) and asset two (f). Here ρ12 = 0.5 and η = 1.5.
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(e) Volatility and volumes of asset one
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Figure 6.11: The time series of market prices and fundamental price of asset one (a) and asset two (b);
the portfolio positions in asset one (c) and asset two (d); the price volatility and trading volume of asset
one (e) and asset two (f). Here ρ12 = −0.9 and η = 1.5.
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(a) The ACs of the price volatility
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Figure 6.12: The ACs of the price volatility and the trading volume of asset one with η = 1.5.

Due to the switching mechanism, the total trading volume Xt in (6.26) can be decomposed

into three components. The first and second components correspond to the trading volume

of the agents who use, respectively, the fundamental and trend following trading strategies

at both time t−1 and t. The third component corresponds to the trading volume of those

agents who change their strategies from t − 1 to t. In particular, when nf,t > nf,t−1, a

fraction of nf,t −nf,t−1 agents change their strategies from the trend following strategy at

time t−1 (with a demand of zc,t−1) to the fundamental strategy at time t (with a demand

of zf,t).

To explore the dynamics of the volatility and trading volume, we set η = 1.5 and choose

two values of ρ12 = 0.5 and −0.9 to examine the impact of the correlation. The time series

of prices, demands, price volatility and trading volumes are illustrated in Fig. 6.10 with

ρ12 = 0.5 and Fig. 6.11 with ρ12 = −0.9 for a typical simulation. With the same random

seeds, Figs. 6.10 and 6.11 illustrate the significant impact of the portfolio effect due to the

different choices of the correlation coefficient ρ12 = 0.5 and −0.9. Figs. 6.10 and 6.11 (a)

and (b) show that the market prices can deviate from the fundamental prices from time to

time, though they follow each other in the long-run. Figs. 6.10 and 6.11 (c) and (d) show

that the fundamentalists and trend followers take opposite positions in risky assets in

general, as expected in market equilibrium with two types of agents trading against each

other. Figs. 6.10 and 6.11 (e) and (f) indicate that both volatility and trading volume are

persistent, which is further verified by the autocorrelations (ACs) of the price volatility

and trading volume of risky asset one in Figs. 6.12 (a) and (b) respectively. The results

are based on 100 numerical simulations with the same parameters but different random

processes. They demonstrate that the ACs for both the volatility and trading volume are

highly significant and decaying over long lags.

Intuitively, the correlation should play an important role in the relation between volatil-
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ity and trading volume. With the two different values of ρ12 = 0.5 and −0.9, Figs. 6.10

and 6.11 (e) and (f) depict the relationship between the price volatility and the trading

volume of the two-asset model. The observation is summarized statistically by the plot

in Fig. 6.13 of the relation between the correlation coefficient ρ12 and the average cor-

relation between price volatility and trading volume of the two assets (asset one in (a)

and asset two in (b)) and correlation in volatility (c) and trading volumes among the two

assets based on 100 simulations. We observe that the correlation between the volatility

and trading volume is positive (negative) when assets are less (more) correlated, but the

correlations in both volatilities and trading volumes of the two assets are high when both

assets are highly correlated. The result is very intuitive; when the payoffs are less corre-

lated in agents’ beliefs, both price volatility and trading volume of the two assets are also

less correlated. In summary, the persistence in price volatility and trading volume and

the autocorrelation patterns in volatility and trading volume illustrated by the model are

closely related to the characteristics of financial markets.
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Figure 6.13: The correlation between trading volumes and volatilities for asset one (a) and asset two (b)
and the correlations of price volatilities (c) and trading volumes (d) of the two risky assets. The results
are based on 100 simulations with η = 1.5.
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6.5 Conclusion

This chapter extends the single-period equilibrium CAPM of Chiarella et al. (2010) to a

dynamic equilibrium evolutionary CAPM to incorporate adaptive switching behavior of

heterogeneous agents. By analyzing the stability of the underlying deterministic model,

we show that the evolutionary CAPM is capable of characterizing spill-over effects, per-

sistence in price volatility and trading volume, and realistic correlations between price

volatility and trading volume. Also, the stochastic nature of time-varying betas implied

by the equilibrium model may not be consistent with the rolling window estimate of be-

tas used in the empirical literature. The model provides further explanatory power of the

recently developed HAMs.

In this chapter, the numerical analysis is focused on the case of two risky assets, though

the stability analysis is conducted for any number of risky assets. It would be interesting

to see how an increase in the number of risky assets could have different effects. We expect

the main results obtained in this chapter to hold. The statistical analysis is mainly based

on some Monte Carlo simulations and a systematical study of the empirical relevance

using econometric methods would be interesting. We leave these issues to the future

research.



Chapter 7

Conclusion and Future Research

The representative agent paradigm with homogeneous expectation has been the dominant

framework for the development of theories in portfolio analysis, equilibrium asset pricing

and no arbitrage pricing. However, despite its simplicity and analytical tractability, the

assumption of homogeneous expectation is unrealistic. Empirical evidence, unconvincing

justification of the assumption of unbounded rationality and investor psychology have

led to the incorporation of heterogeneity in beliefs and bounded rationality into financial

modelling. When agents’ expectations are formulated based on historical information,

the economic systems exhibit an expectation feedback mechanism and hence lagged in-

formation plays a very important role in the new paradigm. A large part of literature

also shows the predictable powers of historical returns empirically. However, the impact

of the historical information and especially the time horizons have not been well under-

stood in extant literature. This thesis contributes to the development of financial market

modelling and asset price dynamics with heterogeneous beliefs and time delays to tackle

the above two important issues. The thesis consists of three parts. Firstly, we provide a

unified approach to characterize trend chasing, adaptive switching and herding behavior

in a continuous-time HAMs framework and extensively investigate the impacts of different

bounded behavior on various market behavior, the stylized facts and the long range de-

pendence in return volatility. Secondly, we extend the models in the first part to study the

mechanism of momentum profitability. We provide market conditions on the momentum

profitability, which underlies the time series and cross-sectional momentum effect well

documented in empirical literature, and further provide an optimal investment strategy

to explore the momentum and reversal effects. Thirdly, the thesis develops an evolution-

ary capital asset pricing model with heterogeneous beliefs. The main contributions of the

three parts and related future research are summarized as follows.
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7.1 Continuous-time Heterogeneous Agent Models

Most of the heterogeneous agent models developed in the literature are in discrete-time

setup. Among various issues in the literature, the impact of adaptive behavior on market

stability has been well studied, while the impact of lagged prices (used by chartists to

form their expectations) on market stability has not been well understood due to the

problem of high dimensional systems. This thesis develops a continuous-time framework

to study the joint impact of lagged prices and adaptive behavior of heterogeneous agents.

By using either the replicator dynamics in Chapter 2 or the master equations in Chapter 3

in population evolution literature, we extend the discrete-time HAMs to continuous-time

models. The delay differential equations provide a uniform approach to study the impact

of the lagged prices through a time delay parameter.

The analysis of the models provides not only some consistent results to discrete-time

HAMs, such as stabilizing effect of fundamentalists, destabilizing effect of chartists, and

rational routes to market instability, but also a double edged effect of an increase in

lagged prices on market stability. An increase in the using of lagged prices can not only

destabilize, but also stabilize the market price. More importantly, the adaptive switching

and herding behavior of agents can increase market price fluctuations. By introducing

market noise and fundamental noise and imposing a stochastic process on population

fractions, we extensively examine how market volatility can be affected by trend chasing,

adaptive switching, and herding, the most important factors as well documented and

studied in the empirical literature on market volatility. We show that, both the herding

and trend chasing based on long time horizon increase the fluctuations of market price

deviation from the fundamental price and volatility of market return. With respect to the

switching, it reduces the volatility in returns but leads to an “U”-shaped price volatility

as the switching intensity increases. Therefore herding and switching have opposite effect

on return volatility. We also show that, although the trend chasing, switching and herding

all contribute to the power-law behavior, the significant levels for the ACs increase in the

time horizon and herding, but an initial increase and then decrease when the switching

intensity increases. In addition, with the herding, the market noise plays an essential role

in generating the power-law behavior.

The results provide some further insights into different mechanism of generating bub-

bles and crashes, excess volatility, and power-law behavior in volatility. Whether a par-

ticular market is dominated by herding or switching is an empirical question which is left

for future research.
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7.2 The Momentum and Reversal Effects

Two of the most studied phenomena in financial market are the short run momentum and

long run reversal, which have become central to the market efficiency debate. However,

most behavioral models do not specify the time horizon, which plays crucial role in the

performance of momentum and contrarian strategies. Based on the models in the first

part, we propose a continuous-time heterogeneous agent model of investor behavior con-

sisting of fundamental, contrarian, and momentum strategies in Chapter 4. By examining

their impact on market stability explicitly and analyzing the profitability numerically, we

show that the profitability of time series momentum is closely related to the market states

defined by the stability of the underlying deterministic model. In particular, we show that

when the momentum traders dominate the market, the momentum strategy is profitable

when the time horizon is short and unprofitable when the time horizon is long. Other-

wise, the momentum strategy is not profitable for any time horizon. We also provide

some explanation to the profitability mechanism through autocorrelation patterns and

the classical underreaction and overreaction hypotheses.

By taking advantage of the continuous-time framework in characterizing the time hori-

zons, Chapter 5 models the drift in the standard geometric Brownian motion asset pricing

model as a weighted average of mean reversion and moving average. By applying the max-

imum principle for control problem of SDDE, we derive the optimal strategies analytically.

We show the optimality of the optimal strategy comparing to pure momentum, pure mean

reversion strategies, and market index. The optimality is immune to market states, in-

vestor sentiment and market volatility. The profitability pattern reflected by the average

return in most empirical literature may not reflect at portfolio wealth level.

Although the model proposed in Chapter 4 is very simple, it provides some insight into

the time series momentum documented in the recent empirical literature. Motivated by

the results obtained in this chapter, one can extend the market of one risky asset to the one

with many risky assets so that the profitability of portfolios constructed from momentum

and contrarian strategies can be examined. We expect that the same mechanism can be

used to explain cross-sectional momentum. In addition, it has been shown that volatility

can affect the autocorrelations in returns and hence affect profitability and even trading

volume. This could be examined by using the setup in Chapter 4. The model proposed

in Chapter 5 is simple and stylized. The weights to the momentum and mean reversion

components are constant. When market condition changes, the weights can be different.

Hence it would be interesting to model their dependence on market conditions. This

can be modelled, for example, based on a replicator dynamics introduced in Chapter
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2, or as a Markov switching process, or based on some rational learning process. The

optimization problem is solved under log utility in this chapter, which eliminates the

intertemporal effect under general power utility functions considered by Koijen et al.

(2009). Furthermore, we can consider stochastic volatility models for the stock index.

Finally, an extension to a multi-asset model to study the cross-sectional optimal strategies

would be helpful to understand the cross sectional momentum. We leave these for future

research.

7.3 The Evolutionary CAPM under Heterogeneous Beliefs

At last, the thesis extends the above single risky asset models to a multi-asset model of

a dynamic equilibrium evolutionary CAPM to incorporate the adaptively switching be-

havior of heterogeneous agents in Chapter 6. By analyzing the stability of the underlying

deterministic model, we show that the evolutionary CAPM is capable of characterizing

spill-over effects, persistence in price volatility and trading volume, and realistic correla-

tions between price volatility and trading volume. Also, the stochastic nature of time-

varying betas implied by the equilibrium model may not be consistent with the rolling

window estimate of betas used in the empirical literature. The model provides further

explanatory power of the recently developed HAMs.

