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Abstract

With the improved accessibility to an exploding amount of video data and

growing demand in a wide range of video analysis applications, video-

based action recognition becomes an increasingly important task in com-

puter vision. Unlike most approaches in the literature which rely on bag-

of-feature methods that typically ignore the structural information in the

data, in this monograph we incorporate the spatial relationship and the

time stamps in the data in the recognition and classification processes.

We capture the spatial relationships in the subject performing the action

by representing the actor’s shape in each frame with a graph. This graph

is then transformed into a vector of real numbers by means of prototype-

based graph embedding. Finally, the temporal structure between these

vectors is captured by means of sequential classifiers. The experimental

results on a well-known action dataset (KTH) show that, although the pro-

posed method does not achieve accuracy comparable to that of the best

existing approaches, these embedded graphs are capable of describing the

deformable human shape and its evolution over time.

We later propose an extended hidden Markov model, called the hidden

Markov model for multiple, irregular observations (HMM-MIO), capable

of fusing spatial information provided by graph embedding and the textu-

ral information of STIP descriptors. Experimental results show that recog-

nition accuracy can be significantly improved by combining the spatio-

temporal features with the structural information obtaining higher accu-

racy than from either separately. Furthermore, HMM-MIO is applied to

the task of joint action segmentation and classification over a concatenated

version of the KTH action dataset and the challenging CMU multi-modal

activity dataset. The achieved accuracies proved comparable to or higher



than state-of-the-art approaches and show the usefulness of the proposed

model also for this task.

The next and most remarkable contribution of this dissertation is the cre-

ation of a novel framework for selecting a set of prototypes from a la-

belled graph set taking class discrimination into account. Experimental

results show that such a discriminative prototype selection framework can

achieve superior results, not only for the task of human action recognition,

but also in the classification of various structured data such as letters, dig-

its, drawings, fingerprints compared to other well-established prototype

selection approaches.

Lastly, we change our focus from the forementioned problems to the recog-

nition of complex event, which is a recent area of computer vision expand-

ing the traditional boundaries of visual recognition. For this task, we have

employed the notion of concept as an alternative intermediate representa-

tion with the aim of improving event recognition. We model an event by

a hidden conditional random field and we learn its parameters by a latent

structural SVM approach. Experimental results over video clips from the

challenging TRECVID MED 2011 and MED 2012 datasets show that the

proposed approach achieves a significant improvement in average preci-

sion at a parity of features and concepts.
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Chapter 1

Introduction

1.1 Overview

Visual recognition of human actions in video clips has been an active field of research

for several years and there exists a vast body of literature on the subject. The fun-

damental approach is to extract features from video that can be informative about

the structure in the data. However, most published methods rely on bag-of-words

approaches that typically ignore the spatial and temporal structure in the data. Con-

versely, the potential benefit of incorporating the structural information in the recog-

nition process has been raised recently [45, 96]. As such, in this monograph we will

discuss and propose different approaches to involve the spatial relationship and the

time stamps in the data in the recognition process.

For capturing the spatial structure, we first represent the actor’s shape in each frame

by a graph. The main reason for this choice is that graphs possess a strong represen-

tational power for structured objects and as such they might be promising for human

action recognition. In order to use conventional statistical classifiers, we then embed

each graph into a finite set of distances from prototype graphs. The prototype graphs

are an intermediate representation which spans across the different spatial structure in

the training set. To capture the temporal structure, we make use of sequential classifiers

such as hidden Markov models and hidden conditional random fields.

The main results of this research unit are a) an extended hidden Markov model al-

lowing to jointly leverage the embedded graphs and local spatio-temporal features for

1



action recognition and b) novel discriminative approaches for the selection of the proto-

type graphs. In particular, the proposed discriminative prototype selection approaches

have permitted a significant improvement in classification accuracy compared to the

state-of-the-art methods. As such, we have decided to dedicate a second research unit

to expand these methods and explore how they would perform on other types of struc-

tured data such as letters, digits, molecules, fingerprints and many others. Results from

this second unit of work show that discriminative prototype selection is a very general

and effective approach, and likely the single most remarkable outcome of my PhD.

Finally, in the last part of this dissertation we decided to address recognition of

more challenging spatio-temporal patterns such as complex events. Complex events

are entities of higher-level semantics than single actions, often involving multiple ac-

tors and objects, and including occurrences as articulated as “a cruise ship departing

from port”, “a wedding”, “a birthday party” et cetera. Here, we have employed the

notion of “concept” as an alternative intermediate representation with the aim of im-

proving event recognition. We model an event by a hidden conditional random field

and we learn its parameters by a latent structural SVM approach. This last part of my

thesis was developed while I was an intern at the Center for Research in Computer

Vision (CRCV) at the University of Central Florida in the US under co-guidance from

Professor Mubarak Shah and in collaboration with his group.

1.2 Research Questions

The main research questions addressed in this monograph are:

1. Can graph embedding by prototype selection prove a suitable approach to repre-

sent shape in human action recognition?

2. Can graph embedding by prototype selection also prove an effective approach

for other types of structured data such as as letters, digits, drawings, molecules,

fingerprint types and others?

3. Can other intermediate representations such as concepts entail useful temporal

structure for recognition of more complicated spatio-temporal patterns such as

complex events?

2



1.3 Outline of the Dissertation

The dissertation is organised as follows:

Chapter 2 provides a brief overview of the fundamental concepts required for a

thorough understanding of this monograph. The chapter mainly addresses graphs and

graph embedding, graphical models and sequential classifiers, and the structural sup-

port vector machine.

Chapter 3 presents a study which uses graphs to represent the actor’s shape and

graph embedding to then convert the graph into a suitable feature vector. Experiments

on the popular KTH dataset [124] show that the embedded graphs are capable of de-

scribing the deformable human shape and its evolution over time.

Chapter 4 proposes a way of fusing the information of both graphs and local spatio-

temporal descriptors leveraging the strong representational power of both types of

descriptors. We first present a joint action segmentation and classification approach

based on an extended hidden Markov model, named hidden Markov model for multi-

ple, irregular observations (HMM-MIO), and then employ this model for the fusion of

structural information provided by graph embedding and appearance descriptors cen-

tred around spatio-temporal interest points (STIPs) [70]. Figure 1.1(a) shows a sketch

of this approach.

Chapter 5 introduces a novel framework for selecting a set of prototypes for graph

embedding from a labelled graph set. This framework exploits the notion of discrim-

inative selection by using objective functions that simultaneously take into account

within- and between-class properties. Experimental results over a variety of structured

data show that such a framework can achieve superior results in classification com-

pared to other well-established prototype selection approaches and is very general.

Figure 1.1(b) shows a sketch of this approach.

Chapter 6 addresses recognition of complex events exploiting the scores of con-

cept detectors as measurements in a temporal model. This model (known as hidden

conditional random field) leverages a latent state chain that jointly decodes the concept

scores and provides event recognition. For training, we have employed a maximum-

margin approach given its strong reputation for experimental accuracy [138]. Re-

sults over the very challenging TRECVID Multimedia Event Detection 2011 and 2012

datasets show the accuracy of the proposed approach. This unit of work was carried

3



out during my internship at the Center for Research in Computer Vision (CRCV) at the

University of Central Florida in the US under the co-supervision of Professor Mubarak

Shah. Figure 1.1(c) provides a sketch of this approach.

We conclude the dissertation in Chapter 7.

(a) Chapters 3 and 4

(b) Chapter 5 (c) Chapter 6

Figure 1.1: A visual sketch of the approaches presented in the various chapters.
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Chapter 2

Literature Review

2.1 Action Recognition

Human action recognition is an important but still largely unsolved problem in com-

puter vision with many potential useful applications, including video surveillance,

human-computer interaction, content-based video retrieval, multimedia, and others.

Recognising human actions is challenging since actions are complex patterns which

take place over the time. Due to the nature of human physiology and the varying envi-

ronmental constraints, different people may perform the same action in pronouncedly

different ways in both spatial extent and temporal progression. In addition to this in-

trinsic, high intra-class variance, low inter-class distance in terms of subject and scene

appearance, motion, viewing positions and angles, as well as action duration pose great

challenges.

The main steps of a generic action recognition system are:

• extracting a set of informative measurements (feature set) from the image se-

quence depicting the action;

• learning statistical models from the extracted measurements and using those

models to detect and classify new actions;

• possibly, segmenting streams of motions into single action instances that are

consistent with the set of pre-defined actions (action segmentation).
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Human action recognition is a part of a broader research area, human motion anal-

ysis from images and videos. For the abstract level of movement recognition, different

taxonomies have been proposed in the literature [3, 89, 103, 139]. We adopt the hierar-

chy proposed by Moeslund et al. in [89] that has also been exploited by Poppe [103].

In this taxonomy, the human motion is categorised in three levels:

1. Action primitive: human movement at the limb level; e.g. “left hand up”.

2. Action: a combination of action primitives at whole body level; e.g. “walking”.

3. Activity: an interpretable sequence of actions; e.g. “jumping hurdles” which

consists of starting, jumping and running actions.

It is important to know that recognising human actions requires processing the full

body movement, unlike other motion analysis such as face or gesture recognition that

relates to only one body part.

2.1.1 Challenges

Due to the nature of human physiology every individual performs each action in a vari-

able manner over different instances, both in space and time. As such, it creates a main

problem of high intrinsic intra-class variability. This issue worsens when increasing

the number of action classes and decreasing inter class distances, as more overlap will

be likely to occur.

Furthermore, the various environments in which the action is performed and its

recording settings cause totally different visual appearances of the individual perform-

ing the action. Moreover, the same action, observed from different viewpoints, can

easily lead to very different image observations.

Adding to the challenge, the number of samples available for training and valida-

tion is limited compared to the earlier mentioned variations, preventing a “brute force”

training approach. Finally, ground-truth labeling of action videos is a challenging task

and universal agreement over ground-truth labels is still a controversial issue.
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2.1.2 Feature Extraction

The first step in any recognition system is the process of extracting representative in-

formation from data. This process is called feature extraction and it defines a set of

features, or data characteristics, in order to most efficiently or meaningfully represent

the information that is important for analysis and classification. It is obvious that an

ideal feature set for human action recognition should be action discriminative, and

theoretically, not too sensitive to small variations in human appearance, background,

viewpoints and action performance.

One of the main challenges in action recognition is how to consider the temporal

information of action execution, and to that end, any recognition system has to choose

a feature set that either includes or excludes the temporal information. In general, the

feature set for action recognition can be categorised into two main groups [103]:

Global features: These features encode the region of interest (ROI) in a holistic

manner and are often applied jointly with background subtraction or tracking. These

representations are powerful since they represent much of the information. How-

ever, they strongly rely on accurate localization, background subtraction or track-

ing which is hard to have in realistic conditions. Furthermore, they are more sensi-

tive to viewpoint, noise and occlusions. Some of these features exploited for action

recognition are silhouette-based [14, 88, 149], contour [49, 75], projection histograms

[33, 53, 58, 143], optical flow [4, 5, 42], and space-time volumes [13, 159, 161].

Local features: Unlike global features, local features represent the ROI as a collec-

tion of independent patches. They do not require background subtraction or tracking

and are also less sensitive to noise and partial occlusions. In order to extract such

features, spatio-temporal interest points are detected first, and then local patches are

calculated around these points. The final features are made of combinations of these

patches. Some examples of local features employed for action recognition include the

space-time interest points (STIP) [70], space-time cuboids [71], histogram of oriented

gradients (HOG) and histogram of oriented flow (HOF) [72, 73], the extension of HOG

to 3D [67], scale invariant feature transform (SIFT) [83] and its extension to 3D [125],

speeded-up robust features (SURF) [7] and their extension to 3D [155].
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2.1.3 Action Detection and Classification

Armed with the extracted feature set from the ROI, the human action recognition prob-

lem becomes an action detection or an action classification task. If a is a specific

action and A is the total number of different classes of actions, in the action detection

we would like to just detect single action classes (a ∈ {0, 1}A) while in the action clas-

sification we assign an instance to one of the existing action classes (a ∈ {0 . . . A}). In

other words, the action detection task can be described as a binary action classification:

one specific class versus anything else. Various approaches have been proposed and

followed for these tasks in the literature and we can categorise them into three main

groups [103]:

Direct classification: These approaches, e.g. [36, 72, 73], employ either a dis-

criminative classifier, e.g. the support vector machine (SVM) [124], or a k-Nearest

Neighbor (kNN) classifier to directly classify the extracted feature set. With these ap-

proaches, one needs to extract a feature set which is able to capture the spatial and also

temporal nature of the action of interest and is of a fixed size for any video. While

these approaches, e.g. [36, 72], have proved capable of high classification accuracies

on challenging action datasets such as KTH [124] and HOHA [72], they do not seem

to pay adequate attention to the temporal duration of human actions which is known to

stretch in a non-linear, local way over different samples of the same action class.

