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Abstract

Non-i.i.d. data breaks the traditional assumption that all data points are

independent and identically distributed. It is commonly seen in a wide range

of application domains, such as transactional data, pattern recognition data,

multimedia data, biomedical data and social media data. Two challenges

of learning with such data are the existence of strong coupling relationships

and mixed structures (heterogeneity) in the data. This thesis mainly focus-

es on learning from heterogeneous data, which refers to the non-i.i.d. data

with mixed structures. To cater for the learning from such heterogeneous da-

ta, this thesis presents a number of algorithms based on Bayesian networks

(BNs) that provide an effective and efficient method for representation of

heterogeneous structures. A wide spectrum of non-i.i.d. data with different

heterogeneity is studied. The heterogeneous data investigated in this the-

sis includes sequential data of unequal lengths, biomedical data mixed with

time series and multivariate attributes, and social media data with both us-

er/user friendship networks and user/item preference matrix. Specifically,

for modeling a database of sequential behaviors with different lengths, latent

Dirichlet hidden Markov models (LDHMMs), are designed to capture the de-

pendent relationships in two levels (i.e., sequence-level and database-level).

To learn the parameters of the model, we propose a variational EM-based

algorithm. The learned model achieves substantial or comparable improve-

ment over the-state-of-the-art models on predictive tasks, such as predicting

unseen sequences and sequence classification. For learning miscellaneous da-

ta in clinical gait analysis, whose data consists of both sequential data and

xii



ABSTRACT

multivariate data, a correlated static-dynamic model (CSDM) is constructed.

An EM-based framework is applied to estimate the model parameters and

some intuitive knowledge can be extracted from the model as by-products.

Then, for learning more complicated social media data that records both the

user/user friendship networks and user/item preference (rating) matrix in so-

cial media, we propose a joint interest-social model (JISM). We approximate

the lower bound of the likelihood of the observed user/user and user/item

interaction data and propose an iterative approach to learn the model pa-

rameters under the variational EM framework. The learned model is then

used to predict unknown ratings and generally outperforms other compari-

son methods. Besides the above pure BNs-based models, we also propose a

hybrid approach in the context of the sequence anomaly detection problem.

This is because the estimation of the parameters of pure BNs-based model

usually falls into local minimums, which may further generate inaccurate re-

sults for the sequence anomaly detection. Thus, we propose a model-based

feature extractor combined with a discriminative classifier (i.e., SVM) to

overcome the above issue, which is theoretically proved to have better per-

formance in terms of Bayes error. The empirical results also support our

theoretical proof. To sum up, this dissertation provides a novel perspective

from Bayesian networks to harness the heterogeneity of non-i.i.d. data and

offers effective and efficient solutions to learning such heterogeneous data.

xiii



Chapter 1

Introduction

In a data-abundant age, we are dealing with huge complex data in almost

every aspect of life. The automatic learning from the data is pivot to knowl-

edge discovery from the data with less human effort, which is the main theme

of most machine learning and data mining researches. One of the most com-

mon assumptions in traditional machine learning and data mining algorithms

is that the data points are independent and identically distributed (i.i.d.).

This assumption simplifies the analysis process and enables the development

of efficient learning or mining algorithms, which is helpful to a wide range

of scenarios. The i.i.d. assumption, however, is poor in many real life s-

cenarios. In these cases, data points have certain relationships that cannot

be ignored. Breaking the simple i.i.d. assumption is critical to learning

from data in many real-life scenarios. In other words, analyzing such kind

of non-i.i.d. data should not ignore the dependent relationships between

instances. There are two major characteristics of non-i.i.d. data. One is

the underlying strong coupling relationships between the data sets, objects,

attributes and values and the other is the involvement of mixed structured

data with strong heterogeneity (Cao 2013). (Cao, Ou, Yu & Wei 2010, Cao,

Ou & Yu 2011, Song & Cao 2012, Song, Cao, Wu, Wei, Ye & Ding 2012)

have made some initial attempts on the learning of coupling relationships in

non-i.i.d. data. Unfortunately, it is often too costly, or even not practical

1



CHAPTER 1. INTRODUCTION

to capture such complex coupling relationships. Thus, this thesis focuses on

learning from the non-i.i.d. data with the characteristic of heterogeneity. We

term this kind of data as heterogeneous data in this thesis. This chapter first

introduces heterogeneous data and its characteristics, and then discusses the

reasons of applying Bayesian Networks to learn from heterogeneous data,

followed by the associated research issues. After that, the highlights and

organization of this thesis are given.

1.1 Heterogeneous Data

The heterogeneity/mixed structure existed in heterogeneous data is complex

in many real-world scenarios. For example, with the development of social

media websites, such as facebook1 and twitter2 allows users to share their

own interested material (i.e., text, video and audio) with their online friends.

The data generated from social media users’ behaviors is in different forms

and thus heterogeneous.

Here we provide a toy example to illustrate the mixed structure of hetero-

geneous data. In this toy example, as shown in Figure 1.1, there are 5 users

(i.e., Sophia, Harry, Emma, Jack and Oliver) and 5 musicians/items (i.e., the

Oasis, Eagles, U2, Madonna and Queen). Figure 1.1(a) displays the friend-

ship networks for the users and each edge indicates a friendship relation. For

instance, Sophia and Harry are friends. Figure 1.1(b) shows the rating ma-

trix, which reflects the preference of these users. Specifically, each user rates

some items on a 5-point integer scale to express the extent of the favor of

each item (1, 2, 3, 4 and 5 represent “hate”, “don’t like”, “neutral”, “like”

and “love”, respectively); when the ratings are missing, they are represented

with a question mark ‘?’. For instance, Sophia rates The Oasis band a score

of 4, which means she loves the Oasis band; Sophia’s rating on the U2 band

is missing, which is notated with ‘?’. Here it is very intuitive that the data

1www.facebook.com
2www.twitter.com

2



CHAPTER 1. INTRODUCTION

Sophia

Jack

Harry

Oliver

Emma

(a) The Friendship Networks

The Oasis Eagles U2 Madonna Queen

Sophia 4 3 ? ? 5

Harry 3 ? 2 ? ?

Emma ? 3 ? 1 ?

Jack ? ? ? ? ?

Oliver ? ? ? ? ?

(b) The Rating Matrix

Figure 1.1: A Toy Example.

shown in this toy example is heterogeneous, since the data is made up of

both the user/item preference (rating) matrix and user/user networks. This

poses great challenges to model such data since the data structure is mixed

and not of the same format.

The non-i.i.d. data with heterogeneity is not limited to the above ex-

amples, here we briefly list a few application domains where the data is

heterogeneous.

3



CHAPTER 1. INTRODUCTION

• Transactional data: Transactional data is most common in many busi-

ness applications and usually structured in sequential/temporal or-

der with different lengths, which is heterogeneous for each sequences.

Examples can be found in stock market analysis (Fu, Chung, Ng &

Luk 2001, Lu, Han & Feng 1998, Tung, Lu, Han & Feng 1999, Tung,

Lu, Han & Feng 2003, Plant, Wohlschlager & Zherdin 2009), super-

market transaction analysis (Agrawal & Srikant 1995, Feng, Yu, Lu &

Han 2002, Lu, Tseng & Yu 2011), web log mining (Huang & An 2002),

and fault detection (Chandola, Banerjee & Kumar 2009).

• Pattern recognition data: The data used for pattern recognition is usu-

ally complex. Examples include gesture Recognition (Lee & Kim 1999),

trajectory recognition (Gaffney & Smyth 1999), and writer recognition

(He, You & Tang 2008), which are usually sequentially and spatially

structured in complex and heterogeneous forms.

• Multimedia data: Multimedia data, including audio (Wilpon & Rabiner

1985), image (Ratanamahatana & Keogh 2005) and video (Alon, Sclarof-

f, Kollios & Pavlovic 2003, Kratz & Nishino 2009, Mahadevan, Li, B-

halodia & Vasconcelos 2010), is inherently structured in

squential/temporal and/or spatial order with different lengths.

• Biomedical data: A couple of biomedical problems deal with the anal-

ysis of temporal signals such as, functional MRI (fMRI) data (Jansen,

White, Mullinger, Liddle, Gowland, Francis, Bowtell & Liddle 2012,

Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just & Newman 2004),

EEG data (Obermaier, Guger, Neuper & Pfurtscheller 2001) and ECG

data (Philips 1993). In most cases, the temporal data is of different

lengths and thus heterogeneous.

• Social media data: The social media data is very complex since the

involvement of human’s behavior and has drawn a lot of attention these

days (Liu, Salerno & Young 2008). The social networks (Airoldi, Blei,

4



CHAPTER 1. INTRODUCTION

Fienberg & Xing 2008) that are the interaction between the users, and

the associated users’ behaviors in social media (Tang & Liu 2011, Tang

& Liu 2009) are naturally heterogeneous.

1.2 Why Learning with Bayesian Networks?

As stated above, the heterogeneous data is complex and has mixed structures.

Learning from such heterogeneous data is very challenging and here we list

the main challenges as follows:

• Representation of the heterogeneous structure. To break the i.i.d. as-

sumption in analyzing such non-i.i.d. data, we need to utilize proper

method to represent mixed/heterogeneous structures that are interest-

ed for modeling. This should not be limited to simple heterogeneous

structures, such as sequential and temporal structures with different

lengths, but also applicable to even more complex structures. To put it

in another way, these heterogeneous structures for analysis are diverse

and may vary from application to application. Thus, the representation

should be flexible and generalized for different types of relationships.

• Uncertainty in the data. The uncertainty can be raised in two aspects.

One aspect may be from the data collecting process. Most of the het-

erogeneous data is collected from real world and easily influenced by

noise from human beings and other environmental factors. The other

aspect may be caused by the finite size of the data set for learning.

Take the speech recognition data as a example, for one word, the ut-

terances we can collect is limited since individuals have various ways

to pronounce it. Learning with the above data should consider the

generalization of the model on uncollected data.

• Complex Computation. As stated above, the i.i.d. assumption typ-

ically simplifies the computation complexity because of omitting the

5
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relationships between data points. The introduction of mixed struc-

tures in heterogeneous data brings additional computational cost for

learning from the data. For example, the data points are assumed to

have sequential relationships, we need to model them with additional

efforts.

To overcome the above challenges, in this thesis, we propose several mod-

els and algorithms on the basis of Bayesian networks (BNs) (Pearl 2000,

Heckerman 2008, Dawid 1979). BNs, also known as Bayes networks, belief

networks, Bayes(ian) models or probabilistic directed acyclic graphical mod-

els, are probabilistic graphical models (PGMs) (Bishop 2006) that represent

a set of random variables and their conditional dependencies via directed a-

cyclic graphs (DAGs). Bayesian networks can meet the aforementioned three

challenges of learning from heterogeneous data:

• Flexible representation. In BNs, probability distributions are visualized

by diagrammatic representations with nodes and arrows. The depen-

dency structure between the variables is indicated by the structure of

the diagram, which provides an effective approach for representing het-

erogeneous relationships. Different structures can be generally modeled

as probabilistic dependencies in BNs. Thus, we can simply design new

models for different heterogeneous data by utilizing the philosophy of

BNs.

• Uncertainty quantification. Since probabilities play a central role in

BNs, it is straightforward to quantify the uncertainty in the form of

probabilities. In other words, from the perspective of Bayesian inter-

pretation of probabilities (Jaynes 1986), the probability can be a good

explanation of the uncertainty that may exist in heterogeneous data.

• Systematic computation. As mentioned above, BNs is the visualized

version of probability distributions. Thus, the probability theory, which

can be expressed as the sum rule and the product rule (Bayes 1763,

6



CHAPTER 1. INTRODUCTION

Pearl 2000), is also applicable to BNs. Thus, it is possible to solve

complex probabilistic models purely by algebraic manipulation of the

above two rules. The graph representation of BNs, however, provides

a graphical manipulation (e.g., d-separation (Pearl 2000)) to perform

inference in sophisticated models, which could save a lot of unnecessary

algebraic calculation.

1.3 Research Goals, Issues and Overview of

the Thesis

The main goal of this thesis is to explore a body of principled methods

for modeling the heterogeneous data with BNs. Specifically, on the one

hand, we will use BNs-based approaches to learn the heterogeneous data in

different scenarios with emphasis on different heterogeneous structures. On

the other hand, we will apply the learned probabilistic model to perform

several predictive tasks, such as behavior prediction and anomaly detection.

The key research issues associated with this thesis, are discussed from the

following three perspectives:

• From the data type perspective, we mainly focus on sequential data,

miscellaneous Data, and relational data, which are all with heterogene-

ity. For instance, sequential data is naturally heterogeneous since the

sequences are commonly of different lengths; relational data records

the user/user and user/item interactions and is typically with mixed

structures.

• From the methodology perspective, we investigate both pure BNs-based

models and BNs-based hybrid algorithms. For pure BNs-based models,

different inference and learning methods need to be designed for data

with different heterogeneity. This is because the heterogeneous struc-

tures vary from data to data, which requires design of effective and effi-

cient learning algorithms accordingly. In addition, when the parameter

7



CHAPTER 1. INTRODUCTION

learning of BNs is not accurate enough (Rabiner 1990), combination

of BNs and other algorithms should be considered. The principle of

combining BNs with other state-of-the-art algorithms, such as support

vector machines (SVMs) (Scholkopf & Smola 2002), is valuable to be

explored.

• From the application domain perspective, we explore various appli-

cation domains, ranging from transactional data, pattern recognition

data, multimedia data, biomedical data, to social media data.

Before we go deep into these research issues, we make a overview of the

thesis.

Chapter 2 first reviews some basic concepts for the BNs, and then lists

the related work to the main chapters of this thesis.

In Chapter 3, we study the problem of modeling a database of sequential

data. The data is heterogeneous in the sense that the sequences are of differ-

ent lengths. This kind of data is usually from users’ web browsing logs and

of different lengths. We develop a hierarchial Bayesian model to characterize

such sequential behaviors.

In Chapter 4, we investigate the data modeling problem in clinical gait

analysis. The data consists of dynamic data (i.e., sequential data) that

records gait characteristics the patients and static data (i.e., multivariate

data) that records the physical examination numbers of the patients. The

data is miscellaneous and heterogeneous compared to purely sequential data

or multivariate data. To jointly model the above data and the correlated re-

lationship among the data points, we develop a probabilistic graphical model

for quantifying the correlated relationships between the static and dynamic

data.

In Chapter 5, we explore the social recommendation problem whose task

is to predict users’ preference (ratings) on items by using both the social

networks and the preference matrix of the users. The data in this environ-

ment is inherently heterogeneous since it involves the data recording both

8
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Research Goals and 

Research Issues
Introduction Chapter 1

Background of Bayesian 

Networks, and Related 

Work of Sub-topics.

Literature Review Chapter 2

Learning 

Heterogeneous Data

Chapter 3,4,5,6 

A Hybrid Framework of 

BNs+SVM

Conclusions and 

Future Work

Summary of 

Contributions and 

Future Research 

Directions

Chapter 7

Social media 

data

Joint Interest-social 

Model

Correlated Static-

dynamic Model

Latent Dirichlet Hidden 

Markov Models

Miscellaneous 

data

Sequential data
Pure BNs-based Models

BNs-based Hybrid Algorithms

Figure 1.2: Roadmap of the Research Activity

the user/user interactions and the user/item interactions. We design a BNs-

based model to jointly model the above data of mixed sources, which provides

predictive analytics to unknown ratings.

For some predictive tasks, only modeling the heterogeneous data is not

enough to get a satisfactory performance since the parameter estimation usu-

ally gets trapped into local minima. Thus, we develop a hybrid framework

for identifying abnormal sequences by combining BN-based models and dis-

criminative classifiers in Chapter 6.

Table 1.1 summarizes the research issues we are trying to address in the

main body of this thesis. In essence, this thesis provides the concept of het-

erogeneous data, as well as well-founded and efficient BNs-based algorithms
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CHAPTER 1. INTRODUCTION

to model the heterogeneous data with applications on many domains. In

other words, this thesis offers a novel and feasible solution for learning with

heterogeneous data from the perspective of Bayesian networks.

Finally, we conclude and point out some possible future directions in

Chapter 7. For the readers to get a more clear picture of the thesis, Figure 1.2

shows the logic structure of this thesis.

11



Chapter 2

Background and Related Work

In this chapter, we focus on the preliminaries of Bayesian networks as needed

for modeling the heterogeneous data, the related literature for each topic we

will explore in the following chapters and discussions of limitations to current

existing work.

2.1 Background

Below we first briefly review the concept of Bayesian Networks, then give

a toy example to illustrate the problems of latent variable inference and

parameter learning, and finally describe a commonly used BNs-based model,

hidden Markov Models (HMMs). In essence, this chapter is intended to give

readers a context for the use of Bayesian Networks as well as a insight into

their general applicability and usefulness.

2.1.1 Bayesian Networks

Bayesian networks (BNs) (Pearl 2000) are directed Probabilistic Graphical

Models (PGMs). PGMs are diagrammatic representations of probability dis-

tributions and offer several useful properties, such as visualization and infer-

ence (Bishop 2006). PGMs consist of nodes (also called vertices) connected

by links (also known as edges or arcs). In PGMs, each node represents a

12



CHAPTER 2. BACKGROUND AND RELATED WORK

random variable (or group of random variables), and the links express prob-

abilistic relationships between these variables. The joint distribution over all

of the random variables can be decomposed into a product of factors each

depending only on a subset of the variables, which is captured by the graph.

If the links of the PGMS have a particular directionality indicated by ar-

rows, the PGMS become BNs. As a directed version of PGMs, BNS are

useful for expressing causal relationships between random variables, which

is very intuitive for explaining the generation of the data. In this thesis, we

mainly focus on Bayesian networks. The other type of PGMS is undirect-

ed graphical models, also known as Markov random fields (Kindermann &

Snell 1980, Rue & Held 2005), whose links do not carry arrows and have no

directional significance.

The two tasks associated with BNs are inference of latent variables and

learning of parameters1:

• Inference: probabilistic inference is the process of computing the pos-

terior distribution of some variables given other variables (usually ob-

served). Exact inference methods include the belief propagation (i.e.,

sum-product) algorithm (Braunstein, Mzard & Zecchina 2005) and its

variants. When the exact inference is impractical, some approximate

inference methods, such as variation methods and loopy belief propaga-

tion, and Monte Carlo methods, such as the Markov chain Monte Carlo

algorithm (Andrieu, De Freitas, Doucet & Jordan 2003), are exploited.

• Learning: parameters learning is the process of estimating the param-

eters governing the conditional distributions in BNs. Usually, classical

point estimation (i.e., treating parameters as deterministic numbers),

such as maximum likelihood estimation (MLE) (Pfanzagl 1994), is ap-

plied to parameters learning. A more fully Bayesian approach (Andrieu

et al. 2003) to parameters is to treat parameters as unobserved variables

1The structure learning (Friedman & Koller 2003) of the graph is can be problematic

since the number of different graph structures grows exponentially with the number of

nodes, which falls out the scopes of this thesis.

13
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z

θ

x

Figure 2.1: A Toy Example of Bayesian Networks

and to compute a full posterior distribution of the variables, which can

be computational expensive. When there are latent or hidden variables

in BNs, direct maximization of the likelihood with respect to param-

eters is often impractical since the involvement of them. A classical

approach to this problem is the expectation-maximization (EM) algo-

rithm (Baum, Petrie, Soules & Weiss 1970) which alternates computing

the posterior distribution of the latent or hidden variables given the ob-

served variables (and deterministic parameters), with maximizing the

complete likelihood with respect to parameters given the previously

inferred posterior of the latent or hidden variables.

To further illustrate the inference and learning task, we will consider a

toy model in the following to clear these concepts.

2.1.2 Inference and Learning

Here we consider a toy example of BNs. In this toy model, we denote the

observed data as the variable x, unobserved data (i.e., the latent or hidden

variables) as z and deterministic parameters as θ. All variable are continuous

valued. Figure 2.1 defines a very simple generative model, in which x is

generated by z and z is governed by θ.

14
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For the above toy model, the corresponding inference and learning task

is specified as following:

• Probabilistic inference of z: for a particular parametric setting θ, we

are interested to infer the posterior distribution of the latent or hidden

variables z given the observed data x and the parameters θ, which is

p(z|x,θ) (2.1)

• Learning of θ: for a MLE of the parameters θ is expressed as following:

θ̂ =argmax
θ

f(θ)

=argmax
θ

p(x|θ)

=argmax
θ

∫
p(x, z|θ)dz

(2.2)

In real-world problems, no matter how complex the models are, the asso-

ciated inference and learning problems can always be simplified as the above

forms. In the next section, we will review a widely-used Bayesian networks

model to make further illustrations.

2.1.3 Hidden Markov Models: An Example of BNs

Here we examine a very common used model for capturing the non-i.i.d.

sequential relationships between data instances, hidden Markov models (H-

MMs) (Rabiner 1990, Ghahramani 1998). They are popular models since

their expressive power of real-world behavioral modeling and relatively low

computational complexity. HMMs and their variants are not only successful

in speech recognition , but also found success in a wide range of fields, from

bioinformatics (Baldi & Brunak 2001, Rezek, Gibbs & Roberts 2002, Rezek

& Roberts n.d., Zhong & Ghosh 2001, Zhong & Ghosh 2002) to video analysis

(Alon et al. 2003, Wang & Singh 2003, Brand, Oliver & Pentland n.d., Velivel-

li, Huang & Hauptmann 2006, Natarajan & Nevatia 2007, Ding & Fan 2008).
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z1 z2 · · · zN

π A

x1 x2 · · · xN

B

Figure 2.2: The Graphical Model of HMMs

A first-order HMMs can be explained as a simplest form of the dynamic

Bayesian networks (Murphy 2002). In HMMs, as shown in Figure 2.3, the

state at time t (1 ≤ t ≤ N) is denoted as zt and is hidden (unobserved). zt

(1 ≤ i ≤ N) is a K dimensional vector whose elements ztk (1 ≤ k ≤ K) are 0

or 1 and sum to 12 and ztk = 1 indicates the hidden state is under state k. zt

(1 ≤ t ≤ t) are controlled by the initial state probability distribution π whose

element πk = p(z1k = 1) (1 ≤ k ≤ K), and the hidden state transition matrix

is A, whose element aij = p(zt+1,j|zti), 1 ≤ i, j ≤ K is the probability for the

transition from state i to j. The distribution of observations xt (1 ≤ t ≤ N)

is dependent on the states zt and parameterized by B. Here we suppose the

xt is 1− of − V vector and then the element bij (1 ≤ i ≤ K and 1 ≤ j ≤ V )

of B equals to p(xtj|zti). Thus, essentially, HMMs consist of a Markov chain

of hidden states and the corresponding output of the observations dependent

on the hidden states.

2Known as 1− of −K vector in (Bishop 2006).
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Inference in HMMs

Here we introduce the commonly-used forward-backward algorithm (Rabiner

1990) for inference of the hidden variables zt (1 ≤ t ≤ N) given the observed

data xt (1 ≤ t ≤ N) and a set of deterministic parameters θ = {A,B,π}.
First, we define some notations for some auxiliary variables (i.e., the

forward variables α(zt) and the backward variables β(zt)) as following:

α(zt) = p(x1, · · · ,xt, zt|θ) (2.3)

β(zt) = p(xt+1, · · · ,xN |zt, θ) (2.4)

The calculation of α(zt) is as follows:

1. Initialization:

α(z1k) =
V∏

v=1

(πkbkx1v)
z1k (2.5)

2. Induction:

α(ztj) =
K∏
i=1

V∏
v=1

bkxtv

∑
zt−1

α(zt−1)azn−1,i,znj
(2.6)

3. Termination:

p(x1:N |θ) =
K∑
k=1

α(zNk) (2.7)

Similarly, we can obtain the calculation of β(zt) is as follows:

1. Initialization:

β(zNk) = 1 (2.8)

2. Induction:

β(ztj) =
K∑
j=1

V∏
v=1

β(zt+1,j)bj,xt+1,vazti,zt+1,j
(2.9)

17
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By using the above results, the marginal posteriors of z1:N , which is the

aim of inference can be expressed as following:

γ(zt) =p(zt|x1:N ,θ)

=
α(zt)β(zt)

p(x1:N |θ)
(2.10)

ξ(zt−1, zt) =p(zt−1, zt|x1:N ,θ) =
α(zt−1)p(xt|zt)p(zt|zt−1)β(zt)

p(x1:N |θ) (2.11)

Parameter Learning in HMMs

As mentioned before, since involvement of the hidden variables becomes more

difficult, and the model is learnt by the well-known EM algorithm, which

alternates the following processes:

• E-step: estimating the posterior distribution over hidden variables z1:N

for a particular setting of the parameters θ. This is the inference pro-

cess we have already reviewed above.

• M-step: re-estimating the best-fit parameters θ given the inferred pos-

terior distribution over the hidden variables z1:N . The updating formu-

las are listed in the following:

πk =
γ(z1k)∑K
k=1 γ(z1k)

(2.12)

ajk =

∑N
t=2 ξ(zt−1,j, ztk)∑K

l=1

∑N
t=2 ξ(zt−1,j, znl)

(2.13)

bkv =

∑N
t=1 γ(ztk)xtv∑N
n=1 γ(ztk)

(2.14)

The above processes iterates until the criterion of convergence satisfies

and the updated parameters are output as the learned parameters of the

HMMs. In the rest of the thesis, the EM algorithm and its variants are

generally used as the parameter learning algorithm. The process is similar to
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the above algorithm used for HMMs, but with proper modification since the

likelihood function f(θ) is not always analytical and we need to approximate

it with a lower bounder for further computation.

2.2 Related Work

In this section, we briefly review the related work to the main chapters, which

investigate learning of different heterogeneous data. Our aim is to show the

state-of-the-art related research for each topic.

2.2.1 Sequential Data Modeling

Here we will review existing models that can model sequential behaviors with

different lengths in the following3. We use conventional notation to repre-

sent the graphical model (Bishop 2006). In Figure 4.4, each node represents

a random variable (or group of random variables). The directed links ex-

press probabilistic causal relationships between these variables. For multiple

variables that are of the same kind, we draw a single representative node

and then surround this with a plate, labeled with a number indicating that

there are many such kinds of nodes. Finally, we denote observed variables

by shading the corresponding nodes and the observed variables are shown as

shaded nodes.

Hidden Markov Models

Hidden Markov Models (HMMs) drop the difference of parameters between

the sequences and assume all the sequences share the same parameters π, A

and B, as shown in their graphical representation in Figure 2.3.

3Please refer to Section 3.2 for the meaning of the notations and we do not repeat them

here for conciseness.