In this chapter, the numerical analysis is focused on the case of two risky assets though

the stability analysis is conducted for any number of risky assets. It would be interesting

to see how an increase in the number of risky assets could have different effects. We expect

the main results obtained in this chapter to hold. The statistical analysis is mainly based

on some Monte Carlo simulations and a systematical study of the empirical relevance using

econometric methods would be interesting. We leave these issues for future research.



Appendix A

Proofs of Chapter 2

A.1 Market Fraction Dynamics

In this section, we show the consistence of (2.11) and (2.12).

On the one hand, notice that Ui(t) is deterministic in (2.9), and hence it follows from

(2.12) that

dnf (t) =
βeβUf (t)dUf (t)[e

βUf (t) + eβUc(t)] − βeβUf (t)[eβUf (t)dUf (t) + eβUf (t)dUc(t)]

[eβUf (t) + eβUc(t)]2
, (A.1)

that is,

dnf (t) =
βeβUf (t)eβUc(t)[dUf (t) − dUc(t)]

[eβUf (t) + eβUc(t)]2
. (A.2)

By applying (2.12) again, we have (2.11).

On the other hand, it follows from (2.11) that

dnf (t)

nf (t)[1 − nf (t)]
= dβ[Uf (t) − Uc(t)], (A.3)

that is,

d
[
ln

nf (t)

1 − nf (t)

]
= dβ[Uf (t) − Uc(t)]. (A.4)

Taking the integral of (A.4) yields

ln
nf (t)

1 − nf (t)
= β[Uf (t) − Uc(t)] + c, (A.5)

nf (t)

1 − nf (t)
= eβ[Uf (t)−Uc(t)]+c, (A.6)
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nf (t) =
eβUf (t)

eβUf (t) + eβUc(t)−c
, (A.7)

where the constant c can be determined by the initial values.

In the rest of the chapter, we use (2.12) as the dynamics of the population fraction by

choosing c = 0.

Alternatively, we can also choose (2.11) instead of (2.12) to characterize the dynamics of

the population fraction. In this case, we may introduce new variables π(t) := πf (t)−πc(t)

and U(t) := Uf (t) − Uc(t). Then the new system is still 4-dimensional with the state

variables
(
P (t), u(t), U(t), nf (t)

)
. Notice that (2.12) always has two constant solutions

nf (t) = 0 and nf (t) = 1, so the new system has two equilibrium lines in addition to the

fundamental steady state.



Appendix B

Proofs and Discussions of Chapter 3

B.1 Analytical Solution for the Master Equation

We solve the master equation using the approximation method introduced by Aoki (2002).

Assume the fraction of fundamentalists in a given moment is determined by its expected

mean (m), the drift, and, an additive fluctuation component s of order 1/N1/2 around

this value. Thus we can write
N f

N
= m +

1√
N

s, (B.1)

where s is a standard white noise. The asymptotically approximate solution of the master

equation is given by the system of coupled differential equations

dm

dt
= ζ(t)m − [ζ(t) + ξ(t)]m2,

∂Q

∂t
= [2(ζ(t) + ξ(t))m − ζ(t)]

∂

∂s
(sQ(s, t))

+
m[ζ(t) + m(ξ(t) − 1)]

2

∂2

∂s2
Q(s, t),

(B.2)

where Q(s, t) is the transition density function of the spread s at time t. The first equation

of (B.2) is a deterministic ordinary differential equation which displays logistic dynamics

for the trend. The second equation is a second order stochastic partial differential equa-

tion, known as the Fokker-Planck equation that drives the spread component (i.e. the

fluctuations around the trend) of the probability flow. By letting m equal to its steady

state m∗ = ζ
ζ+ξ

, we have the distribution function θ for the spread s is given by

θ(s) = Ce−
s2

2σ2 with σ2 =
ζξ

(ζ + ξ)2
, (B.3)
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which is a Gaussian density. Therefore, the two components of the dynamics of the

proportion of fundamentalists as represented by (B.1) are quantified. Accordingly the

evolution of the proportion of fundamentalists is given by the trend, described by (B.2),

plus a stochastic noise distributed according to (B.3). So we have (3.5). For more details,

we refer to Chiarella and Di Guilmi (2011a).

B.2 Comparison to Chapter 2 and Nonlinear Effect of Herding

To examine the effect of herding, we present the corresponding results of no-herding model

in Chapter 2. Unless specified otherwise, we choose the parameter values k = 0.05, μ = 1,

βf = 1.4, βc = 1.4, Cf = 0.05, Cc = 0.03, ηf = 0.5, ηc = 0.6, τf = 10, τc = 5, and F̄ = 1.

(a) Price bifurcation in τ (b) Price bifurcation in β
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(c) Phase plot of Uf and nf

Figure B.1: (a) The bifurcation of the market prices with respect to τ with β = 1; (b) The bifurcation of
market price with respect to β with τ = 8; (c) The phase plot of the relationship between the fitness Uf

and the market fraction nf with τ = 16 and β = 1 for the model in Chapter 2.
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Figure B.2: (a) The time series of the market prices P (t) (the blue solid line) and the market fraction
nf (t) of fundamentalists (the green dash dot line); (b) the phase plot of (P (t), nf (t)); and (c) the density
distribution of the market fraction nf (t).
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Figure B.3: (a) The bifurcation diagram of the market prices with respect to τ for model (3.8); (b) the
corresponding phase plot of (P (t), nf (t)) and (c) the density distribution of the market fraction nf (t) of
the fundamentalists. Here v = 0.1 and τ = 16.
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B.3 Price Volatility Comparison to Chapter 2

This appendix presents some results from Chapter 2 and price volatility of the herding

model.
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(a) Prices for τ = 3
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(b) Prices for τ = 16
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(c) Price deviation density for τ = 3
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(d) Price deviation density for τ = 16

Figure B.4: The time series of the fundamental price F (t) (the blue dotted line) and the market prices
P (t) (the red solid line) with (a) τ = 3 and (b) τ = 16, and the distributions of the deviations of the
market prices from the fundamental prices P (t) − F (t) with (c) τ = 3 and (d) τ = 16 for the model in
Chapter 2. Here σF = 0.12 and σM = 0.15.
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(c) Market fraction density for τ = 3
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Figure B.5: The time series of the fractions of the fundamentalists with (a) τ = 3 and (b) τ = 16 and the
corresponding distributions with (c) τ = 3 and (d) τ = 16 for the model in Chapter 2. Here σF = 0.12
and σM = 0.15.



Appendix C

Proofs and Model Extensions of

Chapter 4

C.1 Time Series Momentum Profit

(m \ n) 1 3 6 12 24 36 48 60
1 1.64 3.61∗∗ 1.61 3.00∗∗∗ 2.01∗∗ 2.01∗∗ 1.55∗ 1.12
3 1.15 2.15 2.88 3.34∗∗ 2.67∗ 1.88 1.57 1.25
6 4.21 4.39∗ 5.47∗∗ 4.67∗∗ 2.74 1.77 1.67 1.37
12 9.24∗∗∗ 7.81∗∗∗ 6.72∗∗ 5.22∗∗ 2.83 1.82 1.70 1.82
24 7.20∗∗ 6.92∗∗ 5.47∗ 3.81 2.28 1.68 8 1.83 2.68
36 3.98 4.50 2.80 1.58 0.72 0.93 1.55 2.97
48 1.76 0.14 -1.19 -1.94 -1.59 -0.43 1.30 2.51
60 -2.55 -4.24 -4.84 -3.86 -2.11 0.07 1.80 2.74

Table C.1: The annualized percentage (log) excess returns of momentum strategies (4.2) for the S&P 500
with the horizon (m) and holding (n) from 1 to 60 months period. Note: ∗, ∗∗, ∗∗∗ denote the significance
at 10%, 5% and 1% levels, respectively.

C.2 Proofs and Remarks for the Deterministic Model

The characteristic equation of the system (4.11) at the fundamental steady state P = F̄

is given by1

λ + γf − γm + γc +
γm

λτm

(1 − e−λτm) − γc

λτc

(1 − e−λτc) = 0. (C.1)

For delay integro-differential equation, the eigenvalue analysis can be complicated.
1It is known (see Hale 1997) that the stability is characterized by the eigenvalues of the characteristic equation of the

system at the steady state.

148



149 C.2 Proofs and Remarks for the Deterministic Model

0 10 20 30 40 50 60

−3

−2

−1

0

1

2

3

Horizon
t−S

tat
ist

ic

Holding=Horizon
Holding=1
Holding=6

Figure C.1: The t-Statistic of the average excess return of the momentum strategies (4.2) investing the
S&P 500 for time horizon from 1 to 60 months periods and holding equal to horizon (n = m), 1 month
(n = 1) and 6 month periods (n = 6).

(m \ n) 1 3 6 12 24 36 48 60
1 1.81 3.53 3.28∗∗ 3.20∗∗∗ 1.78∗∗ 0.44 -0.17 -0.42
3 3.38 3.28 4.93∗∗ 4.56∗∗∗ 2.46∗ 0.33 -0.28 -0.32
6 6.35∗ 6.57∗∗ 6.02∗∗ 5.46∗∗ 1.75 -0.72 -1.63 -1.20
12 6.86∗∗ 7.29∗∗ 7.09∗∗ 4.74∗ 0.58 -2.50 -2.95∗∗ -2.64∗∗

24 5.22 5.28 3.94 0.82 -3.02 -4.85∗∗ -3.97∗ -2.46
36 1.32 0.24 -1.61 -4.91 -7.96∗∗∗ -7.81∗∗∗ -5.39∗∗ -3.23
48 -1.46 -2.69 -4.30 -6.57∗∗ -8.66∗∗∗ -7.61∗∗∗ -4.99∗∗ -3.28
60 -2.42 -5.80 -6.47∗ -6.31∗ -6.97∗∗ -5.83∗ -4.14 -2.71

Table C.2: The annualized percentage (log) excess returns of momentum strategies (4.2) for the time
series generated from the model in market state 3 with the horizon (m) and holding (n) from 1 to 60
months period. Note: ∗, ∗∗, ∗∗∗ denote the significance at 10%, 5% and 1% levels, respectively.

Proof of Proposition 4.1

The characteristic equation (C.1) reduces to

λ + γf + γc − γc

λτc

(1 − e−λτc) = 0, (C.2)

which has no zero eigenvalue. The root of (C.2) has negative real part −γf when τc → 0.

Let λ = iω(ω > 0) be a root of Eq. (C.2). Substituting it into Eq. (C.2) and separating

the real and imaginary parts yield

ω2τc − γc(cos ωτc − 1) = 0, ωτc(γf + γc) − γc sin ωτc = 0,

which lead to

ω2τ 2
c + 2τcγc + τ 2

c (γf + γc)
2 = 0, (C.3)

However equation (C.3) cannot be true for τc > 0, hence λ �= iω.
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Figure C.2: The t-Statistic of the average excess return of the momentum strategy (4.2) investing in the
model generated data in market state 3 for time horizon from 1 to 60 months periods and holding equal
to horizon (n = m), 1 month (n = 1) and 6 month periods (n = 6).