Temporal graphical models: These models consist of a set of states representing

various stages during action execution connected by edges where each edge represents

probabilities between states, and between states and observations. Temporal state-

space models are either generative or discriminative. In the former approach the target

is training a model for a certain action class through maximising the likelihood of

all the training data for that class. The hidden Markov models (HMMs) [106] is the

main generative approach for temporal graphical models. Contrary to the generative

approaches, the discriminative methods do not train one model per action. Instead,

the target is to discriminate between various action classes by using all the samples of

various actions. So, they focus on differences between classes and try to maximise the

conditional likelihood of all the samples. The main representative of the discriminative

approach is the conditional random fields (CRFs) [133] (more details in section 2.3.3).
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2.1.4 Joint Segmentation and Classification

In the last two sections, we have explained approaches that extract visual features from

video streams and combine them in space and in time for making a decision on what

actions are present in the video. In most cases, those approaches are demonstrated with

results obtained using segmented video clips, each showing a single action from start

to finish, both for training and testing. Another interesting problem for human action

recognition is to jointly tackle the problems of action segmentation and classification.

The methods for this task can be classified into three categories: boundary detection,

sliding windows and grammar concatenation [153]. The first category uses generic

techniques to first just detect the action boundaries and then classify each interval sep-

arately [87, 108, 145]. In the second category, the motion sequence is divided into

multiple overlapping regions by means of a sliding window. The classification task

can then be easily applied to each window [65, 165]. The last category uses genuine

graphical models capable of modeling the actions as well as the transitions between

them simultaneously [15, 90, 102, 127]. The last category makes neither the assump-

tions of the boundary detection, nor do they require heavy evaluations such as the

sliding window. The segmentation is elegantly and efficiently solved using dynamic

programming techniques.

2.2 Graph Theory

One of the main instruments used in this thesis is the adoption of graphs for represent-

ing the human posture as a holistic feature. Therefore, this section briefly conveys the

key terminology and some concepts of graph theory used in this thesis.

2.2.1 Graph

Different definitions for a graph can be found in the literature based on the consid-

ered applications. The following provides a versatile definition of graph g which is

sufficiently flexible for a large variety of tasks. A graph g is defined as a four-tuple

g = (V,E, α, β), where

• V is the finite set of vertices (or nodes),
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• E ⊆ (V × V ) is the set of edges,

• α : V → LV is the vertex labeling function, and

• β : E → LE is the edge labeling function.

LV and LE are finite or infinite label sets of vertices and edges, respectively.

The labeling functions (α and β) in this definition are unconstrained, thus they can

easily handle arbitrarily structured graphs. For instance, the vertices and edges of the

graph g can get labels from the set of integers L = {1, 2, . . .}, the vector space L = R
n,

or a set of symbolic labels L = {ρ, o, κ, . . .}. Given that the vertices and/or the edges

are labelled, the graphs are referred to as attributed graphs. Similarly, non-attributed

graphs (or data graphs) are obtained by assigning the same label ε to all vertices and

edges. Moreover, a graph is directed if E is a set of ordered pairs of vertices and

undirected if E is composed of unordered vertex pairs.

2.2.2 Graph Matching

With a graph-based object representation, the concept of similarity in pattern recogni-

tion turns into that of graph (dis)similarity. Evaluating the (dis)similarity of a pair of

graphs is commonly referred to as graph matching (for an extensive review of graph

matching techniques and application, the reader is referred to [29]). Based on the def-

inition proposed by [29], “Graph matching is the process of finding a correspondence

between the nodes and the edges of two graphs that satisfies some (more or less strin-

gent) constraints ensuring that similar substructures in one graph are mapped to similar

substructures in the other”.

The two main types of graph matching are: exact and in-exact graph matching. Ex-

act graph matching is only applicable to a very small range of real-world problems. In

other words, the requirement that a significant number of node and edge labels in two

graphs must be identical for a positive match is not realistic in application on graph

extracted from real world data [29]. In-exact, or error-tolerant, graph matching meth-

ods offer a wider range of models for structural matching. One of the most widely

used methods for error-tolerant graph matching is the graph edit distance (GED). Ac-

tually, GED is an important way to find graph dissimilarity between two graphs, in an

error-tolerant manner [17].
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2.2.2.1 Graph Edit Distance

The graph edit distance is recognized as one of the most flexible and universal matching

methods. It measures dissimilarity (similarity) of arbitrarily structured and arbitrarily

labelled graphs and it is flexible thanks to its ability to cope with any kind of structural

errors [29, 50]. The main idea of graph edit distance is to find the dissimilarity (simi-

larity) of two graphs by the minimum amount of distortion that is required to transform

one graph into the other [50]. In the first step, the underlying distortion models (or edit

operations) are defined as an insertion, a deletion and a substitution operation for both

nodes and edges. Based on the definition of graph edit distance, every graph can be

transformed to the other graph by applying a sequence of edit operations (called edit

path). For example, a valid and obvious edit path can always be constructed by first

removing all nodes and edges from the first graph, and then inserting all nodes and

edges of the second graph. Thus, every pair of graphs has many edit paths and the one

that best represents the matching of two graphs is used to define their similarity. In

order to find the best edit path, an edit cost function is introduced. The idea is to assign

a cost to each edit operation, reflecting the strength of the associated distortion. For

example, changing the label of an edge from 0.7 to 0.1 should usually have a higher

cost than changing the label from 0.6 to 0.65.

Regarding the above discussion, a sequence of edit operations (e1, . . . , eK) that

transforms g1 into g2 is called an edit path from g1 to g2. Figure 2.1 shows an example

of an edit path between g1 and g2 consisting, in step order, of three edge deletions, one

node deletion, one node insertion, two edge insertions, and two node substitutions.

Figure 2.1: An example edit path between g1 and g2 (node labels are represented by

different shades of gray). Image courtesy of Kaspar Riesen [111].

Based on the above definition, every graph can be transformed into another graph

by applying a sequence of edit operations or an edit path. Clearly, for every pair of

graphs, there exits an infinite number of different edit paths transforming one graph

into the other. Thus, to select the best edit path between each pair of graphs, an edit

cost function is introduced to assign a cost to each edit operation. Then, given a set of
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edit paths and an edit cost function, the dissimilarity of a pair of graphs is defined as

the minimum-cost edit path in the set.

Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) be a pair of graphs in a set. The

graph edit distance of such graphs is defined as:

d(g1, g2) = min
(e1,...,eK)∈E(g1,g2)

K∑
k=1

C(ek), (2.1)

where E(g1, g2) denotes the set of edit paths between the two graphs, C denotes the

edit cost function and ek denotes the individual edit operation.

Based on equation 2.1, given an edit cost function (which can be assigned heuris-

tically or learned from a set of sample graphs [93, 94]), the dissimilarity between each

pair of arbitrary structured and arbitrarily labelled graphs (e.g. directed, undirected,

node and/or edge labelled from any finite or infinite domain, unlabelled) can be mea-

sured by means of the graph edit distance. Furthermore, a certain degree of robustness

against various graph distortions can be expected.

2.2.2.2 Probabilistic Graph Edit Distance

Among various methods to define a graph edit distance [17, 95, 114, 130], in this the-

sis we have used the probabilistic graph edit distance (P-GED) approach proposed in

[92, 94] to automatically find the cost function from a labelled sample set of graphs.

First, the P-GED assumes that any graph can be transformed into any other graph by

iteratively applying six basic edit operations (node and edge insertion, deletion and

substitution) [50]. Then, a probability, or probability density function, is defined for

each type of edit operation over its label or labels. For instance, for edit operation

“node substitution”, between a node from g1 with label l1 and a node from g2 with

label l2, we have pns(l1, l2) as the probability for node substitution. Given a probabil-

ity distribution on edit operations, the probability of an edit path e = (e1, . . . , ek) is

defined as

p(e1, . . . , ek) =
K∏
k=1

p(ek), (2.2)
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assuming that the edit operations are independent one another. The probability of two

graphs, g1 and g2, is defined as

p̂(g1, g2) = max
(e1,...,eK)∈E(g1,g2)

p(e1, . . . , ek). (2.3)

where E(g1, g2) is the set of all edit paths between g1 and g2. In practice, it is not

possible to create this entire set and we resort to random generation to generate a sub-

set. If we assume that the structural similarity of two graphs can be expressed by their

probability p(g1, g2), we obtain a dissimilarity measure on graphs by using:

d(g1, g2) = − log p(g1, g2). (2.4)

With this assumption, the problem of learning the graph edit distance can therefore

be understood as learning the probability distribution p(g1, g2), which is given by the

sum of the probabilities of any paths leading from g1 to g2. As a final objective is to

allocate low distances to graphs from the same class and high distance to graphs from

different classes, the authors introduced the edit operations in such a way to increase

intra-class probabilities and decrease inter-class probabilities in a controlled way [94].

Overall, the authors introduced a model for the distribution of each edit operation, and

then trained the model to reach high intra-class probabilities and finally derived edit

costs from the model. The main advantage of this model is that it is able to cope

with large samples of graphs with huge distortion between samples of the same class

[50, 94].

2.2.2.3 Bipartite Graph Edit Distance

Another approach to compute the graph edit distance is based on the fast bipartite

optimization procedure mapping local substructures of one graph to local substructures

of another graph [114]. In the bipartite graph edit distance:

• a version of Munkres’ algorithm [91] is used to find a minimum cost assignment

of the nodes of g1 to the nodes of g2 in polynomial time;

• in the assignment, the costs of edges operations are also taken into account, but

only as lower bounds;
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• after the assignment, the costs of the implied, actual edge operations are added.

This algorithm returns only an approximate distance since the edge costs are not eval-

uated sequentially. As such, this method is much less computationally demanding than

other approaches which are based on combinatorial search procedures (e.g. [17]).

2.3 Graphical model based learning

This section provides a brief summary of standard machine learning algorithms as re-

quired for the rest of this thesis. Further background, as well as more detailed accounts,

can be found in [11, 62, 97, 146].

2.3.1 Inference and Learning

Graphical models are a marriage between probability theory and graph theory. They

provide a natural tool to compactly represent complex, real-world phenomena. These

models have enjoyed a surge of interest in the last two decades, due to both the flexibil-

ity and power of the representation. The most fundamental tasks in graphical models

(and yet highly non-trivial) are their inference and learning. Here we present a short

recap on these fundamental tasks [62].

Inference: Given a discrete random variable y representing a class (state, index

etc) and x a measurement, statistical inference is given by conditional probability

p(y|x). “Inference” is often assimilated with decision i.e. choosing the best value for

y based on p(y|x) and some decision rule. The main approaches to make this decision

are:

• Maximum a posteriori (MAP) approach which tries to make as few misclassifi-

cations as possible (zero-one loss):

y∗ = argmax
y

p(y|x) (2.5)

• Minimum risk approach which tries to minimizes the expected loss i.e. errors
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weighted by their cost Δ(y′, y):

y∗ = argmin
y

[∑
y′

Δ(y′, y)p(y′|x)
]

(2.6)

Based on the above definition, we can break the classification stage into two sep-

arate stages, the inference stage in which we use training data to learn conditional

probability p(y|x), and the subsequent decision stage in which we use these posterior

probabilities to make optimal class assignments [11].

A generative classifier is a classifier where p(y|x) is factorised as p(y|x) ∝ p(x|y)p(y).
Inference for generative and discriminative classifiers is therefore

Generative : y∗ = argmax
y

(p(x|y)p(y))

Discriminative : y∗ = argmax
y

(p(y|x))
(2.7)

with the zero-one loss.

An alternative would be to solve both inference and decision together and simply

learn a function that maps input x directly into decisions. Such a function is called a

discriminant function [11].

Discriminant : y∗ = f(x) (2.8)

It is obvious that if a loss function different from the zero-one loss needs to be used,

the decision rule for 2.7 has to be as in the minimum risk. For 2.8, the loss function

has to be suitably accounted for in f(x).