19



CHAPTER 2. BACKGROUND AND RELATED WORK

zm1 zm2 · · · zmNm

π A

xm1 xm2 · · · xmNm

B

M

Figure 2.3: The Graphical Model of HMMs.

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan 2003) is a generative

probabilistic model for a set of discrete data, which can be used for modeling

sequential behaviors considered in this paper. Its graphical representation is

shown in Figure 2.4. It can be seen from the figure that LDA simply ignores

the dynamics in the hidden state space.

Variational Bayesian HMMs (VBHMMs)

The graphical model of VBHMMs proposed by Beal and Mckay (Beal 2003,

MacKay 1997) is shown in Figure 2.5. VBHMMs assume all the sequences

share the same parameters π, A and B. The hyper-parameters of VBHMMs

are assumed to be known and no algorithm is provided for learning them.

A Hidden Markov Model Variant (HMMV)

As shown in Figure 2.6, the HMMV (Blasiak & Rangwala 2011) assumes

sequences share the same parameters π and B.
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Figure 2.4: The Graphical Model of LDA.

2.2.2 Clinical Gait Data

Recent research in clinical gait analysis (CGA) (Chau 2001, Desloovere,

Molenaers, Feys, Huenaerts, Callewaert & Walle 2006, Zhang, Zhang &

Begg 2009, Sagawa, Watelain, De Coulon, Kaelin & Armand 2012) have

made initial attempts at the automatic discovery of correlated relationships

in clinical gait data. They apply machine learning methods, such as multiple

linear regression (Desloovere et al. 2006) and fuzzy decision trees (Sagawa

et al. 2012), to the data.

Probabilistic models related to modeling gait curves exist. Examples

include hidden Markov models (HMMs) (Rabiner 1990) and conditional ran-

dom fields (CRFs) (Lafferty, McCallum & Pereira 2001).
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Figure 2.5: The Graphical Model of VBHMMs.

2.2.3 Social Recommendation Data

Here we present two main types of modeling methods related to social rec-

ommendation data: one is latent factors models that only use the user/item

preference/rating matrix; the other is social recommendation algorithms that

utilize both user/user friendship networks and the corresponding user/item

preference/rating matrix.

Latent Factor Models for Recommendation

Latent factor models (Mnih & Salakhutdinov 2007, Salakhutdinov & Mnih

2008, Koren, Bell & Volinsky 2009, Agarwal & Chen 2009) are one of the

most successful CF-based recommendation approaches when only the rating
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Figure 2.6: The Graphical Model of HMMV.

matrix is available. They are reported by many researchers to have better

recommendation performance than other methods, such as the neighborhood

methods (Koren et al. 2009). The main philosophy of latent factor models

is to uncover latent factors that explain observed ratings. Matrix factoriza-

tion (Koren et al. 2009) is a representative latent factor model. In matrix

factorization, we represent users and items in a homogeneous latent low-

dimensional K dimensional space. Specifically, user i is represented by a

latent vector ui and item j by a latent vector vj. The prediction of user i’s

rating on item j is the inner product between their latent representations

(i.e., r̂ij = uT
i vj) To compute the latent representations of the users and

items given an observed matrix of ratings, a popular approach is to minimize
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the regularized squared error loss with respect to U and V:

min
U,V

∑
i,j

σij(rij − uT
i vj)

2 + λu||ui||2 + λv||vj||2 (2.15)

where ui is the i the column vector of U and vj is the j the column vector

of V (1 ≤ i ≤ N , 1 ≤ j ≤M), σij is the indicator function that is equal to 1

if user i rated item j and equal to 0 otherwise, λu and λv are regularization

parameters. Equation 2.15 is usually approximately solved by gradient based

approaches (Koren et al. 2009).

An probabilistic generalization of matrix factorization is probabilistic ma-

trix factorization (PMF) (Mnih & Salakhutdinov 2007, Salakhutdinov &

Mnih 2008, Shan & Banerjee 2010), which generally assumes the following

generative process:

1. For each user i, draw user latent vector ui ∼ N (0, λ−1u IK), where IK is

a K-dimensional identity matrix.

2. For each item j, draw item latent vector vi ∼ N (0, λ−1v IK).

3. For each user-item pair (i, j), draw the rating rij ∼ N (uT
i vj, c

−1
ij ),

where cij is the precision parameter for rij.

Gibbs sampling (Geman & Geman 1984) and variational Bayes (Lim &

Teh 2007) are two main methods to compute the approximate posterior distri-

bution of the latent representations of the users and items, given an observed

matrix of ratings. These inferred posteriors are then used for predictions.

Social Recommendation

Social recommendation is a type of recommendation system in a socialized

environment, which recommends items by using both preference matrix and

friendship networks. In terms of the methods of utilizing the friendship

networks, this field of work can be divided into three categories:

• (Guy, Zwerdling, Carmel, Ronen, Uziel, Yogev & Ofek-Koifman 2009,

Liu & Lee 2010) generally integrate nearest neighbor algorithms with
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simple heuristics on the friendship networks to make item recommen-

dations.

• As an extension of matrix factorization, (Ma, Zhou, Liu, Lyu & King

2011) uses friendship networks as regularization terms adding to the ob-

jective function of matrix factorization (i.e., Equation 2.15). Through

this way, it constrains the matrix factorization by the available friend-

ship information and reports improved performance compared to purely

matrix factorization methods.

• (Yang, Long, Smola, Sadagopan, Zheng & Zha 2011, Ma, Yang, Lyu &

King 2008) proposed similar unified latent factor models, SocRec and

FIP, for jointly modeling the generating of rating matrix and friendship

networks. Users and items share the same latent space and both the

rating matrix and friendship networks are determined by the latent

factors. These models, however, did not provide a clear recipe for

estimating the model parameters.

2.2.4 Sequence Anomaly Detection

Anomaly detection has traditionally been an important part of behavior anal-

ysis, whose aim is to find abnormal patterns in data that do not conform to

expected (normal) behavior (Chandola, Banerjee & Kumar 2009). Most of

the traditional anomaly detection techniques focus on static behavioral record

or transaction data (Barnett & Lewis 1994). For the purpose of detecting

these abnormal sequential behaviors, we should consider the dynamic (het-

erogeneous) characteristics of sequential data, which is different to anomaly

detection in static data.

Several techniques (Budalakoti, Srivastava & Otey 2009, Chandola, Baner-

jee & Kumar 2009) have been proposed to solve the problem of detecting

abnormal sequences. Most of these techniques only consider some of the is-

sues above and can be categorized into two types. One type is to degrade

the problem to point (static) anomaly detection. Some techniques in this
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category treat a sequence as a vector of attributes assuming that the se-

quences are of equal length (Blender, Fraedrich & Lunkeit 1997) and then

point anomaly detection techniques are applied. This is problematic when

the lengths of sequences are not equal. To avoid this problem, different sim-

ilarity (or distance)-based (Budalakoti, Srivastava, Akella & Turkov 2006)

anomaly detection techniques have been proposed. However, the above ap-

proaches depend strongly on the definition of similarity (or distance) mea-

sure, which could be problematic when the data is very dynamic. For exam-

ple, the behaviors of ECG signals are changing from time to time, following

a stochastic nature. Thus, defining a proper and robust distance measure

between sequences in this setting is difficult. To avoid this, another type of

sequence anomaly detection techniques tries to model the sequences and thus

is model-based. The model-based methods use statistical models to capture

the dynamic (heterogeneous) characteristics of the sequences. Representa-

tive models, such as Hidden Markov Models (HMMs) (Warrender, Forrest

& Pearlmutter 1999), Finite State Automatons (FSAs) (Sekar, Bendre, D-

hurjati & Bollineni 2001) and coupled HMMs (CHMMs) (Cao et al. 2010)

have been studied in different application domains (e.g., operating system

call data, network protocol data and financial data).

2.3 Discussions

In this section, we briefly discuss the limitations of current research according

to topics, respectively.

For modeling sequential data with different lengths, current related mod-

els have their own restrictions for comprehensively modeling such data. H-

MMs assume each sequence shares a same set of parameters, and this may

overlook the heterogeneous dynamics among the sequences. The LDA mod-

el does not consider the temporal-dependent relationships between hidden

states. VBHMMs assume sequences share a same set of parameters πm, Am

and Bm that characterize their dynamics; similarly, the HMMV model as-
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sumes sequences share the same set of parameters πm and Bm. However, in

order to capture individual characteristics of sequences in a more compre-

hensive way, it may be better to treat these parameters individually for each

sequence. Another limitation of the VBHMMs and the HMMV to note is

the assumption of known hyper-parameters.

For clinical gait analysis, previous researchers usually preprocessed the

gait data and discarded the dynamic characteristics of that data, which fail-

s to explore the correlated relationship between static data and dynamic

curves. To the best of our knowledge, there is few related work to compre-

hensively exploring this correlated relationship. The existing models focus on

modeling dynamic curves, they cannot be applied directly to jointly model

the static and dynamic data considering their correlated relationships.

For social recommendation data modeling, one main disadvantage of

(probabilistic) matrix factorization (i.e., latent factor models) is that it on-

ly uses information from the user/item matrix. This makes it cannot be

generalized to predict ratings of users who never give ratings before. The

first two categories of social recommendation methods, as mentioned in Sec-

tion 2.2.3, are usually based on heuristic algorithms and cannot guarantee

its performance in general. The third category has limitations that can be

summarized in the following two aspects: (1) it represents the users by a ho-

mogeneous latent factor space, which may be lack of flexibility to explain the

generation of heterogeneous data consisting of user/user networks and the

associated user/item matrix. (2) it usually requires tedious work of tuning

the parameters, which is not suitable for large-scale applications.

For sequence anomaly detection, the underlying assumption of curren-

t widely-used model-based algorithms is that normal sequences conform to

the distribution of the model for normal sequences (e.g., BNs-based mod-

el) while abnormal ones do not. Although the model-based approaches are

reasonable to some extent, we find that directly modeling the normal data

has limited discriminative power in identifying abnormal sequences because

the estimation of the model parameters may fall into local minimums and
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abnormal sequences are highly similar to normal ones. This in turn could

result in the degradation of the anomaly detection performance.

This limitations discussed above partly motivate the main chapters of

this thesis.
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Chapter 3

The Latent Dirichlet Hidden

Markov Model

A database of sequential behaviors (sequences) has heterogeneous data struc-

tures since sequences may have different lengths. To learn such data, this

chapter proposes a generative model, the latent Dirichlet hidden Markov

models (LDHMMs). LDHMMs posit that each sequence is generated by an

underlying Markov chain process, which are controlled by the correspond-

ing parameters (i.e., the initial state vector, transition matrix and the e-

mission matrix). These sequence-level latent parameters for each sequence

are modelled as latent Dirichlet random variables and parameterized by a

set of deterministic database-level hyper-parameters. Through this way, we

expect to model the sequence in two levels: the database level by determinis-

tic hyper-parameters and the sequence-level by latent parameters. To learn

the deterministic hyper-parameters and approximate posteriors of parame-

ters in LDHMMs, we propose an iterative algorithm under the variational

EM framework, which consists of E and M steps. We examine two different

schemes, the fully-factorized and partially-factorized forms, for the frame-

work, based on different assumptions. We present empirical results of behav-

ior modeling and sequence classification on three real-world data sets, and

compare them to other related models. The experimental results prove that
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the proposed LDHMMs produce better generalization performance in terms

of log-likelihood and deliver competitive results on the sequence classification

problem.

3.1 Introduction

In this chapter we explore the problem of characterizing a database of se-

quential behaviors (i.e., sequences). An example of such sequential behaviors

is the web browsing behaviors of Internet users. Table 3.1 shows some user-

browsing data excerpted from the web server logs of msnbc.com. Each row of

the table is an ordered list of discrete symbols, each of which represents one

behavior made by a user. Here the behavior is described by the categories

of web pages requested by the user. For example, User 1 first browses a

‘frontpage’ page, then visits a ‘news’ page, followed by visiting ‘travel’ page

and other pages denoted by dots. This form typical sequential behaviors for

a user, and other individuals have similar sequential behaviors. For the last

decade, many efforts have been made to characterize the above sequential

behaviors for further analysis.

Significant progress has been made on behaviour modelling in the field

of Sequence Pattern Mining (SPM). Pattern is an expression describing a

subset of the data (Piateski & Frawley 1991). Sequential pattern mining

discovers frequently occurring behaviors or subsequences as patterns, which

was first introduced by Agrawal and Srikant (Agrawal & Srikant 1995). Sev-

eral algorithms, such as Generalized Sequential Patterns (GSP) (Agrawal &

Srikant 1995), SPADE (Zaki 2001) and PrefixSpan (Han, Pei, Mortazavi-

Asl, Pinto, Chen, Dayal & Hsu 2001, Han, Pei, Yin & Mao 2004), have been

proposed to mine sequential patterns efficiently. Generally speaking, SPM

techniques aim at discovering comprehensible sequential patterns in data,

which is descriptive (Novak, Lavrac & Webb 2009). And there is a lack

of well-founded theories to apply the discovered patterns for further data

analysis tasks, such as sequence classification and behavior modeling.
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In the statistical and machine learning community, researchers try to

characterize the sequential behaviors using probabilistic models. The prob-

abilistic models not only describe the generative process of the sequential

behaviors but also have a predictive property which is helpful for further

analytic tasks, such as prediction of future behaviors. One representative

model widely used is the hidden Markov models (HMMs) (Rabiner 1990).

Usually, each sequence is modelled as an observation generated by an HMM

model. In other words, the dynamics of each sequence is represented by a

list of deterministic parameters (i.e., initialization prior vector and transition

matrix), and there is no generative probabilistic model for these numbers.

This leads to several problems when we directly extend HMMs to modeling

a database of sequences: (1) the number of parameters for the HMMs grows

linearly with the number of sequences, which leads to a serious problem of

over-fitting, and (2) it is not clear how to assign probability to a sequence

outside of the training set. Although (Rabiner 1990) suggests a strategy

for modeling multiple sequences, it simply ignores the difference on param-

eters between sequences and assumes all the dynamics of sequences can be

characterized by one set of deterministic parameters. This could alleviate

the problem of over-fitting to some extent, but may overlook the individual

characteristics for individual sequences at the same time, which may further

deteriorate the accuracy of behavior modeling.

The goal of this chapter is to characterize a database of sequential be-

haviors preserving the essential statistical relationships for each individual

sequence and the whole database, while avoiding the problem of over-fitting.

To achieve this goal, we propose a generative model that has both sequence-

level and database-level variables to comprehensively and effectively model-

ing behavioral sequences.

The chapter is organized as follows: Section 3.2 formalizes the problem

studied in this chapter, followed by the proposed approach described in Sec-

tion 3.3. Then, experimental results on several data mining tasks on 3 real-

world data sets are reported in Section 4.4. Finally, Section 3.5 summarizes
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Table 3.1: An Example of Sequential Behaviors

User Sequential Behaviors

1 frontpage news travel . . .

2 news news news . . .

3 frontpage news frontpage . . .

4 frontpage news news . . .

5 news weather weather . . .

6 news health health . . .

7 frontpage sports sports . . .

this chapter.

3.2 Problem Statement

Here we use the terms, such as ‘behaviors’, ‘sequences’ and ‘database’ to

describe a database of sequential behaviors. This is helpful for understanding

the probabilistic model derived on the data. It is important to note that the

model proposed in this chapter is also applicable to other sequential data

that has the similar data forms. In this paper, vectors are denoted by lower

case bold Roman or Greek letters and all vectors are assumed to be column

vectors except for special explanations. Uppercase bold Roman letters denote

matrices while letters in other cases are assumed to be scalar.

• A database D is a collection of M sequences denoted by

D = {X1,X2, · · · ,XM}.

• A sequence Xm (1 ≤ m ≤ M) is an ordered list of Nm behaviors

denoted by Xm = (xm1,xm2, · · · ,xmNm), where xmn (1 ≤ n ≤ Nm) is

the nth behavior in the sequence Xm. The behaviors in the sequence

are ordered by increasing time when behaviors are made.
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• A behavior xmn (1 ≤ m ≤M , 1 ≤ n ≤ Nm) is the basic unit of sequen-

tial behaviors, defined to be a 1-of-V vector xmn such that xmnv = 1

and xmnu = 0 (for all u �= v), which represents an item v from a vo-

cabulary indexed by {1, 2, · · · , V }. Each index represents one type of

behaviors, such as browsing a ‘travel’ web page as shown in Table 3.1.

Given a database D of sequential behaviors, the problem of characterizing

behaviors is to derive a probabilistic model which preserves the statistical

relationships in the sequences and tends to assign high likelihood (given the

model) to “similar” sequences.

3.3 The Proposed Model

3.3.1 The Graphical Model

The basic idea of the Latent Dirichlet Hidden Markov Models (LDHMMs) is

that the dynamics of each sequence Xm is assumed to be reflected through

a hidden Markov chain Zm = (zm1, zm2, · · · , zmNm)
1 parameterized by the

corresponding initial prior vector πm, transition matrix Am and a state-

dependent emission matrix Bm. Then πm, Am (ami (1 ≤ i ≤ K) is the

ith row vector of Am) and Bm (bmi (1 ≤ i ≤ K) is the ith row vector of

Bm) can be seen as a lower dimension representation of the dynamics of the

sequence. The distribution of these parameters of all sequences are then fur-

ther governed by database-level Dirichlet hyper-parameters, i.e., α(π), α
(A)
1:K

and β1:K , where α
(A)
1:K is a matrix whose ith row vector is α

(A)
i and β1:K is

a matrix whose ith row vector is βi. To be more specific, for a database of

sequential behaviors D , the generative process is as follows2:

1. Generate hyper-parameters α(π), α
(A)
1:K and β1:K .

1
zmn (1 ≤ n ≤ Nm) can be represented by a 1-of-K vector (similar to the form of

a behavior xmn) and has K possible hidden states, where K is the number of possible

hidden states and is usually set empirically.
2Please refer to Appendix A.1 for details of Dirichlet (Dir) and Multinomial distribu-

tions.
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2. For each sequence index m,

1) Generate πm ∼ Dir(α(π)), ami ∼ Dir(α
(A)
i ) and bmi ∼ Dir(βi)

2) For the first time stamp in the sequence Xm:

(a) Generate an initial hidden state

zm1 ∼Multinomial(π).

(b) Generate a behavior from p(xm1|zm1,Bm), a multinomial prob-

ability conditioned on the hidden state zm1 and Bm.

3) For each of other time stamps in the sequence Xm (1 ≤ n ≤ Nm):

(a) Generate a hidden state zmn from p(zmn|zm,n−1,Am).

(b) Generate a behavior from p(xmn|zmn,Bm).

Accordingly, the graphical model of LDHMMs is shown in Figure 3.1. As

per the graph states itself, there are three levels of modeling in LDHMM-

s. The hyper-parameters α(π), α
(A)
1:K and β1:K are database-level variables,

assumed to be sampled once in the process of generating a database. The

variables πm, Am and Bm (1 ≤ m ≤M) are sequence-level variables, denot-

ed as θm = {πm,Am,Bm} sampled once per sequence. Finally, the variables

zmn and xmn are behavior-level variables sampled once for each behavior in

each sequence.

3.3.2 Learning the Model

In this section, our goal is to learn the deterministic hyper-parameters of

the LDHMMs given a database D, by maximizing the likelihood function

log p(D ;α(π),α
(A)
1:K ,β1:K) as following:

∑
Zm,m

∫
θm

log p(Xm,Zm,θm;α
(π),α

(A)
1:K ,β1:K) (3.1)

Direct optimization of the above equation is very difficult since the in-

volvement of latent variables, thus we turn to optimize its lower bound

34



CHAPTER 3. THE LATENT DIRICHLET HIDDEN MARKOV MODEL

πm

α
(π)

zm1 zm2 · · · zmNm

Am

α
(A)
1:K

xm1 xm2 · · · xmNm

Bm

β1:K

M

Figure 3.1: The Graphical Model for the LDHMMs.

L(q,α(π),α
(A)
1:M ,β1:K) given by the Jensen’s inequality as follows (Bishop

2006):

L(q,α(π),α
(A)
1:M ,β1:K) =

M∑
m=1

[Eq[log p(θm,Zm,Xm)]− Eq[log q(θm,Zm)]]

(3.2)

where q is assumed to be a variational distribution function approximate

to the posterior distribution of latent variables θm given Xm,α
(π),α

(A)
1:K ,β1:K

and can be decomposed as q1q2 · · · qM . Specifically, qm = qm(θm,Zm) is a vari-

ational distribution function approximate to p(θm,Zm|Xm;α
(π),α

(A)
1:K ,β1:K)

for the sequence Xm.

Then the lower bound of the likelihood function becomes a function of

q, α(π), α
(A)
1:K and β1:K . To obtain the optimal α(π)∗, α(A)∗

1:K and β∗1:K is still
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difficult since the involvement of q. Thus, we propose a variational EM-

based algorithm for learning the hyper-parameters of the LDHMMs and the

algorithm is summarized in Algorithm 3.1. Since the algorithm is under the

EM framework, it is guaranteed to increase likelihood after each iteration

(Bishop 2006) and thus converges. To be more specific, the variational EM

algorithm is a two-stage iterative optimization technique which iterates the

E-step (i.e., optimization with respect to q) and M-step (optimization with

respect to the hyper-parameters) from lines 1 to 7. For each iteration, the E-

step (lines 1-4) fixes the hyper-parameters and optimize the L with respect to

qm for each sequence; while the M-step (line 5) fixes the q and optimizes the

L with respect to the hyper-parameters. Through this manner, the optimal

hyper-parameters α(π)∗, α
(A)∗
1:K and β∗1:K are obtained when the iterations

are terminated in line 7. It is also important to note that the approximate

posteriors of sentence-level parameters (i.e., q) are learned as by-products in

E steps.

The following two sections will discuss the details of the procedure E-step

and M-step in Algorithm 3.1 and gives out two different implementations.

3.3.3 The E step: Variational Inference of Latent Vari-

ables

In this section, we provide the details of the E step, which is to estimate qm for

(1 ≤ m ≤ M) given the observed sequence Xm and fixed hyper-parameters

α
(π)
1:K ,α

(A)
1:K ,β1:K and this process is usually termed as variational inference

(Bishop 2006, Ghahramani & Beal 2000, Jaakkola & Jordan 1997, Jordan,

Ghahramani, Jaakkola & Saul 1999).

Here we consider two different implementations of variational inference

based on different decompositions of qm:

• A fully-factorized (FF) form.

• A partially-factorized (PF) form.

36



CHAPTER 3. THE LATENT DIRICHLET HIDDEN MARKOV MODEL

Algorithm 3.1: The Learning Algorithm for LDHMMs.

Input : An initial setting for the hyper-parameters α(π), α
(A)
1:K , β1:K

Output: Learned hyper-parameters α(π)∗, α(A)∗
1:K , β∗1:K

1 while the convergence criterion is not satisfied do

// E-step

2 foreach sequence Xm do

// optimize L with respect to qm

3 qm ← Estep(α(π),α
(A)
1:K ,β1:K ,Xm) ;

4 end

// M-step

// optimizing L with respect to α(π), α
(A)
1:K, β1:K

5 α(π),α
(A)
1:K ,β1:K ← Mstep(q, α(π),α

(A)
1:K ,β1:K) ;

6 end

7 α(π)∗,α(A)∗
1:K ,β∗1:K ← α

(π)
1:K ,α

(A)
1:K ,β1:K ;

As shown in Figure 3.2(a), the FF form assumes:

qm(θm) = qm(πm)qm(Am)qm(Bm)qm(zm1)qm(zm2) · · · qm(zmNm) (3.3)

This is inspired by the standard mean-field approximation in (Jaakkola &

Jordan 1997, Jordan et al. 1999).

As shown in Figure 3.2(b), the PF form assumes:

qm(θm) = qm(πm)qm(Am)qm(Bm)qm(Zm) (3.4)

and no further assumption has been made on qm(Zm). This is inspired by the

manners proposed in (MacKay 1997, Ghahramani 1997, Beal 2003, Ghahra-

mani & Hinton 2000), which preserves the conditional dependency between

the variables of qm(Zm).

E Step: the FF Form

The variational inference process of the FF form yields the following itera-

tions. Please refer to Appendix A.2.1 for the details of the derivation of the

37



CHAPTER 3. THE LATENT DIRICHLET HIDDEN MARKOV MODEL

πm

γ
(π)
m

zm1 zm2 · · · zmN

φm1 φm2
· · ·

φmNm

Am

γ
(A)
m,1:K

Bm

γ
(B)
m,1:K

M

(a)

πm

γ
(π)
m

Am

γ
(A)
m,1:K

Zm

Bm

γ
(B)
m,1:K

M

(b)

Figure 3.2: The graphical models of variational distributions: (a) the FF

form, (b) the PF form.
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updating formulas.

Fixed γ
(π)
m and γ

(B)
m,1:K and γ

(A)
m,1:K, Update φm,1:Nm (1 ≤ m ≤ M) φm1i

is updated by:

φm1i = exp[
∑V

j=1(xm1j(Ψ(γ
(B)
mij)−Ψ(

∑V
v=1 γ

(B)
miv)))

+(Ψ(γ
(π)
mi )−Ψ(

∑K
j=1 γ

(π)
mj ))

+
∑K

k=1 φm2k(Ψ(γ
(A)
mik)−Ψ(

∑K
j=1 γ

(A)
mij))]

(3.5)

φmni (2 ≤ n ≤ Nm − 1) is updated by:

φmni = exp[
∑V

j=1(xmnj(Ψ(γ
(B)
mij)−Ψ(

∑V
v=1 γ

(B)
miv)))

+(Ψ(γ
(π)
mi )−Ψ(

∑K
j=1 γ

(π)
mj ))

+
∑K

i=1 φm,n−1,i(Ψ(γ
(A)
mik)−Ψ(

∑K
j=1 γ

(A)
mij))]

+
∑K

k=1 φm,n+1,k(Ψ(γ
(A)
mik)−Ψ(

∑K
j=1 γ

(A)
mij))]

(3.6)

φmNmi is updated by:

φmNmi = exp[
∑V

j=1(xmNmj(Ψ(γ
(B)
mij)

−Ψ(
∑V

v=1 γ
(B)
miv))) + (Ψ(γ

(π)
mi )−Ψ(

∑K
j=1 γ

(π)
mj ))

+
∑K

i=1 φm,Nm−1,i(Ψ(γ
(A)
mik)−Ψ(

∑K
j=1 γ

(A)
mij))]

(3.7)

Fixed φm,1:Nm, γ
(A)
m,1:K, γ

(B)
m,1:K, Update γ

(π)
m

γ
(π)
mi = α

(π)
i + φm1i (3.8)

Fixed φm,1:Nm, γ
(π)
m and γ

(B)
m,1:K, Update γ

(A)
m,1:K

γ
(A)
mik = α

(A)
ik +

N∑
n=2

φm,n−1,iφm,n,k (3.9)

Fixed φm,1:Nm, γ
(π)
m and γ

(A)
m,1:K, Update γ

(B)
m,1:K

γ
(B)
mij = α

(A)
ij +

N∑
n=1

φmnixmnj (3.10)

where γ is Gamma function and Ψ is the first derivative of the log γ

function. For simplicity, the E step for the FF form can be summarized in

Procedure Estep.
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Procedure Estep(α(π),α
(A)
1:K ,β1:K ,Xm)

input : A set of the parameters α(π),α
(A)
1:K ,β1:K , a sequence Xm

output: The variational distribution qm

1 Initialize γ
(π)
mi for all i ;

2 Initialize γ
(A)
mik for all i and k ;

3 Initialize γ
(B)
mij for all i and j ;

4 repeat

5 Update φmni according to Equation 3.5 to 3.7 for all n and i;

6 Update γ
(π)
mi according to Equation 3.8 for all i;

7 Update γ
(A)
mik according to Equation 3.9 for all i and k;

8 Update γ
(B)
mij according to Equation 3.10 for all i and j;

9 until convergence;

10 qm ← qm(Zm), qm(πm), qm(Am), qm(Bm) ;

E Step: the PF Form

The variational inference process of the PF form yields the following itera-

tions. Please refer to Appendix A.2.2 for the details of the derivation of the

updating formulas.