It is known that, as τc varies, the sum of the multiplicities of roots of Eq. (C.2) in the

open right half-plane can change only if a root appears on or crosses the imaginary axis

(see Ruan and Wei 2003 and Li and Wei 2009). Therefore, all roots of Eq. (C.2) have

negative real parts for all τc ≥ 0. This implies the local stability of the system (4.12).

Proof of Proposition 4.2

The characteristic equation (C.1) collapses to

λ + γf − γm +
γm

λτm

(1 − e−λτm) = 0, (C.4)

which has no zero eigenvalue. Substituting λ = iω(ω > 0) into Eq. (C.4) and separating

the real and imaginary parts yield

ω2τm + γm(cos ωτm − 1) = 0, ωτm(γf − γm) + γm sin ωτm = 0. (C.5)

Let a = max{− sin x/x; x > 0}(≈ 0.2172). When γm < γf/(1 + a), the two functions

y1 :=
γm−γf

γm
x and y2 := sin x have no intersection for x > 0, hence the second equation

in (C.5) cannot hold and Eq. (C.4) has no pure imaginary root. Correspondingly, Eq.

(C.4) has no root appearing on the imaginary axis. In addition, Eq. (C.4) has only one

negative eigenvalue when τm → 0. Therefore, all roots of Eq. (C.4) have negative real

parts for all τm ≥ 0 when γm < γf/(1+a), which leads to the local stability of the system

(4.13).

Next, we consider the case of γm ≥ γf/(1 + a). If follows from Eq. (C.5) that

ω2 + (γf − γm)2 − 2γm

τm

= 0. (C.6)
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When τm > τ ∗
m,1 := 2γm

(γf−γm)2
, Eq. (C.6) has no solution, implying that λ = iω is not

an eigenvalue. Hence there is no stability switching for τm > τ ∗
m,1. Substituting λ =

�{λ} + i�{λ} into Eq. (C.4) and separating the real and imaginary parts yield

�2{λ} + �2{λ} + (γf − γm)�{λ} +
γm

τm

(1 − e−	{λ}τm cos�{λ}) = 0,

2�{λ}�{λ} + (γf − γm)�{λ} +
γm

τm

e−	{λ}τm sin�{λ}τm = 0.
(C.7)

When τm → ∞, if there exists a root λ with �{λ} > 0, then (C.7) reduces to

�2{λ} + �2{λ} + (γf − γm)�{λ} = 0,

2�{λ}�{λ} + (γf − γm)�{λ} = 0,
(C.8)

which hold only when γm > γf . Note that (C.8) cannot hold with �{λ} = 0 since (C.4)

has no zero eigenvalue. Therefore, (C.4) has at least one root with positive real part

for γm > γf and all roots with negative real parts for γm ≤ γf when τm → ∞. So

the fundamental steady state of system (4.13) is asymptotically stable for γm ≤ γf and

unstable for γm > γf when τm > τ ∗
m,1. However, if τm < τ ∗

m,1, by substituting Eq. (C.6)

into the first equation of (C.5) we have

τm

γm

(γf − γm)2 − cos

[√
2γmτm − (γf − γm)2τ 2

m

]
− 1 = 0. (C.9)

Let τ ∗
m,l be the minimum positive root of (C.9). Then all the eigenvalues of Eq. (C.4)

have negative real parts when 0 ≤ τm < τ ∗
m,l and Eq. (C.4) has a pair of pure imaginary

roots when τm = τ ∗
m,l. In addition, it can be verified that Δ(τ ∗

m,l) := d	{λ(τm)}
dτm

|τm=τ∗
m,l

�= 0.

So P = F̄ undergoes a Hopf bifurcation at τm = τ ∗
m,l.

Furthermore, the stability switching happens only once when γm > γf and only twice

when γf/(1 + a) ≤ γm ≤ γf . In fact, the stability switching2 at a bifurcation value τ ∗
m

depends on the sign of Δ(τ ∗
m) := d	{λ(τm)}

dτm
|τm=τ∗

m
. An increase in τm near the bifurcation

value τ ∗
m may result in a switching of the steady state from stable to unstable when

Δ(τ ∗
m) > 0 and from unstable to stable when Δ(τ ∗

m) < 0. For a Hopf bifurcation value

τ ∗
m, we have Δ(τ ∗

m) := d	{λ}
dτm

|τm=τ∗
m
=


2{λ}
(
2γm−γf−τ∗

m(γf−γm)2
)

τ∗
m

((
γf−γm+γm cos
{λ}τ∗

m

)2
+
(
2
{λ}−γm sin
{λ}τ∗

m

)2) . Let

τ ∗
m,2 :=

2γm−γf

(γf−γm)2
(< τ ∗

m,1). Then sign(Δ(τ ∗
m)) > 0 for τ ∗

m < τ ∗
m,2 and sign(Δ(τ ∗

m)) < 0

for τ ∗
m > τ ∗

m,2, implying that an unstable fundamental steady state cannot become stable

2For simplicity, we arbitrarily assume that the bifurcating periodic solutions are stable and can be globally extended,
which can be observed in the numerical simulations. We refer to He et al. (2009) for the computation of stability and the
proof of global existence for the periodic solutions.
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as τm varies within (τ ∗
m,l, τ

∗
m,2) and a stable fundamental steady state cannot become

unstable as τm varies within (τ ∗
m,2,∞). When γm > γf , it has been proved that P = F̄

is stable for τm < τ ∗
m,l and unstable for either τm in some right neighborhood of τ ∗

m,l or

τm > τ ∗
m,1. Hence the stability switches only once at τ ∗

m,l, implying that P = F̄ is unstable

for τm > τ ∗
m,l. Let τ ∗

m,h be the largest of the roots of Eq. (C.9) that are less than τ ∗
m,1.

When γf/(1 + a) ≤ γm ≤ γf , P = F̄ is stable for either τm < τ ∗
m,l or τm > τ ∗

m,1. Due

to τ ∗
m,h is a Hopf bifurcation and Δ(τ ∗

m,h) < 0, P = F̄ is unstable for τ in some left

neighborhood of τ ∗
m,h. Hence the stability switches only twice at τ ∗

m,l and τ ∗
m,h, implying

that P = F̄ is unstable for τ ∗
m,l < τm < τ ∗

m,h and stable for either τm < τ ∗
m,l or τm > τ ∗

m,h.

This completes the proof.

Proof of Proposition 4.3

The characteristic equation (C.1) becomes

λ + γf − γm + γc +
γm − γc

λτ
(1 − e−λτ ) = 0. (C.10)

Substituting λ = iω(ω > 0) into Eq. (C.10) and separating the real and imaginary parts

yield

ω2τ + (γm − γc)(cos ωτ − 1) = 0,

ωτ(γf − γm + γc) + (γm − γc) sin ωτ = 0.
(C.11)

We first consider the case of γm ≤ γc. In this case, the first equation of (C.11) cannot

hold, meaning that equation (C.10) has no pure imaginary root. Note that (C.10) has

no zero eigenvalue and the root of (C.10) is negative when τ → 0. Hence all the roots of

(C.10) have negative real parts for τ ≥ 0, leading to the local stability of the steady state.

Second, we consider the case of γm > γc. In this case, if γc < γm < γc + γf/(1 + a)

then the second equation of (C.11) cannot hold, implying that λ �= iω. However, if

γm ≥ γc + γf/(1 + a), similar discussion to the Appendix C.2, we have the local stability

for γm ≤ γf + γc and instability for γm > γf + γc when τ > τ ∗
1 := 2(γm−γc)

(γf−γm+γc)2
. When

τ < τ ∗
l , where τ ∗

l is the minimum positive roof of the following equation τ
γm−γc

(γf − γm +

γc)
2 − cos

[√
2(γm − γc)τ − (γf − γm + γc)2τ 2

]
− 1 = 0, all the eigenvalues of Eq. (C.10)

have negative real parts. When τ = τ ∗
l , Eq. (C.10) has a pair of purely imaginary roots.

Therefore, the stability switching happens only once when γm > γc +γf and only twice

when γc + γf/(1 + a) ≤ γm < γc + γf , and consequently completes the proof.



153 C.2 Proofs and Remarks for the Deterministic Model

Some Remarks on Proposition 4.3

These remarks provide some properties on the nature of bifurcations related to Proposition

4.3, including the number of bifurcations, stability switching and the dependence of the

bifurcation values on the parameters of the model.

First, it follows from the proof of Proposition 4.3 that all the roots of h(τ) except

τ = τ ∗
1 are Hopf bifurcation values. Note that h(τ ∗

1 ) = 0. However, we know that ω = 0

if and only if τ = τ ∗
1 . Hence τ ∗

1 is not a bifurcation value.

Second, when γc + γf/(1 + a) ≤ γm < γc + γf , the number of bifurcations defined by

h(τ ∗) = 0 is odd. Indeed, it follows from h′(τ ∗
1 ) =

−γf [2(γm−γc)−γf ]

γm−γc
< 0 that h(τ ∗

1 − 0) > 0.

Note that h(0) < 0, h(τ) is continuous and y = h(τ) is not tangent to y = 0 when

| γf

γm−γc
− 1 |�= 2

(1+2k)π
, k = 0, 1, 2, · · · . Therefore if | γf

γm−γc
− 1 |�= 2

(1+2k)π
, then h(τ)

has odd roots when τ ∈ (0, τ ∗
1 ), that is, the number of the Hopf bifurcation that the

fundamental steady state price P = F̄ undergoes in the interval (0, τ ∗
1 ) must be odd.

Furthermore, the number of the Hopf bifurcation that the fundamental steady state price

P = F̄ can undergo in the interval (0, τ ∗
1 ) increases when γf + γc → γm. In fact, we have

h′(τ) =
γm−γc−(γf−γm+γc)2τ√

2(γm−γc)τ−(γf−γm+γc)2τ2
sin
√

2(γm − γc)τ − (γf − γm + γc)2τ 2. When γf + γc →
γm, maxτ

{√
2(γm − γc)τ − (γf − γm + γc)2τ 2

}→ ∞, hence the sign of h′(τ) can change

many times. This implies that the number of roots of h(τ) increases in this case. Despite

the facts that the number of bifurcations defined by h(τ ∗) = 0 is odd and the number of

the Hopf bifurcation increases when γf +γc → γm, Proposition 4.3 shows that the stability

switches only twice. This is verified numerically in Fig. 4.2 and Fig. C.3. In Fig. 4.2 (a),

there are three Hopf bifurcation values, while in Fig. C.3 (a), there are five bifurcation

values. However, the stability switches only twice in Fig. 4.2 (b) and Fig. C.3 (b).

Finally, the first bifurcation value τ ∗
l depends on the population fractions, the extrap-

olation rates and the speed of the price adjustment. It increases as γf or γc increase, or

γm decreases, however it is always bounded away from zero and infinity. In fact, when

γm ≥ γc + γf/(1 + a), let x =
√

2(γm − γc)τ − (γf − γm + γc)2τ 2. Solving τ then leads to

τ(x) = γm−γc

(γf−γm+γc)2
−
√

(γm−γc)2

(γf−γm+γc)4
− x2

(γf−γm+γc)2
. Note that τ = 0 implies x = 0 and x(τ)

is an increasing function of τ . Hence the first bifurcation value τ ∗
l corresponds the mini-

mum positive root x∗
l of the following function h(x) = −

√
1 − (γf−γm+γc)2x2

(γm−γc)2
− cos x = 0.