Learning: Learning algorithms build on the inference algorithms and allow the

model to be estimated from data. If the model consists of parameterization θ of a given

function, it is called parameter estimation. Please note that names such as learning,

training, parameter estimation are often used interchangeably in the literature. The

main approaches to select the best model parameters θ∗ are [11]:

• Maximum a posteriori estimation (MAPE) approach which chooses the best pa-
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rameters θ∗ such that:

θ∗ = argmax
θ

p(θ|X) (2.9)

• Maximum likelihood estimation (MLE) approach uses Bayes’ theorem to express

p(θ|X) ∝ p(X|θ)p(θ) and also assumes p(θ) is uniform, so it can choose θ∗ as:

θ∗ = argmax
θ

p(X|θ) (2.10)

where X is a set of N different measurements (X = {xi}, i = 1 . . . N ) [11].

We can also categorize the learning approaches based on the provided training set.

If we have a labelled training set of pairs (Y,X) = {yi, xi}, where yi is the class

or output in general and xi is the measurement, we can perform supervised learning

(what we had noted as X , the data, here becomes (Y,X)). The other learning approach

is unsupervised learning where we only have the measurements without any label,

X = {xi} (the labels can be considered as hidden variables).

Figure 2.2: A simple directed graphical model

For example, figure 2.2 shows a simple directed graphical model with the joint

probability of p(x, y) = p(x|y)p(y) where y is a label and x is the measurement. In

unsupervised learning, the label is unknown (e.g. the component in the mixture distri-

bution) and the best model parameters can be learned by MLE (equation 2.10) over the

measurement alone. In supervised scenario (e.g. Bayesian classifier), as we have the

labels for the measurements during training, we can find the best model parameters by
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using MLE as expressed in equation 2.11 [11].

θ∗ = argmax
θ

p(X, Y |θ) (2.11)

2.3.2 Directed and Undirected Graphical Models

The two main types of graphical models are:

Directed graphical models, also known as Bayesian networks, specify the family

p(y) with y a set of random variables by means of a directed acyclic graph 1 G = (V,E)

and the factorization of p(y) as

p(y) =
∏
i∈V

p(yi|ypaG(i)) (2.12)

where each p(yi|ypaG(i)) is a conditional probability distribution, and paG(i) denotes

the set of parents of node i ∈ V .

Undirected graphical models, also known as Markov random fields (MRF), define

a family of joint probability distribution by mean of an undirected graph G = (V,E)

as factorization

p(y) =
1

Z

∏
c∈C(G)

ψc(yc) (2.13)

where C(G) denotes the set of all cliques 2 of G. By yc we denote the sub-set of

variable that are indexed by c. The normalizing constant Z is given by

Z =
∑
y∈Y

∏
c∈C(G)

ψc(yc) (2.14)

and is known as partition function. The functions ψc → R+ are the so called poten-

tial functions or factors. Each factor ψc defines an interaction between one or more

variables but in contrast to Bayesian networks it is not a conditional probability but an

arbitrary non-negative function.

1A directed acyclic graph (DAG), is a directed graph with no directed cycles.
2Given G = (V,E), a sub-set W ⊆ V of the vertices is a clique if for any i, j ∈ W we have

{i, j} ⊆ E, that is there exist an edge for any pair of vertices in W .
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2.3.3 Probabilistic Graphical Models for Sequential Data

If data from each class are assumed drawn from a single generating distribution, in-

dependently of each other (i.i.d assumption), we can express the likelihood function

p(X|θ) as the product over all data points of probability distribution evaluated at each

data point (equation 2.15).

p(X|θ) = p(x1, . . . , xN) =
N∏

n=1

p(xn|θ) (2.15)

For many applications, however, this assumption will be a poor one. Here we

introduce other types of datasets where we should deal with sequential data instead

of i.i.d data. With these data, considering the measurement’s order in the sequence

during inference and learning is crucial. These types of measurements often arise

through measurement of time series: for instance, the image features at successive

time frames used for action recognition. Sequential measurements can also arise in

other contexts such as space (e.g. nucleotide pairs along a strand of deoxyribonucleic

acid (DNA)). Here we briefly introduce the main generative and discriminative models

which can deal with sequential data and their hidden variables. In both models, Hid-

den Markov model (HMM) and Hidden Conditional Random Field (HCRF), we have

a sequence of observations (measurements, or emissions), X = {x1, . . . , xt, . . . , xT},
where T is its length, and a corresponding sequence of hidden states (or classes),

Y = {y1, . . . , yt, . . . , yT}; and each sample xt may be generated out of a different

distribution. Each state of an HMM/HCRF can take value in a discrete set with N

symbols {s1, . . . , sN}, while the observation can have either discrete or continuous

values. Please note that HMMs and HCRFs are the natural extension of Markov Ran-

dom Fields (MRFs) [66] and Conditional Random Fields (CRFs) [133] while they are

augmented with latent states.

The Hidden Markov Model (HMM) is the main generative approach for sequen-

tial data. It is a temporal graphical model in which the modeled system has observed

outputs and a set of hidden states (figure 2.3).

The HMMs have two fundamental hypotheses:

1. Markov state transitions: the value of state at time t, yt, only depends on the
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Figure 2.3: Graphical model for the HMM

value of state at previous time, yt−1, and is independent of the other previous

variables (p(yt|yt−1, xt−1, . . . , y1, x1) = p(yt|yt−1)).

2. Independence of each observation given its state: the value of observation at time

t, xt, only depends on the value of state at time t, yt, that means the independence

of each observation given its state (p(xt|yT , xT , . . . , y1, x1) = p(xt|yt)).

An HMM is represented by a set of parameters, θ = {A,B, π}. A is the N × N

state transition probability matrix, π is a vector of N initial state probabilities and B

represents the parameters of the observation probabilities for each state. There are

three “canonical” problems for an HMM, each of them with an exact solution:

1. Evaluation: given X and θ, measure p(X|θ). The solution of this problem is

the forward-backward algorithm [41, 106].

2. Decoding: given X and θ, find the best sequence of states, Y which explains X .

The Viterbi algorithm can solve this problem [41, 106].

3. Unsupervised estimation: given X , find θ that maximises p(X|θ). The Baum-

Welch re-estimation algorithm [10, 106] is exploited to solve this density estima-

tion problem.

4. Supervised estimation: given X and Y , find θ that maximises p(Y,X|θ).

A much cited tutorial on the HMM can be found in [106].

Classification with HMM is the case in which the entire observation sequence

corresponds to a single, pre-segmented action. As such, each action class is in cor-

respondence with one HMM. The learning of the HMM parameters for each class is
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achieved by the Baum-Welch re-estimation algorithm [106] and classification of an

unseen observation sequence, Xnew, is obtained by maximum-likelihood (ML) classi-

fication. In other words, let us denote as A = {a1, . . . , ak, . . . , aK} the set of K dif-

ferent action classes; θ = {θ1, . . . , θk, . . . , θK}, the set of HMM parameters associated

with each action class in A; X = {X1, . . . ,Xk, . . . ,XK}, the set of K different groups

of observation sequences, one per class; and, eventually, each Xk = {X1
k , . . . , X

Nk
k }

as the group of Nk observation sequences for action class k. Then, parameters θ∗k,

k = 1 . . . K, are estimated with maximum likelihood as:

θ∗k = argmax
θk

(

Nk∏
e=1

p(Xe
k|θk)). (2.16)

After training of the θ parameters, the action class, a∗k, for an unseen sequence,

Xnew, can be chosen by maximum likelihood as:

a∗k : k
∗ = argmax

k
(p(Xnew|θk)), k = 1 . . . K. (2.17)

where the likelihood of Xnew in action class k, p(Xnew|θk), can be efficiently evaluated

by the forward or backward algorithm [106].

Figure 2.4: Graphical model for Classification with HMM

The Linear-chain Conditional Random Field (CRF) is a discriminative undi-

rected probabilistic graphical model [69, 133]. The conditional model of CRF is

p(y1:T |x1:T ) and it is represented in figure 2.5. The learning of a CRF model is su-

pervised (class labels are known during learning); and the inference and decoding can
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be carried out using standard graphical model algorithms equivalent to those for the

HMM.

Figure 2.5: Graphical model for the Linear-chain CRF

The Hidden Conditional Random Field (HCRF) is the main representative of

discriminative models which can deal with hidden states. An HCRF uses intermedi-

ate latent variables to model the hidden structure of the input data. It defines a joint

distribution over the class label and latent state labels conditioned on the observations,

with dependencies between the latent states; the hidden states and the observations are

expressed by an undirected graph (figure 2.6). The conditional model is represented

in equation 2.18. The inference and learning for an HCRF can be carried out using

standard graphical model algorithms. More details can be found in [105, 133].

p(a|x1:T ) ∝
∑
y1:T

p(a, y1:T |x1:T ) (2.18)

Figure 2.6: Graphical model for the HCRF
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2.4 Support Vector Machine

Support Vector Machines (SVMs) are among the best (and believed by many to be the

best) “off-the-shelf” supervised learning algorithms. These machines were developed

by Cortes and Vapnik [31] for the sake of binary classification. The main properties of

the basic SVMs are:

• Class separation: basically, we are looking for the optimal separating hyper-

plane between the two classes by maximizing the margin between the closest

points of the classes. The points lying on the boundaries are called support vec-

tors, and the middle of the margin is our optimal separating hyperplane (figure

2.7);

• Overlapping classes: data points on the “wrong” side of the discriminant mar-

gin are weighted down to reduce their influence (“soft margin”, figures 2.8, 2.9);

• Nonlinearity: when we cannot find a linear separator, data points are projected

into a (usually) higher-dimensional space where data points effectively become

linearly separable (this projection is realised via kernel techniques);

• Problem/Solution: the whole task can be formulated as a convex optimization

problem, and so any local solution is also a global optimum.

If we express the two class labels as y = {+1,−1} and also assume the arbitrary

scale of W and b to be such that the implicit equation for the separating hyperplane is

W TX + b = 0 and the closest points (or support vectors) lie on W TX + b = 1 and

W TX + b = +1, the objective function of SVM can be expressed as:

W ∗, b∗ = argmin
W,b

1

2
‖W‖2

s.t. yi(W
Txi + b) ≥ +1 ∀xi

(2.19)

This objective function is a quadratic subject to linear inequality constraints. The

inference of the class (aka prediction, classification) for a new point, xnew, is given by:

y∗ = argmax
y

y(W Txnew + b). (2.20)
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Figure 2.7: Example of SVM classification (linear separable case)

For learning, we must maximise the margin between the closest samples of the

two classes. This can be done by minimizing the objective function in equation 2.19

subject to inequality constraints with the following Lagrangian equation:

L(W, b, α1:N) =
1

2
‖W‖2 −

N∑
i=1

[
yi(W

Txi + b)− 1
]

p∗ = min
W,b

max
α1:N≥0

L(W, b, α1:N)

(2.21)

This problem is known as the primal problem; p∗ is the sought constrained mini-

mum and w∗, b∗, α∗
1:N are the arguments of L where it occurs. It can be proven that the

same maximum, p∗, and the same argmax, w∗, b∗, α∗
1:N , can be obtained by solving the

following dual problem:

d∗ = max
α1:N≥0

min
W,b

L(W, b, α1:N). (2.22)

Learning using the dual problem has various advantages (e.g. it allows us to use

kernels and simplifies the treatment of the non-separable case). More details can be

found in [23].
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In some cases, maximising the margin between the closest points of the two classes

may not be an ideal strategy because a single “outlier” point can significantly affect the

separating hyperplane significantly (figure 2.8).

Figure 2.8: A single outlier point can significantly affect the separating hyperplane

significantly

In such cases, one can modify the constraints so as to tolerate a few points that

do not meet the “≥ 1” constraint, called soft margin SVMs. For each such a point, a

penalty is accrued to the objective. An updated objective compared to equation 2.19

becomes a trade-off between:

• the maximum margin, which is a promise of future performance (low generali-

sation error);

• the minimum error on the training set (low empirical risk) by minimising an

upper bound for it (equation 2.23).