Fixed γ
(π)
m and γ

(B)
m,1:K and γ

(A)
m,1:K, Update qm(Zm) The relevant (i.e.,

used in the M step) marginal posteriors of the distribution qm(Zm), i.e.,

qm(zmn) = γmn (1 ≤ n ≤ Nm) and qm(zmn, zm,n+1) = ξm,n,n+1 (1 ≤ n ≤
Nm−1) using the forward-backward algorithm (Rabiner 1990) and the details

are described in Appendix A.2.2.

Fixed qm(Zm), γ
(A)
m,1:K, γ

(B)
m,1:K, Update γ

(π)
m

γ
(π)
mi = α

(π)
i + qm(zm1i) (3.11)

where 1 ≤ m ≤M and 1 ≤ i ≤ K.
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Fixed qm(Zm), γ
(π)
m and γ

(B)
m,1:K, Update γ

(A)
m,1:K

γ
(A)
mik = α

(A)
ik +

N∑
n=2

q(zm,n−1,i, zmnk) (3.12)

Fixed qm(Zm), γ
(π)
m and γ

(A)
m,1:K, Update γ

(B)
m,1:K

γ
(B)
mij = α

(B)
ij +

N∑
n=1

xmnjqm(zmni) (3.13)

where 1 ≤ m ≤M , 1 ≤ i ≤ K and 1 ≤ j ≤ V .

The E-step can be also summarized as a procedure similar to Proce-

dure Estep by replacing the corresponding updating formulas. We omit it

here for conciseness.

Discussion of computational complexity

The computational complexity for the E-step of approximately inferring the

posterior distribution of πm, Bm,1:K and Am,1:K (1 ≤ m ≤ M) given the

hyper-parameters and the observed behaviors are similar for both the PF

and FF forms. Specifically, the computational complexity for inferring the

approximate posteriors of πm, Bm,1:K and Am,1:K (1 ≤ m ≤M) are the same

for the two forms, which are proportional to O(MTEK) and O(MTEK
2N),

respectively, whereK is the number of hidden states, TE is the iteration num-

ber of E-step, N is the maximum length of all sequences. However, the com-

putational cost for approximate inference of the posterior of Zm (1 ≤ m ≤M)

is slightly different for the two forms. The computational complexity for the

PF form is proportional to O(K2N) while its counterpart of the FF form is

proportional to O(KN). Thus, the overall computational complexity for the

PF and FF form are O(MTE(K+3K2N)) and O(MTE(K+KN +2K2N)),

respectively. It is clear that two forms have comparable computational cost

and the FF form is slightly faster.
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3.3.4 The M Step: Estimation of Hyper-parameters

In this section, we provide the details of the M-step, which is to estimate

hyper-parameters α
(π)
1:K ,α

(A)
1:K ,β1:K given the observed sequence Xm and fixed

variational variables qm for (1 ≤ m ≤ M). In particular, it maximizes

the lower bound of the log-likelihood L with respect to respective hyper-

parameters as follows:

The FF Form

Update α(π) Maximizingα(π) can be solved by iterative linear-time Newton-

Raphson algorithm (Blei et al. 2003, Minka 2000). Define the following vari-

ables:

gi = M(Ψ(
K∑
j=1

α
(π)
j )−Ψ(α

(π)
i )) +

M∑
m=1

(Ψ(γ
(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj )) (3.14)

hi = −MΨ
′
(α

(π)
i ) (3.15)

w = MΨ(
K∑
j=1

α
(π)
j ) (3.16)

c =

∑K
j=1 gj/hj

w−1 +
∑K

j=1 h
−1
j

(3.17)

The updating equation is given by:

α
(π)∗
i = α

(π)
i − η

gi − c

hi

(3.18)

Procedure Newton-Raphson summarizes the above algorithm, which is

an iterative process of updating the value of α(π). To be more specific,

at the beginning of each iteration, the variables g, h, w, c are calculated by

Equation 3.14-3.17 and η to be 1 in lines 2 and 3. Then line 4 updates α(π)∗

by Equation 3.18 and line 5 judges if the updated α(π)∗ falls into the feasible

region. If so, it reduces η by a factor of 0.5 in line 6 and updates α(π)∗ in line

7 until it becomes valid. In line 8, update α(π) as α(π)∗ for the next iteration.
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Procedure Newton-Raphson(γ
(π)
1:M,1:K ,α

(π), TM)

input : γ
(π)
1:M,1:K , α

(π), Number of iterations TM

output: Updated α
(π)∗
i

1 for iter ← 1 to TM do

2 Update gi, hi, w, c for all i according to Equation 3.14-3.17 ;

3 η ← 1;

4 Update α
(π)∗
i according to Equation 3.18;

5 while Any α
(π)∗
i < 0 do

6 η ← 0.5η;

7 Update α
(π)∗
i according to Equation 3.18;

8 end

9 α
(π)
i ← α

(π)∗
i ;

10 end

Procedure Mstep(q,α(π),α
(A)
1:K ,β1:K)

input : q,α(π),α
(A)
1:K ,β1:K

output: A set of the parameters α(π),α
(A)
1:K ,β1:K

1 Call Procedure Newton-Raphson to update α(π) ;

2 Call Procedure Newton-Raphson to update α
(A)
1:K ;

3 Call Procedure Newton-Raphson to update β1:K ;

Update α
(A)
1:K Similarly, the estimation of α

(A)
i (1 ≤ i ≤ K) can be solved

by the Procedure Newton-Raphson with changes on Equation 3.14-3.18 (i.e.,

replace α(π) by α
(A)
i and γ(π) by γ

(A)
i ).

Update β1:K Similarly, the estimation of βi (1 ≤ i ≤ K) can be done

by the Procedure Newton-Raphson with changes on Equation 3.14-3.18 (i.e.,

replace α(π) by βi and γ(π) by γ
(B)
i ).

The M-step can be summarized in Procedure Mstep.
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The PF Form

The process is the same as the above process.

3.4 Empirical Study

In this section, we apply the proposed LDHMMs in several data mining tasks,

such as sequential behavior modeling and sequence classification. To be more

specific, firstly, we use two public-available data sets from web-browsing logs

to study the data mining tasks. Secondly, we adopt a public-available bio-

logical sequence data set to study the problem of sequence classification. All

algorithms were implemented in matlab3 and performed on a 2.9GHz 20MB

L3 Cache Intel Xeon E5-2690 (8 Cores) cluster node with 32GB 1600MHz

ECC DDR3-RAM (Quad Channel), running on a Red Hat Enterprise Linux

6.2 (64bit) operating system.

3.4.1 Sequential Behavior Modeling

Data Sets

The Entree Data Set This data set4 records users’ interactions with the

Entree Chicago restaurant recommendation system from September, 1996 to

April, 1999. The sequential behaviors of each user are his/her interactions

with the system, i.e. their navigation operations. The characters L-T encode

8 navigation operations as shown in Table 3.2. We use a subset of 422

sequences whose lengths vary from 20 to 59.

The MSNBC Data Set This data set5 describes the page visits of user-

s who visited msnbc.com on September 28, 1999. Visits are recorded at

3The code is publicly available on https://sites.google.com/site/yinsong1986/codes.
4Available at

http://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recommendation+Data
5Available at

http://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data.
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Table 3.2: The Codebook of Navigation Operations

Code Navigation Operations

L browse from one restaurant to another in a list

M search for a similar but cheaper restaurant

N search for a similar but nicer one

P search for a similar but more traditional one

Q search for a similar but more creative one

R search for a similar but more lively one

S search for a similar but quieter one

T search for a similar but different cuisine one

the level of URL category (The 17 categories are ‘frontpage’, ‘news’, ‘tech’,

‘local’, ‘opinion’, ‘on-air’, ‘misc’, ‘weather’, ‘health’, ‘living’, ‘business’, ‘s-

ports’, ‘summary’, ‘bbs’ (bulletin board service), ‘travel’, ‘msn-news’, and

‘msn-sports’.) and are recorded in a temporal order. Each sequence in the

data set corresponds to page viewing behaviors of a user during that twenty-

four hour period. Each behavior recorded in the sequence corresponds to the

category of the user’s requesting page. We use a subset of 31071 sequences

whose lengths vary from 20 to 100.

Evaluation Metrics

We learned the LDHMMs of the proposed two different learning forms (de-

noted as LDHMMs-ff and LDHMMs-pf) and related models (i.e., HMMs,

LDA, VBHMMs and HMMV), on the above two data sets to compare the

generalization performance of these models. Our goal is to achieve high

likelihood on a held-out test set. Thus, we computed the log-likelihood of

a held-out test set to evaluate the models given the learned deterministic

hyper-parameters/parameters. In particular, for LDHMMs, we first learned

their deterministic database-level hyper-parameters according to Algorith-
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m 3.1 using the training data; then approximately inferred the sequence-level

parameters of the testing data by applying Procedure Estep with the learned

hyper-parameters; and finally computed the log-likelihood of the test data as

Equation A.3 using the learned hyper-parameters and inferred parameters.

For other models, we used similar processes adjusting to their learning and

inference algorithms. A higher log-likelihood indicates better generalization

performance. We performed 10-fold cross validation on the above two data

sets. Specifically, we split the data into 10 folds. Each time we held out 1

fold of the data for testing and trained the models on the remained 9-folds,

and this process was repeated for 10 times. We report the averaged results

of the 10-fold cross validation in the following.

Comparison of Log-likelihood on the Test Data Set

The results for different number of hidden states K on the Entree data set is

shown in Figure 3.3. As seen from the chart, the LDHMMs-pf consistently

performs the best and LDHMMs-ff generally has the second best performance

(only slightly worse than HMMs sometimes). Similar trend can be observed

in Figure 3.4. Both LDHMMs-ff and LDHMMs-pf perform better than the

other models while LDHMMs-pf has a slightly better performance. This

is because the PF form may have a more accurate approximation in these

data sets. In summary, the proposed LDHMMs has a better generalization

performance compared to other models. To further validate the statistical

significance of our experiments, we also perform the paired t-test (2-tail)

between LDHMMs-pf, LDHMMs-ff and other models over the perplexity

of the experimental results. The p-level of t-tests is always smaller than

0.01, which proves the improvements of LDHMMs over other models are

statistically significant.

Comparison of Computational time for the two forms

Since the computational complexity of related models are much lower than

the proposed model due to their simpler structures, here we focus on the

46



CHAPTER 3. THE LATENT DIRICHLET HIDDEN MARKOV MODEL

2 4 6 8 10
−1400

−1300

−1200

−1100

−1000

−900

−800

−700

−600

Number of Hidden States

H
el

d−
ou

t L
og
−l

ik
el

ih
oo

d

LDA
HMM
HMMV
VBHMM
LDHMM−ff
LDHMM−pf

Figure 3.3: Log-likelihood Results on the Entree Data Set for the Models.
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Figure 3.4: Log-likelihood Results on the MSNBC Data Set for the Models.

comparison of the proposed two forms. Figure 3.5 shows the comparison of

training time on the two used data sets. Qualitatively speaking, the two

approaches have similar computational time. But sometimes, the PF form is

faster the FF form, which seems to be contradict to our theoretical analysis

in Section Estep. However, in practice, the stopping criterion used in the
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Figure 3.5: Comparison of Training Time for the LDHMMs on (a) Entree

Data Set, (b) MSNBC Data Set.

EM algorithm which may cause the iteration to stop earlier. Since the PF

form may converge faster than the FF form does, it may need less numbers

of E and M steps. Thus, it may converge faster than the FF form in those

cases.

Visualization of LDHMMs

It is also important to obtain an intuitive understanding of the complex

model learned. LDHMMs have database-level hyper-parameters, (i.e., α(π),

α
(A)
1:K and β1:K), which can be seen as database-level characteristics of the se-

quences; sequence-level variational parameters (i.e., γ
(π)
m , γ

(B)
m,1:K and γ

(A)
m,1:K),

which can be seen as sequence-level characteristics of each individual se-

quence. To visualize LDHMMs, we plot Hinton Diagrams for these parame-

ters, each of which is represented by a square whose size is associated with

the magnitude. Figure 3.6 shows a sample visualization from the Entree

data set when K = 6. The left diagrams represent the database-level hyper-

parameters α
(A)
1:K , β1:K and α(π) from the top to the bottom; the right di-

agrams represent the sequence-level variational parameters, γ
(B)
m,1:K , γ

(A)
m,1:K

48



CHAPTER 3. THE LATENT DIRICHLET HIDDEN MARKOV MODEL

Figure 3.6: The Hinton Diagrams for (a) Database Level Parameters, (b)

Sequence Level Variational Parameters.

and γ
(π)
m from the top to the bottom for a sample sequence from the data

set. It is clear from the picture that the individual sequence displays slightly

different characteristics from the whole database. Thus, it is important to

model sequence-level characteristics individually.
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3.4.2 Sequence Classification

Data Sets

This data set6 consists of 3 classes of DNA sequences. One class is made up of

767 sequences belonging to the exon/intron boundaries, referred to as the EI

class; another class of 768 sequences belongs to the intron/exon boundaries,

referred to as the IE class; the third class of 1655 sequences does not belong

to either of the above classes, referred to as the N class.

Evaluation Metrics

We conducted 3 binary classification experiments (i.e., EI vs IE, EI vs N

and IE vs N) using 10-fold cross validation. For each class c, we learned

a separate model p(X1:Mc |c) of the sequences in that class, where Mc is the

number of training sequences of class c. An unseen sequence was classified by

picking argmaxc p(X|c)p(c). To eliminate the influence of p(c), we varied its

value and obtained the corresponding area under ROC curve (AUC) (Fawcett

2006), which is widely used for classification performance comparison.

Comparison of AUC on the Test Data Set

Table 3.3 reports the averaged results on the 10-fold validation and the best

results for each number of hidden states are in bold. Surprisingly, our pro-

posed LDHMMs do not significantly dominate other models. An possible

explanation is that the generative models are not optimized for classification

and thus more accurate modeling does not result in the significant improve-

ment of classification performance. This problem may be alleviated by com-

bining the model with a discriminative classifier. However, LDHMMs have

very competitive performance compared to the best models in all cases. In

addition, To further validate the statistical significance of our experiments,

6Available at http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+%28Splice-

junction+Gene+Sequences%29
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we also perform the paired t-test (2-tail) between LDHMMs and other mod-

els on the experimental results. All the t-test results are less than 0.01, which

proves the differences of LDHMMs versus other models are statistically sig-

nificant.

3.5 Summary

Statistical modeling of sequential data has been studied for many years in

machine learning and data mining. In this chapter, we propose LDHMMs

to comprehensively characterize/model a database of sequential behaviors.

Rather than assuming all the sequences share the same parameters as in tra-

ditional models, such as HMMs and VBHMMs, we explicitly assign sequence-

level parameters to each sequence and database-level hyper-parameters to the

whole database. The experimental results show that our model outperforms

the other state-of-the-art models in predicting unseen sequential behaviors

from web browsing logs and is competitive in classifying the unseen biological

sequences. To sum up, the strength of LDHMMs is their comprehensively

modeling of many sequences while the weakness of LDHMMs are their rela-

tively high computational cost.
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Chapter 4

The Correlated Static-dynamic

Model

In clinical gait analysis (CGA), gait experts try to use patients’ physical

examination results, known as static data, to interpret the dynamic char-

acteristics in an abnormal gait, known as dynamic data. From the data

perspective, the above data has mixed structures and is thus heterogeneous.

This chapter proposes a new probabilistic correlated static-dynamic model

(CSDM) to model this kind of mixed structured data, which may be helpful

for facilitating the automation of the gait analysis process and forming a rel-

atively objective diagnosis. We propose an EM-based algorithm to learn the

parameters of the CSDM. One of the main advantages of the CSDM is its

ability to provide intuitive knowledge. For example, the CSDM can describe

what kinds of static data will lead to what kinds of hidden gait patterns in the

form of a decision tree, which helps us to infer dynamic characteristics based

on static data. Our initial experiments indicate that the CSDM is promis-

ing for discovering the correlated relationship between physical examination

(static) and gait (dynamic) data.
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4.1 Introduction

‘Gait’ is a person’s manner of walking. Patients may have an abnormal gait

due to a range of physical impairment or brain damage. Clinical gait analysis

(CGA) is a technique for identifying the underlying impairments that affect a

patient’s gait pattern. The CGA is critical for treatment planning. This pro-

cess is carried out by gait analysis experts, mainly based on their experience

which may lead to subjective diagnoses. The past 20 years have witnessed a

burgeoning interest in clinical gait analysis for children with cerebral palsy

(CP). The aim of clinical gait analysis is to determine a patient’s impair-

ments to plan manageable treatment. Usually, two types of data are used

in clinical gait analysis: static data, which is the physical examination data

that is measured when the patient is not walking, such as the shape of the

femur and the strength of the abductor muscles. Figure 4.2 shows some ex-

amples of the process of the physical examination, which produces the static

data shown in Table 4.1. From this excerpted data set, we can see that there

are many attributes for the static data. The other type of data is dynamic

data, which records dynamic characteristics that evolve during a gait trial.

Usually, as shown in Figure 4.2, 3D Gait Analysis systems are applied to

capture the movement and forces through individual joints, such as the hip,

knee and ankle, when patients are walking or running. To achieve this, a set

of reflective markers are placed on the interested joints of the patient and are

tracked by the system. Those movement and forces in the interested joints

can usually be displayed in curves. Figure 4.3 shows gait curve examples for

one subject. Gait curves are recorded from multiple dimensions (i.e., from

different parts of the body), such as the pelvis and hips. Since each subject

has multiple trials, there are multiple curves for each dimension. In addition,

each dimension has both the left and right side of the body. Thus, the total

number of curves for each dimension is the number of trials multiplied by

two. We use the red line to denote the dynamic of the left side and the blue

line to denote the counterpart of the right side. Figure 1(a)-(d) show 4 dif-

ferent dimensions of the dynamics. Each curve in each dimension represents
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(a) (b)

(c) (d)

Figure 4.1: The Physical Examination Process: (a) Psoas - Thomas Test; (b)

FFD Knee - Knee Extension; (c) Hip - Internal Rotation; (d) Hip - External

Rotation.

the corresponding dynamics of one trial for the left or right part. The grey

shaded area termed as normal describes the dynamic curve obtained from

healthy people with a range of +/- 1 standard deviations for each observa-

tion point. From the example data shown above, we can see that describing

the relationship between the static and dynamic data in the clinical gait data

is not intuitive.

In practice, static data is used to explain abnormal features in dynam-

ic data. In other words, gait analysis experts try to discover hidden rela-

tionships between static and dynamic variables for further clinical diagnosis.

This process has been conducted empirically by clinical experts and thus is
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Table 4.1: An Excerpt Data Set from the Static Data
Subject Internal Rotation r Internal Rotation l Anteversion r · · · Knee Flexors l

1 58 63 25 · · · 3+

2 60 71 15 · · · 4

3 53 52 29 · · · 3

.
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.
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.

.

.

.

.

.

.
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.

.

.

(a) (b)

(c) (d)

Figure 4.2: The 3D Gait Analysis System and chart (a) - (d) is in temporal

order.

qualitative. In this chapter, we make an initial exploration to discover the

quantitative correlated relationships between the static data and dynamic

curves.

The rest of the chapter is organize as following: Section 4.2 presents the

problem formalization. Then, Section 4.3 proposes a probabilistic graphical

model to simulate the data generating process and gives an EM-based recipe

for learning the model given the training data. Experimental results on both

synthetic and real-world data sets are reported in Section 4.4 and Section 4.5
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(a) (b)

(c) (d)

Figure 4.3: Example Gait Curves for One Patient with 6 Trials: (a) The

Pelvic Tilt Dimension; (b) The Hip Flexion Dimension; (c) The Knee Flexion

Dimension; (d) The Dorsiflexion Dimension.
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summarizes this chapter.

4.2 Problem Statement

The following terms are defined:

• A static profile is a collection of static physical examination features

of one subject denoted by y = (y1, y2, · · · , yL), where the subscript

i (1 ≤ i ≤ L) denotes the ith attribute of the physical examination

features, e.g., the Internal Rotation r attribute in Table 4.1.

• A gait profile is a collection of M gait trials made by one subject de-

noted by X1:M = {X1,X2, · · · ,XM}.

• A gait trial (cycle) is multivariate time series denoted by

Xm = (xm1,xm2, · · · ,xmN), where xmj (1 ≤ m ≤M and 1 ≤ j ≤ N) is

the jth vector observation of the time series and

xmj =
[
xm1j xm2j · · · xmDj

]T
(D is the number of the dimensions

for dynamic data and N is the length of the time series). For example,

one dimension of the multivariate time series (xmj1, xmj2, · · · , xmjN)

(1 ≤ j ≤ D) can be plotted as one curve in Figure 4.3(a) and repre-

sents the dynamics of that dimension for one trial. Xm can be seen as

a collection of such curves in different dimensions.

Our goal was to develop a probabilistic model p(X1:M ,y) that considers

the correlated relationships between the static profile (i.e., static data) and

the corresponding gait profile (i.e., dynamic data). In other words, we aim to

produce a probabilistic model that assigns high probability to ‘similar’ data.
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4.3 Proposed Model

4.3.1 Motivation

The basic idea is to construct the data generating process based on the do-

main knowledge gained by gait experts and model the process. Specifically,

static profile y of a subject determines the generation of that subject’s poten-

tial gait pattern. We denote this hidden gait pattern as a latent variable h,

a vector whose elements hg (1 ≤ g ≤ G)1 are 0 or 1 and sum to 1, where G is

the number of hidden gait patterns. The generation of the corresponding gait

profile X1:M is then determined by this latent variable h. In other words, the

gait pattern is characterized by a distribution on the gait data. Due to the

high dimensionality of p(X1:M |h), the generating process of it is not intuitive.
Thus, we need to consider the corresponding physical process. According to

(Perry & Davids 1992), a gait trial can usually be divided into a number of

phases2 and each vector observation xmj belongs to a certain state indicating

its phase stage. These states are usually not labeled and we thus introduce

latent variables zmj (1 ≤ m ≤ M , 1 ≤ j ≤ Nm) for each vector observation

xmj in each gait trial Xm. We thus have two advantages: firstly, p(X1:M |h)
can be decomposed into a set of conditional probability distributions (CPDs)

whose forms are intuitive to obtain; secondly, the dynamic process of the gait

trials are captured by utilizing the domain knowledge (Bishop 2006).

4.3.2 The Correlated Static-Dynamic Model

We propose a novel correlated static-dynamic model (CSDM), which models

the above conjectured data generating process. As mentioned before, exist-

ing models (e.g., HMMs and CRFs), cannot be directly used here. This is

because HMMs only model the dynamic data p(Xm) and CRFs only model

the relationship between Xm and zm, i.e., p(zm|Xm) (1 ≤ m ≤M), which is

different to our goal of jointly modeling the static and gait profiles p(X1:M ,y).

1hg = 1 denotes the gth hidden gait pattern.
2Please refer to Appendix B.1 for the detailed description of the phases.
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The graphical model for the CSDM is shown in Figure 4.4 (subscript m is

omitted for convenience). We use conventional notation to represent the

graphical model (Bishop 2006). In Figure 4.4, each node represents a ran-

dom variable (or group of random variables). For instance, a static profile is

represented as a node y. The directed links express probabilistic causal re-

lationships between these variables. For example, the arrow from the static

profile y to the hidden gait pattern variable h indicates their causal rela-

tionships. For multiple variables that are of the same kind, we draw a single

representative node and then surround this with a plate, labeled with a num-

ber indicating that there are many such kinds of nodes. An example can be

found in Figure 4.4 in which M trials Z1:M ,X1:M are indicated by a plate

label with M . Finally, we denote observed variables by shading the corre-

sponding nodes and the observed static profile y is shown as shaded node

in Figure 4.4. To further illustrate the domain knowledge-driven data gen-

erating process in Figure 4.4, the generative process for a static profile y to

generate a gait profile X1:M is described as follows:

1. Generate the static profile y by p(y)

2. Generate the latent gait pattern h by p(h|y)

3. For each of the M trials

(a) Generate the initial phase state zm1 from p(zm1|h)
(b) Generate the corresponding gait observation xm1 by p(xm1|zm1,h)

(c) For each of the gait observations xmn (2 ≤ n ≤ N)

i. Generate the phase state zmn from p(zmn|zm,n−1,h)

ii. Generate the the corresponding gait observation xmn from

p(xmn|zmn,h)
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y
h

z1 z2 · · · zN

x1 x2 · · · xN

M

Figure 4.4: The Graphical Model of the CSDM

4.3.3 The Parameters of the CSDM

The parameters (i.e., the variables after the semicolon of each CPD) govern-

ing the CPDs of the CSDM are listed in the following3:

p(h|y;d) =
G∏

g=1

dg(y)
hg (4.1)

where dg (1 ≤ g ≤ G) is a set of mapping functions (y → dg(y) ≡
p(hg = 1|y)) and hg, dg are the gth element of h, d, respectively. Since

the input y consists of discrete and continuous values, it is not intuitive

to assume the format of the functions. Thus, here we use the form

of a probability estimation tree (PET) (Provost & Domingos 2003)

to represent the CPD p(h|y;d). To be more specific, the parameters

governing the CPD is similar to the form “if y in some value ranges,

then the probability of hg = 1 is dg(y)”.

p(zm1|h;π) =
G∏

g=1

K∏
k=1

π
hg , zm1k

gk (4.2)

where π is a matrix of probabilities with elements πgk ≡ p(zm1k =

1|hg = 1).