It can be shown that π
2

< x∗
l < π and while | γf−γm+γc

γm−γc
| decreases, x∗

l increases, implying

that τ ∗
l increases. Therefore, when γc + γf/(1 + a) ≤ γm ≤ γc + γf , the first bifurcation

value τ ∗
l increases as either γf or γc decrease, or γm increases. When γm > γc+γf , the first

bifurcation value τ ∗
l increases as either γf or γc increase, or γm decreases. Furthermore,

let xmin = {√1 − ax2 + cos x = 0 | π
2

< x < π}(≈ 2.5536). Because of
γf−γm+γc

γm−γc
< a, we
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have xmin < x∗
l < π, implying τ(xmin) < τ ∗

l < τ(π), where

τ(xmin) =
γm − γc

(γf − γm + γc)2
−
√

(γm − γc)2

(γf − γm + γc)4
− x2

min

(γf − γm + γc)2
,

τ(π) =
γm − γc

(γf − γm + γc)2
−
√

(γm − γc)2

(γf − γm + γc)4
− π2

(γf − γm + γc)2
.
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Figure C.3: (a) The function h(τ); (b) the bifurcation diagram of the market price. Here γf = 20,
γm = 22.8 and γc = 5.

C.3 The General Case with Any Positive τm and τc

In the general case, the market stability of the system (4.11) can be characterized by the

following proposition.

Proposition C.1 The fundamental steady state price of the system (4.11) is

(i) asymptotically stable for all τm, τc ≥ 0 when γm < γc +
γf

1+a
;

(ii) asymptotically stable for either 0 ≤ τm, τc < τ ∗
l or τm, τc > τ ∗

h when γc +
γf

1+a
≤ γm ≤

γc + γf ; and

(iii) asymptotically stable for τm, τc < τ ∗
l when γm > γc + γf .

Proof 1 We first consider the case of γm ≤ γc +γf/(1+a).3 Suppose there exist τ
(1)
m ≥ 0

and τ
(1)
c ≥ 0 such that the fundamental steady state P = F̄ of system (4.11) is unstable

for the delay pair (τm, τc) =
(
τ

(1)
m , τ

(1)
c

)
. Without loss of generality, assume τ

(1)
m > τ

(1)
c .

3Assume arbitrarily again that the stable periodic solutions bifurcating from the Hopf bifurcation can be extended with
respect to the time horizons.
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Proposition 4.3 implies P = F̄ is stable when (τm, τc) =
(
τ

(1)
c , τ

(1)
c

)
. If P = F̄ is sta-

ble when (τm, τc) =
(

τ
(1)
m +τ

(1)
c

2
, τ

(1)
c

)
, then let (τ

(2)
m , τ

(2)
c ) =

(
τ

(1)
m , τ

(1)
m +τ

(1)
c

2

)
. Otherwise, let

(τ
(2)
m , τ

(2)
c ) =

(
τ
(1)
m +τ

(1)
c

2
, τ

(1)
c

)
. So P = F̄ is stable when (τm, τc) =

(
τ

(2)
c , τ

(2)
c

)
and unstable

when (τm, τc) =
(
τ

(2)
m , τ

(2)
c

)
. Repeating the above process, we have a sequence of nested

closed intervals [τ
(1)
c , τ

(1)
m ] ⊃ [τ

(2)
c , τ

(2)
m ] ⊃ [τ

(3)
c , τ

(3)
m ] ⊃ · · · and limn→∞(τ

(n)
m − τ

(n)
c ) = 0.4

By the nested interval theorem, there exists a τ (∞) ∈ [τ
(n)
c , τ

(n)
m ] such that τ

(n)
m → τ (∞) as

n → ∞. So P = F̄ is unstable when (τm, τc) =
(
τ (∞), τ (∞)

)
, which contradicts Proposition

4.3. Therefore, P = F̄ is stable for all τm, τc ≥ 0 when γm ≤ γc + γf/(1 + a).

Similarly, items (ii) and (iii) can be proved.

Simulations (not reported here) show that if momentum traders do not dominate the

market (γm ≤ γc + γf ), then momentum traders always lose no matter how long time

horizons are used, and contrarians can make profits when τm and τc are large, and lose

when τc is small and τm is large. If momentum traders dominate the market (γm >

γc + γf ), then, for any given τc > 0, momentum strategy is profitable when τm is small

and unprofitable when τm is big; and the profitabilities for contrarians are opposite for

any given τm > 0. These results are consistent with the analysis in Section 4.5.

C.4 Population Evolution between Momentum and Contrarian

Traders

To focus on the impact of time horizons, we consider a special case of fixed market fractions

in previous sections, which have shown that the time horizons and the joint impact of

different traders play very important roles in the stability of market price and profitability.

In this section we investigate the impact of population evolution on the market price and

profitability. The switching mechanism follows the modelling in Chapter 2.

Let qf (t), qm(t) and qc(t) be the market fractions of fundamentalists, momentum

traders and contrarians respectively. We first suppose there is no switching between

fundamentalists and chartists and choose constant market fraction of fundamentalists

qf (t) = αf . Assume the market fractions of the two kinds of chartists have a fixed

component and a time varying component. Let mm and mc be the fixed proportions of

momentum and contrarian traders who stay with their strategy over time, respectively.

Then 1−αf −mm−mc is the proportion of chartists who may switch from one strategy to

the other: we denote them as switching or adaptively rational chartists. Among switching

4If τ
(n)
m +τ

(n)
c

2
is a bifurcation value, then by the definition of bifurcation, we can choose a proper value close to it as τ

(n+1)
m

(or τ
(n+1)
c ) such that P = F̄ is stable when (τc, τm) =

(
τ
(n+1)
c , τ

(n+1)
c

)
and unstable when (τc, τm) =

(
τ
(n+1)
c , τ

(n+1)
m

)
.
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chartists, denote by nm(t) and nc(t) = 1 − nm(t) the proportions of momentum and con-

trarian traders at time t, respectively. Therefore, qm(t) = mm +(1−αf −mm −mc)nm(t)

and qc(t) = mc + (1 − αf − mm − mc)nc(t). The net profits of the momentum and con-

trarian strategies over a short time interval [t − dt, t] can be measured respectively by

πm(t)dt = Dm(t)dP (t) − Cmdt and πc(t)dt = Dc(t)dP (t) − Ccdt, where Cm, Cc ≥ 0 are

constant costs of the strategies per unit time. To measure performance of the strategies,

we introduce a cumulated profits by Ui(t) = η
∫ t

−∞ e−η(t−s)πi(s)ds, i = m, c, where η > 0

represents a decay parameter of the historical profits. That is the performance is de-

fined by a cumulated net profit of the strategy decaying exponentially over all past time.

Consequently, dUi(t) = η
[
πi(t) − Ui(t)

]
dt, i = m, c. Following Hofbauer and Sigmund

(1998) (Chapter 7), the evolution dynamics of the market populations are governed by

dni(t) = βni(t)[dUi(t)− dŪ(t)], i = m, c, where dŪ(t) = nm(t)dUm(t) + nc(t)dUc(t) is the

average performance of the two strategies and the switching intensity β > 0 is a constant,

measuring the intensity of choice. In particular, if β = 0, there is no switching between

strategies, while for β → ∞ all agents switch immediately to the better strategy.

To sum up, by letting U(t) = Um(t)−Uc(t), π(t) = πm(t)−πc(t) and C = Cm−Cc, the

market price of the risky asset is determined according to the following stochastic delay

integro-differential system

⎧⎨⎩ dP (t) = μ
[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

]
dt + σMdWM(t),

dU(t) = η
[
π(t) − U(t)

]
dt,

(C.12)

where

qf (t) = αf , qm(t) = mm + (1 − αf − mm − mc)nm(t),

qc(t) = mc + (1 − αf − mm − mc)
(
1 − nm(t)

)
, nm(t) =

1

1 + e−βU(t)
,

Df (t) = βf

(
F (t) − P (t)

)
, Dm(t) = tanh

(
βm

(
P (t) − 1

τm

∫ t

t−τm

P (s)ds
))

,

Dc(t) = tanh
(
− βc

(
P (t) − 1

τc

∫ t

t−τc

P (s)ds
))

,

π(t) = μ
[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

][
Dm(t) − Dc(t)

]− C.
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Dynamics of the Deterministic Model

The deterministic skeleton of (C.12) is given by⎧⎪⎨⎪⎩
dP

dt
= μ
[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

]
dt,

dU

dt
= η
[
π(t) − U(t)

]
,

(C.13)

whose steady state is (P,U) = (F̄ ,−C), consisting of the constant fundamental price and

the strategy cost disparity.

If there is no intensity of choice, that is β = 0, then the system (C.13) reduces to

the constant population model (4.11) with the constant market population fractions of

the three kinds of agents (αf , αm, αc) = (αf ,
1−αf+mm−mc

2
,

1−αf−mm+mc

2
). For the case of

β > 0, at the fundamental steady state, the proportions of the switching momentum and

contrarian traders are 1
1+eβC := n∗

m and 1
1+e−βC := n∗

c respectively, and hence the market

fractions of momentum and contrarian traders become qm(t) = mm +
1−αf−mm−mc

1+eβC := α∗
m

and qc(t) = mc +
1−αf−mm−mc

1+e−βC := α∗
c respectively. Obviously, when C = 0, n∗

m = n∗
c = 1

2

for any β. This makes sense because the difference in profits is zero at the fundamental

steady state. However, if C > 0, that is costs for momentum strategy exceed the costs for

contrarian trading rules, then there are more contrarians than momentum traders among

the switching chartists at the fundamental steady state, i.e., n∗
c ≥ n∗

m. (If C < 0, then

n∗
c ≤ n∗

m.) Furthermore, when C > 0, an increase in β leads to a decrease in n∗
m, the

fraction using the expensive momentum strategy. This makes economic sense. There is

no point in paying any cost at a fundamental steady state for a trading strategy that

yields no extra profit at that fundamental steady state. As intensity of choice β increases,

the mass on the most profitable strategy in net terms increases.

We still use γi, i = f, m, c to characterize the activity of type-i agent, where γf =

μαfβf , γm = μα∗
mβm and γc = μα∗

cβc. Then the characteristic equation of the system

(C.13) at the fundamental steady state (P,U) = (F̄ ,−C) is given by

(λ + η)
(
λ + γf − γm + γc +

γm

λτm

(1 − e−λτm) − γc

λτc

(1 − e−λτc)
)

= 0. (C.14)

Notice η > 0 and the second multiplication factor of Eq. (C.14) shares the same form

as the characteristic equation (C.1) except for the expression of γm and γc. So the price

dynamics of the system (C.13) can be characterized by Proposition C.1.