This justifies the reference to the SVMs as a minimiser for the empirical risk with

a regularisation term (regularised minimum empirical risk).
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W ∗, b∗ =argmin
W,b

[
1

2
‖W‖2 + C

N∑
i=1

ξi

]
s.t.

yi(W
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1 . . . N

(2.23)

C is an arbitrary weight. The ξi are called slack variables. It is also possible to

use ξi
2 as penalty to discourage large individual errors. Exactly the same constrained

objective (equation 2.23) can be used for the much more realistic case of non-separable

classes: classes for which there exist no hyperplane that can separate all points from

both classes (figure 2.9). In this case, the penalty is added for all violating points. The

heavier the violation, the larger is ξi.

Figure 2.9: Non-separable classes

The standard SVM is a binary classifier. Now, what should be done if one wants

to the extend standard SVMs to multi-class problems? The first approach is to create

many binary SVMs with various combinations of classes. The main two techniques

are known as “one vs all” and “one vs one” [116] (Please note that these techniques

can be used to combine any binary classifier, not just the SVM). In “one vs all”, one
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trains K binary classifiers, of the type class 1 vs not class 1, . . . class K vs not class

K. To classify a new sample, xnew, all classifiers are applied. The classification is not

necessarily consistent: the sample may be assigned to more than one class, or none.

Noting the class as y, the classification rule is then:

y∗ = argmax
y=1...K

(Wyxnew + by). (2.24)

In “one vs one”, one trains
K(K−1)

2
binary classifiers, of the type class 1 vs class

2, class 1 vs class 3, . . . class K − 1 versus class K. To classify a new sample, all

classifiers are applied and the class that gets the highest number of votes is selected.

The second approach is to do a genuine multi-class extension. Multi-class SVM

offers a consistent way to classify a sample into K classes. This approach was first

proposed by Weston and Watkins [154] and an alternative formulation was next given

by Crammer and Singer [32] (equation 2.25):

W ∗, b∗ =argmin
W,b

[
1

2
‖W‖2 + C

N∑
i=1

ξi

]
s.t.

(W T
yi
xi + byi)− (W T

k xi + bk) ≥ 1− ξi

∀k 	= yi, ξi ≥ 0, i = 1 . . . N

(2.25)

where W is the concatenation of the individual class Wk’s, W T =
[
W T

1 . . .W T
k

]
, and

b is the concatenation of all bk’s. We can also create larger margins with the classes of

most undesirable misclassification, which is called margin-rescaled multi class SVMs,

by changing the constraints in equation 2.25 with the following equation [138]:

(W T
yi
xi + byi)− (W T

k xi + bk) ≥ Δ(yi, k)− ξi. (2.26)

Yet now, consider the case of multi-class SVMs with huge numbers of classes.

For example, in classifying the states of an HMM, there are easily a million possible

different sequences of states. The number of their combinations is exponential in T ,

the length of the sequence. In other similar problems, instead of a chain of states you

want to obtain a tree of states, or a lattice or a graph. In all such cases, the possible

classes are a huge number and one cannot apply a standard multi-class SVM. This

case is technically known as structured-output SVMs (or structured SVMs or struc-
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tural SVMs) because the output from the classifier is not just one label, but many, and

there are edges between them, meaning that they need to be classified together and the

combinations are exponential (figure 2.10).

Figure 2.10: Structured-output SVMs

The strategy for tackling this problem is to use the dual form of the SVM with a

sub-set of constraints. If we choose the sub-set wisely, we will obtain an approximate

solution that differs from the exact solution only by some ε that can be quantified. The

choice of the sub-set to use is called “constraint generation” and is the fundamental

step of structured-output SVM. The constraint generation in brief requires computing,

for every measurement xi:

• the score of x in any possible class y (score(xi, y));

• the loss that y causes compared to the ground-truth class for x (Δ(yi, y), equation

2.27).

y∗i = argmax
y=1...K,y �=yi

(Δ(yi, y) + score(xi, y)) (2.27)

If the violation is ≥ current ξi + ε, we can add the constraint to the working set

and solve the objective function with an updated constraint set. This task is repeated
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recursively until no new constraint is added to the working set.

Depending on the structure over the classes and measurements, the score func-

tion can take significantly different forms. It is therefore convenient to introduce

a common notation: we call W the entire vector of parameters and Ψ(x, y) an ar-

rangement of the classes and the measurements such that the score is simply given by

W TΨ(x, y). A simple example for multi-class SVMs is presented in figure 2.11. In

this way, W TΨ(x, y) = W T
k x+ bk.

Figure 2.11: Multi-class SVMs

Considering the above definitions, the violated constraint (aka augmented infer-

ence) for margin rescaling is:

W TΨ(xi, yi)−W TΨ(xi, y) ≥ Δ(yi, y)− ξi ∀y
→ ξi ≥ −W TΨ(xi, yi) +W TΨ(xi, y) + Δ(yi, y) ∀y
→ ξi ≥ max

y
(−W TΨ(xi, yi) +W TΨ(xi, y) + Δ(yi, y))

NB: argmax
y

(−W TΨ(xi, yi) +W TΨ(xi, y) + Δ(yi, y)) =

argmax
y

(W TΨ(xi, y) + Δ(yi, y))

(2.28)

In many structured prediction tasks, there is useful modeling information that is not

available as part of the training data. This missing information even if not observable,

is crucial for expressing high-fidelity models for these tasks and as such it is important

to include them in the model as latent variables. We have already seen the extension

of some well known generative and discriminative approaches which can deal with

hidden variables, namely HMMs and HCRFs. A similar extension has been done for

the structural SVM framework by Yu and Joachims [163] in order to include latent

variables. In latent structural SVM, some of the output variables are unsupervised
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(hidden or unknown), i.e. we do not know their value during training (figure 2.12).

Figure 2.12: Latent structured-output SVMs

Let {y, h} denote the output variables where y is known during training and h is

unknown during training. The formulation of the constraint in equation 2.28 becomes:

W TΨ(xi, yi, hi)−W TΨ(xi, y, h) ≥ Δ((yi, hi), (y, h))− ξi (2.29)

The main problem in the above equation is that hi is unknown. In probability

theory (e.g. HMMs and HCRFs), we solve this problem by marginalizing h. But the

operation of marginalization is a gift of the specific properties of probability. Since

latent structural SVM is not a probabilistic model, h cannot be marginalized and is

instead assigned with a “best” value (instead of marginalizing h, we maximise in it). In

brief, the strategy of Yu and Joachims [163] is akin to a clustering algorithm alternating

a step of optimization (equation 2.30) with one of assignment (equation 2.31) until

convergence to some local minimum is reached.
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W ∗ = argmin
W

[
1

2
‖W‖2 + C

N∑
i=1

ξi

]
s.t.

W TΨ(xi, yi, h
∗
i )−W TΨ(xi, y, h) ≥ Δ((yi), (y, h))− ξi

∀y 	= yi, h 	= h∗
i

(2.30)

h∗
i = argmax

h
W ∗TΨ(xi, yi, h

∗
i ) (2.31)

Once the model is trained, inference is as usual (equation 2.32), with all the output

variables, {y, h}, inferred and then h discarded (unless you are interested in retaining

them for some reasons).

y∗, h∗ = argmax
y,h

W TΨ(x, y, h) (2.32)

Additional information on this topic can be found in [31, 32, 97, 138, 163].
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Chapter 3

Action Recognition by Graph
Embedding

The problem of human action recognition has received increasing attention in recent

years for its importance in many applications. Yet, the main limitation of current ap-

proaches is that they do not capture well the spatial relationships in the subject perform-

ing the action. This chapter presents a study which uses graphs to represent the actor’s

shape and graph embedding to then convert the graph into a suitable feature vector.

In this way, we can benefit from the wide range of statistical classifiers while retain-

ing the strong representational power of graphs. This chapter shows that, although

the proposed method does not yet achieve accuracy comparable to that of the best

existing approaches, the embedded graphs are capable of describing the deformable

human shape and its evolution over time. This confirms the interesting rationale of the

approach and its potential for future performance.

3.1 Prior Work and Our Contributions

Many approaches have been proposed for human action recognition to date, includ-

ing bag of words (or features) [37, 70], dynamic time warping [12], hidden Markov

models [158] and conditional random fields [105]. A recent survey has offered a sys-

tematic review of these approaches [103]. The problem of incorporating the structural

information in the recognition process has been raised in [45]. However, the problem
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of a suitable feature set which can well encapsulate the deformable shape of the actor

is still partially unresolved. As an alternative, graphs offer a powerful tool to repre-

sent structured objects and as such are promising for human action recognition. Ta

et al. in [134] have recently used graphs for activity recognition. However, to assess

the similarity of two instances, they directly compare their graphs and this is prone to

significant noise. An alternative to the direct comparison of action graphs is offered by

graph embedding: in each frame, the graph representing the actor’s shape can be con-

verted to a finite set of distances from prototype graphs, and the distance vector is then

used with conventional statistical classifiers. Graph embedding has been successfully

used in the past for fingerprint and optical character recognition [112]. To the best of

our knowledge, this is the first work proposing to employ graph embedding for human

action recognition. Such an extension is significant since feature vectors need to prove

discriminatory along the additional dimension of time.

In this chapter, we propose to extract spatial feature points from each frame and

use them as nodes of a graph describing the actor’s shape. With an adequate proto-

type set, we convert the graph to a set of distances based on the probabilistic graph

edit distance (P-GED) of Neuhaus and Bunke [94]. P-GED is a sophisticated edit dis-

tance capable of learning edit costs directly from a training set and weighing each edit

operation individually. The feature vectors of each frame are then composed into a

sequence and analysed by means of a conventional sequential classifier. The recogni-

tion accuracy that we obtain is not yet comparable to that of the best methods from the

literature; however, results show unequivocally that the embedded vectors are capable

of representing the human posture as it evolves along the time and setting the basis for

potential future improvements.

3.2 Proposed Methods

In this section, we first provide a recall of graph embedding. We then describe the

methodology proposed in our work to incorporate graph embedding into an action

recognition approach on the popular KTH action dataset [124]. Finally, we present and

discuss an experimental evaluation of the proposed approach on the selected human

action dataset.
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3.2.1 Graph Embedding

In the literature, “graph embedding” refers interchangeably to the embedding of a

graph as a whole into a point in vector space, or the embedding of its set of nodes

into a set of corresponding points in vector space. In this work, we assume the former

meaning, although similar embedding techniques can be applied in the two cases and

for other types of non-vectorial objects such as strings or trees [110]. The embedding

assumes that a set of objects is given alongside distance values between any two ob-

jects in the set. The goal is that of converting the set of objects into a set of points

in a vector space of given dimensionality while ensuring certain properties or con-

straints. Well-known embedding techniques include Laplacian eigenmaps, commute

times, symmetric polynomials, and kernel principal component analysis, amongst oth-

ers [8, 104, 122, 157]. After the embedding of the initial set of objects, it is also possi-

ble to embed new, out-of-sample objects, although this is not always straightforward.

An alternative embedding approach is to make use of a given set of “prototype” objects

(or prototypes, for short) which can equally embed in-sample and out-of-sample data,

in a way that is not unlike that of eigenvectors in principal component analysis. Let

G = {g1, g2, . . . , gm} be a set of graphs, P = {p1, p2, . . . , pn} be a set of prototype

graphs with m > n, and d be a dissimilarity measure. For embedding any graph gj ∈ G

by way of P , the dissimilarity measure dji = d(gj, pi) of graph gj to prototype pi ∈ P

is computed ∀i. Then, an n-dimensional vector (dj1, . . . , djn) is assembled from all

the n dissimilarities. With this procedure, any graph can be individually transformed

into a vector of real numbers. Formally, the mapping tP : G → R
n is defined as the

following function:

tP (g)→ (d(g, p1), . . . , d(g, pn)) (3.1)

where d(g, pi) is a dissimilarity measure between graph g and prototype pi [112], [100].

Prototype-based embedding is certainly the simplest and fastest embedding approach

and for these reasons is adopted hereafter.

3.2.2 Feature Extraction

The approach used for extracting informative features consists of the following main

steps:
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Step 1: Dataset As human action dataset, we have used the KTH human action

dataset [124] for its widespread past utilisation. The KTH human action dataset con-

tains six different human actions: walking, jogging, running, boxing, hand-waving and

hand-clapping, all performed at various times over homogeneous backgrounds by 25

different actors in four different scenarios: outdoors, outdoors with zooming, outdoors

with different clothing and indoors (figure 3.1). This dataset contains 2391 sequences,

with each sequence down-sampled to the spatial resolution of 160 × 120 pixels and a

length of four seconds on average. While this dataset consists of simplified actions,

it is challenging in terms of illumination, camera movements and variable contrasts

between the subjects and the background. KTH has been a de-facto benchmark in the

last few years and many results are available for comparison.