3We assume p(y) = const and the const is normalized and determined empirically from

the data for convenience. Thus, we do not put it as a parameter.
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p(zmn|zm,n−1, h;A) =
G∏

g=1

K∏
k=1

K∏
j=1

a
hg , zm,n−1,j , zmnk

gjk (4.3)

where A is a matrix of probabilities with elements

agjk ≡ p(zmnk = 1|zm,n−1,j = 1, hg = 1).

p(xml|zml, h;Φ) =
G∏

g=1

K∏
k=1

p(xml|φgk)
hg ,zmlk (4.4)

where Φ is a matrix with elements φgk. For efficiency, in this chap-

ter, we assume that p(xml;φgk) = N (xml;μgk,σgk), which is Gaussian

distribution, and thus φgk = (μgk,σgk).

Thus, the CSDM can be represented by the parameters θ = {d,π,A,μ,σ}.

4.3.4 Learning the CSDM

In this section we present the algorithm for learning the parameters of the

CSDM, given a collection of gait profiles Xs,1:M and corresponding static

profiles ys (1 ≤ s ≤ S) for different subjects. We assume each pair of

gait and static profiles are independent of every others since they are from

different subjects and share the same set of model parameters. Our goal is

to find parameters θ that maximize the log likelihood of the observed data

X1:S,1:M ,y1:S
4.

L(θ) =
S∑

s=1

log p(Xs,1:M |ys;θ) (4.5)

Directly optimizing the above function with respect to θ is very difficult

because of the involvement of latent variables (Bishop 2006). We adopted an

expectation-maximization (EM)-based algorithm (Dempster, Laird & Rubin

1977) to learn the parameters, yielding the iterative method presented in

Algorithm 4.1. First, the parameters θold need to be initialized. Then in

the E step, p(zs,1:M ,hs|Xs,1:M ,ys,θ
old) (1 ≤ s ≤ S) is inferred given the

4We add the subscript s for representing the sth profile in the rest of the paper.
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Algorithm 4.1: The Learning Algorithm for the Proposed CSDM.

Input : An initial setting for the parameters θold

Output: Learned parameters θnew

1 while the convergence criterion is not satisfied do

2 Estep();

3 θnew = Mstep();

4 end

parameters θold and will be used in M step. The M step then obtains the

new parameters θnew that maximize the Q(θ,θold) function with respect to

θ as follows:

Q(θ,θold) =
∑
s,h,z

p(zs,1:M ,hs|Xs,1:M ,ys; θ
old) log p(hs, zs,1:M ,Xs,1:M ,ys;θ)

(4.6)

The E and M steps iterate until the convergence criterion is satisfied. In this

manner, L(θ) is guaranteed to increase after each interaction.

Challenges of the Learning Algorithms

The challenges of the above algorithm is in the calculation of the E step

and the M step. A standard forward-backward inference algorithm (Rabiner

1990) cannot be directly used here for the E step because of the introduc-

tion of latent variables hs (1 ≤ s ≤ S). We provided a modified forward-

backward inference algorithm in Algorithm 4.2 considering the involvement

of hs (1 ≤ s ≤ S). In calculating the M step, it was difficult to find an

analytic solution for d(·). We utilized a heuristic algorithm to solve it in

Procedure estimatePET. The details of the implementation for E and M

steps are discussed in the following.
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The E step

Here we provide the detailed process of inferring the posterior distribution

of the latent variables h1:S, z1:S,1:M given the parameters of the model θold.

Actually, we only infer some marginal posteriors instead of the joint posterior

p(zs,1:M ,hs|Xs,1:M ,ys,θ
old). This is because only these marginal posteriors

will be used in the following M-step. We define the following notations for

these marginal posteriors γ and ξ and auxiliary variables α and β (1 ≤ s ≤
S, 1 ≤ m ≤M, 1 ≤ n ≤ N, 2 ≤ n

′ ≤ N, 1 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ g ≤ G):

αsgmnk = p(xsm1, · · · ,xsmn, zsmnk|hsg; θ
old) (4.7)

βsgmnk = p(xs,m,n+1, · · · ,xsmN |zsmnk, hsg; θ
old) (4.8)

γsgmnk = p(zsmnk, hsg|Xsm,ys; θ
old) (4.9)

ξs,g,m,n
′−1,j,n′ ,k = p(zs,m,n

′−1,j, zsmn
′
k|hsg,Xsm,ys; θ

old) (4.10)

The inference algorithm is presented in Algorithm 4.2. Specifically, line 1

calls Procedure forward to calculate the forward variables α, while line 2

calls Procedure backward to calculate the backward variables β. Then line3-

15 calculate the value of each element of the posteriors γ and ξ and the h∗s
(1 ≤ s) on the basis of the α, β and θold. These posteriors will be used in

the M-step for updating the parameters.

The M step

Here we provide the detailed process for M step. Basically, it updates the

parameters by maximizing the Q(θ, θold) with respect to them. If substituting

the distributions with inferred marginal posteriors in the Q function, we can
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Procedure forward
input : A set of the parameters θ

output: The variables α

// Initialization;

αsgm1k = πgkN (xsm1;μgk,σgk) for all s, g, m and k;

1 for s=1 to S do // Induction

2 for g=1 to G do

3 for m=1 to M do

4 for n=1 to N-1 do

5 for k=1 to K do

6 αs,g,m,n+1,k =
∑K

j=1 αsgmnjagjkN (xs,m,n+1;μgk,σgk);

7 end

8 end

9 end

10 end

11 end

obtain

Q(θ, θold) =
∑

s,h,zs,1:M

p(zs,1:M ,h|Xs,1:M ,ys;θ
old)

G∑
g=1

hsg log dg(y)

+
∑

s,g,m,k

γsgm1k log πgk

+
∑

s,g,m,j,k

N∑
n=2

ξs,g,m,n−1,j,n,k log agjk

+
∑

s,g,m,n,k

γsgmnk logN (xsmn;μgk,σgk) (4.11)

Then the update formula for parameters d,π,A,μ,σ can be obtained by

maximizing the Q with respect to them, respectively:

• Updating of d: Maximizing Q with respect to d is equivalent to max-

imizing the first item of Equation 4.11. However, y is a mixture of
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Procedure backward
input : A set of the parameters θ

output: The variables β

// Initialization;

βsgmNk = 1 for all s, g, m and k;

1 for s=1 to S do // Induction

2 for g=1 to G do

3 for m=1 to M do

4 for n=N-1 to 1 do

5 for j=1 to K do

6 βsgmnk =
∑K

j=1 agjkN (xs,m,n+1;μgk,σgk)βs,g,m,n+1,j;

7 end

8 end

9 end

10 end

11 end

discrete and continuous values and it is impractical to find an an-

alytic solution to d. Here we consider a heuristic solution through

the formation of probability estimation trees (PETs), which is a deci-

sion tree (Olshen & Stone 1984) with a Laplace estimation (Provost

& Fawcett 2001) of the probability on class memberships (Provost &

Domingos 2003). The heuristic algorithm for estimating the PET is

described in Procedure estimatePET.

• Updating of π, A, μ and σ: Maximize Q with respect to π,A,μ,σ

is easily achieved using appropriate Lagrange multipliers, respectively.

The results are as follows:

πgk =

∑
s,m,g

γsgm1k∑
s,m,k,g

γsgm1k

(4.12)
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Algorithm 4.2: Estep()

input : An initial setting for the parameters θold

output: Inferred posterior distributions γ, ξ and h∗s (1 ≤ s ≤ S)

/* Calculation of α, β */

1 Call Procedure forward using θold as input;

2 Call Procedure backward using θold as input;

/* Calculation of γ, ξ and h∗s (1 ≤ s ≤ S) */

3 for s=1 to S do

4 for g=1 to G do

5 for m=1 to M do

6 p(Xsm|hsg;θ
old) =

∑K
k=1 αsgmNk;

7 for n=1 to N do

8 γsgmnk =
αsgmnkβsgmnk

p(Xsm|hsg ;θold)
;

9 ξs,g,m,n−1,j,n,k =
αs,g,m,n−1,kN (x

smn
′ ;μgk,σgk)agjkβsgmnk

p(Xsm|hsg ;θold)

(n > 2);

10 end

11 end

12 end

13 p(hsg|ys;θ
old) =

∏M
m=1 p(Xsm|hsg;θ

old)

p(hsg|Xs,1:M ,ys;θ
old) = p(hsg |ys;θold)p(hsg |ys;θold)

∑G
g=1 p(hsg |ys;θold)p(hsg |ys;θold)

;

14 h∗s = argmax
g

p(hsg|Xs,1:M ,ys;θ
old);

15 end

agjk =

∑
s,m,n,g

ξs,g,m,n−1,j,n,k∑
s,m,l,n,g ξs,g,m,n−1,j,n,l

(4.13)

μgk =

∑
s,m,g,n

γsgmnkxsmn∑
s,m,n,g

γsgmnk

(4.14)
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Procedure estimatePET
input : The data tuple (ys, h

∗
s) (1 ≤ s ≤ S)

output: The learned PET d

1 while stopping rule is not satisfactory do

2 Examine all possible binary splits on every attribute of ys

(1 ≤ s ≤ S);

3 Select a split with best optimization criterion;

4 Impose the split on the PET d;

5 Repeat recursively for the two child nodes;

6 end

7 for node in the PET d(·) do
8 Do Laplace correction on each node;

9 end

Algorithm 4.3: Mstep()

input : Inferred posterior distributions γ, ξ and h∗s (1 ≤ s ≤ S)

output: The updated parameters θnew

1 Call Procedure estimatePET to update d(·);
2 Update π,A,μgk,σgk according to Equation 4.12-4.15;

σgk =

∑
s,m,g,n

γsgmnk(xsmn − μgk)(xsmn − μgk)
T

∑
s,m,n,g

γsgmnk

(4.15)

Algorithm 4.3 summarizes the whole process of the M step.

4.4 Empirical Study

The aim of this study is to test:

• The feasibility of the learning algorithm for the CSDM. Since we have
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proposed an iterative (i.e., EM-based) learning method, it is pivotal to

show its convergence on the gait data set.

• The predictability of the CSDM. The aim of the CSDM is to discover

the correlated relationship between the static and dynamic data. Thus,

it is interesting to validate its predictive power on other data falling

outside the scope of the training data set.

• The usability of the CSDM. Because the CSDM is designed to be used

by gait experts, we need to demonstrate intuitive knowledge extracted

by the CSDM.

4.4.1 Experimental Settings

We sampled the synthetic data from the true parameters listed in Table 4.2.

We varied the s0 for different sample sizes (e.g., s0 = 100, 500, 1500) to

represent relatively small, medium and large data sets. The real-world data

set we used was provided by the gait lab at the Royal Children’s Hospital,

Melbourne5. We have collected a subset of static and dynamic data for 99

patients. The static data subset consisted of 8 attributes summarized in

Table 4.3. There were at most 6 gait trials for each subject and each gait

trial had 101 vector observations. In principle, curves for both left and right

sides may be included. However, for simplicity and consistency, we only used

the right side curves of the hip rotation dimension for analysis in this pilot

study. In addition, for a given patient, all records for that patient were either

in the test set or in the training set. By doing so, it was expected to avoid

the information leak from the training data set to the test data set.

5http://www.rch.org.au/gait/
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Table 4.2: The Parameters for the Synthetic Data

d

if −50 ≤ y < −25, p(h1 = 1|y) = 1,

if −25 ≤ y < 0, p(h2 = 1|y) = 1,

if 0 ≤ y < 25, p(h1 = 1|y) = 1,

if 25 ≤ y < 50, p(h2 = 1|y) = 1.

π π1,1:2 =
[
0.5 0.5

]
π2,1:2 =

[
0.5 0.5

]
A a1,1:2,1:2 =

[
0.6 0.4

0.4 0.6

]
a2,1:2,1:2 =

[
0.4 0.6

0.6 0.4

]

μ μ1,1:2,1 =

[
0

3

]
μ2,1:2,1 =

[
1

4

]

σ σ1,1:2,1 =
[
1 1

]
σ2,1:2,1 =

[
1 1

]

Table 4.3: Description of the Static Data

Name of Attributes Data Type Value Range

internalrotation r (ir r) continuous 23 to 90

internalrotation l (ir l) continuous 20 to 94

externalrotation r (er r) continuous -5 to 57

externalrotation l (er l) continuous -26 to 51

anteversion r (a r) continuous 10 to 50

anteversion l (a l) continuous 4 to 45

hipabductors r (h r) discrete -1 to 5

hipabductors l (h l) discrete -1 to 5
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4.4.2 Experimental Results

Convergence of the Learning Process

For each iteration, we calculate the averaged log-likelihood as

1

S

S∑
s=1

M∑
m=1

log p(Xsm,ys;θ
old) (4.16)

where θold is the parameters updated from last iteration. Figure 4.5(a) shows

the CSDM against the iteration numbers for different sample sizes of the syn-

thetic data and Figure 4.5(b) shows the results of the averaged log-likelihoods

for CSDMs using different numbers (represented as G) of hidden gait pat-

terns. As expected, the averaged log-likelihood is not monotonic all the time,

since part of the learning process uses a heuristic algorithm. However, the

best averaged log-likelihoods are usually achieved after at most 5 iterations,

which proves the convergence of the proposed learning algorithm. It can

be seen from Figure 4.5(a), a larger sample size will lead to a higher log-

likelihood for the learning algorithm. For the real-world data set, G = 46

shows the fastest convergence rate of the three settings for CSDMs.

Predictive Performance

We measured the CSDM predictive accuracy in terms of how well the future

gait profile can be predicted given the static profile and learned parameters.

Since the final prediction is a set of complex variables, we measure the pre-

dictive log-likelihood
∑S

′

s
′
=1 log p(Xs

′
,1:M |ys

′ ;θ) in the testing data with S
′

static and gait profiles, where θ is learned from the training data. Then, the

following can be obtained by using Bayes rule:

log p(Xs′ ,1:M |ys′ ;θ) = log(
∑
g

p(hs′g|ys′ ;θ)p(Xs′ ,1:M |hs′g;θ)) (4.17)

where p(hs
′
g|ys

′ ;θ) and p(Xs
′
,1:M |hs

′
g;θ) can be calculated by using the line

13 and 14 of Algorithm 4.2 (i.e., E step).

6The number of G is suggested by gait experts not exceeding 4.
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Figure 4.5: Log-likelihood for the CSDM against the iteration numbers for

different numbers of hidden gait pattern G.

z1 z2 · · · zN

x1 x2 · · · xN

S ×M

Figure 4.6: The Graphical Model for the Baseline Algorithm.

Without loss of generality, we proposed a baseline algorithm which ig-

nored the static data for modeling and prediction to compare with our pro-

posed method. The baseline model is a standard HMM with multiple obser-

vation sequences, whose graphical model is depicted in Figure 4.6. It assumes

all the gait trials are independently generated from an HMM. Using the stan-

dard algorithm provided in (Baum et al. 1970, Rabiner 1990), we can learn

the parameters of the baseline model, denoted as θ0 from the training data.

Accordingly, the predictive averaged log-likelihood for new gait trials can be

calculated as
∑S

′

s′=1 log p(Xs′ ,1:M ;θ0).
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Table 4.4: The Comparison of the Log-likelihoods

s0 = 100 s0 = 500 s0 = 1500

CSDM -8016 -40090 -120310

Baseline -8025 -40132 -120420

(a) The Synthetic Data

G = 2 G = 3 G = 4

CSDM -1310 -1388 -1299

Baseline -1426 -1502 -1426

(b) The Real-world Data

We compare the CSDM with the alternating baseline scheme, an HMM

with multiple sequences. We report on averages over 10 times 5-fold cross

validations for the synthetic and real-world data, respectively. As shown

in Table 4.5(a), all the CSDMs outperformed the baseline algorithm signif-

icantly. This may be because the proposed CSDM captures the correlated

relationships existing in the data rather than ignoring them. Similarly, it

can be observed from Table 4.5(b) that all the CSDMs achieved higher log-

likelihoods than their counterparts of the baseline model. This proves the

predictive power of our proposed CSDM on real-world data.

Extracting Knowledge from the CSDM

In this section, we provide an illustrative example of extracting intuitive

knowledge from a CSDM on the gait data. Our real-world data are described

in Section 4.4.1. We used the EM algorithm described in Section 4.3.4 to find

the model parameters for a 4-hidden-gait-pattern CSDM as suggested by gait

experts. Given the learned CSDM, we can extract the intuitive knowledge
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from the data set to answer the following questions:

• What kinds of static data will lead to what kinds of hidden gait pat-

terns?

• What does the gait look like for each hidden gait pattern?

The first question is actually asking what is p(h|y;θ) (and subscript s is

omitted since all s share the same parameters). Figure 4.7 shows an answer

to the first question in the form of a decision tree representation. This tree7

decides hidden gait patterns based on the 8 features of the static data (e.g.,

ir r, er r and a r) used in the data set. To decide the hidden gait patterns

based on the static data, start at the top node, represented by a triangle

(�). The first decision is whether ir r is smaller than 57. If so, follow the

left branch, and see that the tree classifies the data as gait pattern 2. If,

however, anteversion exceeds 57, then follow the right branch to the lower-

right triangle node. Here the tree asks whether er r is is smaller than 21.5.

If so, then follow the right branch to see the question of next node until the

tree classifies the data as ones of the gait patterns. For other nodes, the gait

patterns can be decided in similar manners.

The second question is actually asking argmax
g

p(hsg|Xs,1:M ,ys;θ) (1 ≤
s ≤ S). In other words, we need to infer which gait trials belong to the

corresponding hidden gait patterns in the corpus. We use line 14 described in

Algorithm 4.2 to obtain the hidden gait pattern names of the gait trials. We

can then plot representative gaits for each hidden gait pattern to answer the

second question above, as shown in Figures 4.8(a)-4.8(d). Figure 4.8(d) shows

a collection of gaits for the hidden gait pattern 4. We can see that most of

them fall into the normal area, which may indicate that these gaits are good.

Figure 4.8(b) shows a collection of gaits for the hidden gait pattern 2 and

most of them are a little below the normal area, indicating that these gaits

are not as good. By contrast, most of the gaits in Figure 4.8(a) representing

7For simplicity, we only display the gait pattern with the highest probability. The tree

shown in Figure 4.7 is partial and the fully tree is available at Appendix B.2.
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Figure 4.7: The Decision Tree to Predict Gait Patterns Given the Static

Data

hidden gait pattern 1 fall outside the normal area and are abnormal gaits.

Figure 4.8(c) shows that the representative gaits for hidden gait pattern 3 are

slightly above the normal area, which indicates these gaits are only slightly

abnormal. Most subjects displaying pattern 1 and some subjects displaying

pattern 3 would be susceptible to have surgery. By extracting the different

paths that lead to those two patterns from the decision tree in Figure 4.7, we

can infer what combinations of static data may have clinical implications.

4.5 Summary

This chapter presents a new probabilistic graphical model (i.e., CSDM) for

quantitatively discovering the correlated relationship between static physical

examination data and dynamic gait data in clinical gait analysis. To learn

the parameters of the CSDM on a training data set, we proposed an EM-
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Figure 4.8: Representative Gaits for Gait Pattern 1-4.

based algorithm. One of the main advantages of the CSDM is its ability

to provide intuitive knowledge. For example, the CSDM informs us what

kinds of static data will lead to what kinds of hidden gait patterns and

what the gaits look like for each hidden gait pattern. The experiments on

both synthetic and real-world data (excerpted from patient records at the

Royal Children’s Hospital, Melbourne) showed promising results in terms of

learning convergence, predictive performance and knowledge discovery.
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Chapter 5

The Joint Interest-social Model

With the development of web 2.0 sites, the user/user friendship networks

have become available as well as the user/item preference matrix. The above

data is inherently heterogeneous since it consists of two different data sources.

In order to jointly model the user/user networks and the user/item matrix,

this chapter proposes a probabilistic model, the joint interest-social model

(JISM). To be more specific, we represent each user with a latent interest

variable and a latent social variable, and each item with a latent interest

variable. The interactions are then determined by these latent variables.

Variational Bayes is employed to infer these latent variables and Variational

EM is applied to estimate the parameters of the model. We then use the

learned model to predict the missing ratings. The experimental results on

real-world data sets shows the proposed model outperforms other state-of-

the-art methods.

5.1 Introduction

As a subclass of information filtering system, recommendation systems typi-

cally provide each user with the ratings or preference that the user would give

to a list of items (such as music, books, or movies). Research on such systems

has been increasingly popular in both commercial and research community
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for the last decade. In academic communities, they have attracted many re-

searchers ranging from information retrieval (Herlocker, Konstan, Borchers &

Riedl 1999, Sarwar, Karypis, Konstan & Riedl 2001, Hofmann 2003), machine

learning (Mnih & Salakhutdinov 2007, Salakhutdinov & Mnih 2008, Rennie

& Srebro 2005) to data mining (Koren et al. 2009, Koren 2010). Meanwhile,

E-commerce websites, such as the DVD rental provider Netflix1 and the on-

line book retailer Amazon2 have deployed their own recommendation systems

(Shani & Gunawardana 2011). Collaborative filtering (CF) is the traditional

approach to item recommendation and usually have better performance than

other methods (Sarwar et al. 2001, Su & Khoshgoftaar 2009), such as neigh-

borhood methods (Herlocker et al. 1999, Koren et al. 2009). CF techniques

typically are based on latent factor models (Mnih & Salakhutdinov 2007,

Salakhutdinov & Mnih 2008, Koren et al. 2009) and use the user-item rating

matrix (i.e., preference matrix) to predict the missing values. Specifically,

items are recommended to a user based on other users with similar patterns

of selected items3.

Recently, web 2.0 web sites, such as Douban4, Last.fm5 and Fixster6, al-

low users to create their own friendship networks online as well as share the

ratings/preferences on items. This provides a new data source for analy-

sis and how to use the additional social networks data for recommendation

systems raises a new challenge. As mentioned before, popular CF-based rec-

ommendation systems only utilize the preference matrix for rating/preference

prediction and ignore the social interactions among users. These social rela-

tions, however, may reveal users’ preference as well and potentially improve

the accuracy of the item recommendation.

The item recommendation issue in the aforementioned socialized environ-

1www.Netflix.com
2www.amazon.com
3Please note that CF does not use the content of the items and utilizing the content of

items falls out the scope of this chapter.
4www.douban.com
5www.last.fm
6www.flixster.com
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ment, which terms as social recommendation (Ma et al. 2008, Xin, King, Deng

& Lyu 2009, Ma et al. 2011), has drawn a few attempts (Ma et al. 2008, Yang

et al. 2011). Almost of all of them are based on the Homophily assumption

(McPherson, Smith-Lovin & Cook 2001) that any pair of friends share the

same interest. Specifically, they use homogeneous interest latent factor space

to represent users and items. The user/item ratings (i.e., the elements of the

preference matrix) are determined by the interest latent factors of the cor-

responding user/item pairs; the user/user interactions (i.e., the edges of the

friendship networks) are similarly determined by the interest latent factors

of the corresponding user/user pairs.

However, as it is very intuitive to see the latent factor space of users are

heterogeneous. This is because there are not only interest latent factors but

also additional latent factors, such as social latent factors (e.g., working in

the same company), influence the user/user and user/item interactions. For

example, the user/item ratings may have social-bias, i.e., some community

may favor some type of items than others, which indicates these ratings are

not only determined by the interest latent factors. The situation is similar in

the user/user interactions. For instance, two users have friendship may not

only because of they have social connections, such as going to the same school,

but also because of the same interest thanks to the online web service. Thus,

on the basis of the above understanding, we can conclude that the user/user

and user/item interactions are not independent and can be connected by the

underlying latent factors and these interactions need to be jointly modeled

for predicting missing ratings.

With the above thoughts in mind, we develop a probabilistic graphical

model for jointly modeling the rating matrix and friendship networks in an

unified model, which can be further used to predict missing ratings (i.e., rec-

ommendation). Different to most of current research that assumes one homo-

geneous interest latent factor space, our model represents users with hetero-

geneous latent factors, i.e., interest and social factors. These latent factors

are governed by some parameters and determine the generation of user/item
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and user/user interactions. We develop a variational EM (Bishop 2006) algo-

rithm to learn parameters and approximately infer the posterior distribution

of the latent factors given the parameters. The inferred posteriors of latent

factors are then used to predict missing ratings.

We tested our algorithm on three real-world data sets, Lastfm, Douban

and Flixster, which are crawled from three popular web 2.0 web sites. From

the perspective of data size, these three data sets represent relatively small,

medium and large sample sizes. Our proposed model generally has better

performance on all of the data sets when withholding some of each user’s

ratings for prediction. Another advantage of our algorithm is its ability to

predict a user’s ratings with only his/her friendship networks, which tradi-

tional CF-based methods fail to provide. The experimental results prove

the feasibility of our algorithm on predicting one user’s ratings without any

ratings for training in a socialized environment.

5.2 Problem Statement

5.2.1 An Illustrative Example

Here we recall the toy example described in Figure 1.1. The problem we

study here is to predict the missing ratings (those represented by ‘?’) of the

user/item matrix with additional friendship networks. In terms of available

ratings, the problem can be divided into two types of tasks: in-matrix pre-

diction and out-of-matrix prediction. In-matrix prediction refers to the task

of making rating prediction for those users that at least have one rating on

items. As shown in Figure 1.1(b), predicting the missing ratings of Sophia,

Harry and Emma is the task of in-matrix prediction. This is the task that

traditional CF-based techniques focus on. Out-of-matrix prediction refers to

the task of making rating prediction for those users have no available ratings.

This is one type of cold start problems (Shani & Gunawardana 2011). As

shown in Figure 1.1(b), predicting the missing ratings of Jack and Oliver is

the task of out-of-matrix prediction. Traditional CF-based algorithms cannot
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make generalized predictions for the task of out-of-matrix prediction. This

is due to the usage of the user/item rating matrix alone. The preference

of the users who have no rating cannot be inferred. However, the utiliza-

tion of the additional friendship networks sheds new light on the task of the

out-of-matrix prediction, which is one of advantages of our proposed model

compared to the other CF-based algorithms.

