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Abstract

With the improved accessibility to an exploding amount of video data and

growing demand in a wide range of video analysis applications, video-

based action recognition becomes an increasingly important task in com-

puter vision. Unlike most approaches in the literature which rely on bag-

of-feature methods that typically ignore the structural information in the

data, in this monograph we incorporate the spatial relationship and the

time stamps in the data in the recognition and classification processes.

We capture the spatial relationships in the subject performing the action

by representing the actor’s shape in each frame with a graph. This graph

is then transformed into a vector of real numbers by means of prototype-

based graph embedding. Finally, the temporal structure between these

vectors is captured by means of sequential classifiers. The experimental

results on a well-known action dataset (KTH) show that, although the pro-

posed method does not achieve accuracy comparable to that of the best

existing approaches, these embedded graphs are capable of describing the

deformable human shape and its evolution over time.

We later propose an extended hidden Markov model, called the hidden

Markov model for multiple, irregular observations (HMM-MIO), capable

of fusing spatial information provided by graph embedding and the textu-

ral information of STIP descriptors. Experimental results show that recog-

nition accuracy can be significantly improved by combining the spatio-

temporal features with the structural information obtaining higher accu-

racy than from either separately. Furthermore, HMM-MIO is applied to

the task of joint action segmentation and classification over a concatenated

version of the KTH action dataset and the challenging CMU multi-modal

activity dataset. The achieved accuracies proved comparable to or higher



than state-of-the-art approaches and show the usefulness of the proposed

model also for this task.

The next and most remarkable contribution of this dissertation is the cre-

ation of a novel framework for selecting a set of prototypes from a la-

belled graph set taking class discrimination into account. Experimental

results show that such a discriminative prototype selection framework can

achieve superior results, not only for the task of human action recognition,

but also in the classification of various structured data such as letters, dig-

its, drawings, fingerprints compared to other well-established prototype

selection approaches.

Lastly, we change our focus from the forementioned problems to the recog-

nition of complex event, which is a recent area of computer vision expand-

ing the traditional boundaries of visual recognition. For this task, we have

employed the notion of concept as an alternative intermediate representa-

tion with the aim of improving event recognition. We model an event by

a hidden conditional random field and we learn its parameters by a latent

structural SVM approach. Experimental results over video clips from the

challenging TRECVID MED 2011 and MED 2012 datasets show that the

proposed approach achieves a significant improvement in average preci-

sion at a parity of features and concepts.
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