Figure 3.1: KTH human action database: examples of sequences corresponding to

different types of actions and scenario [124].

Step 2: Graph Building As a preliminary step, a modified tracker is used to

extract a bounding box of each actor in each frame [25]. Over the dataset at hand,

the tracker performs really well, providing bounding boxes which almost invariably

contain the actor in full size. As the next step, a number of scale invariant feature

transform (SIFT) keypoints [83] are extracted within the actor’s bounding box in each
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video frame using the software of Vedaldi and Fulkerson [142]. Based on the chosen

threshold, their number typically varies between 5 and 8. Example results of this step

are illustrated in figure 3.2. After extraction, the location of each SIFT keypoint, (x, y),

is expressed relatively to the actor’s centroid and employed as a node label for an at-

tributed graph describing the human’s shape. In a preliminary study, we found that

graphs with only labeled nodes granted comparable accuracy to graphs with both la-

beled nodes and labeled edges, yet resulted in faster processing. We therefore decided

to employ graphs consisting only of labeled nodes.

Figure 3.2: Bounding box generated from a modified tracker [25] using the KTH action

dataset and the extracted SIFT keypoints composed into a graph.

Step 3: Posture Set In order to identify a prototype set which could lead to mean-

ingful feature vectors in the embedded space, a number of different reference postures

was chosen to describe all human shapes in the action dataset. For KTH, we carried

out a manual analysis of about 400 frames from the six classes and manually chose

a set of 16 different reference postures across all human actions (running, walking,

boxing, jogging, hand-waving, hand-clapping). Such selected postures should prove

adequate for also recognising human actions in any other dataset where the actors are

approximately in full view such as UCF Sports [119] and MuHAVi [129]. For train-

ing purposes, we manually selected a number of different frames varying in scenario

(e.g. outdoor, outdoor with different clothes, indoor), action (e.g. hand waving, hand

clapping, jogging) and actor (e.g. person01, person25, person12) (see figure 3.3). We

have then trained a single probabilistic graph edit distance (P-GED) for each posture

set, {PGED1, . . . , PGED16}.

Step 4: Prototype Selection As stated in subsection 3.2.1, an appropriate choice
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Figure 3.3: Examples of selected postures from the KTH action dataset.

of the prototype set, P , plays a critical role in this approach as it impacts the classifica-

tion accuracy. Given that we avail ourselves of a labelled training set, we have decided

to employ class-based approaches for prototype selection. The details of prototype se-

lection methods can be found in subsection 3.2.3.

Step 5: Feature Vector The embedding of a graph by any of the above prototype

selection methods leads to a 16-dimensional feature vector describing the shape of a

single actor in a frame. Time series of such vectors may prove action-discriminative.

Yet, we decided to augment the feature vector by some basic information about the

actors’ global motion and location relative to the bounding box. We thus added the

horizontal displacement between the bounding boxes of two successive frames (which

is proportional to the horizontal velocity) and the location of the actor’s centroid rela-

tive to the bounding box. This leads to an overall 19-dimensional feature vector with

information about the shape, motion and location of the actor in a frame. Figure 3.4

shows time series of the feature vector for a boxing action in KTH. An analysis of the

individual contributions of the shape, motion and location information is presented in

3.2.4.

3.2.3 Prototype Selection Techniques

In the following, we describe three popular, existing approaches and one of the ap-

proaches proposed in our work.

Class-based Center Prototype Selection (c-cps) In this method, a prototype set,

P = {p1, . . . , pn, . . . , pN}, is generated from a labeled training set, C = {C1, . . . , Cn, . . . , CN},
with each pn prototype located in, or near, the “center” of the graphs from the n-th
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Figure 3.4: The time-sequential values of a 19-dimensional feature vector obtained

from graph embedding based on the c− dps for one action (boxing) performed by one

subject in the KTH action dataset.

class, Cn (figure 3.5(a)). To implement the notion of center, we select the median

graph from sample set Cn = {gn1, . . . , gnj, . . . , gnNn}, defined as the gnj graph such

that the sum of distances between gnj and all other graphs in Cn is minimal [112]:

pn = arg min
gnj∈Cn

∑
gni∈Cn,gni �=gnj

d(gnj, gni). (3.2)

Class-based Border Prototype Selection (c-bps) This approach chooses the pro-

totype set, P , with each pn prototype situated at the “farthest border” of its class,

Cn (figure 3.5(b)). Again, the notion of border is vague in class domain. The ra-

tionale for this selection is that of having prototypes which are at maximum dis-

tance from the training graphs and generate feature vectors with the largest values.

To implement it, we select the marginal graph from the sample set of class Cn =
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{gn1, . . . , gnj, . . . , gnNn}, defined as the gnj graph such that the sum of distances be-

tween gnj and all other graphs in Cn is maximal [112]:

pn = arg max
gnj∈Cn

∑
gni∈Cn,gni �=gnj

d(gnj, gni). (3.3)

(a) c-cps (b) c-dps

Figure 3.5: Illustration of the different prototype selectors applied to the training set.

The number of prototypes is defined by N = 30. The prototypes selected by the respec-

tive selection algorithms are shown with red dots. Image courtesy of Kaspar Riesen

[111].

Class-based Random Prototype Selection (c-rps) Given the relative arbitrari-

ness of the above selections, a random choice of the class prototype is a plausible al-

ternative. In c-rps, each pn prototype is randomly selected from class Cn with uniform

probability [112]:

pn = gnj ∈ Cn, j ∼ p(k = 1 . . . Nn) =
1

Nn

. (3.4)

Class-based Discriminative Prototype Selection (c-dps) All of the above selec-

tion approaches choose the class’ prototype based solely on the graphs in the class.

This is in a way reminiscent of generative classifiers, where a class’ parameters are es-

timated based on only the samples from that class. Discriminative classifiers, instead,

choose parameters based on the information from multiple classes at once, maximizing

objective functions such as the class margin, Fisher discriminants and others, and often

proving more accurate than their generative counterparts. Inspired by discriminative
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approaches, we propose herewith a class-based discriminative prototype selection ap-

proach, where each pn prototype is chosen as the graph gnj that minimizes the ratio

between the sum of distances between gnj and all other graphs in Cn and the sum of

distances between gnj and all graphs in the other classes, Cn:

pn = arg min
gnj∈Cn

∑
gni∈Cn,gni �=gnj

d(gnj, gni)∑
gni∈Cn

d(gnj, gni)
. (3.5)

This selection approach is analogous to minimizing the ratio between the within-

class and between-class scatter matrices in vector spaces. Discriminative prototype

selection methods is a fundamental contribution of this thesis and we explain various

approaches revolving around the same idea in Chapter 5.

3.2.4 Classification

We have evaluated the recognition accuracy of the proposed method with the following

classification approaches:

The Bag of Words Paradigm The past decade has seen the growing popularity

of Bag of Words (BoW) approach to many computer vision tasks including image

classification, action recognition, texture recognition. BoW approach is characterized

by the use of an orderless collection of extracted features. Lacking any structure or

spatial information, it is perhaps surprising that this choice of image representation

would be powerful enough to match or exceed state-of-the-art performance in many of

the applications to which it has been applied. Due to its simplicity and performance,

the Bag of Words approach has become well-established in the field [98]. Here, we

describe the procedure for generating a fixed size feature vector for an image with

BoW approach.

1. Learn the “vocabulary”: Extract features from all samples in a training set and

quantize, or cluster, these features into a “visual vocabulary”, where each cluster

represents a “visual word”. In some works, the vocabulary is called the “visual

codebook”. Words in the vocabulary are the codes in the codebook.

2. Quantize features of a new image using the visual vocabulary: Extract features
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from a novel image and assign each feature to the closest visual word in the

vocabulary.

3. Represent samples by frequencies of “visual words”: Record the counts of each

visual word that appears in the sample to create a normalized histogram repre-

senting a “vector”. This vector is the Bag of Words representation of the sample.

This approach can be applied to images, videos and various types of features.

For the classification task over the extracted vectors we can easily employ an SVM

classifier or any other classifier.

HMM with maximum conditional likelihood training In addition to the posi-

tions above, let Y = {Y1, . . . , Yk, . . . , YK} be the set of K different groups of ground-

truth labels for the observation sequences in each class; and each Yk = {y1k, . . . , yNk
k }

be the group of ground-truth labels for the Nk observation sequences of action class k.

Each such a label takes value in A, the set of action classes. Here, the availabilty of the

ground-truth labels allows defining a different objective function, known as conditional

likelihood, for the setting of the θ parameters [133]:

L(θ;Y,X) =
K∏
k=1

Nk∏
e=1

p(yek|Xe
k, θ). (3.6)

Parameters θ = {θ1, . . . , θk, . . . , θK} are then selected to maximize the conditional

likelihood as in:

θ∗ = argmax
θ

(L(θ;Y,X)). (3.7)

The parameters estimated by maximizing (3.6) are more promising for classifica-

tion than those estimated with the conventional likelihood since conditional likelihood

p(y′|X ′, θ′) for a given class, y′, and measurement, X ′, is, with different wording, the

posterior probability of class y′ given measurement X ′. In essence, training the param-

eters with the conditional likelihood target maximizes the posterior probability of the

correct class labels over the entire training set. As such, it is an example of maximum

score training [127].

However, maximizing the conditional likelihood for the HMM is not trivial. There-

fore, in this work we resort to an approximation: at each iteration of the Baum-Welch
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algorithm (which is guaranteed to increase the conventional likelihood), we evaluate

(3.6) and store the parameters. Upon convergence of Baum-Welch, the value of the

parameters corresponding to the largest conditional likelihood encountered during the

iterations are selected.

Hidden Conditional Random Field The HCRF is a powerful discriminative

approach which can model time series data considering hidden measurements. In pre-

vious HMM-based approaches, the model for each action is trained separately while

we can jointly train a single model for all actions using a multi-class HCRF. In other

words, because an HCRF is trained by maximizing conditional probability, all parame-

ters are jointly and discriminatively optimized. A decoder is then used to find the most

likely action, a∗k, given a new sequence of measurements, Xnew, and the trained model

parameters, θ. It is obvious that we can also train k different number of HCRF models

following “one vs all” or “one vs one” techniques.

3.3 Experimental Results

In this section, we evaluate the recognition accuracy of the proposed method. We first

evaluate various choices of feature vectors and then compare our approach based on the

best feature vector with the state of the art. All of these experiments were performed on

a computer with an Intel(R) Core(TM)2 Duo CPU (E8500, 3.16GHz) and 4GB RAM

using Matlab R2009b.

3.3.1 Evaluation of the feature vectors

The 19-dimensional feature vector described in section 3.2.2 contains shape, motion

and location features jointly. In order to assess the individual contribution of these

different types of features, we have conducted experiments with feature vectors con-

taining only shape, motion or location features in isolation. To this aim, we have used

leave one (actor) out cross validation (LOOCV) reporting a correct classification rate

(CCR) for each feature vector, the c-cps as a prototype selector and standard HMM

with maximum likelihood training as a classifier. It can be seen that none of the in-

dividual type of features was capable of achieving high accuracy in isolation; in all
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cases, recognition accuracy was below 50% (table 3.1). However, these features show

interesting complementarity: for instance, the motion features report good accuracy

in recognising the Jogging class, but a rather low performance on the Boxing class

(which is mainly a stationary class). Conversely, the graph-embedded shape features

report good accuracy on the Boxing class, but cannot discriminate well between classes

such as Jogging and Running where the articulated shape is similar, yet speed of execu-

tion varies remarkably. This complementarity is at the basis of the higher performance

achieved by the joint vector which jumps to 70.00%, as shown by table 3.2.

Table 3.1: The average CCRs on the KTH action dataset based on separate feature

vectors for motion, location and shape.

validation technique motion location shape

LOOCV-CCR 49.34% 45.67% 47.63%

Table 3.2: Action confusion matrix (%) for the proposed method based on the LOOCV

test approach on the KTH action dataset. The average CCR is 70.00%.