5.2.2 Problem Formalization

The social recommendation problem we study can be formally described

below:

Definition 1 Suppose there are N users and M items, given a rating matrix

R whose element rij is user i’s rating on item j, friendship networks E whose

element eii′ indicates the friendship of user i and user i
′
, and given some

known elements of R, how to infer the values of the remaining elements of

R? This task can be further divided as following:

• In-matrix prediction: For user i and at least one element of ri,1:M is

known, predicting the other missing values of user i.

• Out-of-matrix prediction: For user i and no element of ri,1:M is known,

predicting all the missing values of user i.

5.3 The Joint Interest-social Model (JISM)

Our model represents users with heterogeneous latent factors, i.e., interest

and social factors, and items with interest latent factor. These latent factors

are conditionally i.i.d (Blei et al. 2003) and governed by the same parame-

ters of the whole data set. The interest and social latent factors of users, the

interest latent factors of items and the social bias parameter jointly deter-

mine the generation of user/item ratings. Similarly, the interest and social

latent factors of users and link formation parameters control the generating

of user/user interactions. Formally, the generative process is as following:
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1. Generate parameters P .

2. For each user i (1 ≤ i ≤ N),

(a) Generate ui ∼ N (μ1,Σ1).

(b) Generate wi ∼ N (μ3,Σ3)

3. For each item j, generate vj ∼ N (μ2,Σ2) (1 ≤ j ≤M).

4. For each non-missing entry (i, j) in R, generate rij ∼ N (uT
i vj +

wT
i Bvj, τ) (1 ≤ i ≤ N and 1 ≤ j ≤M).

5. For each non-missing entry (i, i
′
) in E, generate

eii′ ∼ Bernoulli(σ(t1u
T
i ui

′ + t2w
T
i wi

′ + t3)) (1 ≤ i, i
′ ≤ N and i �= i

′
),

where σ is sigmoid function, i.e. σ(x) = 1/(1 + exp(−x)).
For quick reference, the notations used in the JISM is listed in Table 5.17.

For visualization of the proposed model, we plot the graphical model of the

JISM in Figure 5.1 and We use conventional notation to represent the graph-

ical model (Bishop 2006). To be more specific, each open circle represents

a random variable (or group of random variables) and smaller solid circles

denote deterministic parameters, and the directed links express probabilistic

causal relationships between these variables. For multiple variables that are

of the same kind, we draw a single representative node and then surround

this with a plate, labeled with a number indicating that there are many

such kinds of nodes. Finally, we denote observed variables by shading the

corresponding open circles.

5.4 Learning and Prediction

5.4.1 Variational EM Learning

The goal of learning is to estimate the model parameters

P = {μ1,μ2,μ3,Σ1,Σ2,Σ3,B,μτ , t}. Direct maximum likelihood estima-

7ξ, E and R are sparse.
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Figure 5.1: The Graphical Model of the JISM.

tion is very difficult since involvement of latent variables. Thus, we apply the

variational EM framework (Bishop 2006), which consists of E and M steps

and iterates between them, to learn the parameters. Specifically, the E step,

known as variational inference (Jordan et al. 1999), fixes the parameters and

approximately infer the posteriors of the latent variables; while the M step

fixed the approximate posteriors of the latent variables and estimate the pa-

rameters. This framework, however, cannot be applied directly here since

the JISM is non-conjugate and it is difficult to directly derives an analytic

objective function. Thus, in the following, Section 6.3.1 first derives an ana-

lytic lower bound of the log-likelihood as the objective function, Section 5.4.1

and Section Estep then describe the implementation of the variational EM

algorithm based on the derived objective function.
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The Objective Function

Lemma 5.4.1.1 The Log-likelihood of the observed data is bounded by the

following inequality:

log p(R,E|P) ≥Eq[log p(u1:N ,v1:M ,w1:N , R, E|P)]− Eq[q(u1:N ,v1:M ,w1:N |P′)]
=L0

(5.1)

where q is the variational approximation to p(u1:N ,v1:M ,w1:N |P , R,E), given

by

q(u1:N ,v1:M ,w1:N |P , R,E) =
N∏
i=1

q(ui|λ1i, diag(ν
2
1i))q(wi|λ3i, diag(ν

2
3i))

M∏
j=1

q(vj|λ2j, diag(ν
2
2j))

(5.2)

P ′ = {λ1i, diag(ν
2
1i),λ2j, diag(ν

2
2j),λ3i, diag(ν

2
3i)} is variational parameters

of the Gaussian posterior distributions.

Then, we have

Corollary 5.4.1.1 The Lower bound L0 can be expanded as:

Eq[
N∑
i=1

log p(ui|μ1,Σ1)] + Eq[
M∑
j=1

log p(vj|μ2,Σ2)] + Eq[
N∑
i=1

log p(wi|μ3,Σ3)]

+Eq[
N∑
i=1

M∑
j=1

δij log p(rij|uT
i vj +wT

i Bvj, τ )]

+Eq[
N∑
i=1

N∑
i′=1

δii′ log p(eii′ |uT
i ui

′ +wT
i wi

′ , t)]

−Eq[
N∑
i=1

log q(ui|λ1i, diag(ν
2
1i))]− Eq[

M∑
j=1

log q(vj|λ2j, diag(ν
2
2j))]

−Eq[
N∑
i=1

log q(wi|λ3i, diag(ν
2
3i))]

(5.3)
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Since we have the following lemmas:

Lemma 5.4.1.2 The analytic expansion f4 of the fourth item of L0, i.e.,

Eq[
∑N

i=1

∑M
j=1 δij log p(rij|uT

i vj +wT
i Bvj, τ)], is:

f4 =(−K

2
ln 2π − 1

2
ln |τ 2|)

N∑
i=1

M∑
j=1

δij

− 1

2τ 2

N∑
i=1

M∑
j=1

δij[r
2
ij − 2rij(λ

T
1iλ2j + λT

3iBλ2j)

+tr(diag(ν2
1i)diag(ν

2
2j)) + λT

1idiag(ν
2
2j)λ1i

+λT
2jdiag(ν

2
1i)λ2j + λT

1iλ2jλ
T
2jλ1i

+tr(diag(ν2
3i)Bdiag(ν2

2j)B
T ) + λT

3iBdiag(ν2
2j)B

Tλ3i

+λT
2jB

Tdiag(ν2
3i)Bλ2j + λT

3iBλ2jλ
T
2jB

Tλ3i

+λT
3iBdiag(ν2

2j)λ1i + λT
3iBλ2jλ

T
2jλ1i

+λT
1idiag(ν

2
2j)B

Tλ3i + λT
1iλ2jλ

T
2jB

Tλ3i]

(5.4)

Lemma 5.4.1.3 The analytic lower bounder f5 of the fifth item of L0, i.e.,

Eq[
∑N

i=1

∑N
i′=1 δii′ log p(eii′ |uT

i ui′ +wT
i wi′ , t)], is:

f5 =
N∑
i=1

N∑
i′=i+1

δii′ [log σ(ξii′ ) +
f51 − ξii′

2
+ g(ξii′ )f52 − g(ξii′ )ξ

2
ii′ ] (5.5)

where f51 = t1λ
T
1iλ1i′ + t2λ

T
3iλ3i′ + t3 and f52 = t21(tr(diag(ν

2
1i)diag(ν

2
1i
′ )) +

λT
1idiag(ν

2
1i
′ )λ1i+λT

1i
′diag(ν2

1i)λ1i′+λT
1iλ1i′λ

T
1i
′λ1i)+t22(tr(diag(ν

2
3i)diag(ν

2
3i
′ ))+

λT
3idiag(ν

2
3i
′ )λ3i+λT

3i
′diag(ν2

3i)λ3i′+λT
3iλ3i′λ

T
3i
′λ3i)+t23+2t1t2λ

T
1iλ1i′λ

T
3iλ3i′+

2t1t3λ
T
1iλ1i′ + 2t2t3λ

T
3iλ3i′ .

Then using the above lemmas we can obtain:

Theorem 5.4.1.1 The analytic lower bound of L0 is:

L =
5∑

i=1

fi −
3∑

j=1

f
′
j (5.6)
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where

f1 =Eq[
N∑
i=1

log p(ui|μ1,Σ1)]

=− KN

2
ln 2π − N

2
ln |Σ1|

−1

2

N∑
i=1

[tr(diag(ν2
1i)Σ

−1
1 ) + (λ1i − μ1)

TΣ−11 (λ1i − μ1)]

(5.7)

f2 =Eq[
M∑
j=1

log p(vj|μ2,Σ2)]

=− KN

2
ln 2π − N

2
ln |Σ2|

−1

2

M∑
j=1

[tr(diag(ν2
2j)Σ

−1
2 ) + (λ2j − μ2)

TΣ−12 (λ2j − μ2)]

(5.8)

f3 =Eq[
N∑
i=1

log p(wi|μ3,Σ3)]

=− KN

2
ln 2π − N

2
ln |Σ3|

−1

2

N∑
i=1

[tr(diag(ν2
3i)Σ

−1
3 ) + (λ3i − μ3)

TΣ−13 (λ3i − μ3)]

(5.9)

f
′
1 =Eq[

N∑
i=1

log q(ui|λ1i, diag(ν
2
1i))]

=− KN

2
(ln 2π + 1)− 1

2

N∑
i=1

log |diag(ν2
1i)|

(5.10)

f
′
2 =Eq[

M∑
j=1

log q(vj|λ2j, diag(ν
2
2j))]

=− KM

2
(ln 2π + 1)− 1

2

M∑
j=1

log |diag(ν2
2j)|

(5.11)
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f
′
3 =Eq[

N∑
i=1

log q(wi|λ3i, diag(ν
2
3i))]

=− KN

2
(ln 2π + 1)− 1

2

N∑
i=1

log |diag(ν2
3i)|

(5.12)

f4 and f5 are shown in Equation 5.4 and 5.5.

E step: Variational Inference

Fix the parameters P , we can update the variational parameters by optimiz-

ing the derived lower bound.

Proposition 5.4.1.1 To optimize of the lower bound L, the updating for-

mula for λ1i, λ3i, diag(ν
2
1i), diag(ν

2
3i), ξ, λ2j and diag(ν2

2j) are as follows:

λT
1i =(μT

1Σ
−1
1 +

1

τ 2

M∑
j=1

δij(rijλ
T
2j − λT

3iB(diag(ν2
2j) + λ2jλ

T
2j))

+
N∑

i
′
=1,�=i

δii′ ((
1

2
t1 + 2g(ξii′ )t1t3 + 2g(ξii′ )t1t2λ

T
3i
′λ3i)λ

T
1i
′ ))

(Σ−11 +
1

τ 2

M∑
j=1

δij(λ2jλ
T
2j + diag(ν2

2j))

−
N∑

i
′
=1,�=i

δii′ (2g(ξii′ )t
2
1(λ1i′λ

T
1i
′ + diag(ν2

1i
′ ))))−1

(5.13)
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λT
3i =(μT

3Σ
−1
3 +

1

τ 2

M∑
j=1

δij(rijλ
T
2jB

T − λT
1i(diag(ν

2
2j) + λ2jλ

T
2j)B

T )

+
N∑

i
′
=1,�=i

δii′ ((
1

2
t2 + 2g(ξii′ )t2t3 + 2g(ξii′ )t1t2λ

T
1i′λ1i)λ

T
3i′ ))

(Σ−13 +
1

τ 2

M∑
j=1

δij(Bλ2jλ
T
2jB

T +Bdiag(ν2
2j)B

T )

−
N∑

i
′
=1,�=i

δii′ (2g(ξii′ )t
2
2(λ3i′λ

T
3i
′ + diag(ν2

3i
′ ))))−1

(5.14)

diag(ν2
1i) =(Σ−11 +

1

τ 2

M∑
j=1

δij(λ2jλ
T
2j + diag(ν2

2j))

−
N∑

i
′
=1,�=i

δii′ (2g(ξii′ )t
2
1(λ1i′λ

T
1i
′ + diag(ν2

1i
′ ))))−1

(5.15)

diag(ν2
3i) =(Σ−13 +

1

τ 2

M∑
j=1

δij(Bλ2jλ
T
2jB

T +Bdiag(ν2
2j)B

T )

−
N∑

i
′
=1, �=i

δii′ (2g(ξii′ )t
2
2(λ3i′λ

T
3i
′ + diag(ν2

3i
′ ))))−1

(5.16)

ξii′ = (f52)
1
2 (5.17)

λT
2j =(μT

2Σ
−1
2 +

1

τ 2

N∑
i=1

δijrij(λ
T
1i + λT

3iB))

(Σ−12 +
1

τ 2

N∑
i=1

δij(λ1iλ
T
1i + diag(ν2

1i) +BTλ3iλ
T
3iB+BTdiag(ν2

3i)B

+BTλ3iλ
T
1i + λ1iλ

T
3iB))−1

(5.18)
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Procedure Estep(P , E, R)

input : The parameters P , friendship network E and preference

network R.

output: The variational parameters P ′

1 Initialize λ1,i, λ3,i, ν1,i and ν3,i for all i;

2 Initialize λ2,j and ν2,j for j;

3 Initialize ξ;

4 repeat

5 Update λ1,i according to Equation 5.13;

6 Update λ3,i according to Equation 5.14;

7 Update ν1,i according to Equation 5.15;

8 Update ν3,i according to Equation 5.16;

9 Update ξ according to Equation 5.17;

10 Update λ2,j according to Equation 5.18;

11 Update ν2,j according to Equation 5.19;

12 until convergence;

13 P ′ ← λ1,1:N , λ3,1:N , ν1,1:N , ν3,1:N , λ2,1:M , ν2,1:M , ξ;

diag(ν2
2j) =(Σ−12 +

1

τ 2

N∑
i=1

δij(λ1iλ
T
1i + diag(ν2

1i) +BTλ3iλ
T
3iB

+BTdiag(ν2
3i)B+BTλ3iλ

T
1i + λ1iλ

T
3iB))−1

(5.19)

M step: Parameter Estimation

Proposition 5.4.1.2 To optimize of the lower bound L, the updating for-

mula for μ1:3, Σ1:3, B, t and τ 2 is as follows:

μ1 =
1

N

N∑
i=1

λ1i (5.20)

μ2 =
1

N

M∑
j=1

λ2j (5.21)
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μ3 =
1

N

N∑
i=1

λ3i (5.22)

Σ1 =
1

N

N∑
i=1

[diag(ν2
1i) + (λ1i − μ1)(λ1i − μ1)

T ] (5.23)

Σ2 =
1

M

M∑
j=1

[diag(ν2
2j) + (λ2j − μ2)(λ2j − μ2)

T ] (5.24)

Σ3 =
1

N

N∑
i=1

[diag(ν2
3i) + (λ3i − μ3)(λ3i − μ3)

T ] (5.25)

BT =(
N∑
i=1

M∑
j=1

δij(diag(ν
2
2j) + λ2jλ

T
2j))

−1

(
N∑
i=1

M∑
j=1

δij(λ2jrijλ
T
3i − ((diag(ν2

2j) + λ2jλ
T
2j)λ1iλ

T
3i)))

(
N∑
i=1

M∑
j=1

δij(diag(ν
2
3i) + λ3iλ

T
3i))

−1

(5.26)

t1 =− (
N∑
i=1

N∑
i
′
=i+1

δii′g(ξii′ )(2t2λ
T
1iλ1i′λ

T
3iλ3i′ + 2t3λ

T
1iλ1i′ ))

(
N∑
i=1

N∑
i
′
=i+1

δii′ (
1

2
λT

1iλ1i′ + 2g(ξii′ )(tr(diag(ν
2
1i)diag(ν

2
1i
′ ))

+ λT
1idiag(ν

2
1i
′ )λ1i + λT

1i
′diag(ν2

1i)λ1i′ + λT
1iλ1i′λ

T
1i
′λ1i)))

−1

(5.27)

t2 =− (
N∑
i=1

N∑
i′=i+1

δii′g(ξii′ )(2t1λ
T
1iλ1i

′λT
3iλ3i

′ + 2t3λ
T
3iλ3i

′ ))

(
N∑
i=1

N∑
i′=i+1

δii′ (
1

2
λT

3iλ3i
′ + 2g(ξii′ )(tr(diag(ν

2
3i)diag(ν

2
3i′ ))

+ λT
3idiag(ν

2
3i′ )λ3i + λT

3i′diag(ν
2
3i)λ3i

′ + λT
3iλ3i

′λT
3i′λ3i)))

−1

(5.28)
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Algorithm 5.1: The Learning Algorithm for the JISM.

Input : An initial setting for the parameters P
Output: Learned parameters P∗

1 while the convergence criterion is not satisfied do

// E-step

2 P ′ ← Estep(P, E, R);

// M-step

3 Update P according to Equation 5.20-5.30;

4 end

5 P∗ ← P ;

t3 =− (
N∑
i=1

N∑
i
′
=i+1

δii′g(ξii′ )(2t1λ
T
1iλ1i′ + 2t2λ

T
3iλ3i′ ))

(
N∑
i=1

N∑
i
′
=i+1

δii′ (
1

2
+ 2g(ξii′ )))

−1
(5.29)

τ 2 =
1∑N

i=1

∑M
j=1 δij

N∑
i=1

M∑
j=1

δij[r
2
ij − 2rij(λ

T
1iλ2j + λT

3iBλ2j)

+tr(diag(ν2
1i)diag(ν

2
2j)) + λT

1idiag(ν
2
2j)λ1i

+λT
2jdiag(ν

2
1i)λ2j + λT

1iλ2jλ
T
2jλ1i

+tr(diag(ν2
3i)Bdiag(ν2

2j)B
T ) + λT

3iBdiag(ν2
2j)B

Tλ3i

+λT
2jB

Tdiag(ν2
3i)Bλ2j + λT

3iBλ2jλ
T
2jB

Tλ3i

+λT
3iBdiag(ν2

2j)λ1i + λT
3iBλ2jλ

T
2jλ1i

+λT
1idiag(ν

2
2j)B

Tλ3i + λT
1iλ2jλ

T
2jB

Tλ3i]

(5.30)

Summary of the Learning Algorithm

For clarity, Algorithm 5.1 summarizes the process of learning the JISM.
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5.4.2 Preference Prediction

In-matrix Prediction

For prediction of the (i, j)th entry rij in the test data set, we first calculate

the predictive distribution p(rij|R,P∗) as following:

p(rij|R,P∗) =
∫ ∫ ∫

p(rij,ui,vj,wi|R,P∗)duidvjdwi

=

∫ ∫ ∫
p(ui,vj,wi|R,P∗)p(rij|ui,vj,wi,R,P∗)duidvjdwi

=

∫ ∫ ∫
p(ui,vj,wi|R,P∗)p(rij|ui,vj,wi)duidvjdwi

≈
∫ ∫ ∫

q(ui|λ1i)q(vj|λ2j)q(wi|λ3i)p(rij|ui,vj,wi)duidvjdwi

Then we use the expectation of rij with respect to its posterior p(rij|R,P∗)
as the prediction:

r̂ij =

∫ ∫ ∫ ∫
p(rij|R,P∗)rijduidvjdwidrij

=

∫ ∫ ∫
q(ui|λ1i)q(vj|λ2j)q(wi|λ3i)(u

T
i vj +wT

i Bvj)duidvjdwi

=λT
1iλ2j + λT

3iBλ2j

Out-of-matrix Prediction

The well-known cold start problem on new users (Shani & Gunawardana

2011). The preference prediction process is similar to in-matrix prediction,

except that dropping the items with ξ and t of the updating formulas, E-

quation 5.13 and 5.17 and no updating λ2j, ν2j and ξ, for the out-of-matrix

friendship prediction.

Summary of the Prediction Algorithm

For clarity, Algorithm 5.2 summarizes the algorithm for missing ratings pre-

diction by using the JISM.
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Algorithm 5.2: The Prediction Algorithm for the JISM.

Input : Learned parameters P∗
Output: Predicted Ratings R

′

// Variational Inference

1 P ′ ← Estep(P∗, E, R);

// Prediction

2 Predict the elements of R
′
according to Equation 5.31;

5.4.3 Discussions

The computational complexity for the E-step is proportional to O((K +Q+

Q2 +K2)(NR +NE))TE, where K is the number of hidden states, TE is the

iteration number of E-step, NE is the number of non-missing values in E and

NR is the number of non-missing values in R. Similarly, The computational

complexity for the E-step is proportional to O((K + K2)(N + M) + (Q +

Q2)N . An alternative methods for learning and inference in non-conjugate

probabilistic model are numerical algorithms, such as Markov chain Monte

Carlo (MCMC). However, in practical, they are relatively too slow to analyze

large data sets (Gershman, Hoffman & Blei 2012).

5.5 Empirical Studies

In this section, we apply the proposed JISM in several real-world data sets.

All algorithms were implemented in matlab8 and performed on a 2.9GHz

20MB L3 Cache Intel Xeon E5-2690 (8 Cores) cluster node with 32GB

1600MHz ECC DDR3-RAM (Quad Channel), running on a Red Hat En-

terprise Linux 6.2 (64bit) operating system.

8The code will be made publicly available on http-

s://sites.google.com/site/yinsong1986/codes soon.
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5.5.1 Data Sets

We use three public available real-world data sets: Lastfm, Douban and

Flixster, which are crawled from the internet. To be specific, Lastfm9 has

1892 users, 17632 artists (i.e., items), 92834 user/artist listen weights and

12717 user/user friendship relations; Douban10 has 129, 490 users, 58, 541

movies (i.e., items), 16, 830, 839 user/movie ratings and 855, 901 user/user

friendship relations; Flixster11 has 787, 210 users, 48, 794 movies, 8, 196, 077

user/movie ratings and 5, 897,316 user/user friendship relations.

5.5.2 Evaluation Metrics

We use two metrics, the Root Mean Square Error (RMSE) and the Mean

Absolute Error (MAE), to measure the prediction accuracy. The metric

RSME is defined as:

RSME =

√∑
i,j(rij − r̂ij)2

N
(5.31)

The metric RSME is defined as:

MAE =

∑
i,j |rij − r̂ij|

N
(5.32)

where rij denotes the rating user i gave to item j, r̂ij denotes the rating user

i gave to item j as predicted, and N denotes the number of tested ratings.

From the above definitions, it is obvious that a smaller RSME or MAE means

a better performance.

5.5.3 Comparison with State-of-the-art Methods

In this section, to demonstrate the effectiveness of our proposed JISM, we

compare its performance with the following methods:

9Available at www.grouplens.org/node/462.
10Available at www.cse.cuhk.edu.hk/irwin.king/pub/data/douban.
11Available at www.cs.sfu.ca/ sja25/personal/datasets/.
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• RANDOM: this algorithm uses random numbers to predict the missing

ratings.

• ItemMean: this algorithm uses the mean value of ratings on each item

to predict the missing ratings.

• UserMean: this algorithm uses the mean value of each user’s ratings to

predict the missing ratings.

• FriendMean: this algorithm uses the mean value of each user’s friends’

ratings on each item to predict the missing ratings.

• PMF12: this algorithm is proposed by Minh and Salakhutdinov (Mnih

& Salakhutdinov 2007) and only uses user/item matrix for prediction.

• SocRec13: this algorithm is proposed by (Ma et al. 2008) and uses both

the user/item matrix and the user/user networks.

In-matrix Prediction

We use 5-fold cross-validation. Specifically, for users who have more than 5

ratings, we evenly split their user/item ratings into 5 folds. We iteratively

consider each fold to be a test set and the others to be the training set.

We use different numbers (i.e., 4, 3 and 2) of folds to form the training

set, which mean approximately 80%, 60% and 40% of the data is used for

training, respectively. For users who have less than 5 ratings, we always put

them into the training set. In addition, the friendship networks are available

during the training process. Through this way, we guarantee the users in the

test set always have ratings in the training set and is exactly the scenario for

in-matrix prediction.

Figure 5.2-5.4 show the performance (i.e., the RSME and MAE) of SocRec

and JISM (with Q = 5, 10, 15, respectively) by varying the number of latent

12Source code is available at http://www.utstat.toronto.edu/ rsalakhu/BPMF.html
13This algorithm can be generalized to the FIP model (Yang et al. 2011).
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factors K on the LastFM dataset. We do not show other comparative meth-

ods since their performance are much more worse than the SocRec and JISM

methods. This provides a positive signal that the friendship networks can

indeed improve the recommendation accuracy, since the SocRec and JISM

algorithms use both the user/item matrix and the user/user networks while

others do not. As can be seen from the chart, the proposed JISM generally

outperforms the SocRec method on almost all cases. This is reasonable be-

cause the JISM models a heterogeneous latent factor space of users, which

may better simulate the true behavior of rating generation. In addition,

we can observe from Figure 5.2-5.4 that the RMSE/MAE usually converges

at K = 25 and the increasing of Q does not always decrease the value of

RMSE/MAE. Thus, we need to choose proper Q for model selection. Other

data sets have similar observations and we omit them for conciseness.

To comprehensively compare the performance on the methods, we pro-

vide the detailed experimental results shown in Table 5.2 and we choose

K = 25 and Q = 10. As shown in Table 5.2, our proposed JISM generally

outperforms the other methods on all the three data sets. To further validate

the statistical significance of our experiments, we also perform the paired t-

test (2-tail) between JISM, SocRec and other models on the experimental

results. The p-level of t-tests is always smaller than 0.01, which proves the

improvements of JISM over other models are statistically significant.

Out-of-matrix Prediction

We also use 5-fold cross validation. We evenly group all the users into 5 folds.

For each fold, we train the model by the ratings of these out-of-fold users and

all the friendship networks, and then predict the ratings for each user in the

fold. Through this way, we guarantee the users in the test set always have

no rating in the training set and is exactly the scenario for out-of-matrix

prediction.

Table 5.3 shows the detailed experimental results when K = 15 and

Q = 10. The PMF and UserItem are excluded from the table since they
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Figure 5.2: Comparison of In-matrix Performance for the Flixster Dataset

by Using 40% As Training Data.

cannot generalized for out-of-matrix prediction. Although the performance

our proposed JISM is better than other methods on the LastFM and Douban

97



CHAPTER 5. THE JOINT INTEREST-SOCIAL MODEL

5 10 15 20 25
0.876

0.878

0.88

0.882

0.884

0.886

0.888

0.89

0.892

0.894

0.896

Number of Latent Factors

R
S

M
E

SocRec
JISM−Q5
JISM−Q10
JISM−Q15
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Figure 5.3: Comparison of In-matrix Performance for the Flixster Dataset

by Using 60% As Training Data.

dataset, it is worse than that of the ItemMean method on the Flixster dataset.

It is surprising on the first look, but a carefully look on the trained model
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Figure 5.4: Comparison of In-matrix Performance for the Flixster Dataset

by Using 80% As Training Data.

leads the conclusion that the friendship networks are too noisy to utilize

without the ratings on the Flixster data set. This is further analyzed in
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Section 5.5.5.