Simulations show that the population evolution can enlarge the period and oscillation

amplitude of the market price (not reported here). We choose αf = 0.3, mm = 0.3,
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(a) βf = 4.7, βm = 7.5, βc = 6.7 and C = −2 (b) βf = 3.33, βm = 7.5, βc = 6.67 and C = 2

Figure C.4: Price bifurcation with respect to β for (a) C < 0 and (b) C > 0.

mc = 0.2, μ = 10, η = 0.5, τm = 1.2, τc = 1.2 and F̄ = 1. When β = 0, we have

γm < γc + γf/(1 + a) and Proposition C.1 (i) shows that the steady state of the system

(C.13) is stable for all τm, τc ≥ 0. However, one can verify that γm > γc +γf/(1+a) when

the intensity of choice β is greater than 0.11. Proposition C.1 (ii) and (iii) demonstrate

that the steady state is unstable when τm, τc ∈ (τ ∗
l , τ ∗

h). The results are illustrated in Fig.

C.4 (a). On the other hand, when C > 0, an increase in the intensity of choice β may

stabilize the unstable market price as shown in Fig. C.4 (b). When the intensity of choice

is small (β < 0.12), the market price is unstable. With the increase in β, the market

price becomes stable. Therefore, the population evolution has a conditional impact on

the market stability.

Profitability

The results of profitability are similar to those for the no switching model (4.10) when the

switching intensity β is not too large, and hence we do not report them. In addition, we

find that the switching can enlarge the profits and losses by choosing the same parameters

(the market fraction parameters being chosen to satisfy αj = α∗
j , j = m, c) for the no

switching model (4.10) and switching model (C.12).

C.5 Population Evolution among Fundamentalist, Momentum

and Contrarian Traders

Let qf (t) = mf +(1−mf−mm−mc)nf (t) where mf is the fixed proportion of fundamental-

ists who stay with their strategy over time and nf (t) is the proportion of fundamentalists

among the switching traders. The technique of modelling population evolution among
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fundamentalist, momentum and contrarian traders in this section is the same as previous

section. Then the market price of the risky asset is determined according to the following

stochastic delay integro-differential system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dP (t) = μ

[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

]
dt + σMdWM(t),

dU1(t) = η
[
π1(t) − U1(t)

]
dt,

dU2(t) = η
[
π2(t) − U2(t)

]
dt,

(C.15)

where

qf (t) = 1 − qm(t) − qc(t), qm(t) = mm + (1 − mf − mm − mc)nm(t),

qc(t) = mc + (1 − mf − mm − mc)nc(t), nm(t) =
1

1 + eβU1(t) + eβ(U1(t)−U2(t))
,

nc(t) =
1

1 + eβU2(t) + eβ(U2(t)−U1(t))
,

π1(t) = μ
[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

][
Df (t) − Dm(t)

]− C1,

π2(t) = μ
[
qf (t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)

][
Df (t) − Dc(t)

]− C2.

The steady state of the deterministic part of the system (C.15) is (P,U1, U2) =

(F̄ ,−C1,−C2) and the dynamics can be also characterized by Proposition C.1.

The profitability property is consistent with that in Appendix C.4.



Appendix D

Proofs and Discussions of Chapter 5

D.1 Properties of the Solutions to the System (5.2)-(5.3)

Let C([−τ, 0], R) be the space of all continuous functions ϕ : [−τ, 0] → R. For a given

initial condition St = ϕt, t ∈ [−τ, 0] and μ0 = μ̂, the following proposition shows that the

system (5.2)-(5.3) admits pathwise unique solutions such that St > 0 almost surely for all

t ≥ 0 whenever ϕ0 > 0 almost surely.

Proposition D.1 The system (5.2)-(5.3) has a pathwise unique solution (S, μ) for a given

F0-measurable initial process ϕ : Ω → C([−τ, 0], R). Furthermore, if ϕ0 > 0 a.s., then

St > 0 for all t ≥ 0 a.s..

Proof 2 Let t ∈ [0, τ ]. Then the system (5.2)-(5.3) becomes⎧⎪⎪⎨⎪⎪⎩
dSt = StdNt, t ∈ [0, τ ],

dμt = α(μ̄ − μt)dt + σ′
μdZt, t ∈ [0, τ ],

S0 = ϕ0 and μ0 = μ̂.

(D.1)

where Nt =
∫ t

0

[
φ
τ

∫ s

s−τ
dϕu

ϕu
+ (1 − φ)μs

]
ds +

∫ t

0
σ′

SdZs is a semimartingale. Denote by

[N,N ]t =
∫ t

0
σ′

SσSds, t ∈ [0, τ ], its quadratic variation. Then the system (D.1) has a

unique solution⎧⎪⎪⎨⎪⎪⎩
St = ϕ0 exp

{
Nt − 1

2
[N,N ]t

}
,

μt = μ̄ + (μ̂ − μ̄) exp{−αt} + σ′
μ exp{−αt}

∫ t

0

exp{αu}dZu

for t ∈ [0, τ ]. This clearly implies that St > 0 for all t ∈ [0, τ ] almost surely, when ϕ0 > 0

a.s.. By a similar argument, it follows that St > 0 for all t ∈ [τ, 2τ ] a.s.. Therefore St > 0

160
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for all t ≥ 0 a.s., by induction. Note that the above argument also gives existence and

pathwise-uniqueness of the solution to the system (5.2)-(5.3).

D.2 Proof of Proposition 5.1

To solve the stochastic control problems, there are two approaches: the dynamic program-

ming method (HJB equation) and the maximum principle. The SDDE is not Markovian

so we cannot use the dynamic programming method. Recently, Chen and Wu (2010) in-

troduce a maximum principle for the optimal control problem of SDDEs, and this method

is further extended by Øksendal, Sulem and Zhang (2011) to consider a one dimensional

system allowing both delays of moving average type and jumps. Because the optimal

control problem of SDDEs is relative new to the field of economics and finance, we first

introduce the maximum principle in Chen and Wu (2010) briefly and refer the reader to

the original for details.

Brief Introduction to the Maximum Principle for an Optimal Control Problem

of SDDE

Consider a past-dependent state Xt of a control system{
dXt = b(t, Xt, Xt−τ , vt, vt−τ )dt + σ(t, Xt, Xt−τ , vt, vt−τ )dZt, t ∈ [0, T ],

Xt = ξt, vt = ηt, t ∈ [−τ, 0],
(D.2)

where Zt is a d-dimensional Brownian motion on (Ω,F , P, {Ft}t≥0), and b : [0, T ]× R
n ×

R
n × R

k × R
k → R

n and σ : [0, T ] × R
n × R

n × R
k × R

k → R
n×d are given functions. In

addition, vt is an Ft(t ≥ 0)-measurable stochastic control with values in U , where U ⊂ R
k

is a nonempty convex set, τ > 0 is a given finite time delay, ξ ∈ C[−τ, 0] is the initial

path of X, and η, the initial path of v(·), is a given deterministic continuous function

from [−τ, 0] into U such that
∫ 0

−τ
η2

sds < +∞. The problem is to find the optimal control

u(·) ∈ A, such that

J(u(·)) = sup{J(v(·)); v(·) ∈ A}, (D.3)

where A denotes the set of all admissible controls and the associated performance function

J is given by

J(v(·)) = E

[ ∫ T

0

L(t, Xt, vt, vt−τ )dt + Φ(XT )
]
,
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where L : [0, T ]×R
n×R

k×R
k → R and Φ : R

n → R are given functions. Assume (H1) the

functions b, σ, L and Φ are continuously differentiable with respect to (Xt, Xt−τ , vt, vt−τ )

and their derivatives are bounded.

In order to derive the maximum principle, we introduce the following adjoint equation,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−dpt =
{
(bu

X)�pt + (σu
X)�zt + Et[(b

u
Xτ

|t+τ )
�pt+τ + (σu

Xτ
|t+τ )

�zt+τ ]

+ LX(t, Xt, ut, ut−τ )
}
dt − ztdZt, t ∈ [0, T ],

pT = ΦX(XT ), pt = 0, t ∈ (T, T + τ ],

zt = 0, t ∈ [T, T + τ ].

(D.4)

We refer readers to the Theorem 2.2 and Theorem 2.1 in Chen and Wu (2010) for the

existence and uniqueness of the solutions of the systems (D.2) and (D.4) respectively.

Next, define a Hamiltonian function H from [0, T ] × R
n × R

n × R
k × R

k × L2
F(0, T +

τ ; Rn) × L2
F(0, T + τ ; Rn×d) to R as follows,

H(t, Xt, Xt−τ , vt, vt−τ , pt, zt) =

〈b(t, Xt, Xt−τ , vt, vt−τ ), pt〉 + 〈σ(t, Xt, Xt−τ , vt, vt−τ ), zt〉 + L(t, Xt, vt, vt−τ ).

Assume (H2) the functions H(t, ·, ·, ·, ·, pt, zt) and Φ(·) are concave with respect to the

corresponding variables respectively for t ∈ [0, T ] and given pt and zt. Then we have

the following proposition on the maximum principle of the stochastic control system with

delay by summarizing the Theorem 3.1, Remark 3.4 and Theorem 3.2 in Chen and Wu

(2010).

Proposition D.2 (i) Let u(·) be an optimal control of the optimal stochastic control

problem with delay subject to (D.2) and (D.3), and X(·) be the corresponding optimal

trajectory. Then we have

max
v∈U

〈Hu
v + Et[H

u
vτ
|t+τ ], v〉 = 〈Hu

v + Et[H
u
vτ
|t+τ ], ut〉, a.e., a.s.; (D.5)

(ii) Suppose u(·) ∈ A and let X(·) be the corresponding trajectory, pt and zt be the

solution of the adjoint equation (D.2). If (H1), (H2) and (D.5) hold for u(·), then

u(·) is an optimal control for the stochastic delayed optimal problem (D.2) and (D.3).

Proof of Proposition 5.1

Next, we apply the theory in Chen and Wu (2010) summarized in previous subsection to

our stochastic control problem.
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Let Pu := ln Su and Vu := ln Wu. Then the stochastic delayed optimal problem in

Section 5.2 becomes to maximize Eu[Φ(XT )] := Eu[ln WT ] = Eu[VT ], subject to{
dXu = b(u,Xu, Xu−τ , πu)du + σ(u,Xu, πu)dZu, u ∈ [t, T ],

Xu = ξu, vu = ηu, u ∈ [t − τ, t],
(D.6)

where

Xu =

⎛⎜⎝ Pu

μu

Vu

⎞⎟⎠ , σ =

⎛⎜⎝ σ′
S

σ′
μ

πuσ
′
S

⎞⎟⎠ ,

b =

⎛⎜⎜⎝
φ
τ
(Pu − Pu−τ ) + (1 − φ)μu − (1 − φ)

σ′
SσS

2

α(μ̄ − μu)

−π2
uσ′

SσS

2
+ πu

[
φ
τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ + (1 − φ)μu − r

]
+ r

⎞⎟⎟⎠ .