Boxing Clapping Waving Jogging Running Walking

Boxing 80 9 8 1 1 1

Clapping 10 59 25 1 2 2

Waving 8 22 66 1 0 3

Jogging 0 0 0 56 21 23

Running 0 0 0 17 74 9

Walking 0 0 0 8 7 85

3.3.2 Comparison to the state of the art

Accuracy measurements on the KTH database have been performed with different

methods by different papers in the literature. For easier comparison, in this section

we have used the test approach presented by Schuldt et al. in [124]. With this test
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approach, all sequences are divided into 3 different sets with respect to actors: training

(8 actors), validation (8 actors) and test (9 actors). The classifier is then tuned using the

first two sets (training and validation sets), and the accuracy on the test set is measured

by using the parameters selected on the validation set, without any further tuning.

We have first evaluated the 19-dimensional feature vectors obtained from four dif-

ferent prototype selectors: c-dps, c-cps, c-bps and c-rps. We have used standard HMM

with maximum likelihood training (HMMml) and maximum conditional likelihood

training (HMMmcl) as classifiers. Table 3.3 shows the recognition accuracy with these

approaches for each prototype selector. The proposed discriminative prototype selec-

tor, c-dps, achieves the highest accuracy. In addition, the proposed conditional like-

lihood training permits higher accuracy than conventional likelihood training in most

cases.

Table 3.3: Classification accuracy of HMMml and HMMmcl applied to feature vec-

tors from different prototype selectors (c-dps, c-cps, c-bps and c-rps).

Schuldt’s validation

Prototype HMMml HMMmcl

Selector CCR(%) CCR(%)

c-dps 67.80 70.35
c-cps 66.75 68.85

c-bps 64.05 64.15

c-rps 65.50 65.50

Discriminative classifiers (e.g. SVM, HCRF) generally report higher accuracy

compared to generative approaches (e.g. HMM) in the literature. As such, we have

selected the best extracted feature vectors (19-dimensional feature vector from class-

based discriminative prototype selector) and tried standard SVM and HCRF as classi-

fiers. For SVM, we ignore the sequential information and follow the bag-of-words

approach and use k-means clustering with N = {50,100,200,400,600} clusters for

quantization and an SVM classifier with different kernels (Linear, RBF, Chi Square

and Histogram Intersection) for classification. As a software, we have employed the

LIBSVM package [22]. Similarly to HMM, we consider the sequential information
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with HCRF. We have used the library developed by Morency et al [90] and set Q =

{6,8,10,20}, Windowsize = {0, 1} and initialisation to Gaussian. Table 3.4 shows

the CCR on the test set, using the parameter’s values that scored the best accuracy on

the validation set. Results show that, with these features, the performance of SVM and

HCRF is not better than HMM.

Table 3.4: The average CCRs (%) on the KTH action dataset based on the 19-

dimensional feature vectors from c-dps and SVM and HCRF as classifiers.

19D Feature Vectors from c-dps

Validation technique SVM HCRF

Schuldt 58.7% 67.11%

We now compare the best overall accuracy achieved from graph embedding ap-

proach with the results reported in the literature (table 3.5). Our overall accuracy is

70.35%. This result is not comparable with the best accuracies reported in the litera-

ture: it is not far from the accuracy reported by Schuldtet al. [124], but much lower

than that reported by Guo et al. in [54] and many others. These approaches mostly

leverage spatio-temporal descriptors. Given that HMM as a classifier seems to per-

form satisfactorily, we have to conclude that this feature set is not sufficient to prove

action-discriminative with the KTH dataset. In the following chapter, we will therefore

analyse the performance of a feature set augmented with local features.

Table 3.5: Average class accuracy on the KTH action dataset.

Method Ours Schuldt et al. [124] Laptev et al. [72] Guo et al. [54]

Schuldt 70.35% 71.70% 91.80% 97.40%

3.4 Discussion and Conclusions

In this chapter, we have presented a novel approach for human action recognition based

on graph embedding. To this aim, an attributed graph is used to represent the actor’s
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shape in each frame and then graph embedding is used to convert the graph into a fea-

ture vector in order to have access to the wide range of current classification methods.

Although this method does not match the accuracy of existing approaches, it generates

a novel methodology for human action recognition based on graph embedding, and

may outperform existing methods in conjunction with other features. Furthermore, we

have shown the ability of this approach to encapsulate the global structural information

for human action recognition. Based on our judgment, the main difficulty faced by the

proposed approach is the extraction of a reliable set of keypoints in each frame. Due to

noise and variable appearance, the extracted set changes significantly over the frames

(see figure 3.6). This leads to heavy changes to the structure of the graphs and, likely,

the embedded vectors. Another possible limitation is that it ignores texture informa-

tion (unlike features such as STIP, HOG, HOF). In the next chapter we investigate the

possibility of the fusion of global spatial relationships provided by graph embedding

and textural information.

Figure 3.6: Instance images illustarte that the SIFT keypoints are not able to capture

the body shape sufficiently well to be used as a shape descriptor.
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Chapter 4

Fusion of Texture and Structural
Features for Action Recognition

In the previous chapter of this monograph, we have shown the ability of the graph

embedding approach to encapsulate the actor’s shape in each frame into a finite set of

distances from prototype graphs. We have also shown that this distance vector can be

used as a feature vector with any conventional statistical classifiers. However, we did

not consider any local descriptors in the mentioned approach. These descriptors and,

in particular, appearance descriptors centred around spatio-temporal interest points

(STIPs) [70], have gained increasing popularity for human action recognition since

they describe salient points in space and time and have demonstrated strong recogni-

tion performance. Nevertheless, spatio-temporal features may fail when the activities

become complex since they are unable to capture the global spatial relationships in the

subject performing the action [96]. As such, the necessity of a systematic approach for

the fusion of global spatial relationship and the local spatio-temporal information can

be seen in the literature. Such an approach enjoys the strong representational of both

graphs and local descriptors.

For this reason, in this chapter we present a method capable of fusing the informa-

tion of both graphs and local features. We first present a joint action segmentation and

classification approach based on an extended hidden Markov model, named hidden

Markov model for multiple, irregular observations (HMM-MIO), which is capable of

processing sparse local features. This requires:
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• processing measurements which are irregular in space and time;

• mollifying issues deriving from high dimensionality;

• dealing with heavy-tailed distributions and outliers.

By employing the proposed model, we have introduced a novel framework for

the fusion of structural information provided by graph embedding and the textural

information of STIP descriptors.

4.1 Prior Work and Our Contributions

Over the last decade, action recognition approaches have vastly leveraged on the notion

of local spatio-temporal features [70]. Extracting such features consists of a detection

and a description stage. The first stage requires detecting all the points in the actor’s

bounding box where significant “spatio-temporal change” occurs. The second stage

consists of collecting a local descriptor for each detected point that summarizes its local

spatio-temporal appearance. Actions as diverse as an elbow bending while picking a

cup or a reclining head tend to generate specific descriptor values. As an example,

Fig. 4.1 shows the points detected in the video of a person walking outdoors using the

spatio-temporal interest points (STIPs) of Laptev et al. [72]. As shown in the sequence

of frames, the detected points are irregular in both space (i.e. area in the frame) and

time (i.e. number of points per frame). The same irregular nature in space and time is

also shared by other, more specialized detectors such as the recently proposed poselet

detectors [86]. While it is possible to collect descriptors over regular grids [147, 148],

descriptors at interest points are computationally much lighter and suitable for certain

applications. In addition, descriptors are also typically high dimensional, affected by

outliers and characterized by long-tailed statistics [60].

The baseline approach for action classification is known as “bag-of-words” [52,

68, 72, 124]. As we mentioned in Chapter 3, in this approach the multi-dimensional

descriptors are first quantized based on a learned codebook. Then, for each action in-

stance, a histogram is computed over its quantized descriptors and used as input for a

supervised classifier. Notwithstanding its simplicity, this approach has proved capable

of remarkable recognition accuracy [52, 68, 72, 124, 148]. Extension to segmentation
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Figure 4.1: Example of the spatio-temporal interest points from [72] in a video from

the KTH action dataset. Frames are displayed in row-major order. The radius of circles

is proportional to the scale at which change is detected. Note the variable number of

points appearing in subsequent frames.

can be obtained by simply splitting the video into overlapping windows and repeat-

ing classification for each window [40]. Yet, the size of the window and the overlap

between windows is arbitrary, with possible impact on accuracy and temporal resolu-

tion. Temporal graphical models offer a more principled approach to the segmentation

problem [57, 76, 140]. For this reason, in this chapter we adopt an extended hid-

den Markov model - named hidden Markov model for multiple, irregular observations
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(HMM-MIO) hereafter - capable of providing classification and time segmentation

over a) observations which are irregular in time and space, b) high-dimensional obser-

vation spaces, and c) outliers and heavy-tailed distributions. This model was recently

proposed in [28] and is extended in this thesis over spatial regions. Experiments are

performed over the KTH dataset, a “stitched” version of the popular KTH dataset [124]

where individual actions have been collated into uninterrupted sequences, and the chal-

lenging CMU multi-modal activity dataset (CMU-MMAC) which displays scenes of

cooking actions [34]. The achieved accuracies show that HMM-MIO is capable of

competitive performance in action recognition and joint action segmentation and clas-

sification.

Another limitation of spatio-temporal features is that they may fail when the activ-

ities become complex, since they are unable to capture the global spatial relationships

in the subject performing the action [96]. Conversely, graphs are a powerful tool for

representing structured objects and as such have been used for action recognition in a

recent work from Ta et al [134]. Nevertheless, in [134] graphs are directly compared

to assess the similarity of two action instances, a procedure that is prone to signifi-

cant noise. An efficient alternative to the direct comparison of action graphs is offered

by graph embedding: in each frame, the graph representing the actor’s shape can be

converted to a finite set of distances from prototype graphs, and the distance vector

can then be used as a feature vector with any conventional statistical classifiers. Other

approaches leveraging on a graphical representation of the actor are based on mod-

els akin to Pictorial Structures [47]. Such models were originally proposed for limb

motion tracking and require higher resolution imagery to ensure accurate fitting. In

all cases, purely structural approaches do not take advantage of the useful information

offered by spatio-temporal appearance descriptors. In this chapter we have employed

HMM-MIO in a novel framework for the fusion of the structural information provided

by graph embedding and the spatio-temporal information given by STIP descriptors,

thus benefiting from both powerful representations and overcoming their respective

limitations.
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4.2 Proposed Methods

In this section, we first present the generative model of the extended HMM, called

HMM-MIO, for classification and time segmentation; and also its evaluation on the

KTH, Stitched KTH and CMU-MMAC datasets. The proposed approach using HMM-

MIO for the fusion of structural and spatio-temporal features is then described and

evaluated on the KTH action dataset.

4.2.1 Classification and Time Segmentation

HMM offers a natural model for action classification and segmentation as shown in

Fig 4.2. In the case of joint classification and segmentation (figure 4.2(a)), each state

is assumed to be the action at that time frame. Given an observation sequence x1:T ,

state decoding, i.e. y∗1:T = argmaxy1:T p(y1:T |x1:T ), retrieves the most probable ac-

tion sequence. Model estimation is typically performed with supervised states, as-

suming ground-truth knowledge of a labeled training set of action sequences. Con-

versely, in the case in which the entire observation sequence corresponds to a single,

pre-segmented action, HMM can be used with a different semantic. In this case the

target is a single action label, a∗ = argmaxa p(a|x1:T ), obtained from Bayes’ inver-

sion rule and marginalization of the state sequence (equation 4.1). The sequence of

states represents the dynamic within an action rather than between the actions as in the

previous case. The graphical model is shown in figure 4.2(b).

p(a|x1:T ) ∝
∑
y1:T

p(x1:T , y1:T |a) p(a) (4.1)

4.2.1.1 HMM-MIO

In action recognition, typical local features such as STIP descriptors are irregular in

space and time and characterized by high dimensionality. In addition, their empirical

distributions tend to exhibit heavy tails and outliers [60]. Therefore, the conventional

observation model of HMM requires extensions that we provide as follows with HMM-

MIO:

• To deal with space irregularity, the video frame is partitioned over a uniform grid
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(a)

(b)

Figure 4.2: (a) Decoding the state sequence, y1:T , of an HMM provides joint action

classification and segmentation from observations x1:T ; (b) decoding variable a by

Bayes’ inversion rule and marginalization of y1:T provides a single action label for the

entire sequence x1:T .

with a small number of cells (typically, 1 to 4; see figure 4.3), and a separate

observation density is modelled for the observations of each cell. The cell index,

S, is a fully observed variable for each observation.