5.5.4 Performance Study on Varying the Properties of

Users

We also study the relationship between recommendation performance and

properties of the users for the proposed JISM. Figure 5.5(a) and 5.5(b)

show how the RSME/MAE for in-matrix prediction varies as a function of

the number of ratings of one user. Figure 5.5(a) and 5.5(b) show how the

RSME/MAE varies as a function of the number of one user’s friends. As can

be seen from Figure 5.5(a) and 5.5(b), users with more ratings tend to have

less variance in term of RSME/MAE performance. By contrast, users with

few ratings tend to have a diverse RMSE/MAE performance. Another im-

portant finding is that the RSME/MAE tends to decrease with the increase

of the rating number, which is because more ratings provide more sufficient

data for training. Similar trends are also found in Figure 5.5(a) and 5.5(b).

Other data sets and the out-of-matrix prediction task have similar obser-

vation on the above studies, and we omit the details here for conciseness.

5.5.5 Visualization of Some Interesting results

We now turn to an exploratory analysis of our results on the JISM model.

Interest/Social Similarity Contributions

It is interesting to examine how interest latent factor and social latent factor

contribute to the formation of friendships. We define The Interest/Social

Contribution as the ratio of |t1|
|t1|+|t2| of the JISM trained on all the data. From

its definition, we can see a higher value means a higher contribution of interest

latent factor on the formation of the friendships. Figure 5.7 shows the the

Interest/Social contribution for different number of latent factors on the three

data sets. As can be seen from the picture, the Interest/Social contribution is
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Figure 5.5: In-matrix Prediction Performance Study against # of Ratings on

the Douban Dataset.
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Figure 5.6: In-matrix Prediction Performance Study against # of Links on

the Douban Dataset.
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highest on the LastFM data set and this indicates the friendships within this

data set is highly correlated to users’ interest. The other two data sets have

lower Interest/Soical contribution, which indicates the friendships formed

there are more caused by extern social affiliation rather than interest. The

lowest Interest/Soical contribution on the Flixster data set also supports the

results reported in Section 5.5.3, since the friendship networks reveal little

information on users’ interest and the noise may influence the learning of the

JISM.

Grouping of Similar Items Based on the Latent Interest Factors

It is also interesting to examine how to group the items by the learned JISM.

Because the JISM assigns each item an latent vector, i.e., λ2j (1 ≤ j ≤ M),

each dimension of which is a natural grouping indicator, we can list the top

items with the greatest values on each dimension as naturally grouping of

these items. Since the Douban and Flixster data sets are anonymous, we

only plot the result on the LastFM data set. We randomly plot top 4 items

for 4 dimensions out of 25 dimensions (i.e., the JISM is trained on the setting

of K = 25). The results are shown in Figure 5.8. It is notable that some

famous singers/bands, such as beatles and Britney Spears are top listed in

many dimension. This is good explanation for why they are popular because

they can attract users with different interest at the same time.

5.6 Summary

We proposed a probabilistic model for the social recommendation problem

by using both preference matrix and friendship networks. Our study showed

that this algorithm outperforms the traditional CF-based methods and other

social recommendation methods. In addition, our model can provide some

qualitative impression on the data set. For example, we can calculate the

Interest/Social contribution to see the friendship formation is more caused

by the interest or social factors.
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Figure 5.7: The Interest/Social Contribution for different # of Latent Factors

and Data sets.
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Figure 5.8: The Clustering of Artists.
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Chapter 6

Enhance the Sequence

Anomaly Detection

In certain scenarios, purely BNs-based modeling of the heterogeneous data

may fail to provide a well result on predictive tasks due to the inaccurate

estimation of parameters, which is commonly seen in latent variable models

(Jaakkola & Haussler 1999, Tsuda, Kawanabe & Muller 2002). Thus, to over-

come the above problem, this chapter presents a novel hybrid framework of

combining BNs-based models and discriminative classifiers to detect abnor-

mal sequences in an one-class setting (i.e., only normal data are available),

which is applicable to various domains. Examples include intrusion detec-

tion, fault detection and speaker verification. Detecting abnormal sequences

with only normal data presents several challenges for anomaly detection: the

weak discrimination of normal and abnormal sequences; the unavailability

of the abnormal data and other issues. Traditional model-based anomaly

detection techniques (Chandola, Banerjee & Kumar 2009) can solve some of

the above issues but with limited discrimination power (because of directly

modeling the normal data). In order to enhance the discriminative power for

anomaly detection, we try to extract discriminative features from generative

models based on some theoretical analysis, and develop a new anomaly de-

tection framework on top of the feature extractor. The proposed approach
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firstly projects all the sequential data into a model-based equal length feature

space (this is theoretically proven to have better discriminative power than

the model itself) , and then adopts a classifier learned from the transformed

data to detect anomalies. Experimental evaluation on both the synthetic

and real-world data shows that our proposed approach outperforms several

anomaly detection baseline algorithms for sequential data.

6.1 Introduction

Anomaly detection has traditionally been an important part of behavior anal-

ysis, whose aim is to find abnormal patterns in data that do not conform

to expected (normal) behavior (Chandola, Banerjee & Kumar 2009). Most

of the traditional anomaly detection techniques focus on static behavioral

records or transactional data (Barnett & Lewis 1994). But in many real life

scenarios, behaviors are dynamic and naturally organized as sequential data

and the target of anomaly detection is collections of behaviors other than

individual ones. One such example could be seen in intrusion detection for

the operating system, i.e., to detect malicious programs (processes) from the

normal execution processes. Each process (program) is denoted by its trace,

which is a sequence of system calls used by that process from the beginning

of its execution to the end. Table 6.1 shows three example programs in which

normal and malicious ones are mixed (Chandola, Banerjee & Kumar 2009).

Each row records the sequential system calls (e.g., read and open) of one

program. Another example could be found in detecting abnormal Electro-

cardiogram (ECG) signals. ECG signals record the dynamic behaviors of the

heart over a period of time, which could be further utilized to characterize

the heart’s condition. Figure 6.1(a) depicts two sampled ECG signals, one of

which is from a healthy heart (i.e., normal) and the other is from an attacked

heart (i.e., abnormal). From the above examples, we can intuitively find two

things: firstly, these sequences are characterized by their dynamics; second-

ly, the normal and abnormal sequences are very similar by their appearance.
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Table 6.1: Some Sample Data of Operating System Call Traces.

open read mmap mmap open read · · ·
open mmap mmap read open · · · · · ·
open close open close open mmap · · ·

For the purpose of detecting these abnormal sequential behaviors, we should

consider the dynamic characteristics of sequential data, which is differen-

t from anomaly detection in static data. Another challenging issue is how

to discriminate these abnormal dynamic behaviors from highly resemblant

normal behaviors.

The above scenarios form a challenging issue, that is to detect abnormal

behavioral sequences (which highly resemble normal behavioral sequences)

in a set of sequences. To be more precise, the problem we will explore in this

chapter can be formally stated as follows:

Definition 2 Given a set of n training normal sequences, X tr, and a set of

m test sequences X te, find a set of abnormal sequences X a ⊂ X te.

The key challenges of the above problem are listed in the following: First-

ly, the sequences are quite dynamic, which is not intuitive to capture. Sec-

ondly, the abnormal sequences are usually highly similar to the normal ones

in nature. This can be seen from Table 6.1 and Figure 6.1(a). In addi-

tion, other related issues with anomaly detection for sequential data include

variable lengths of sequences, and imbalance betweens normal and abnormal

data (i.e., one-class mode in this chapter).

Hence, we propose a novel anomaly detection framework to deal with

the issue of limited discriminative power in the traditional model-based ap-

proaches. The main contributions of this chapter are listed as follows:

• Based on the analysis of Bayes error, we provide the theoretical prin-

ciple of extracting discriminative features for one-class anomaly detec-

tion.
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Figure 6.1: (a) Some Sampled Signals from the ECG Data Set. (b) Some

Sample Sequences from the Synthetic Data Set.

• A flexible three-phase implementation framework is proposed: Phase 1

extracts discriminative features from the sequences based on the afore-

mentioned theoretical feature extractor principle; Phase 2 learns a dis-

criminative classifier (e.g., SVM) on this new feature space; Phase 3

applies the learned classifier to detect fraudulent sequences.
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• Intensive experiments done on several synthetic and real-world data

sets empirically demonstrate the effectiveness of the proposed approach

compared to other existing baseline anomaly detection techniques.

The remainder of this chapter is organized as follows. Section 6.2 reviews

the existing model-based anomaly detection and discusses its limitations,

followed by theoretical analysis for enhancing the discriminative power for

anomaly detection in Section 6.3. Section 6.4 proposes an implementation

framework based on the theoretical analysis. After that, Section 6.5 and

6.6 describe empirical results on both synthetic and real-world data sets.

Section 6.7 summarizes this chapter.

6.2 Model-based Anomaly Detection and Its

Limitations

In this part, we briefly review the commonly-used model-based framework to

handle one-class anomaly detection for sequential data (Joshi & Phoha 2005,

Warrender et al. 1999, Cao et al. 2010) and point out its limitation from the

theoretical perspective.

6.2.1 The Anomaly Detection Algorithm

The goal of sequence anomaly detection is to take an input sequence x and

assign it to two discrete classes y where y = 1,−1 (1 denotes normal class and

−1 denotes abnormal class). Generally speaking, the model-based framework

detects anomaly by thresholding the likelihood

Pθ∗1 (x) < Th0 (6.1)

where Pθ∗1 (x) = P (x; θ∗|y = 1) (and this form of notation has similar mean-

ings in the rest of the paper), θ∗1 is the normal model parameters (and usually

estimated as θ̂1 from training data X tr) for normal class. The sample x sat-

isfies Equation 6.1 is detected as an anomaly. The model-based algorithm
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Algorithm 6.1: Model-based Sequential Anomaly Detection.

Input : A training set X tr, A testing set X te, A threshold Th0.

Output: An anomaly set X a.

1 X a → ∅;
2 Learn the normal model θ̂1 on the training set X tr;

3 forall the x ∈ X te do

4 Compute the likelihood of x given θ̂1: Pθ̂1
(x|y = 1);

5 end

6 if Pθ̂1
(x|y = 1) < Th0 then

7 x→ X a;

8 end

9 Output the anomaly set X a;

consists of two stages: the first stage is to profile the normal sequence with a

generative model θ̂1 while the second stage is to detect abnormal sequences

in the test data set according to Equation 6.1. Algorithm 6.1 summarizes

the above algorithm as following.

6.2.2 Limitations: Theoretical Analysis

As reviewed in the above, the one-class sequence anomaly detection is to

predict discrete class labels (i.e., normal or abnormal), which is similar to

the aim of classification problem. In fact, the difference between the problem

considered in this chapter and the classification one is the availability of

training data. In this chapter, only normal data is available for training and

thus can be seen as a special case of classification problem, which is helpful

to theoretical analysis.

For a standard classification problem, assuming we know the ‘oracle’ (i.e.,

true) parameters θ∗ (θ∗1 denotes the parameters for the normal class and

θ∗−1 denotes the parameters for the abnormal class) for generating the data,

classifying an input x is to threshold the posterior probability P (y = 1|x; θ∗)
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(Devroye, Gyorfi & Lugosi 1996) with a threshold 1
2
, which is equivalent to

the following oracle classifier (and the proof can be found in Appendix A):

Pθ∗1 (x) < Th1 · Pθ∗−1
(x) (6.2)

The sample x satisfies Equation 6.2 is detected as an anomaly. Compared to

Equation 6.1, we can see that the model-based anomaly detection algorithm

does not consider the term Pθ∗−1
(x) for classification decision making and thus

has less discriminative power for classification, which could harm the anomaly

detection result. Here the Bayes error (Devroye et al. 1996) is adopted to

measure the performance of the anomaly detection algorithms. It is also an

indicator of the discriminative power since good discrimination leads to good

anomaly detection performance. Suppose the oracle classifier expressed as

Equation 6.2 has the oracle Bayes error L∗ for all x ∈ X , the performance

of the model-based anomaly detection algorithm expressed as Equation 6.1

could not achieve good approximation to L∗ in general cases. To enhance the

discriminative power for anomaly detection, we try to find another method

whose classification performance could have a better approximation to L∗,

which will be discussed in the following sections.

6.3 How to Enhance the Discriminative Pow-

er: Theoretical Analysis

The above section has pointed out the limitation of the model-based anomaly

detection algorithm and our aim is to find a method to approximate the

oracle Bayes error L∗. Inspired by (Tsuda, Kawanabe, Ratsch, Sonnenburg

& Muller 2002), we first propose a well-founded performance measure to

theoretically evaluate the approximation in Section 6.3.1, and then suggest

an approximation method of extracting proper features combined with a

classifier in Section 6.3.2.
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6.3.1 Objective Function

It is straightforward to see that the oracle classifier Equation 6.2 has the most

discriminative power for classifying normal and abnormal sequences which

achieves the oracle Bayes error L∗. Thus, it is desirable that the theoretical

Bayes error of the proposed anomaly detection algorithm should approach L∗

as close as possible. Here we consider a linear classifier wTfθ̂(x)+b combined

with a feature extractor fθ̂(x) (fθ̂(x) : X → R
D and w ∈ R

D and b ∈ R) to

approximate the oracle classifier. The corresponding Bayes error is

R(fθ̂) = min
w∈S,b∈R

Ex,yΦ[−y(wTfθ̂(x) + b)] (6.3)

where S = {w|w ∈ R
D}, Φ[a] is the step function (which is 1 if a > 0

and 0 otherwise), and Ex,y denotes the expectation with respect to the true

distribution p(x, y|θ∗). R(fθ̂) is at least as large as the oracle Bayes error L
∗

and R(fθ̂) = L∗ only if the linear classifier implements the same decision rule

as the oracle classifier (Fukunaga 1990). Usually w and b can be determined

by a learning algorithm and we assume the optimal learning algorithm is

used. When w and b are optimally chosen, the remaining part to determine

is the feature extractor fθ̂(x) that minimize R(fθ̂)−L∗, which describes how

close the Bayes error to the oracle one.

Now it is natural to design a feature extractor that minimizes the ob-

jective function R(fθ̂) − L∗. Direct optimization of this function is difficult

because there exists a non differentiable function Φ. Alternatively, we turn

to minimize its upper bound 2D(fθ̂), which generally has the following rela-

tionship with the objective function (Devroye et al. 1996):

R(fθ̂)− L∗ ≤ 2D(fθ̂). (6.4)

where D(fθ̂) = minw∈RD,b∈REx|F (wTfθ̂(x) + b) − P (y = 1 | x; θ∗)| and
F (t) = 1

(1+exp(−t)) .

The relationship between D(fθ̂) and R(fθ̂) is illustrated as follows: Let L̂

be the classification error rate of an arbitrary posterior probability estimator
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P̂ (y = +1|x). The following inequality is known:

L̂− L∗ ≤ 2Ex|P (y = +1 | x)− P (y = +1 | x, θ∗)| (6.5)

When we use P (y = +1|x) := F (wTfθ̂(x)+b), D(fθ̂) becomes an alternative

objective function to minimize whose minimization leads to the minimization

of R(fθ̂)− L∗ in terms of upper bounds.

6.3.2 Proposed Feature Extractor

On the basis of the above object function, we further propose a feature

extractor that achieves small D(fθ̂). It is straightforward to see that a feature

extractor fθ̂(x) satisfies

wT fθ̂(x) + b = F−1(P (y = 1|x; θ∗)) for all x ∈ X (6.6)

with certain values of w and b, we have D(fθ̂) = 0, which is the minimum

point. However, since the oracle parameter θ∗ is unknown, we cannot con-

struct this optimal feature extractor fθ̂ according to F−1(P (y = 1|x; θ∗)).
However, it can be approximated by its Taylor expansion at the point θ̂1

estimated from the training data. The corresponding approximate optimal

feature extractor is as follows:

fθ̂(x) := (∂θ∗11g(θ̂1), · · · , ∂θ∗1pg(θ̂1))T (6.7)

where g(θ∗1) = logPθ∗1 (x), ∂θ∗1ig(θ̂1) (1 ≤ i ≤ p) is g(θ∗1)’s gradient with

respect to θ∗1i at point θ̂1 and can be seen as a function of x since θ̂1 is fixed.

Thus the extracted feature is a set of functions of x. The proof can be found

in Appendix B. It is also notable that the theoretical performance of the

proposed feature extractor with optimal classifier is better than that of the

model-based algorithm and the proof can be found in Appendix C.

6.4 Proposed Implementation Framework

Motivated by the theoretical analysis of enhancing the discriminative power

for the model-based anomaly detection algorithm, we further propose an ef-
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Algorithm 6.2: The Proposed Framework

Input : A Training set X tr, A Testing set X te, A Threshold

Th2.

Output: An anomaly set X a.

1 Given X tr and X te, extract discriminative features S based on

generative models;

2 Given Str, construct a one-class discriminative classifier C;

3 Given Ste, C and Th2, output X a for detected anomalies;

Figure 6.2: The Flow Chart and Algorithm of the Proposed Framework

ficient implementation framework, called model-based discriminative feature

(MDF) anomaly detection framework. A key challenge regarding implemen-

tation is to choose proper w of the classifier for anomaly detection, since

the principle of feature extractor is already given. An overview of the MDF

framework is shown in Figure 6.2. More specifically, Phase 1 is to extract

the features on the basis of fθ̂ in the form of Equation 6.7. Then in Phase

2, based on the extracted features, the corresponding optimal w is learned

using a one-class support vector machine (SVM). Finally, the anomaly de-

tection task is performed by the learned classifier produced in Phase 3. The

following sections will describe the details of the three phases.
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6.4.1 Phase 1: Feature Extraction

For the first phase, we need to choose a proper model to extract features based

on it. In this chapter, we assume that sequences could be well modeled by

hidden Markov Models (HMMs), because its expressive power of modeling

real-world dynamic behavioral process, such as speech signal (Rabiner 1990),

biological sequence(Baldi & Brunak 2001), gestures (Alon et al. 2003) and

videos (Wang & Singh 2003).

Here we first review the basic notions of HMMs and then give out the form

of derivatives ∂θ∗1ig(θ̂1) (1 ≤ i ≤ p) used for feature extraction. Formally, a

first-order HMM can be formally defined by:

• A set of Q possible hidden states denoted as Q = {1, 2, · · · , Q}, where
i(1 ≤ i ≤ Q) is a possible hidden state. The state at time t is denoted

as qt and qt ∈ Q.

• The hidden state transition matrix is A = aij, where aij = P (qt+1 =

j|qt = i), 1 ≤ i, j ≤ Q is the probability for the transition from i to j.

• The observation vector xt at time t is supposed to be governed by the

corresponding conditional probability distribution bj(xt) (1 ≤ j ≤ Q).

When the observation vectors are discrete symbols, bj(xt) (1 ≤ j ≤ Q)

for each hidden state j is usually associated with the multinomial dis-

tribution as bj(xt) =
∏K

k=1 μ
xtk
jk . Here we use the 1-of-K scheme (i.e.,

xt = [xt1, · · · , xtK ]
T , subects to

∑
k xtk = 1) to represent the discrete

observation as a K-dimensional vector where K is the number of vo-

cabulary for the discrete symbols. When the observation vectors are

continuous, xt (with hidden state j) is usually assumed to subject to

a mixture of Gaussian distributions
∑K

k=1 cjkN (xt|μjk,Σjk), where cjk

is the mixture coefficient for the kth Gaussian mixture in the state j,

N is a Gaussian distribution density with the mean vector μjk and the

covariance matrix Σjk.

• The initial state probability distribution π = (π1, π2, · · · , πQ), where
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πi = P (q1 = i), 1 ≤ i ≤ Q.

Thus, an HMM can be denoted as θ = {A,B, π}. Let x be an observation

sequence, the parameters of an HMM are approximately learned by using the

Baum-Welch algorithm (Baum et al. 1970) given a set of sequences X tr. On

the other hand, the partial derivatives of g(θ∗1) at the point of θ̂1 = {Â, B̂, π̂}
can be calculated by using ξ̂t and γ̂t, which can be obtained by the forward-

backward algorithm (Rabiner 1990). Specifically, ξ̂t(i, j) is the probability

of being in state i at time t and state j at time t + 1 given the model θ̂1

and the observation sequence x, which is ξ̂t(i, j) = P (qt = i, qt+1 = j|x; θ̂1).
For discrete observations, γ̂t(j) is the probability of being in state j at time

t, which is γ̂t(j) = P (qt = j|x; θ̂1); for continuous observations, γ̂t(j, k) is

the probability of being in state j at time t with the kth Gaussian mixture

component accounting for xt, which is γ̂t(j, k) = P (qt = j,Mjt = k|x; θ̂1),
where Mjt is a random variable indicating the mixture component at time t

in state j. Then partial derivatives of g(θ∗1) with respect to the parameters

θ∗1 at a point θ̂1 (estimated from the training data) are listed as following

(Velivelli et al. 2006):

∂a∗ijg(θ̂1) =
T−1∑
t=1

ξ̂t(i, j)

âij
(6.8)

for discrete observations:

∂π∗i g(θ̂1) =
γ̂t(i)

π̂i

∂μ∗jkg(θ̂1) =

∑T
t=1 γ̂t(j)xtk

μ̂jk

(6.9)
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for continuous observations:

∂π∗i g(θ̂1) =
γ̂t(i, 1)

π̂i

∂c∗jkg(θ̂1) =
T∑
t=1

γ̂t(j, k)

ĉij

∂μ∗ijg(θ̂1) =
T∑
t=1

γ̂t(j, k)[Σ̂
−1
jk ]

T
(xt − μ̂jk)

∂Σ̂∗jk
g(θ̂1) =

T∑
t=1

γ̂t(j, k)

2
[G− vec(Σ̂−1jk )] (6.10)

where vec(F ) = [F11, F12, · · · , FM1, FMN ]
T when F is a matrix of size M×N .

G = [(xt−μ̂jk)
TΣ−1jk ⊗(xt−μ̂jk)

TΣ−1jk ]
T and ⊗ denotes the kronecker product.

• X tr: a training data set consists of only normal sequences.

• X te: a testing data set consists of both normal and abnormal sequences.

Then the algorithm for the feature extractor can be summarized in Al-

gorithm 6.3: step 1 estimates parameters θ̂1 of the HMM from the training

data; then step 2-9 extract the discriminative feature using Equation 6.8-6.10

for each sequence x ∈ X tr ∪ X te.

6.4.2 Phase 2: Learning of the Optimal Linear Classi-

fier

This phase tries to construct a linear classifier with the optimal w, one-

class SVM (Hsu, Chang & Lin 2003) has become a natural choice, since it

is linear classifier and only the normal sequences are provided for training.

For estimating the optimal decision boundary (i.e., the parameter w and

b) (Joachims 2000) and (Tran, Zhang & Li 2003) have proposed different

object function to optimize. Here we adopt a similar object function similar

to (Tran et al. 2003) for simplicity and effectiveness. To be more specific,

suppose there is a training data set Str consists of m training sequences
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Algorithm 6.3: The Proposed Feature Extractor.

Input : A training set X tr, A testing set X te, A threshold Th0.

Output: An anomaly set X a.

1 Given X tr train an HMM θ̂1;

2 forall the x ∈ X tr ∪ X te do

3 Given θ̂1, construct the corresponding discriminative features ;

4 if x is discrete then

5 Construct features as:

fθ̂(x) = (∂a∗11g(θ̂1), · · · , ∂π∗1g(θ̂1), · · · , ∂μ∗11g(θ̂1), · · · )T

according to Equation 6.8 and 6.9;

6 else

7 Construct features as:

fθ̂(x) = (∂a∗11g(θ̂1), · · · , ∂π∗1g(θ̂1), · · · , ∂c∗11g(θ̂1), · · · ,
∂μ∗11g(θ̂1), · · · , ∂σ∗11g(θ̂1), · · · )T

according to Equation 6.8 and 6.10;

8 end

9 s→ S;
10 end

x(1), · · · ,x(m), the learning objective function based on the maximum margin

theory is (Scholkopf & Smola 2002):

min
w,ρ,ξ

1

2
‖w‖2 + 1

νm

∑
i

ξi − ρ, (6.11)

subject to wΦ(x(i)) ≤ ρ− ξi, ξi ≥ 0, 1 ≤ i ≤ m. (6.12)
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Algorithm 6.4: The Learning Algorithm.

Input : A training set of extracted features Str.

Output: A constructed classifier C.

1 Given X tr train a generative model θ̂1. forall the x ∈ X tr ∪ X te do

2 Given θ̂1, construct the corresponding discriminative features

s = (∂θ11v(θ̂1), · · · , ∂θ1pv(θ̂1))T ;
3 s→ S;
4 end

After proper transformation, the dual form of this problem becomes:

min
α

1

2

∑
ij

αiαjk(xi,xj), (6.13)

subject to 0 ≤ αi ≤ 1

νm
,
∑
i

αi = 1. (6.14)

where k(xi,xj) = Φ(xi)Φ(xj) is a kernel function.

Then, the estimated optimal w∗ is obtained using α (which maximize

Equation 6.11) as below:

w∗ =
∑
i

αiΦ(x
(i)). (6.15)

where k(x(i),x(j)) = Φ(x(i))Φ(x(j)) is a kernel function and the w∗ becomes

the parameters of the output classifier C.

The learning algorithm is summarized in Algorithm 6.4.

6.4.3 Phase 3: Anomaly Detection

The anomaly detection phase requires the following:

• Ste: the extracted feature space of the test data set consists of both

normal and abnormal sequences.

• C: the constructed classifier based on the training sequences.
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• Th2: the threshold to detect abnormal sequences.

This phase is straightforward, for any sequence x ∈ Ste, apply the learned

classifier C (i.e., w∗Tfθ̂(x) + b) and Th2 to detect anomaly. That is, if

w∗Tfθ̂(x) + b < Th2, x is detected as anomaly and put into the anomaly

set Sa, which is the output.

6.5 Experimental Settings

6.5.1 Data Sets

The details of both synthetic and real-world data sets are reported in this

section. The synthetic data is used to illustrate the performance of the

proposed algorithm without considering the influence of the approximate

modeling. This is because all the synthetic data are sampled from generative

HMMs and thus can be reasonably modeled as HMMs. In addition, we

also use a variety of real-world data sets extracted from different application

domains when the behavioral sequences can be approximately modeled as

HMMs.

The Synthetic Data

Here we consider a toy example to test the performance of our proposed

algorithm. We assume that normal and abnormal sequences are generated

from two 2-state Gaussian HMMs (θ1, θ−1) specified in Table 6.2 respectively

(‘1’ is the label for normal class and ‘-1’ is the label for abnormal class).