Then we have the following adjoint equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−dpu =
{
(bπ∗

X )�pu + (σπ∗
X )�zu + Eu[(b

π∗
Xτ

|u+τ )
�pu+τ + (σπ∗

Xτ
|u+τ )

�zu+τ ]

+ LX

}
du − zudZu, u ∈ [t, T ],

pT = ΦX(XT ), pu = 0, u ∈ (T, T + τ ],

zu = 0, u ∈ [T, T + τ ],

where

pu = (pi
u)3×1, zu = (zij

u )3×2, (bπ∗
X )� =

⎛⎜⎝
φ
τ

0 φ
τ
π∗

u

1 − φ −α (1 − φ)π∗
u

0 0 0

⎞⎟⎠ ,

(bπ∗
Xτ

|u+τ )
� =

⎛⎜⎝ −φ
τ

0 −φ
τ
π∗

u+τ

0 0 0

0 0 0

⎞⎟⎠ , ΦX(XT ) =

⎛⎜⎝ 0

0

1

⎞⎟⎠ , LX = 0,

(σπ∗
X )� = (σπ∗

Xτ
|u+τ )

� = 02×3×3.

Since the parameters and terminal values for dp3
u are deterministic, we can assert z31

u =

z32
u = 0 for u ∈ [t, T ], which leads to p3

u = 1 for u ∈ [t, T ]. Then the Hamiltonian function
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H is given by

H =
[φ
τ

(Pu − Pu−τ ) + (1 − φ)μu − (1 − φ)
σ′

SσS

2

]
p1

u + α(μ̄ − μu)p
2
u

+
{
− π2

uσ
′
SσS

2
+ πu

[φ
τ

(Pu − Pu−τ ) +
σ′

SσS

2
φ + (1 − φ)μu − r

]
+ r
}

p3
u

+ σ′
S

(
z11

u

z12
u

)
+ σ′

μ

(
z21

u

z22
u

)
,

so that

Hπ∗
π = −π∗

uσ
′
SσS +

φ

τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ + (1 − φ)μu − r.

It can be also obtained that Eu[H
π∗
πτ
|u+τ ] = 0. Therefore,

〈Hπ∗
π + Eu[H

π∗
πτ
|u+τ ], π〉 = πu

[− π∗
uσ

′
SσS +

φ

τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ + (1 − φ)μu − r

]
.

Taking the derivative with respect to πu and letting it equal zero yield

π∗
u =

φ
τ
(Pu − Pu−τ ) +

σ′
SσS

2
φ + (1 − φ)μu − r

σ′
SσS

=
φMu + (1 − φ)μu − r

σ′
SσS

.

D.3 Rolling Window Estimations

In this section we implement rolling window estimation. We first fix τ = 12 and estimate

parameters of (5.11) at each month by using past 20 years’ data to avoid look ahead bias.

Fig. D.1 illustrates the estimated parameters. The big jump in estimated σS(1) during

1930-1950 is consistent with the big volatility of market return illustrated in Fig. D.2 (b).

Fig. D.2 illustrates the time series of (a) the index level and (b) the simple return of the

total return index of S&P 500; (c) the optimal portfolio and (d) the utility of wealth from

December 1890 until December 2012 for τ = 12 with 20 years rolling window estimated

parameters. The index return and π∗
t are positively correlated with correlation 0.0620. In

addition, we find that the profits are higher after 1930s.

Fig. D.1 also illustrates an interesting phenomenon that the estimated φ is very close

to zero for three periods of time, implying insignificant momentum but significant mean

reversion effect. By comparing Figs. D.1 (b) and (e), the insignificant φ is accompanied

by high volatility σS(1). Fig. D.3 illustrates the correlations of the estimated σS(1) with
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Figure D.1: The estimates of (a) α; (b) φ; (c) μ̄; (d) ν; (e) σS(1); (f) σX(1) and (g) σX(2) for τ = 12 based
on the data of past 20 years.
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Figure D.2: The time series of (a) the index level and (b) the simple return of the total return index
of S&P 500; (c) the optimal portfolio and (d) the utility of wealth from December 1890 until December
2012 for τ = 12 with 20 years rolling window estimated parameters.
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Figure D.3: The correlations of the estimated σS(1) with (a) the estimated φ and the return of the optimal
strategies for (b) the full model, (c) the pure momentum model and (d) the TSM return.
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(a) the estimated φ and the return of the optimal strategies for (b) the full model, (c)

the pure momentum model and the time series momentum return for τ ∈ [1, 60]. Inter-

estingly, bigger volatility is accompanied by less significant momentum effect with small

time horizons (τ ≤ 13). But φ and σS(1) are positive correlated when the time horizon

becomes large. One possible reason is that big time horizon makes the trading signal less

sensitive to the changes in price and hence the trading signal is significant only when the

market price changes dramatically in high volatility period. Fig. D.3 (c) and (d) show

that the profitability of the optimal strategies for the pure momentum model and the

TSM strategies are sensitive to market volatility. The return is positively (negatively)

related to market volatility for short (long) time horizons. But Fig. D.3 (b) shows that

the optimal strategies for the full model perform well even in high volatility market.
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Figure D.4: The fraction of φ significantly different from zero for τ ∈ [1, 60].

We also study other time horizons. We find that the estimates of σS(1), σX(1) and σX(2)

are insensitive to τ but the estimates of φ are sensitive to τ . Specifically, the smaller τ

is, the less significantly φ is different from zero. Fig. D.4 illustrates the corresponding

fraction of φ which is significantly different from zero. It shows that the momentums with

20-30 months horizons occur the most frequently during the period of December 1890

until December 2012.

Fig. D.5 (a) illustrates the utility of wealth from December 1890 until December 2012

for the optimal portfolio with τ ∈ [1, 60] and the passive holding portfolio. Especially,

the utility of terminal wealth illustrated in Fig. D.5 (b) shows that the optimal strategy

works well for short horizons τ ≤ 20 and the terminal utility reaches its peak at τ = 12.

Fig. D.6 illustrates the estimates of σS(1) for the pure momentum model (φ = 1) based

on the data of past 20 years and the big jump in volatility is due to the Great Depression

in 1930s.

Fig. D.7 illustrates the time series of (a) the optimal portfolio and (b) the utility of
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Figure D.5: The utility of wealth from December 1890 until December 2012 for the optimal portfolio
with τ ∈ [1, 60] and the passive holding portfolio with 20 years rolling window estimated parameters.
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Figure D.6: Estimates of σS(1) for the pure momentum model (φ = 1) based on the data of past 20 years.

wealth from December 1890 until December 2012 for τ = 12 for the pure momentum

model with 20 years rolling window estimated parameters. By comparing Fig. D.6 and

Fig. D.7 (b), the optimal strategy implied by the pure momentum model suffers huge

losses during the big market volatility period. But Fig D.2 illustrates that the optimal

strategy implied by the full model makes big profits during the big market volatility

period.

Fig. D.8 illustrates the estimates of (a) α; (b) φ; (c) μ̄; (d) ν; (e) σS(1); (f) σX(1) and

(g) σX(2) for the pure mean-reversion model based on the data of past 20 years.

Fig. D.9 illustrates the time series of the optimal portfolio and the utility of wealth

from December 1890 until December 2012 for the pure mean-reversion model with 20

years rolling window estimated parameters. After eliminating the look-ahead bias, the

pure mean-reversion strategy cannot outperform the stock index anymore.

We also implement the estimations for different window sizes of 25, 30 and 50 years

and we find that the estimated parameters are insensitive to the size of rolling window
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Figure D.7: The time series of (a) the optimal portfolio and (b) the utility of wealth from December 1890
until December 2012 for τ = 12 for the pure momentum model with 20 years rolling window estimated
parameters.
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Figure D.8: The estimates of (a) α; (b) φ; (c) μ̄; (d) ν; (e) σS(1); (f) σX(1) and (g) σX(2) for the pure
mean-reversion model based on the data of past 20 years.
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Figure D.9: The time series of (a) the optimal portfolio and (b) the utility of wealth from December
1890 until December 2012 for the pure mean-reversion model with 20 years rolling window estimated
parameters.
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(not reported here).

D.4 Regressions on the Market States, Sentiment and Volatility

Market States

First, we follow Cooper et al. (2004) and Hou et al. (2009) and define market state using

the cumulative return of the stock index (including dividends) over the most recent 36

months.1 We label a month as an up (down) market month if the market’s three-year

return is non-negative (negative). There are 1165 up months and 478 down months from

February 18762 to December 2012.

Observations (N) Average Excess Return
Unconditional Return 1643 0.0087

(2.37)
Up Market 1165 0.0081

(4.09)
Down Market 478 0.0101

(0.87)

Table D.1: The average excess return of the optimal strategy for τ = 12.

We compute the average return of the optimal strategy and compare the average returns

between up and down market months. Table D.1 presents the average unconditional excess

returns and the average excess returns for up and down market months. The excess return

of the optimal strategy (5.7) is significant positive in up market but insignificant in down

market.

We use the following regression model to test for the difference in returns:

R∗
t − r = α + κIt(UP ) + β(Rt − r) + εt, (D.7)

where R∗
t = (W ∗

t − W ∗
t−1)/W

∗
t−1 in (5.12) is the month t return of the optimal strategy,

Rt − r is the excess return of the stock index, and It(UP ) is a dummy variable that takes

the value of one if month t is in an up month, and zero otherwise. The regression intercept

α measures the average return of the optimal strategy in down market months, and the

coefficient κ captures the incremental average return in up market months relative to

down months. We also replace the market state dummy in (D.7) with the lagged market

return over the previous 36 months (nor reported here), and the results are robust.

1The results are similar if we use the alternative 6, 12 or 24 month market state definition, even though they are more
sensitive to sudden changes in market sentiment.

2We escape January 1876 in which there is no return to the optimal strategy.
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Full Model Pure Momentum Pure Mean Reversion TSM
α 0.0094 0.0476 -0.0000 0.0060

(1.46) (1.34) (-0.01) (3.23)
κ 0.0005 0.0041 -0.0005 -0.0014

(0.06) (0.10) (-0.32) (-0.63)
β -1.0523 -6.7491 0.3587 -0.1548

(-12.48) (-14.60) (22.97) (-6.39)

Table D.2: The coefficients for the regression (D.7).

Tables D.2 reports the regression coefficients for the full model, the pure momentum

model, pure mean reversion model and the time series momentum strategy in Moskowitz

et al. (2012) for τ = 12 respectively. κs are insignificant for all strategies.

Full Model Pure Momentum Pure Mean Reversion TSM
α 0.0086 0.0423 0.0002 0.0058

(1.44) (1.32) (0.18) (3.29)
κ -0.0008 -0.0034 -0.0002 -0.0017

(-0.11) (-0.09) (-0.14) (-0.81)
β1 0.1994 0.7189 0.0708 0.1341

(1.90) (1.27) (3.84) (4.30)
β2 -2.5326 -15.5802 0.6991 -0.4964

(-22.16) (-25.31) (34.88) (-14.63)

Table D.3: The coefficients for the regression (D.8).

Now we run the following regression:

R∗
t − r = α + κIt(UP ) + β1(Rt − r)It(UP ) + β2(Rt − r)It(DOWN) + εt, (D.8)

the regression coefficients are reported in Table D.3.

Full Model Pure Momentum Pure Mean Reversion TSM
α 0.0083 0.0409 0.0002 0.0057

(1.22) (1.08) (0.14) (3.03)
κ 0.0006 0.0037 -0.0002 -0.0012

(0.07) (0.08) (-0.14) (-0.53)

Table D.4: The coefficients for the regression (D.9).

We run the following regression:

R∗
t − r = α + κIt−1(UP ) + εt, (D.9)
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and Table D.4 reports the coefficients.