• The model is extended to multiple observations per frame (including none) as

described in the rest of this section.

• High dimensionality is mollified by adopting the probabilistic principal compo-

nent framework [137]. With this approach, the covariance matrix of each obser-

vation density, Σ, is constrained to decompose as W TW + σ2
I, where W is a

matrix of limited vertical size. This constraint equates to modelling the observa-

tions over a lower dimensional space with spherical Gaussian noise.

• Both heavy-tailed statistics and outliers are taken into account by modelling the

observation densities by a long-tailed distribution such as the Student’s t [24].
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• Possible multimodality of the observation densities is accounted for by using

mixture distributions.

Figure 4.3: The uniform grid over the actor’s area.

We note each observation as xn
t , with t the frame index and n = 1 . . . Nt the obser-

vation index within the frame. Each observation consists of the pair, xn
t = {dnt , snt },

of the descriptor, dnt , and the cell index where it occurs, snt . Observations probabilities

are assumed to factorize as p(xn
t ) = p(dnt |snt )p(snt ) and p(snt ) is assumed uniform. For

the multiple observations in a frame, we posit:

p(x1:Nt
t ) ≡ p(x1

t , . . . x
Nt
t ) =

Nt∏
n=1

p(xn
t |yt), if Nt ≥ 1

= 1, if Nt = 0

(4.2)

Posing p(x1:Nt
t ) = 1 in the case of no observations is equivalent to a missing ob-

servation and has neutral effect in the chain evaluation of the HMM. The generative

model of HMM-MIO:

p (x1:T , y1:T ) ≡ p
({x1:Nt

t , yt}Tt=1

)
= p(x1:N1

1 , y1, . . . x
1:Nt
t , yt, . . . x

1:NT
T , yT )

(4.3)

is shown in Fig. 4.4.
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Figure 4.4: The generative model of HMM-MIO.

4.2.1.2 Scale of the observation probabilities in HMM-MIO

A side effect of introducing multiple observations into equation (4.3) is that the scale

of the probability for all the observations in a frame, p(x1:Nt
t ), may vary considerably

with their number, Nt. This is an undesirable effect since the number of features such

as STIPs varies significantly along the frame sequence and cannot be regarded as an

indicator of the reliability of the measurement process. We therefore impose that the

scale of probability p(x1:Nt
t ) be the same at each frame, irrespectively of the number of

the observations, by normalizing the probability as:

pg(x1:Nt
t |yt) = Nt

√√√√ Nt∏
n=1

p(xn
t |yt). (4.4)

In logarithmic scale, the above normalization corresponds to the average of the

observation log-probabilities:

pg(x1:Nt
t |yt)) = 1

Nt

Nt∑
n=1

ln p(xn
t |yt). (4.5)

Given that the model is evaluated in logarithmic scale during expectation-maximization,

the canonical estimation algorithms can be simply updated by replacing the single ob-
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servation log-probability for each frame with the average of multiple log-probabilities.

4.2.1.3 Forward and backward formulas for HMM-MIO

The forward and backward formulas for the traditional HMM have been changed to

accommodate the multiple observations of HMM-MIO. Following notations in [10],

the forward formula, i.e., αi(t), is now changed to αg
i (t):

αg
i (t) = pg(x1:t, yt = i|θ). (4.6)

The recursion in the forward algorithm is then specified as:

1. αg
i (1) = πib

g
i (x

1:Nt
1 ) (4.7a)

2. αg
i (t) =

[
R∑

j=1

αg
j (t− 1)aji

]
bgi (x

1:Nt
t ) (4.7b)

3. p(x1:T |θ) =
R∑
i=1

αg
i (T ) (4.7c)

where aij and πi indicate the transition probabilities between any two states, and

the initial probabilities, respectively. In the above equations R refers to the number of

possible hidden states. Like the forward formula, the backward algorithm is changed

from the usual βi(t) to βg
i (t):

βg
i (t) = pg(xt+1:T |yt = i, θ). (4.8)

The corresponding recursion in the backward algorithm is then formulated as:

1. βg
i (T ) = 1 (4.9a)

2. βg
i (t) =

R∑
j=1

aijb
g
j (x

1:Nt+1

t+1 )βg
j (t+ 1) (4.9b)

3. p(x1:T |θ) =
R∑
i=1

πib
g
i (x

1:N1
1 )βg

i (1) (4.9c)
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For the purpose of parameter estimation with the Baum-Welch algorithm, we re-

place the expression for the state posterior at time t, γi(t), given in [10] with γg
i (t),

obtaining:

γg
i (t) = pg(yt = i|x1:T , θ) =

αg
i (t)β

g
i (t)∑R

j=1 α
g
j (t)β

g
j (t)

. (4.10)

However, the posterior probability for the mixture component generating an ob-

servation must still be computed individually for each observation. Therefore, the

following holds:

γil(x
n
t ) = p(yt = i, Cn

it = l|x1:T , θ) = γg
i (t)

cilbil(x
n
t )

bi(xn
t )

. (4.11)

where Cn
it is a random variable indicating the mixture component for observation xn

t for

state i, cil notes the component’s weight in the mixture, and bil(x
n
t ) is the probability

of observation xn
t in the l-th mixture component for state i, l = 1 . . .M .

4.2.1.4 A brief comparison with discriminative sequential models

In recent years, linear-chain conditional random fields (CRFs) have gained attention as

an alternative to hidden Markov models [69]. The main advantage offered by CRFs is

their discriminative training, either as a probabilistic model or in a maximum-margin

framework [138]. Their accuracy has been repeatedly reported as higher than that of

corresponding HMMs (e.g., [140, 150]). However, there are two standing limitations

which prevent extending a conditional random field with the features of HMM-MIO.

The first limitation is that a principal component framework requires a log-quadratic

model (for terms of the form wiwjxixj) for which standard estimation algorithms are

unsuited. The second limitation is the short tails of the exponential family on which

CRFs are based. Conversely, the density of the Student’s t is not exponential and enjoys

an asymptotic value of O(x−ν−1) that can be modulated by the degree of freedom

parameter, ν, to properly account for long tails and outliers. These considerations

explain why a generative model like HMM-MIO offers complementary advantages to

CRF for action recognition from local features.
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4.2.1.5 Experimental Results

We have evaluated the accuracy of the proposed method for the task of action classifi-

cation over the KTH dataset and joint action classification and segmentation over the

Stitched KTH and CMU-MMAC datasets. All of these experiments were performed on

a computer with an Intel(R) Core(TM)2 Duo CPU (E8500, 3.16GHz) and 4GB RAM

using Matlab R2009b.

KTH Dataset: A first experiment was performed to evaluate HMM-MIO over a

task of action classification from pre-segmented actions instances. The action dataset

used is the KTH dataset described in Chapter 3. Although in recent years KTH has

become saturated with results reporting high accuracies, it still offers the widest com-

parative platform [51]. As features, we have used the STIP descriptors from Laptev et

al. [72] with a combination of HOG and HOF components for an overall dimension-

ality of 145 dimensions per observation.

The experiments were conducted comparing various observation densities such as

Gaussian mixture models (GMM), mixtures of probabilistic principal component ana-

lyzers (MPPCA) and mixture of t distribution subspaces [24]. For both MPPCA and

the mixture of t distribution subspaces, we have carried out trials over a range of re-

duced dimensions (D = {36,18,9}). For the mixture of t distribution subspaces we

have manually selected different values of the degrees of freedom parameter, ν, and

tested with different grid sizes (S = {1,2,4}). For evaluation, we have followed the

procedure proposed by Schuldt et al. in [124]: the KTH sequences were grouped into

three sets, namely, training, validation, and test, comprising of specific actors from the

dataset in the number of 8, 8, and 9, respectively. An HMM-MIO for each action class

was trained on the training set, and the validation set was used to select the best number

of states and mixture components. Finally, the parameters selected from the validation

set were used over the test set to provide the final accuracy results.

Table 4.1 shows the results for the various combinations of observation probabil-

ities and main parameters. The first comment is that accuracies are rather high in

general, showing that HMM-MIO can utilize individual STIP descriptors as its obser-

vations despite their sparsity in space and time. The best result, 87.1%, is obtained with

the mixture of t distribution subspaces over a grid with two cells. This accuracy is 7.4

percentage points higher than a standard HMM. Yet, this best accuracy is still lower
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Method Valid. accuracy (%) Test accuracy (%)

GMM

Σ=full 87.3 79.7

Σ=diag. 81.8 74.3

Σ=spher. 79.7 72.9

MPPCA S=1, D=9 84.3 76.6

Mt-ss S=1, D=9, ν=3 91.2 85.7

Mt-ss S=2, D=9, ν=3 90.8 87.1

Mt-ss S=4, D=9, ν=3 90.5 86.9

Laptev et al. [72] - 91.8

Dollár et al. [36] - 81.2

Schuldt et al. [124] - 71.7

Table 4.1: Accuracy (%) of HMM-MIO over the KTH dataset with different observa-

tion probabilities: GMM (full, diagonal, spherical), MPPCA and mixture of t distribu-

tion subspaces (Mt-ss). Other results are shown for comparison [36, 72, 124].

than that reported in Laptev et al. [72], 91.8% on the test set, with a bag-of-words

approach. Yet, such results are not directly comparable as the actual set of descriptors

used is different. Results with HMM-MIO are also higher than others obtained with

other local spatio-temporal descriptors [36, 124]. While we cannot conclude that a

sequential classifier over the dynamic within an action is preferable to a bag-of-words

approach, result are interesting.

Stitched KTH Dataset: For a first experiment on joint segmentation and classifi-

cation, we have created a “stitched” version of the well-known KTH dataset by simply

concatenating individual action instances into sequences. Each sequence depicts a sin-

gle actor in a homogeneous scenario (indoor, outdoor etc) performing a succession of

24 action instances for a total duration of approximately 2,000 frames. The actions

were picked randomly, alternating between the two groups of {walking, jogging, run-

ning} and {boxing, hand-waving and hand-clapping} to emphasize action boundaries.

A total of 64 such sequences were used for training and 36 for testing. The parameters

selected over the training set were used unchanged for the test set.

Comparative experiments have been performed using HMM-MIO, classification of

single frames and a bag-of-words approach. The number of reduced dimensions, D,

and the number of components in each observation mixture, M , which were made vary
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over interval (3,30). The degrees of freedom of the t distribution, ν, which were made

vary over {3,6,9} and the number of cells, S, over 1,2,4. To implement single-frame

classification, we have used a version of HMM-MIO with uniform transition prob-

abilities. This equates to classifying frames solely based on the observation model,

ignoring sequentiality in decoding. Frames with no observations were arbitrarily as-

signed to the first class in appearance order. For bag-of-words, we have used k-means

clustering with N = {128,256,512} clusters for quantization and an SVM classifier

with RBF kernel for classification. In the test sequences, each window of W = 32

frames has been assigned a single action label, sliding the window forward one frame

at a time. We have also tried 16 and 64 frames for W . The accuracy is approximately

on par for W = 16 and W = 32. With W = 64, the accuracy starts to visibly decrease,

certainly due to the presence of shorter action instances in the dataset. As features, we

have extracted STIPs with the public software from [72], with the default descriptors

of 162 dimensions each.

Method Parameters Test accuracy (%)

HMM-MIO D = 30, M = 18, ν = 3, S = 2 71.2
Single-frame classification D = 30, M = 18, ν = 3, S = 2 41.8
Bag-of-words N = 256, W = 32 61.8

Table 4.2: Frame-based accuracy (%) for joint classification and segmentation over a

stitched version of the KTH dataset. S: number of cells; D: number of reduced di-

mensions, M : number of components per mixture, ν: degrees of freedom; N : number

of clusters; W : window size.

Table 4.2 shows the results on the test set in terms of frame-based accuracy, using

the parameters’ values that scored the best accuracy on the training set. The highest ac-

curacy for the three compared models was achieved by HMM-MIO (71.2%). The im-

portance of using a sequential model for segmentation is evidenced by the comparison

with single-frame classification: the drop in accuracy is almost 30 percentage points.

This drop is caused by both the arbitrary classification of frames without observations

and the dismissal of the sequential context. The accuracy achieved by bag-of-words

(61.8%) proved more than 9 percentage points lower than that achieved by HMM-

MIO. The sensitivity to the parameters’ values is not very pronounced: the range of

accuracies for HMM-MIO is {66.5%-71.2%}, {38.8%-41.8%} for single-frame clas-
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sification, and {55.3%-61.8%} for bag-of-words.