Since the two models generating the sequences are very similar (and only

have a slight difference in A), the generated sequences are very similar and

quite difficult to differentiate by their appearance. Figure 6.1(b) shows two

sample sequences from the synthetic data. As can be seen from the chart,

these sequences are quite stochastic and how to distinguish them directly is

unclear. Thus, this synthetic data set provides a very challenging scenario for

one-class mode sequence anomaly detection, because the abnormal sequences
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Table 6.2: Parameters of the HMMs Generating the Normal and Abnormal

Sequences

A B π

θ1

(
0.6 0.4

0.4 0.6

) (
N (0, 1),N (3, 1)

) (
0.5, 0.5

)

θ−1

(
0.4 0.6

0.4 0.6

) (
N (0, 1),N (3, 1)

) (
0.5, 0.5

)

can only be differentiated from the normal sequences by their dynamical char-

acteristics that are different in the model generating them. In other words,

the abnormal sequences are very similar to the normal sequences. Thus, it is

suitable for testing the discriminative power of our proposed framework. The

length of each individual sequence is obtained by sampling a uniform pdf in

the range of [μL(1−V/100) μL(1+V/100)], where μL is the sequence’s mean

length and V is a parameter that refers to as the percentage of variation in

the length (V = 40 in this chapter). By doing so, we hope to examine the

influence of sequence length on the anomaly detection performance. All the

given results are averaged over 50 randomly generated data sets.

The Real-world Data

To evaluate the performance of the proposed algorithm in real world, 5 pub-

licly available data sets are used. From the perspective of data types, these

data sets can be grouped into two categories: discrete sequences and multi-

(uni-)variate time series. From the perspective of data characteristics, the

data sets are from different domains of intrusion detection (ID), fault de-

tection (FD), electrocardiogram (ECG) signals, character trajectory (CT)

records and Japanese Vowels (JV) speech. The details of the real-world data

sets used are given in the following:
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ID Data This data set1 were collected by the University of New Mexico to

evaluate the performance of intrusion detection for system calls. The normal

sequences consist of sequence of system calls generated in an operating sys-

tem during the normal operation of a computer program, such as sendmail,

ftp, lpr etc. The anomalous sequences consist of sequence of system calls

generated when the program was run in an abnormal mode, corresponding

to the operation of a hacked computer. A subset of data sets available in the

repository is used here, which was processed by the same process mentioned

in (Chandola, Cheboli & Kumar 2009).

Fault Detection Data This repository2 is the basic security module (B-

SM) audit data, collected from a victim Solaris machine, in the DARPA

Lincoln Labs 1998 network simulation data sets. The data is similar to the

intrusion detection data described above.

Electrocardiogram (ECG) Data This data set3 corresponds to an ECG

recording for one subject suffering with a particular heart condition. The

ECG recording was segmented into short sequences of equal lengths. Se-

quences that contain any annotation of a heart condition are added to the

anomalous set and the remaining sequences form the normal set.

Character Trajectory This data set4 consists of trajectories captured by

a digitizing tablet when writing 20 different characters and each sample is

a 3-dimensional time series differentiated and smoothed using a Gaussian

kernel. In experiments, we use the sequences of one character as the normal

set and use the samples of another character as the abnormal set, giving a

total of 19 experiments (each experiment was repeated 10 times).

1Available at http://www.cs.unm.edu/∼immsec/systemcalls.htm.
2Available at http://www.ll.mit.edu/mission/communications/ist/.
3Available at http://www.physionet.org/physiobank/database/edb/.
4Available at http://archive.ics.uci.edu/ml/datasets/Character+Trajectories.
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Japanese Vowels The data set5 collects several utterances of nine male

speakers producing two Japanese vowels /ae/ successively. 12 dimension

linear predictive coding (LPC) cepstrum coefficients have been extracted

from each utterance, which forms a 12-dimension time series. In experiments,

we use the sequences of one speaker as the normal set and use the samples

of another speaker as the abnormal set, giving a total of 8 experiments (each

experiment was repeated 10 times).

Table 6.3 summarizes the data sets for experimental evaluation, where

D is the dimension of each observation in the sequences, μL is the averaged

length of the sequences and |Xi| (i ∈ N,A, tr, te) is the number of sequences.

For each data set, we have done repetitive experiments and report the av-

eraged results of 10 times at least. The general methodology to create the

data sets is as the following (Chandola, Cheboli & Kumar 2009): For each

data set, a normal data set, XN , and an anomalous data set XA are created.

A training data set X tr is created by randomly sampling a fixed number of

sequences from XN . A test data set X te is created by randomly sampling

a fixed number of normal sequences from XN − X tr (i.e., XN without the

sequences from X tr) and a fixed number of anomalous sequences from XA.

6.5.2 Comparative Algorithms

We compare two variants of our proposed MDF framework (using linear and

Gaussian radial basis SVM as the classifiers in phase 2) with the model-based

algorithm, and four baseline methods without learning as following:

• MDF with linear SVM (MDF-SVM), which means a linear SVM is

applied as the classifier in phase 2 of the MDF framework.

• MDF with Gaussian radial basis SVM (MDF-SVMrb), which means

a non-linear SVM is applied as the classifier in phase 2 of the MDF

framework.

5Available at http://archive.ics.uci.edu/ml/datasets/Japanese+Vowels.
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Table 6.3: The Details of the Real Data Sets

Dataset ID FD ECG CT JV

D discrete discrete 1 3 12

μL 839 143 250 166 16

|XN | 2030 2000 500 186 30

|XA| 130 67 50 119-171 30

|Xtr| 1030 1000 500 136 10

|Xte| 1050 1050 550 60 30

• The Model-based Algorithm (use HMM as the model, as described in

Section 6.2.1).

• MDF with k-nearest neighbor classifier (MDF-kNN), which means a

lazy classifier kNN is applied directly after phase 1 of the MDF frame-

work without phase 2. In particular, we set k = 4, which is suggested

by (Chandola, Cheboli & Kumar 2009).

• Oracle Model (ORACLE). This baseline method uses the true model

information of both the normal and the abnormal sequences. The clas-

sifier is constructed using the Bayes Rule. In particular, for a given

sequence Xi, P (y = 1|Xi; θ1, θ−1) is calculated. If it is lower than a

predefined threshold Th0 then Xi is detected as anomaly.

• Semi-Oracle Model (Semi-ORACLE). This baseline method uses the

true model information of only the normal sequences. The other setting

is similar to the ORACLE model.

• Random Model (RANDOM). As indicated by the name, this model

predicts the class label for each sequence randomly.

127



CHAPTER 6. ENHANCE THE SEQUENCE ANOMALY DETECTION

6.5.3 Performance Measures

To evaluate the performance of the above anomaly detection algorithms, we

choose the area under receiver operating characteristic curve (AUC) (Han,

Kamber & Pei 2011) and a higher AUC usually means a better classification

performance. The reason for this choice is the anomaly detection problem

in this chapter can be treated as a special case of a binary classification

problem, and the AUC is widely accepted for evaluating the classification

results summarizing the performance at various threshold settings.

6.6 Experimental Results

6.6.1 Synthetic Data

Figure 6.3 shows the results of the performance comparison of differen-

t anomaly detection techniques against different numbers of training se-

quences. It can be seen that, the number of training sequences does not

have significant impact on the performance of the algorithms. This may be

because of the sequences are generated by simple synthetic models and can

be modeled by the HMMs using relatively small samples. Figure 6.4 shows

the results of the performance comparison of different anomaly detection

techniques against different mean sequence lengths. As shown in the picture,

the algorithms tend to have better performance when the length of sequences

increases. This conforms to our intuition that longer sequences have clearer

dynamic characteristics to capture, which is very helpful to further anoma-

ly detection. Figure 6.5 shows the results of the performance comparison

of different anomaly detection techniques against different number hidden

states Q of the HMMs. As can be seen from the chart, the performance of

MDF-SVM, MDF-SVMrb and MDF-kNN decreases when the model struc-

ture varies. A possible explanation is that improper model structures may

generate redundant dimensions in the extracted feature space and degrade

the anomaly detection result. Figure 6.6 shows the results of the performance
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Figure 6.3: AUC Obtained by the Comparative Algorithms against Different

Numbers of Training Sequences.

comparison of different anomaly detection techniques against different ratios

of the normal and abnormal sequences in a testing data set. It can be clearly

seen from the picture that the ratio of the normal and abnormal sequences

has little impact on the anomaly detection performance.

To sum up, the proposed MDF-SVM and MDF-SVMrb have the best

result (close to ORACLE) consistently in most of different settings, which

proves the stability of our proposed framework. This is because the proposed

feature extractor could capture enough discriminative information to classify

the normal and abnormal data and thus different settings have little impact

on the anomaly detection performance. It is also noted that MDF-SVM and

MDF-SVMrb generally outperforms MDF-kNN in most cases, which may

benefit from their learning process in phase 2 of the framework compared

to MDF-kNN. Thus, they are expected to have better performance in the

real-world data sets, whose results will be reported in the following.
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Figure 6.4: AUC Obtained by the Comparative Algorithms against Different

Mean Sequence Lengths.
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Figure 6.5: AUC Obtained by the Comparative Algorithms against Different

Topologies of the HMMs.

6.6.2 Real-world Data

Table 6.4 shows experimental results (averaged AUC value of at least 10

repetitive experiments) on the five real-world data sets, with the comparison

of five algorithms. In the table, Q denotes the number of hidden states of the

HMMs and the ORACLE and Semi-ORACLE algorithms are excluded since
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Figure 6.6: AUC Obtained by the Comparative Algorithms against Different

Ratios of the Normal and Abnormal Sequences in the Testing Data Set.

we do not know the true parameters of the model in real-world data sets. All

in all, the MDF-SVMrb noticeably outperforms the rest of the alternatives.

This is because the MDF-SVMrb not only extracts discriminative features

but also learns a non-linear decision boundary in the extracted feature space

to detect the anomalies, while others may fail to do so. MDF-SVM works

very well on some data sets because the normal and abnormal sequences may

be linearly seperatable in the MDF space under these cases. A remarkable

fact is that the proposed algorithms do not suffer a severe performance loss

as the number of hidden states increases. This is because the true models of

the data are more complex and our models are relatively simple, which give

proper approximations to the true models with no significant difference. This

indicates the robustness of the algorithms when the true model is much more

complicated. It is also worth to note that the proposed MDF-SVM and MDF-

SVMrb generally perform better when the averaged length of the sequences

increase, which agrees with the observation from the results obtained with

synthetic data. Finally, to further validate the statistical significance of our

experiments, we also perform the paired t-test (2-tail) between our proposed

methods and other baselines on the experimental results. All the t-test results
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Table 6.4: The Experimental Results of the Real Data Sets

Dataset Q HMM MDF-SVM MDF-SVMrb MDF-kNN RANDOM

ID

2 0.94± 0.00 0.18± 0.18 0.99± 0.00 0.99± 0.00 0.51± 0.04

3 0.94± 0.00 0.15± 0.09 0.99± 0.01 0.99± 0.00 0.48± 0.02

4 0.94± 0.00 0.18± 0.18 0.99± 0.00 0.99± 0.00 0.51± 0.04

FD

2 0.39± 0.00 0.53± 0.2 0.91± 0.01 0.91± 0.00 0.50± 0.06

3 0.39± 0.00 0.4± 0.12 0.92± 0.01 0.92± 0.00 0.51± 0.05

4 0.39± 0.00 0.58± 0.13 0.93± 0.01 0.91± 0.00 0.50± 0.05

ECG

2 0.27± 0.00 0.67± 0.00 0.67± 0.00 0.61± 0.00 0.49± 0.04

3 0.28± 0.00 0.64± 0.02 0.64± 0.02 0.61± 0.01 0.50± 0.04

4 0.28± 0.00 0.65± 0.00 0.65± 0.00 0.61± 0.00 0.50± 0.05

CT

2 0.82± 0.2 0.71± 0.33 0.96± 0.04 0.96± 0.04 0.50± 0.10

3 0.91± 0.1 0.75± 0.30 0.97± 0.03 0.97± 0.03 0.52± 0.10

4 0.94± 0.07 0.77± 0.28 0.98± 0.06 0.98± 0.03 0.51± 0.10

JV

2 0.94± 0.07 0.95± 0.05 0.96± 0.06 0.94± 0.06 0.52± 0.13

3 0.92± 0.07 0.95± 0.06 0.95± 0.06 0.95± 0.06 0.50± 0.15

4 0.94± 0.06 0.95± 0.05 0.96± 0.05 0.95± 0.04 0.50± 0.14

are less than 0.01, which proves the differences of our proposed methods

versus other baselines are statistically significant.

In addition, the computational cost of the proposed framework mainly

spends on the feature extractor stage and it scales to O(Q2TN), where Q is

the number of hidden states, T is the averaged length of the sequences and

N is the number of sequences. Thus, the computational time of the MDF-

SVM, MDF-SVMrb and MDF-kNN is very similar but a little higher than

the HMM and RANDOM algorithms (the proposed framework, however, has

much better anomaly detection performance). This is proved empirically in

the experiments and we do not report the details here due to the space limit.
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6.7 Summary

This chapter examines a challenging issue of detecting abnormal sequences in

an one-class setting and presents a reasonable MDF framework by theoreti-

cally analyzing the nature of the problem. To be more specific, the proposed

framework is composed of three phases: the generative model-based feature

extractor phase, the optimal classifier training phase and the anomaly detec-

tion phase. Theoretical analysis has demonstrated that the proposed method

leads to a better approximation to the oracle Bayes error (i.e., the anomaly

detection performance in this chapter). To evaluate the superiority of our

proposed framework, several experiments have been conducted on synthetic

data sets. The empirical results show that the proposed framework generally

outperforms the other comparative schemes. We also explore a wide range of

real-world problems, such as speaker verification and ECG signal detection

(i.e., detecting hearts with problematic conditions) and the corresponding

experimental results show the effectiveness of our proposed framework.
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Conclusions and Future Work

7.1 Conclusions

In this thesis, we have presented a set of ideas and algorithms for learning

from heterogeneous data. The key contributions are listed in the below from

three aspects. From the perspective of data type, we have explored various

types of heterogeneous data with different mixed structures, such as sequen-

tial data with different lengths, relational data consisting of the user/user

friendship networks and the user/item preference matrix, and miscellaneous

data made up of time series and multivariate data. From the perspective of

application domains, we have analyzed a wide range of heterogeneous data

in different application scenarios. These domain includes web-browsing log

analysis, bio-informatics, clinical gait analysis, social recommendation, and

anomaly detection. From the perspective of methodologies, not only have we

designed various new probabilistic models (i.e., BNs) for modeling the above

mentioned data, but also combined the BNs with discriminative classifiers,

such as SVM, to achieve more accurate performance for specific data analysis

task, such as sequence anomaly detection.

To be more specific, we have examined the problem of characterizing

(modeling) a database of sequential behaviors (sequences) that are of differ-

ent lengths, which is commonly arisen from the area of web-browsing log min-
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ing or bio-informatics. Most state-of-the-art models, such as hidden Markov

models, consider the non-i.i.d. relationships between the behaviors within

each sequence but simply assume these sequences are identically indepen-

dent and identically distributed. By contrast, we break the i.i.d. assumption

on the both the sequence-level and the database-level and have proposed a

hierarchically probabilistic model, LDHMM, to capture these relationships

in different levels. Through this manner, we expect to have a more compre-

hensive modeling of the sequential behaviors both globally and locally. The

benefits of the proposed LDHMM is demonstrated in comparison with other

state-of-the-art models, such as LDA, HMM and HMMV, based on empirical

studies on many real-world data sets.

We also study the problem of jointly modeling the static and dynamic

data arisen from the area of clinical gait analysis. The data is heterogeneous

since each patient has both the static (i.e., physical examination) data and

dynamic (i.e., gait) data and they correlated. Existed algorithms, such as

HMM and CRF, can only model the sequential relationship between the

data points in the dynamic data. To overcome this, we have proposed a

unified probabilistic model, named CSDM, to comprehensively capture the

correlated relationships that may exist in the data. We not only consider

the correlation between the data points within the dynamic data but also

the correlation between the static and dynamic data. Empirical study on

both the synthetic and real-world data sets show the effectiveness of the

CSDM. The real-world data is extracted from the clinical records of the

Royal Children Hospital, Melbourne. One main advantage of the CSDM is

that we can extract some interesting knowledge from the model, to give the

users an intuition, such as what kinds of static data lead to what kinds of

dynamic data.

Another research performed by this thesis is the social recommendation

problem, which tries to recommend items, such as movies, songs and inter-

esting stuff, in a web 2.0 socialized environment. In this problem, there are

two types of relational data, which is mixed. One is the friendship networks
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that describe the interactions between the users; the other is the preference

(rating) matrix that record the interactions between the users and the items.

Unlike the traditional collaborative filtering methods that only model the

preference matrix, we have proposed a unified probabilistic model, JISM, for

jointly modeling both the friendship networks and rating matrix. Specifically,

we represent each user with a interest latent factor and a social latent factor,

and each item with a interest latent factor. The user/user and user/item

interactions are assumed to be controlled by the above heterogeneous latent

factor space. We use variation EM to estimate the parameters of the JISM

and recommend items to users based on the learned JISM. Empirical results

on three real-world data sets crawled from the internet show the effectiveness

of the proposed JISM, with comparison to other state-of-the-art models. In

addition, the JISM can also provide some interesting visualized results, such

as the clustering of the items.

The above problems are all solved with purely Bayesian networks. Some-

times, for certain data mining tasks, the predictive power of BNs is not

satisfactory since the approximate estimation of the parameters. Thus, we

then investigate how to enhance the performance of the sequence anomaly

detection, which identifies abnormal sequence in a set of sequences. This

problem emerges in many application domains, such as intrusion detection,

fault detection and speaker recognition. We theoretically analyze the essence

of the problem and propose a three-stage general framework on the basis of

the theoretical analysis. Specifically, the first stage extracts discriminative

features from the sequences based on a predefined BNs model, which is theo-

retically proved to have better discriminative power in terms of Bayes error.

Then, the second stage uses the extracted features to train a discriminative

classifier (i.e., SVM) which is further used to detect the anomaly in the test

data set in the third stage. The experimental results on both the synthetic

and real-world data sets exhibit the superiority of the proposed framework.
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7.2 Future Work

From the high-level aspect, there are two directions valuable to be further ex-

plored. Firstly, the dependency structure expressed in Bayesian networks are

inherently directional, which limits its modeling power when the dependent

structure is not of clear direction. One possible solution to this problem is

to utilize Markov networks that can express the undirected dependent struc-

tures. Secondly, as mentioned in (Cao 2013), the strong coupling relation-

ships are usually embedded in mixed structured (heterogeneous) data. This

thesis, however, only focus on the modeling of the heterogeneous structures.

Thus, one future direction is to consider the complex coupling relationships

between entities such as values, attributes, objects and data sets on top of

the mixed structures.

From the perspective of each main chapter, here we also sketch some

future lines for these specific topics.

In Chapter 3, we assume that the observed sequences can only have one

behavior at one time stamp, which is not practical in many application do-

mains. For example, in the field of customer transaction analysis, one cus-

tomer may buy several items at one time stamp. Thus, one possible future

direction is to generalize LDHMMs to cater for the above scenarios. Ad-

ditionally, it is also interesting to investigate the combination of our model

with discriminative classifiers, such as support vector machine (SVM), to

further improve the classification performance. This is because, similar to

LDA, our model can be naturally seen as a dimensionality reduction method

for feature extraction.

One direction for future work of Chapter 4 is to improve the CSDM with

semi-supervised learning. Currently the CSDM is learned totally unsuper-

vised, which may generate unexpected results due to its highly stochastic

nature. Further collaboration with gait analysis experts may alleviate this

problem through manual labeling of some examples. We also plan to collect

more real-world data and include all static and dynamic outputs from clinical

gait analysis.
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One possible further exploration of Chapter 5 is to extend the model for

directed friendship networks. This is because many web 2.0 websites now

begin to support asymmetric follower/followee friendship, which is directed

and different to traditional bidirectional friendship. Another research direc-

tion is to integrate more source of data to improve the prediction accuracy.

For example, we can add the content description of the items for modeling.

The problem of sequence anomaly detection considered in Chapter 6 is

inherently in one-class mode (i.e., only the normal data is available for train-

ing). However, in many real-world scenarios, it is unrealistic to obtain data

that ideally contains only normal instances. In these situations, the anomaly

detection techniques need to be operated in a mixed setting (i.e., the training

data contains both normal and anomalous sequences without labels, under

the assumption that anomalous sequences are very rare). The extension to

a mixed mode is a possible future research direction.

To conclude, non-i.i.d. data provides great treasure of complex relation-

ships, which can be learned and predictive. It is a young and promising field

that has endless possible applications on every aspect of people’s every day

life. The learning tasks presented in this thesis, only scratched the surface

of the non-i.i.d. data and focused on learning its heterogeneity. We expect

that more research from other perspectives on learning with non-i.i.d. data

will emerge and lead to other novel real-world applications.
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Appendix for Chapter 3

A.1 Distributions

A.1.1 Dirichlet Distribution

A K-dimensional Dirichlet random variable θ (
∑K

i=1 θi = 1 and θi ≥ 0)

and has the following form of probability distribution (Kotz, Balakrishnan

& Johnson 2000):

p(θ;α) =
Γ(
∑K

i=1)αi∏K
i=1 Γ(αi)

θα1−1
1 · · · θαK−1

K (A.1)

where the parameter α is a K-dimension vector with components αi > 0,

and where Γ(·) is the Gamma function.

A.1.2 Multinomial Distribution

A 1-of-V vector multinomial random variable x (
∑V

i=1 xi = 1 and xi ∈ {0, 1})
and has the following form of probability distribution (Evans, Hastings &

Peacock 2000):

p(x;μ) =
V∏
i=1

μxi
i (A.2)

where the parameter μ is a V -dimension vector with components
∑K

i=1 μi = 1

and μi ≥ 0.
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A.2 Variational Inference

A.2.1 The FF Form

Here we expand the expression of L for Variational Inference for the FF form.

for qm(πm;γ
(π)
m ), qm(Am;γ

(A)
m,1:K) and qm(Bm;γ

(B)
m,1:K) are usually assumed to

be Dirichlet distributions governed by parameters γ
(π)
m , γ

(A)
m,1:K and γ

(B)
m,1:K .

qm(zmn;φmn) is assumed to be multinomial distributions governed by φmn

(1 ≤ n ≤ Nm). Then Equation 3.2 can be expanded as follows:

L =
M∑

m=1

[Eq[log p(πm|α(π))] + Eq[log p(Am|α(A)
1:K)] + Eq[log p(Bm|β1:K)]

+Eq[log p(zm1|πm)] + Eq[
Nm∑
n=2

log p(zmn|zm,n−1,Am)]

+Eq[
Nm∑
n=1

log p(xmn|zmn,Bm)]

−Eq[log qm(πm)]− Eq[log qm(Am)]− Eq[log qm(Bm)]− Eq[log qm(Zm)]]

where

Eq[log p(πm|α(π))] = log Γ(
K∑
j=1

α
(π)
j )

−
K∑
i=1

log Γ(α
(π)
i )

+
K∑
i=1

(α
(π)
i − 1)(Ψ(γ

(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj ))

Eq[log p(Am|α(A)
1:K)] =

K∑
i=1

[log Γ(
K∑
j=1

α
(A)
ij )

−
K∑
k=1

log Γ(α
(A)
ik )

+
K∑
k=1

(α
(A)
ik − 1)(Ψ(γ

(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))]
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Eq[log p(Bm|β1:K)] =
K∑
i=1

[log Γ(
K∑
j=1

βij)

−
K∑
k=1

log Γ(βik)

+
K∑
k=1

(βik − 1)(Ψ(γ
(B)
mik)−Ψ(

K∑
j=1

γ
(B)
mij))]

Eq[log p(zm1|πm)] =
K∑
i=1

φm1i(Ψ(γ
(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj )) (A.3)

Eq[
Nm∑
n=2

log p(zmn|zm,n−1,Am)] =
N∑

n=2

K∑
i=1

K∑
k=1

φmn−1,iφmnk(Ψ(γ
(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))

(A.4)

Eq[
Nm∑
n=1

log p(xmn|zmn,Bm)] =
Nm∑
n=1

K∑
i=1

V∑
j=1

φmni(xmnj(Ψ(γ
(B)
mij)−Ψ(

V∑
v=1

γ
(B)
miv)))

(A.5)

Eq[log qm(πm)] = log Γ(
K∑
j=1

γ
(π)
mj )

−
K∑
i=1

log Γ(γ
(π)
mi )

+
K∑
i=1

(γ
(π)
mi − 1)(Ψ(γ

(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj ))

Eq[log qm(Am)] =
K∑
i=1

[log Γ(
K∑
j=1

γ
(A)
mij)

−
K∑
k=1

log Γ(γ
(A)
mik)

+
K∑
k=1

(γ
(A)
mik − 1)(Ψ(γ

(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))]

141



CHAPTER A. APPENDIX FOR CHAPTER 3

Eq[log qm(Bm)] =
K∑
i=1

[log Γ(
V∑
j=1

γ
(B)
mij)

−
V∑

v=1

log Γ(γ
(B)
miv)

+
V∑
j=1

(γ
(B)
mij − 1)(Ψ(γ

(B)
mij)−Ψ(

V∑
v=1

γ
(B)
miv))]

Eq[log qm(Zm)] =
Nm∑
n=1

K∑
i=1

φmni log φmni (A.6)

Fixed γ
(π)
m and γ

(B)
m,1:K and γ

(A)
m,1:K, Update φm,1:Nm As a functional of

φm1i and add Lagrange multipliers:

L(φm1) =
K∑
i=1

φm1i(Ψ(γ
(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj ))

+
K∑
i=1

K∑
k=1

φm1iφm2k(Ψ(γ
(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))

+
K∑
i=1

V∑
j=1

φm1i(xm1j(Ψ(γ
(B)
mij)−Ψ(

V∑
v=1

γ
(B)
miv)))

−
K∑
i=1

φm1i log φm1i + λ(
K∑
i=1

φm1i − 1) + const

Setting the derivative to zero yields the maximizing value of the varia-

tional parameter φm1i as Equation 3.5. Similarly, the updated equation for

φmni (2 ≤ n ≤ Nm − 1) and φmNmi can be obtained as Equation 3.6 and 3.7.

Use similar technique as above, we can fix φm,1:Nm , γ
(A)
m,1:K , γ

(B)
m,1:K , up-

date γ
(π)
m as Equation 3.8; fix φm,1:Nm , γ

(π)
m and γ

(B)
m,1:K , update γ

(A)
m,1:K as

Equation 3.9; fix φm,1:Nm , γ
(π)
m and γ

(A)
m,1:K , estimate γ

(B)
m,1:K as Equation 3.10.