Full Model Pure Momentum Pure Mean Reversion TSM
κ 0.0005 0.0041 -0.0005 -0.0014

(0.06) (0.10) (-0.32) (-0.63)

Table D.5: The coefficients for the regression (D.10).

We also study the beta adjusted momentum returns:

R∗
t − r = αCAPM + βCAPM(Rt − r) + εt,

R∗
t − r − βCAPM(Rt − r) = α + κIt(UP ) + εt,

(D.10)

and Table D.5 reports the coefficients.

Investor Sentiment

Full Model Pure Momentum Pure Mean Reversion TSM
a 0.0059 0.0267 0.0005 0.0040

(1.77) (1.74) (1.49) (2.57)
b 0.0040 0.0134 -0.0003 0.0023

(1.20) (0.87) (-1.01) (1.48)

Table D.6: The coefficients for the regression (D.11).

In this subsection, we examine the relationship between the excess return of the optimal

strategies and investor sentiment by running the following regression:

R∗
t − r = a + bTt−1 + ε, (D.11)

where Tt is the sentiment index measures used by Baker and Wurgler (2006). The data on

the Baker-Wurger sentiment index from 07/1965 to 12/2010 is obtained from the Jeffrey

Wurglers web site. Table D.6 reports the coefficients. We also examine monthly changes

of the level of sentiment by replacing Tt with its monthly changes and their orthogonalized

indexes. The coefficients are also insignificant.

Market Volatility

Finally, we examine the predictability of market volatility to the profitability. First, we

run the following regression:

R∗
t − r = α + κσ̂S,t−1 + εt, (D.12)
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Full Model Pure Momentum Pure Mean Reversion TSM
α 0.0089 0.0457 -0.0002 0.0047

(2.27) (2.09) (-0.24) (4.32)
κ -0.0155 -0.1392 0.0151 0.0105

(-0.16) (-0.26) (0.77) (0.39)

Table D.7: The coefficients for the regression (D.12).

where the ex ante annualized volatility σ̂S,t is given by (5.14). Table D.7 reports the

coefficients.

Full Model Pure Momentum Pure Mean Reversion TSM
α 0.0058 0.0264 0.0007 0.0045

(1.35) (1.10) (0.82) (3.78)
κ1 0.1937 1.1647 -0.0469 -0.0317

(0.69) (0.75) (-0.83) (-0.41)
κ2 0.1894 1.1368 -0.0452 0.0783

(1.92) (2.07) (-2.25) (2.86)

Table D.8: The coefficients for the regression (D.13).

Second, we run the regression by following Wang and Xu (2012):

R∗
t − r = α + κ1σ̂

+
S,t−1 + κ2σ̂

−
S,t−1 + εt, (D.13)

where σ̂+
S,t (σ̂−

S,t) is equal to σ̂S,t if the market state is up (down) and otherwise equal to

0. Table D.8 reports the coefficients.
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Proofs of Chapter 6

E.1 Proof of Proposition 6.2

To provide some insights into the proof of the model with many risky assets, we first start

with the case of one risky asset.

In order to prove the local stability properties of the deterministic model (6.19), we

start from the simplified one-risky-asset case (6.21). We omit the index j of the unique

risky asset for simplicity.

Note that pt depends only on pt−1, ut−1, Vt−1, and on nf,t. The same holds for the state

variables ut and Vt. The differential of the fitness function at time t, vΔ,t, depends on

pt−2, ut−2, Vt−2 and pt−1 through the demand functions zf,t−1 and zc,t−1, on nf,t−1 through

θa,t−1, as well as on pt, pt−1, pt−2 directly. Formally, suitable changes of variables allow us

to express the dynamical system (6.21) as an 8-dimensional map, by which the state of

the system at time t is expressed as a function of the state of the system at time t − 1.

We set

qf,t := nf,t+1 = (1 + exp(−ηvΔ,t))
−1, pL

t := pt−1, uL
t := ut−1, V L

t := Vt−1,

so that we can write the map driving dynamical system (6.21) as

pt = F (pt−1, ut−1, Vt−1, qf,t−1),

ut = δut−1 + (1 − δ)F (pt−1, ut−1, Vt−1, qf,t−1),

Vt = δVt−1 + δ(1 − δ) [F (pt−1, ut−1, Vt−1, qf,t−1) − ut−1]
2 ,

qf,t =
{
1 + exp

[−ηQ(pt−1, ut−1, Vt−1, qf,t−1, p
L
t−1, u

L
t−1, V

L
t−1, q

L
f,t−1)

]}−1
.

In particular, the function Q in the fourth equation above corresponds to vΔ,t, and has

177
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the structure

Q = vΔ,t = ζ̂f,t−1π̂f,t − ζ̂c,t−1π̂c,t − CΔ,

where, for h ∈ {f, c},

ζ̂h,t−1 := zh,t−1 − θa,t−1

θh

s, π̂h,t := pt + d − Rfpt−1 − θh

2
σ2

h,t−1

(
zh,t−1 +

θa,t−1

θh

s

)
and σ2

h,t−1 = σ2 for h = f , σ2
h,t−1 = σ2 + λVt−2 for h = c. One can check that both ζ̂h,t−1

and π̂h,t vanish at the fundamental steady state. It follows that all the partial derivatives

of Q with respect to any of the state variables also vanish at the steady state, and the same

holds for the derivatives of qf,t. Also, all the partial derivatives of Vt (except ∂Vt/∂Vt−1)

are zero at the steady state due to the higher-order term (pt − ut−1)
2 and the fact that

p = u at the steady state. By ordering the variables as p, u, V, qf , p
L, uL, V L, qL

f , the

Jacobian matrix evaluated at the fundamental steady state has the left block triangular

structure

J =

(
A 0

I 0

)
, (E.1)

where 0 and I are the 4-dimensional null and identity matrices, respectively, and

A =

⎛⎜⎜⎜⎜⎜⎜⎝

∂F

∂p

∂F

∂u

∂F

∂V

∂F

∂qf

(1 − δ)
∂F

∂p
δ + (1 − δ)

∂F

∂u
(1 − δ)

∂F

∂V
(1 − δ)

∂F

∂qf

0 0 δ 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows that the characteristic equation for J is given by

χ5(χ − δ)(χ2 + m1χ + m2) = 0,

where1

m1 =
α + δγ

Rf (1 + θ0eηCΔ)
− δγ + 1

Rf

− δ, m2 = δ

[
1 + γ

Rf

− α + γ

Rf (1 + θ0eηCΔ)

]
.

As 0 < δ < 1, it follows that stability depends only on the roots of the 2nd-degree

polynomial χ2 + m1χ + m2. The latter represents the characteristic polynomial of the

two-dimensional upper-left block of matrix A (that we denote as B). A well-known

1See later for the N -asset case with the computational details regarding
∂F

∂p
and

∂F

∂u
.
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necessary and sufficient condition for both characteristic roots of B, say χ1 and χ2, to

have modulus smaller than one (implying that the steady state is locally asymptotically

stable in our case) is the set of inequalities,

1 + m1 + m2 > 0, 1 − m1 + m2 > 0, m2 < 1. (E.2)

The first and second inequalities of (E.2) always hold for any η ≥ 0. The third condition

is equivalent to

δ(1 + γ) − Rf <
δ(α + γ)

1 + θ0eηCΔ
. (E.3)

If Rf ≥ δ(1 + γ), then condition (E.3) always holds for any η ≥ 0. If Rf < δ(1 + γ),

then (E.3) holds when η < η̂ := 1
CΔ

ln
Rf−δ(1−α)

θ0[δ(1+γ)−Rf ]
. If CΔ = 0, then Eq. (E.3) holds

when
Rf−δ(1−α)

θ0[δ(1+γ)−Rf ]
> 1, which is equivalent to θ0γ < α + (1 + θ0)(

Rf

δ
− 1). This proves

Proposition 6.2.

E.2 Proof of Proposition 6.1

Consider the general case (6.19) of N risky assets. The structure of the map is the same

as in the simplified one-risky-asset case, except that the variables pt, ut, pL
t , uL

t have

dimension N , whereas Vt and VL
t have dimension M := N(N + 1)/2 (e.g. M = 3 for the

two-asset case). Again, p = u at the steady state, and the derivatives of each component

of Vt in system (6.19) with respect to any of the state variables (with the exception of

Vt−1) vanish at the steady state. Turning to the derivatives of qf,t := nf,t+1, note that

function Q has the structure

Q = vΔ,t = ζ̂
�
f,t−1π̂f,t − ζ̂

�
c,t−1π̂c,t − CΔ

where, for h = f, c,

ζ̂h,t−1 := zh,t−1 − θa,t−1

θh

s, π̂h,t := pt + d − Rfpt−1 − θh

2
Ωh,t−1

(
zh,t−1 +

θa,t−1

θh

s

)
,

with Ωh,t−1 = Ω0 for h = f and Ωh,t−1 = Ω0 + λVt−2 for h = c. Similar to the one-asset

case, both ζ̂h,t−1 and π̂h,t vanish at the fundamental steady state, and the same holds

for any of the partial derivatives of qf,t. The Jacobian matrix of the system of dimension

N2 +5N +2 at the fundamental steady state is thus again characterized by the structure

(E.1), where the variables are ordered as p,u,V, qf ,p
L,uL,VL, qL

f . In particular, in this

case, 0 and I represent the null matrix and the identity matrix of order 2N+N(N+1)/2+1
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(e.g. dimension 8 in the case of two assets) respectively, and2

A =

⎛⎜⎜⎜⎜⎝
DpF DuF DVF Dqf

F

(1 − δ)DpF δI + (1 − δ)DuF (1 − δ)DVF (1 − δ)Dqf
F

0 0 δI 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

where DxF denotes the partial Jacobian matrix with respect to the variable x. Again,

what matters for stability are the eigenvalues of the upper left block (of dimension 2N ×
2N), given by

B =

(
DpF DuF

(1 − δ)DpF δI + (1 − δ)DuF

)
.

Consider now the difference equation for the price vector

pt = F(pt−1,ut−1,Vt−1, qf,t−1).

The partial Jacobian with respect to p is given by

DpF =
θa,t

Rf

Ωa,t

[
qf,t−1

θf

Ω−1
0 (I − α) +

1 − qf,t−1

θc

(Ω0 + λVt−1)
−1(I + γ)

]
where I is the N -dimensional identity matrix, α := diag(α1, α2, ..., αN) and

γ:=diag(γ1, γ2, ..., γN). At the steady state (where Ωa,t = Ω0) we obtain

DpF(p∗,p∗,0,q∗f ) =
θ∗a
Rf

[
n∗

f

θf

(I − α) +
1 − n∗

f

θc

(I + γ)

]
,

where
θ∗a
θf

n∗
f =

1

1 + θ0eηCΔ
,

θ∗a
θc

(1 − n∗
f ) =

θ0e
ηCΔ

1 + θ0eηCΔ
.