A.2.2 The PF From

The expansion of L for Variational Inference for the PF form is similar to the

FF form except for changing φmni to γmni (1 ≤ n ≤ Nm) in Equation A.3 and
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A.5, and φm,n−1,iφmnk to ξm,n−1,i,n,k (2 ≤ n ≤ Nm) in Equation A.4, where

γmnk = p(zmnk|Xm,γ
(π)
m ,γ

(B)
m,1:K ,γ

(A)
m,1:K)

ξm,n−1,j,n,k = p(zm,n−1,j, zmnk|Xm,γ
(π)
m ,γ

(B)
m,1:K ,γ

(A)
m,1:K)

Then, the variational inference can be done as following:

Fixed γ
(π)
m and γ

(B)
m,1:K and γ

(A)
m,1:K, Update qm(Zm) As a functional of

q(z) the lower bound of log-likelihood can be expressed as follows:

L(qm(Zm)) =
K∑
i=1

γm1i(Ψ(γ
(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj ))

+
Nm∑
n=2

K∑
i=1

K∑
k=1

ξm,n−1,i,n,k)(Ψ(γ
(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))

+
Nm∑
n=1

K∑
i=1

V∑
j=1

γmni(xmnj(Ψ(γ
(B)
mij)−Ψ(

V∑
v=1

γ
(B)
miv)))

+const

Now, defining

π∗m ≡ exp(Ψ(γ
(π)
mi )−Ψ(

K∑
j=1

γ
(π)
mj ))

A∗
m ≡ exp(Ψ(γ

(A)
mik)−Ψ(

K∑
j=1

γ
(A)
mij))

B∗m ≡ exp(Ψ(γ
(B)
mij)−Ψ(

V∑
v=1

γ
(B)
miv)))

The above form of L is similar to the log-likelihood object function of

standard HMMs (MacKay 1997) and the relevant posteriors γ, ξ can be

calculated by the forward-backward (FB) algorithm (Rabiner 1990), which

will be briefly reviewed in the following.

Here define the following auxiliary variables α
′
and β

′
(1 ≤ m ≤M, 1 ≤

n ≤ Nm, 2 ≤ n
′ ≤ Nm, 1 ≤ j ≤ K, 1 ≤ k ≤ K and θ∗m = {π∗m,A∗

m,B
∗
m}):

α
′
mnk = p(xm1, · · · ,xmn, zmnk|θ∗m)

β
′
mnk = p(xm,n+1, · · · ,xmN |zmnk,θ

∗
m)
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Algorithm A.1: ForwardBackward()

input : An initial setting for the parameters θ∗m
output: Inferred posterior distributions γ, ξ

/* Calculation of α
′
, β

′
*/

// Forward;

α
′
m1k = π∗mkp(xm1;bk) for k;

1 for n=1 to N-1 do // Induction

2 for k=1 to K do

3 α
′
m,n+1,k =

∑K
j=1 α

′
mnja

∗
jkp(xm,n+1;bk);

4 end

5 end

// Backward;

β
′
mNk = 1 for all k;

6 for n=N-1 to 1 do // Induction

7 for j=1 to K do

8 β
′
mnk =

∑K
j=1 a

∗
jkp(xm,n+1;bk)β

′
m,n+1,j;

9 end

10 end

/* Calculation of γ, ξ */

11 p(Xm|θ∗m) =
∑K

k=1 αsgmNk;

12 for n=1 to N do

13 γmnk =
α
′
mnkβ

′
mnk

p(Xm|θ∗m)
;

14 ξm,n−1,j,n,k =
α
′
m,n−1,kp(xmn;bk)a

∗
jkβ

′
mnk

p(Xm|θ∗m)
(n > 2);

15 end

Then FB algorithm can be summarized in Algorithm A.1. Specifically, line

1-5 calculate the forward variables α
′
, while line 6-10 calculate the back-

ward variables β
′
. Then line11-15 calculate the value of each element of the

posteriors γ and ξ on the basis of the α
′
, β

′
and θ∗m.

Use similar techniques described in Appendix A.2.1, we can fix qm(Zm),
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γ
(A)
m,1:K , γ

(B)
m,1:K , update γ

(π)
m as Equation 3.11; fix qm(Zm), γ

(π)
m and γ

(B)
m,1:K ,

update γ
(A)
m,1:K as Equation 3.12; fix qm(Zm), γ

(π)
m and γ

(A)
m,1:K , Infer γ

(B)
m,1:K as

Equation 3.13.
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Appendix for Chapter 4

B.1 The Phases of a Gait Cycle

To describe the processes that occur during walking then it is useful to divide

the gait cycle into a number of phases. The simplest such division is to divide

the cycle for a given limb into the stance phase, when the foot is in contact

with the floor, and the swing phase, when it is not. In healthy walking at

comfortable speed this happens about 60% into the gait cycle (some studies

suggest 62is a closer estimate). The point at which stance ends is foot-off

(often referred to as toe-off). To develop this scheme to further sub-divide

the gait cycle it is possible to depict what is happening to the other leg

at the same time. If the walking pattern is symmetrical then the opposite

foot contact will occur half-way through the gait cycle. Opposite foot off

(from the preceding gait cycle) precedes this by the duration of the opposite

swing phase (approx 40% of the cycle in normal walking). This subdivides

stance into first double support (from foot contact to opposite foot off), single

support (from opposite foot off to opposite foot contact) and second double

support (from opposite foot contact to foot off).

According to (Perry & Davids 1992), it suggested the definition of addi-

tional phases. As shown in Figure B.1, She saw initial contact as a separate

phase occurring over the first 2% of the gait cycle and named the rest of first
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Figure B.1: The Phases of a Gait Cycle.

double support loading response. Single support was divided equally into

mid-stance and terminal stance and second double support called pre-swing.

The swing phase was then divided equally into initial, mid- and late swing.

B.2 The Full Decision tree

1. if ir r < 57 then node 2 elseif ir r >= 57 then node 3 else 2

2. class = 2

3. if er r < 21.5 then node 4 elseif er r >= 21.5 then node 5 else 1

4. if a l < 22.5 then node 6 elseif a l >= 22.5 then node 7 else 1

5. if ir l < 54 then node 8 elseif ir l >= 54 then node 9 else 2

6. class = 1

7. if er l < 29 then node 10 elseif er l >= 29 then node 11 else 3

8. class = 2

9. if a r < 23.5 then node 12 elseif a r >= 23.5 then node 13 else 4

10. if er r < 3 then node 14 elseif er r >= 3 then node 15 else 3

11. class = 4
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12. class = 2

13. if h r < 1.5 then node 16 elseif h r >= 1.5 then node 17 else 4

14. class = 1

15. class = 3

16. class = 3

17. if h r < 2.5 then node 18 elseif h r >= 2.5 then node 19 else 4

18. class = 1

19. if er l < 31 then node 20 elseif er l >= 31 then node 21 else 4

20. if h r < 4.25 then node 22 elseif h r >= 4.25 then node 23 else 4

21. if ir r < 68.5 then node 24 elseif ir r >= 68.5 then node 25 else 1

22. if a r < 34 then node 26 elseif a r >= 34 then node 27 else 2

23. if er r < 40.5 then node 28 elseif er r >= 40.5 then node 29 else 4

24. class = 3

25. class = 1

26. if ir l < 60.5 then node 30 elseif ir l >= 60.5 then node 31 else 2

27. class = 4

28. class = 4

29. class = 2

30. class = 1

31. class = 2
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Appendix for Chapter 5

C.1 Distributions

C.1.1 Multivariate Gaussian Distribution

The multivariate normal distribution of a K-dimensional random vector x =

[x1, x2, · · · , xK ] can be written in the following format:

(2π)−
k
2 |Σ|− 1

2 e−
1
2
(x−μ)′Σ−1(x−μ) (C.1)

where μ is K-dimensional mean vector and Σ is K ×K covariance matrix.

C.1.2 Bernoulli distribution

The Bernoulli distribution, named after Swiss scientist Jacob Bernoulli, of a

discrete random variable x (x ∈ {0, 1}) can be written in the format:

px(1− p)1−x (C.2)

where p denotes the probability of x’s taking value of 1.
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C.2 Proofs Related to the Lower Bound of

the Log-likelihood

Proof 1 (Proof of the Lemma 5.4.1.1)

log p(R,E|P) = log

∫ ∫ ∫
p(u1:N ,v1:M ,w1:N , R, E|P)du1:Ndv1:Mdw1:N

= log

∫ ∫ ∫
p(u1:N ,v1:M ,w1:N , R, E|P)q(u1:N ,v1:M ,w1:N)

q(u1:N ,v1:M ,w1:N)

du1:Ndv1:Mdw1:N

= log(Eq[
p(u1:N ,v1:M ,w1:N , R, E|P)

q(u1:N ,v1:M ,w1:N)
])

Apply Jensen’s inequality (Blei et al. 2003) on the right part of the above

equation, then

log p(R,E|P) ≥Eq[log
p(u1:N ,v1:M ,w1:N , R, E|P)

q(u1:N ,v1:M ,w1:N)
]

=Eq[log p(u1:N ,v1:M ,w1:N , R, E|P)]− Eq[q(u1:N ,v1:M ,w1:N |P ′)]

Proof 2 (Proof of the Corollary 5.4.1.1) According to the graphical mod-

el of the JISM, we can expand the L0 as Equation 5.3.
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Proof 3 (Proof of the Lemma 5.4.1.2)

Eq[
N∑
i=1

M∑
j=1

δij log p(Rij|uT
i vj +wT

i Bvj, τ)]

=(−K

2
log 2π − 1

2
log |τ 2|)

N∑
i=1

M∑
j=1

δij

− 1

2

N∑
i=1

M∑
j=1

δijEq[(Rij − uT
i vj −wT

i Bvj)
T 1

τ 2
(Rij − uT

i vj −wT
i Bvj)]

=(−K

2
log 2π − 1

2
log |τ 2|)

N∑
i=1

M∑
j=1

δij

− 1

2

N∑
i=1

M∑
j=1

δij
1

τ 2
Eq[R

2
ij − 2Riju

T
i vj − 2Rijw

T
i Bvj

+ uT
i vjv

T
j ui +wT

i Bvjv
T
j Bwi

+wT
i Bvjv

T
j ui + uT

i vjv
T
j B

Twi]

(C.3)

Since
Eq[u

T
i vjv

T
j ui]

=

∫
uT

i Eq[vjv
T
j ]uidui

=Eq[u
T
i (diag(ν

2
2j) + λ2jλ

T
2j)ui]

=Eq[u
T
i diag(ν

2
2jui + uT

i λ2jλ
T
2jui]

=tr(diag(ν2
2j)diag(ν

2
1i)) + λT

1idiag(ν
2
2j)λ1i

+ tr(λ2jλ
T
2jdiag(ν

2
1i)) + λT

1iλ2jλ
T
2jλ1i

(C.4)

where
tr(λ2jλ

T
2jdiag(ν

2
1i))

=tr(λT
2jdiag(ν

2
1i)λ2j)

=λT
2jdiag(ν

2
1i)λ2j

(C.5)

Thus,

Eq[u
T
i vjv

T
j ui]

=tr(diag(ν2
1i)diag(ν

2
2j)) + λT

1idiag(ν
2
2j)λ1i + λT

2jdiag(ν
2
1i)λ2j + λT

1iλ2jλ
T
2jλ1i

(C.6)
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Similarly,

Eq[w
T
i Bvjv

T
j B

Twi] =tr(diag(ν2
3i)(Bdiagν2

2jB
T )) + λT

3iBdiag(ν2
2j)B

Tλ3i

+ λT
2jB

Tdiag(ν2
3i)Bλ2j + λT

3iBλ2jλ
T
2jB

Tλ3i

(C.7)

Eq[w
T
i Bvjv

T
j ui] = λT

3iBdiag(ν2
2j)λ1i + λT

3iBλ2jλ
T
2jλ1i (C.8)

Eq[u
T
i vjv

T
j B

Twi] = λT
1idiag(ν

2
2j)B

Tλ3i + λT
1iλ2jλ

T
2jB

Tλ3i (C.9)

Substitute the variables in Equation C.3 with Equation C.6 and C.9, we

can obtain Equation 5.4.

Proof 4 (Proof of the Lemma 5.4.1.3) Since p(Eii
′ |uT

i ui
′+wT

i wi
′ , t)] =

σ(t1u
T
i ui

′ + t2w
T
i wi

′ + t3), where σ is the logistic function and σ(x) =
1

1+exp(−x) .

Then according to (Jaakkola & Jordan 1997), σ(x) ≥ σ(x)exp(x−ξ
2

+

g(ξ)(x2 − ξ2)) (where g(ξ) = (1
2
− σ(ξ))/2ξ), we obtain:

Eq[
N∑
i=1

N∑
i′=1

δii′ log p(Eii′ |uT
i ui′ +wT

i wi′ , t)]

≥Eq[
N∑
i=1

N∑
i′=1

δii′ [log σ(ξii′ ) +
1

2
((t1u

T
i ui′ + t2w

T
i wi′ + t3)− ξii′ )

+g(ξii′ )(t1u
T
i ui′ + t2w

T
i wi′ + t3)

2 − g(ξii′ )ξ
2
ii
′ ]]

(C.10)

Let
f51 =Eq[t1u

T
i ui′ + t2w

T
i wi′ + t3]

=t1λ
T
1iλ1i

′ + t2λ
T
3iλ3i

′ + t3
(C.11)
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and

f52 =Eq[(t1u
T
i ui

′ + t2w
T
i wi

′ + t3)
2]

=t21(tr(diag(ν
2
1i)diag(ν

2
1i′ )) + λT

1idiag(ν
2
1i′ )λ1i

+ λT
1i
′diag(ν2

1i)λ1i′ + λT
1iλ1i′λ

T
1i
′λ1i)

+ t22(tr(diag(ν
2
3i)diag(ν

2
3i
′ )) + λT

3idiag(ν
2
3i
′ )λ3i

+ λT
3i
′diag(ν2

3i)λ3i′ + λT
3iλ3i′λ

T
3i
′λ3i)

+ t23 + 2t1t2λ
T
1iλ1i

′λT
3iλ3i

′ + 2t1t3λ
T
1iλ1i

′ + 2t2t3λ
T
3iλ3i

′

(C.12)

Substitute the variables in the right part of Equation C.10 with Equa-

tion C.11 and C.12, we can obtain Equation 5.5.

Proof 5 (Proof of the Theorem 5.4.1.1)

Eq[
N∑
i=1

log p(ui|μ1,Σ1)]

=− KN

2
ln 2π − N

2
ln |Σ1| − 1

2

N∑
i=1

Eq[(u1i − μ1)
TΣ−11 (u1i − μ1)]

=− KN

2
ln 2π − N

2
ln |Σ1|

− 1

2

N∑
i=1

[tr(diag(ν2
1i)Σ

−1
1 ) + (λ1i − μ1)

TΣ−11 (λ1i − μ1)]

=f1

(C.13)

Similarly, we can obtain Eq[
∑M

j=1 log p(vj|μ2,Σ2)] equals f2 in Equa-

tion 5.8, Eq[
∑N

i=1 log p(wi|μ3,Σ3)] equals f3 in Equation 5.9,

Eq[
∑N

i=1 log q(ui|λ1i, diag(ν
2
1i))] equals f

′
1 in Equation 5.10,

Eq[
∑M

j=1 log q(vj|λ2j, diag(ν
2
2j))] equals f

′
2 in Equation 5.11 and

Eq[
∑N

i=1 log q(wi|λ3i, diag(ν
2
3i))] equals f

′
3 in Equation 5.12.

Substitute the variables in the right part of Equation 5.3 with Equa-

tion 5.7-5.9 and 5.10-5.12, and Bound the variables in the right part of E-

quation 5.3 with Equation 5.5 and 5.10, we can obtain Equation 5.6.
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C.3 Proofs Related to the E and M Steps

Proof 6 (Proof of the Proposition 5.4.1.1)

L(λ1i) =− 1

2
(λ1i − μ1)

TΣ−11 (λ1i − μ1)

− 1

2τ 2

M∑
j=1

δij(−2Rijλ
T
1iλ2j + λT

1idiag(ν
2
2j)λ1i + λT

1iλ2jλ
T
2jλ1i

+λT
3iBdiag(ν2

2j)λ1i + λT
3iBλ2jλ

T
2jλ1i + λT

1idiag(ν
2
2j)B

Tλ3i

+λT
1iλ2jλ

T
2jB

Tλ3i)

+
N∑

i
′
=1,�=i

δii′ (
1

2
t1λ

T
1iλ1i

′ + g(ξii′ )t
2
1(λ

T
1idiag(ν

2
1i′ )λ1i + λT

1iλ1i
′λT

1i′λ1i)

+2g(ξii′ )t1t2λ
T
1iλ1i

′λT
3iλ3i

′ + 2g(ξii′ )t1t3λ
T
1iλ1i

′ )

(C.14)

dL

dλ1i

=− (λ1i − μ1)
TΣ−11

− 1

τ 2

M∑
j=1

δij(−Rijλ
T
2j + λT

1idiag(ν
2
2j) + λT

1iλ2jλ
T
2j)

+λT
3iB(diag(ν2

2j) + λ2jλ
T
2j))

+
N∑

i
′
=1,�=i

δii′ (
1

2
t1λ

T
1i′ + g(ξii′ )t

2
1(2λ

T
1idiag(ν

2
1i′ ) + 2λT

1iλ1i
′λT

1i′ )

+2g(ξii′ )t1t2(λ1i
′λT

3iλ3i
′ )T + 2g(ξii′ )t1t3λ

T
1i′ )

(C.15)

Set the above derivative to zero, we can obtain Equation 5.18.

Similarly, we can prove Proposition 5.14-5.19 and we omit the details

here.

Proof 7 (Proof of the Proposition 5.4.1.2)

L(μ1) = −1

2

N∑
i=1

(λ1i − μ1)
TΣ−11 (λ1i − μ1) (C.16)
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dL

dμ1

= −
N∑
i=1

(λ1i − μ1)
TΣ−11 (C.17)

Set the above derivative to zero, we can obtain Equation 5.20.

Similarly, we can prove Equation 5.21-5.30 and we omit the details here.
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Appendix for Chapter 6

D.1 Proof of the Transformation

Lemma D.1.0.1 P (y = 1|x; θ∗) < 1
2
is equivalent to Pθ∗1 (x) < Th1 ·Pθ∗−1

(x).

Proof: According to Bayes’ theorem:

P (y = 1|x, θ∗) = Pθ∗1 (x)P (y = 1)∑
y Pθ∗y(x)P (y)

<
1

2
(D.1)

After proper transformation, the above formulation becomes:

Pθ∗1 (x)

Pθ∗−1
(x)

<
P (y = −1)
P (y = 1)

= Th1 (D.2)

Pθ∗1 (x) < Th1 · Pθ∗−1
(x) (D.3)

D.2 Proof of the Approximately Optimal Fea-

ture Extractor

Lemma D.2.0.1 The approximate optimal feature extractor fθ̂(x) with ap-

proximate oracle Bayes error L∗ is given by:

fθ̂(x) := (∂θ∗11g(θ̂1), · · · , ∂θ∗1pg(θ̂1))T (D.4)
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Proof: Let us define v(θ∗) = F−1(P (y = 1|x; θ∗)) = log(Pθ∗1 (x))−log(Pθ∗−1
(x)) =

g(θ∗1) − g(θ∗−1), then By Taylor expansion around the estimated θ̂ up to the

first order, we can approximate v(θ∗) as

v(θ∗) ≈ v(θ̂) +

p∑
i=1

∂θ∗1iv(θ̂1)(θ
∗
1i − θ̂1i)

+

p∑
j=1

∂θ∗−1j
v(θ̂−1)(θ∗−1j − θ̂−1j)

≈ v(θ̂) +

p∑
i=1

∂θ1iv(θ̂1)(θ
∗
1i + θ∗−1i − 2θ̂1i) (D.5)

where ∂θ∗kiv = ∂v
∂θ∗ki

and ∂θ∗kiv(θ̂k) denotes v’s derivative at the point θ̂k (k ∈
{1,−1} and 1 ≤ i ≤ p).

Since in the semi-supervised model sequence anomaly detection, only the

normal data are available for the estimation θ̂1 and θ̂−1 has no data to es-

timate. We use θ̂1 to approximate θ̂−1. This is reasonable because the

abnormal sequences are highly similar to the normal ones (i.e., θ∗1 ≈ θ∗−1). In

addition,

v(θ) = F−1(Pθ(y = 1|x))
= log(Pθ(y = 1|x))− log(Pθ(Y = −1|x))
= log(Pθ1(x))− log(Pθ−1(x)) (D.6)

Then Equation D.5 becomes:

v(θ∗) ≈
p∑

i=1

1

Pθ̂1
(x)

∂θ1i(Pθ̂1
(x))(θ∗1i − θ̂1i)

−
p∑

j=1

1

Pθ̂−1
(x)

∂θ−1j
(Pθ̂−1

(x))(θ∗−1j − θ̂−1j)

=

p∑
i=1

∂θ∗1ig(θ̂1)(θ
∗
1i − θ∗−1i) (D.7)
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Consequently, by setting

fθ̂(x) := (∂θ∗11g(θ̂1), · · · , ∂θ∗1pg(θ̂1))T (D.8)

and

w := w∗ = (θ∗11 − θ∗−11, · · · , θ∗1p − θ∗−1p)
T , b = 0. (D.9)

the proposed feature extractor with the optimal classifier achieves a rea-

sonable small D(fθ̂) ≈ 0 for the upper bound of classification error difference.

D.3 Theoretical Comparison of Performance

In this section, we theoretically compare the proposed feature extractor with

the model-based anomaly detection in terms of approximation to the oracle

Bayes error. P (y = 1|x; θ) is assumed to ∈ (0, 1)1 and ∇θP (y = 1|x; θ)) and
∇2

θP (y = 1|x; θ)) are assumed to be bounded, where∇θf = (∂θ1f, · · · , ∂θpf)T
and the (i, j)th element of ∇2

θ is ∂2f
∂θi∂θj

. Then we have the upper bound of

classification error difference between the model-based algorithm and the

oracle classifier2 is:

D(θ̂) = Ex|P (y = 1|x; θ̂)− P (y = 1|x; θ∗)|. (D.10)

Define Δθ = θ∗ − θ̂. By Taylor expansion around θ̂, we have

D(θ̂) ≈ Ex|(Δθ)T∇θP (y = 1|x, θ∗)
+

1

2
(Δθ)T∇2

θP (y = 1|x, θ0)(Δθ)|
= O(‖Δθ‖). (D.11)

By contrast, when the proposed feature extractor is used,

D(fθ̂) = Ex|F ((w∗)Tfθ̂(x))− Pθ∗(y = 1|x)|, (D.12)

1To prevent |v(θ)| from going to infinity.
2Here for simplicity, we use P (y = 1|x; θ̂) to replace P (x|y = 1; θ̂), where P (x|y =

1; θ̂−1) is estimated as a constant.
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where w∗ is defined as in Equation D.9. Since F is Lipschitz continuous,

there is a finite positive constant M such that |F (a) − F (b)| ≤ M |a − b|
(Tsuda, Kawanabe, Ratsch, Sonnenburg & Muller 2002). Thus,

D(fθ̂) ≤ MEx|(w∗)Tfθ̂(x)− F−1(Pθ∗(y = 1|x))|
= O(‖Δθ‖2). (D.13)

Since (w∗)Tfθ̂(x) is the Taylor expansion of F−1(Pθ∗(y = 1|x)) up to the

first order and the first-order terms of Δθ are excluded from the right side

of Equation D.5; thus, D(fθ̂) = O(‖Δθ‖2). Since both the model-based and

the proposed feature extractor algorithms depend on the parameter estimate

θ̂, the upper bounds of error difference D(θ̂) and D(fθ̂) become smaller as

‖Δθ‖ decreases. However,the rate of convergence of the proposed feature

extractor is much faster than that of the model-based algorithm if w and b

are optimally chosen. To put it in another way, the proposed feature extractor

has a better approximation to the optimal Bayes error theoretically.
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List of My Publications

Papers Published

• Song, Yin and Cao, Longbing (2012), Graph-based coupled behav-

ior analysis: A case study on detecting collaborative manipulations in

stock markets, IJCNN 2012, pp. 1-8. (ERA ranking: A)

• Song, Yin and Cao, Longbing and Wu, Xindong and Wei, Gang and

Ye, Wu and Ding, Wei (2012), Coupled behavior analysis for captur-

ing coupling relationships in group-based market manipulations, KDD

2012, pp. 976-984. (ERA ranking: A)

• Song, Yin and Cao, Longbing and Yin, Junfu and Wang, Cheng

(2013), Extracting Discriminative Features for Identifying Abnormal

Sequences in One-class Mode, IJCNN 2013, pp. 1-8. (ERA ranking:

A)

• Cao, Wei and Cao, Longbing and Song, Yin (2013), Coupled Mar-

ket Behavior Based Financial Crisis Detection, IJCNN 2013, pp. 1-8.

(ERA ranking: A)

• Song, Yin and Zhang, Jian and Cao, Longbing and Sangeux, Mor-

gan (2013), On Discovering the Correlated Relationship between Static

and Dynamic Data in Clinical Gait Analysis, ‘Machine Learning and
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Knowledge Discovery in Databases’, Vol. 8190, Springer Berlin Heidel-

berg, pp. 563-578. (ERA ranking: A)

• Song, Yin and Cao, Longbing and Fan, Xuhui and Cao, Wei and

Zhang, Jian. Characterizing A Database of Sequential Behaviors with

Latent Dirichlet Hidden Markov Models, arXiv:1305.5734v1 [stat.ML].

• Yin, Junfu and Zheng, Zhigang and Cao, Longbing and Song, Yin and

Wei, Wei. Efficiently Mining Top-K High Utility Sequential Patterns,

The 2013 IEEE International Conference on Data Mining series (ICDM

2013). (ERA ranking: A).

Papers to be Submitted/Under Review

• Fan, Xuhui and Xu, Richard and Cao, Longbing and Song, Yin,

Learning Hidden Structures with Relational Models by Adequately In-

volving Rich Information in A Network, submitted to ICML 2014.

• Song, Yin and Zhang, Jian and Cao, Longbing, A Joint Interest-Social

Latent Factor Model for Social Recommendation, to be submitted as

a journal paper.

• Yin, Junfu and Cao, Longbing and Song, Yin. UIP-Miner: An Effi-

cient Algorithm for High Utility Inter-transaction Pattern Mining, to

be submitted as a journal paper.
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