Note that DpF(p∗,p∗,0,q∗f ) is a diagonal matrix. This implies that the fixed component

Ω0 of variance/covariance beliefs, in particular the correlations, has no effect on the

dynamics of the linearized system around the steady state. Similarly, one obtains for

DuF the expression

DuF(p∗,p∗,0,q∗f ) = − θ∗a
Rf

1 − n∗
f

θc

γ,

2The null matrices in the third row of A now have dimension M ×N (first and second entry) and M × 1 (fourth entry).
The identity matrix in the third entry has dimension M . The identity matrix in the second row has dimension N .
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which is also a diagonal matrix. Every submatrix of block B is therefore an N -dimensional

diagonal matrix. It follows that the characteristic equation of J is given by

χ
(N+1)(N+4)

2 (χ − δ)
N(N+1)

2

N∏
j=1

(χ2 + m1,jχ + m2,j) = 0,

where in particular the characteristic equation of B is represented by the product of the

N 2nd-degree polynomials, and the coefficients m1,j and m2,j have the same structure as

those of the one-asset case, namely

m1,j =
αj + δγj

Rf (1 + θ0eηCΔ)
− δγj + 1

Rf

− δ, m2,j = δ

[
1 + γj

Rf

− αj + γj

Rf (1 + θ0eηCΔ)

]
.

Each of the above second-order polynomials is naturally associated with one of the risky

assets. The steady state (p∗,p∗,0,q∗f ) is thus locally asymptotically stable if and only if,

for all j ∈ {1, 2, ..., n},

1 + m1,j + m2,j > 0, 1 − m1,j + m2,j > 0, m2,j < 1. (E.4)

Similar to the one-asset case, the first two inequalities hold for any η ≥ 0. The above

set of inequalities is thus satisfied for any η ≥ 0 if Rf ≥ δ(1 + γj). If Rf < δ(1 + γj),

it is satisfied only if η < η̂j := 1
CΔ

ln
Rf−δ(1−αj)

θ0[δ(1+γj)−Rf ]
or, in the particular case CΔ = 0, if

θ0γj < αj + (1 + θ0)(
Rf

δ
− 1). Since stability requires that condition (E.4) holds for all

j ∈ {1, 2, ..., n}, the statement of Proposition 6.1 follows.
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Mackey, M. (1989), ‘Commodity price fluctuations: Price dependent delays and nonlin-
earities as explanatory factors’, Journal of Economic Theory 48, 495–509.

Marquering, W. and Verbeek, M. (2004), ‘The economic value of predicting stock index
returns and volatility’, Journal of Financial and Quantitative Analysis 39, 407–429.

Marsili, M., Raffaelli, G. and Ponsot, B. (2009), ‘Dynamic instability in generic model of
multi-assets markets’, Journal of Economic Dynamics and Control 33, 1170–1181.

Matsumoto, A. and Szidarovszky, F. (2011), ‘Delay differential neoclassical growth model’,
Journal of Economic Behavior and Organization 78, 272–289.

Merton, R. (1969), ‘Lifetime portfolio selection under uncertainty: The continuous-time
case’, Review of Economics and Statistics 51, 247–257.

Merton, R. (1971), ‘Optimum consumption and portfolio rules in a continuous time
model’, Journal of Economic Theory 3, 373–413.

Moskowitz, T. and Grinblatt, M. (1999), ‘Do industries explain momentum?’, Journal of
Finance 54, 1249–1290.

Moskowitz, T., Ooi, Y. H. and Pedersen, L. H. (2012), ‘Time series momentum’, Journal
of Financial Economics 104, 228–250.

Mossin, J. (1966), ‘Equilibrium in a capital asset market’, Econometrica 35, 768–783.

Novy-Marx, R. (2012), ‘Is momentum really momentum?’, Journal of Financial Eco-
nomics 103, 429–453.

Øksendal, B., Sulem, A. and Zhang, T. (2011), ‘Optimal control of stochastic delay equa-
tions and time-advanced backward stochastic differential equations’, Advances in
Applied Probability 43, 572–596.

Pagan, A. (1996), ‘The econometrics of financial markets’, Journal of Empirical Finance
3, 15–102.



190 BIBLIOGRAPHY

Pesaran, M. and Timmermann, A. (1994), ‘Forecasting stock returns, an examination of
stock market trading in the presence of transaction costs’, Journal of Forecasting
13, 335–367.

Pesaran, M. and Timmermann, A. (1995), ‘Predictability of stock returns: Robustness
and economic significance’, Journal of Finance 50, 1201–1228.

Phillips, A. (1954), ‘Stabilisation policy in a closed economy’, Economic Journal 64, 290–
321.

Phillips, A. (1957), ‘Stabilisation policy and the time-forms of lagged responses’, Economic
Journal 67, 265–277.

Ruan, S. and Wei, J. (2003), ‘On the zeros of transcendental functions with applications
to stability of delay differential equations with two delays’, Dynamics of Continuous
Discrete and Impulsive Systems Series A: Mathematical Analysis 10, 863–874.

Sagi, J. and Seasholes, M. (2007), ‘Firm-specific attributes and the cross-section of mo-
mentum’, Journal of Financial Economics 84, 389–434.

Sangvinatsos, A. and Wachter, J. A. (2005), ‘Does the failure of the expectations hypoth-
esis matter for long-term investors?’, Journal of Finance 60, 179–230.

Scharfstein, D. and Stein, J. (1990), ‘Herd behavior and investment’, American Economic
Review 80, 465–479.

Serban, A. (2010), ‘Combining mean reversion and momentum trading strategies in foreign
exchange markets’, Journal of Banking and Finance 34, 2720–2727.

Sharpe, W. (1964), ‘Capital asset prices: A theory of market equilibrium under conditions
of risk’, Journal of Finance 19, 425–442.

Simon, H. (1956), Models of Man: Social and Rational; Mathematical Essays on Rational
Human Behavior in Society Settings, John Wiley, New York.

Thaler, R. (1987a), ‘Anomalies: Seasonal movements in security prices ii: weekend, hol-
iday turn of the month, and intraday effects’, Journal of Economic Perspectives
1, 169–177.

Thaler, R. (1987b), ‘Anomalies: The January effect’, Journal of Economic Perspectives
1, 197–201.

Vayanos, D. and Woolley, P. (2013), ‘An institutional theory of momentum and reversal’,
Review of Financial Studies 26, 1087–1145.

Wachter, J. (2002), ‘Portfolio and consumption decisions under mean-reverting returns:
An exact solution for complete markets’, Journal of Financial and Quantitative Anal-
ysis 37, 63–91.

Wang, K. and Xu, J. (2012), Market volatility and momentum, working paper, University
of Toronto.



191 BIBLIOGRAPHY

Westerhoff, F. (2004), ‘Multiasset market dynamics’, Macroeconomic Dynamics 8, 591–
616.

Westerhoff, F. and Dieci, R. (2006), ‘The effectiveness of Keynes-Tobin transaction taxes
when heterogeneous agents can trade in different markets: A behavioral finance
approach’, Journal of Economic Dynamics and Control 30, 293–322.

Yoshida, H. and Asada, T. (2007), ‘Dynamic analysis of policy lag in a Keynes-Goodwin
model: Stability, instability, cycles and chaos’, Journal of Economic Behavior and
Organization 62, 441–469.

Zeeman, E. (1974), ‘On the unstable behavior of stock exchange’, Journal of Mathematical
Economics 1, 39–49.

Zhu, M., Wang, D. and Guo, M. (2011), ‘Stochastic equilibria of an asset pricing model
with heterogeneous beliefs and random dividends’, Journal of Economic Dynamics
and Control 35, 131–147.


	Title Page
	Acknowledgments
	Contents
	Abstract
	1 Introduction
	1.1 Literature Review and Motivation
	1.1.1 Heterogeneous Agent Models
	1.1.2 The Momentum and Reversal Effects
	1.1.3 The Capital Asset Pricing Model
	1.1.4 Motivation

	1.2 Structure of the Thesis

	2 Heterogeneous Beliefs and Adaptive Behavior in a Continuous-time Asset Price Model
	2.1 Introduction
	2.2 The Model
	2.3 Dynamics of the Deterministic Delay Model
	2.4 Price Behavior of the Stochastic Model
	2.5 Conclusion

	3 Herding, Trend Chasing and Market Volatility
	3.1 Introduction
	3.2 The Model
	3.3 The Stability Analysis of the Deterministic Model
	3.4 Price Behavior of the Stochastic Model
	3.4.1 The Effect of the Time Horizon
	3.4.2 The Effect of the Herding
	3.4.3 The Effect of Switching

	3.5 Power-law Behavior in Volatility
	3.5.1 The Effect of the Noises
	3.5.2 The Effect of the Time Horizon
	3.5.3 The Effect of the Herding
	3.5.4 The Effect of the Switching

	3.6 Conclusion

	4 Time Series Momentum and Market Stability
	4.1 Introduction
	4.2 Time Series Momentum of the S&P 500
	4.3 The Model
	4.3.1 Fundamental Traders
	4.3.2 Momentum and Contrarian Traders
	4.3.3 Market Price via a Market Maker

	4.4 Market Stability
	4.4.1 The Stabilizing Role of the Contrarians
	4.4.2 The Destabilizing Role of the Momentum Traders
	4.4.3 The Joint Impact of Momentum and Contrarian Trading

	4.5 Momentum Profitability
	4.5.1 State 1
	4.5.2 State 2
	4.5.3 State 3

	4.6 Conclusion

	5 Optimality of Momentum and Reversal
	5.1 Introduction
	5.2 Optimal Asset Allocation
	5.2.1 The Model
	5.2.2 Optimal Asset Allocation

	5.3 Model Estimation
	5.4 Performance
	5.4.1 Performance of the Optimal Strategies
	5.4.2 Market States, Sentiment and Volatility
	5.4.3 Comparison with Moskowitz, Ooi and Pedersen (2012)

	5.5 Conclusion

	6 An Evolutionary CAPM under Heterogeneous Beliefs
	6.1 Introduction
	6.2 The Model
	6.3 Dynamics of the Deterministic Model
	6.4 Price Behavior of the Stochastic Model
	6.4.1 The Spill-over Effect
	6.4.2 Time-varying Betas
	6.4.3 Trading Volume and Volatility

	6.5 Conclusion

	7 Conclusion and Future Research
	7.1 Continuous-time Heterogeneous Agent Models
	7.2 The Momentum and Reversal Effects
	7.3 The Evolutionary CAPM under Heterogeneous Beliefs

	Appendices
	Appendix A Proofs of Chapter 2
	A.1 Market Fraction Dynamics

	Appendix B Proofs and Discussions of Chapter 3
	B.1 Analytical Solution for the Master Equation
	B.2 Comparison to Chapter 2 and Nonlinear Effect of Herding
	B.3 Price Volatility Comparison to Chapter 2

	Appendix C Proofs and Model Extensions ofChapter 4
	C.1 Time Series Momentum Profit
	C.2 Proofs and Remarks for the Deterministic Model
	C.3 The General Case with Any Positive τm and τc
	C.4 Population Evolution between Momentum and Contrarian Traders
	C.5 Population Evolution among Fundamentalist, Momentum and Contrarian Traders

	Appendix D Proofs and Discussions of Chapter 5
	D.1 Properties of the Solutions to the System (5.2)-(5.3)
	D.2 Proof of Proposition 5.1
	D.3 Rolling Window Estimations
	D.4 Regressions on the Market States, Sentiment and Volatility Market States

	Appendix E Proofs of Chapter 6
	E.1 Proof of Proposition 6.2
	E.2 Proof of Proposition 6.1


	Bibliography