CMU-MMAC Dataset: For a more probing and realistic experiment, we have

tested our approach on a sub-set of the CMU Multi-Modal Activity Database (CMU-

MMAC) containing multimodal measurements of the activity of forty subjects cooking

five different recipes: brownies, pizza, sandwich, salad, and scrambled eggs [34]. For

this experiment, we have selected the video clips of twelve different subjects making

“brownies” from a dry mix box. The subjects attended to the preparation in a spon-

taneous way, without receiving instructions on how to perform each task; therefore,

the action instances vary greatly in time span and manner of execution. Each video

depicts a person performing a sequence of actions, with each action belonging to one

of 14 classes including pouring, spraying, stirring, and others (see Fig. 4.5 for the com-

plete list). The average duration of a video is approximately 15,000 frames while the

average length of an action instance is approximately 230 frames, with a minimum

length of 3 frames and a maximum of 3,269. As video source, we have used the view

from static camera “7151062” which offers a side view of the scene (see Fig. 4.5). As

action labels, we have used the annotations provided for the wearable camera mounted

atop the subject’s head, albeit only loosely synchronized with the static camera. For the

experiment, we have used 12-fold cross-validation with a validation set, selecting eight

subjects for training, three for validation and one for testing in each fold on a rotating

basis. As features, we have again extracted STIPs with the public software from [72],

but sub-sampling them one in ten in appearance order so as to limit the overall data

size. The compared algorithms include HMM-MIO, single-frame classification, and

the bag-of-words approach. For bag-of-words, we have extended the parameter search

to {128,256,512,1024} for the number of clusters and {16,32,64} for the window size.

Method Average accuracy Standard deviation

HMM-MIO 38.4 6.1
Single-frame classification 11.7 1.6
Bag-of-words 35.2 2.3

Table 4.3: Frame-based accuracy (%) for joint classification and segmentation over a

sub-set of the CMU-MMAC dataset.

Table 4.3 shows the results from this experiment in terms of average accuracy and
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Figure 4.5: Examples of actions for preparation of “brownies”: (from left to right,

column wise) close, crack, none, open, pour, put, read, spray, stir, switch-on, take,
twist-off, twist-on and walk.

standard deviation over the folds. As it is far more realistic and challenging, accura-

cies are generally much lower. The best average accuracy is achieved by HMM-MIO

(38.4%) and is noticeably higher than that of bag-of-words (35.2%). However, HMM-

MIO is more sensitive to the training fold as it reports a much higher standard deviation

(6.1 vs. 2.3). The drop in accuracy with single-frame classification (minus 26.7 per-

centage points from HMM-MIO) is proportionally more marked than in the previous

experiment, giving evidence about the importance of the sequential structure at a parity

of observation model.

From these two experiments, we can conclude that a sequential classifier can out-

perform Window-based bag-of-words approaches in joined the task of segmentation

and classification.

4.2.2 Feature Fusion

We now present an extention of HMM-MIO for the fusion of structural and spatio-

temporal features. For this reason, we first define the feature set used in our framework.

The proposed approach is then described in the next section. We finally present an

experimental evaluation of the proposed method on the KTH action dataset.

4.2.2.1 Features

The structural and spatio-temporal features provided by graph embedding and typical

descriptors are:
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• Structural features: We have used the 16-dimensional feature vectors described

in Chapter 3.

• Spatio-temporal features: We have used a combination of HOG and HOF for an

overall dimensionality of 145 (STIP descriptors [70]).

4.2.2.2 Fusion graphical model

As classifier, we have used the hidden Markov model for multiple, irregular observa-

tion (HMM-MIO, described in section 4.2.1.1) capable of dealing with sequences of

observations that include outlier, high-dimensional, and sparse measurement typical of

action recognition with S = 1. In the proposed model for feature fusion, the probabil-

ity for all the observations in a frame, t, is calculated by the fusion of two likelihoods

which model two types of measures:

• Spatio-Temporal Texture or Appearance Observations (xa,t) provided by the

STIP descriptors: the different numbers of STIP points per frame introduced a

scale problem in the resulting probability that is solved in HMM-MIO by means

of equation 4.4.

• Structural Observations (xs,t) provided by graph embedding: In our experiments,

the embedding of a graph with 16 different selected prototypes leads to a 16-

dimensional feature vector describing the shape of a single actor in each frame.

This feature vector is modelled statistically by likelihood P (xs,t|yt).

The combination of the two likelihoods (equation 4.12) is performed as a weighted

sum of weights Wa and Ws, such that Wa +Ws = 1.

P (xt|yt) = Wa · Pa(x
1:Nt
a,t |yt) +Ws · P (xs,t|yt) (4.12)

The graphical model for the modified HMM-MIO can be seen in Figure 4.6. The

generative model is then obtained using equation 4.3.

4.2.2.3 Experimental Results

This section provides the evaluation of the proposed approach and shows the advan-

tages of combining the structural information provided by graph embedding with the
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Figure 4.6: Modified HMM-MIO (hidden Markov model with multiple, independent

observations); xt are the observations at time t (appearance observations provided by

the STIP descriptors, xa, and the structural observation provided by graph embedding,

xs); yt is the corresponding hidden state; Wa and Ws are the two weights for computing

the total observation probability P (xt|yt) = Wa ·Pa(x
1:Nt
a,t |yt) +Ws ·P (xs,t|yt); Wa +

Ws = 1.

spatio-temporal information provided by STIPs. In order to assess the individual con-

tribution of the features and show the advantages of the proposed fusion, we have

conducted experiments with different weights (Table 4.4). A value of (Wa, Ws)=(1,0)

means that only appearance features are used, whereas structural features are solely

utilised when (Wa, Ws)=(0,1). As shown by Table 4.4, recognition accuracy is sig-

nificantly improved by combining the structural information with the spatio-temporal

features, reaching its maximum when (Wa, Ws)=(0.5,0.5).

4.3 Discussion and Conclusions

In this chapter, we have first presented an approach to joint action segmentation and

classification based on an extended HMM capable of exploiting local spatio-temporal

features. Such measurements are irregular in space and time, high dimensional and

characterized by heavy-tailed distributions and outliers. The extended model, HMM-

MIO (hidden Markov model with multiple, irregular observations), effectively tackles

these issues and provides significant accuracy. The results show that sequential gen-

erative classifiers can be capable of significant action recognition accuracy, provided

they are endowed with likelihood models that are well suited to typical visual mea-

surements.
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Table 4.4: Accuracy (%) of our approach over the KTH dataset with variable weights

over the appearance and structural components.

Wa Ws Test accuracy (%)

1.0 0.0 85.7 [28]

0.9 0.1 85.9

0.8 0.2 86.8

0.7 0.3 87.9

0.6 0.4 88.9

0.5 0.5 89.8
0.4 0.6 87.9

0.3 0.7 85.8

0.2 0.8 82.2

0.1 0.9 77.9

0.0 1.0 48.7

We have then used this model to present a novel approach for human action recog-

nition based on the fusion of structural and spatio-temporal information. To this aim,

the structural information provided by graph embedding and the local spatio-temporal

information provided by STIP descriptors are jointly modelled by a modified hidden

Markov model with multiple, independent observations (HMM-MIO) [28]. Although

our approach does not yet equal state-of-the-art accuracy, it shows that structural and

spatio-temporal features can be fused constructively to obtain higher accuracy than

from either separately.
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Chapter 5

Discriminative Prototype Selection

As we have seen in the previous chapters, graphs have shown a remarkable representa-

tional power for action recognition. In particular, the discriminative prototype selection

we proposed in section 3.2.3 is a major innovation over conventional selection tech-

niques. Motivated by this rationale, in this chapter, we introduce a novel framework

for selecting a set of prototypes from a labelled graph set taking their discriminative

power into account and test it over a variety of structured data including letter, digit,

molecular, fingerprint. Experimental results show that such a discriminative prototype

selection framework can achieve superior results in classification compared to other

well-established prototype selection approaches.

5.1 Prior Work and Our Contributions

Although the vast majority of pattern recognition algorithms rely on vectorial data

representations, more and more effort is now rendered in various research fields on

graph based representations [29]. Unlike the vectorial representation which ignores the

dependencies between observations, graphs preserve these dependencies and relations.

To phrase it more generally, the main merits of a graph-based representation are:

• the number of nodes and edges in the graph is not fixed a priori; rather, it adjusts

to the complexity of the target object;

• graphs are capable of encapsulating the object’s structure not merely by storing
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the object’s features, but by also explicitly modeling the relations amongst such

features (beyond simple co-statistics).

Leveraging on these appealing properties, many approaches have used graphs in,

for instance, human action recognition [16], bioinformatics and chemoinformatics [85,

107, 144], web content analysis and data mining [30, 120, 121], classifying images

from various fields [6, 55, 84], symbol and character recognition [81, 118, 132] and

computer network analysis [18, 35].

However, object representations given in terms of graphs suffer from a number

of severe drawbacks when compared to feature vectors. One major limitation is the

significantly increased complexity of many algorithms. For instance, the comparison

of two feature vectors for identity can be accomplished in linear time with respect

to the length of the two vectors. For the equivalent operation on graphs, i.e. testing

two graphs for isomorphism, only exponential algorithms are known to date. An-

other major drawback of graph-based representations is that even basic mathematical

operations such as sums and products cannot be performed on graphs, making them

unsuited for conventional pattern recognition approaches. As a consequence of these

general limitations, the lack of algorithmic tools for graph-based pattern recognition

appears obvious.

The way we have chosen to circumvent this problem is to embed the graphs in a

real vector space. By this approach, we can benefit from the wide range of statistical

pattern recognition methods while retaining the universality of graphs for pattern rep-

resentation. To date, many approaches have been proposed in the literature to embed

graphs in a vector space. In [84], for instance, features derived from the eigendecom-

position of graphs are exploited. Another approach uses an “edit distance” to compute

the matrix of distances between any two graphs in a set and then uses it to embed the

graphs into a vector space by means of multidimensional scaling [156]. In [157], the

authors turn to the spectral decomposition of the Laplacian matrix. They show how

the elements of the spectral matrix for the Laplacian can be used to construct sym-

metric polynomials. In order to encode a graph as a vector, the coefficients of these

polynomials are used as graph features. Another approach for graph embedding has

been proposed in [117]; the authors use the relationship between the LaplaceBeltrami

operator and the graph Laplacian to embed a graph onto a Riemannian manifold.
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The present work follows another approach of graph embedding where a graph is

embedded into a point of the vector space by means of a template set and a dissimilarity

measure. This approach is primarily based on the idea proposed in [100, 101] where

a dissimilarity representation over vectors was first introduced, and then extended in

[131] to map strings onto vector spaces and finally generalized to graphs in [19, 112].

In the literature, graph embedding by means of prototype selection has reported higher

classification accuracy than alternative methods such as K-NN classification directly

in the graph domain and SVM classification over similarity kernels [19, 20]. The key

idea of this graph embedding approach is to convert a graph into an n-dimensional

feature vector by way of a set of “prototype” graphs P and a dissimilarity measure

such that the feature vector consists of the dissimilarity between the graph and each

prototype. Intuitively, the prototype set should be distributed over the graph domain in

a uniform way. However, in principle this is difficult to ensure since uniformity over a

graph domain is a vague concept.

Let us assume to be given a training set, C, of class-labelled graphs from N differ-

ent classes, C1, . . . , CN . Various approaches have been proposed to date for selecting

informative prototypes from C. In [19], all available elements from the training set

are used as prototypes P = C, and then feature extraction algorithms, e.g. principal

component analysis (PCA) [61], is applied to the embedded graphs in vector space.

Although by this approach the authors bypass the difficult problem of selecting ad-

equate prototypes, it is obvious that it may prove computationally too expensive for

large datasets and that its run-time cost on a new graph may be too high. To overcome

this limitation, in [115], the authors proposed different heuristic approaches based on

the distances between the graphs in C. The authors distinguish between unlabelled and

labelled selection. The unlabelled selection is executed over the whole training set at

once ignoring the class labels, while the labelled selection selects prototypes separately

for each of the N classes, C1, . . . , CN . In general, labelled approaches have reported

higher classification accuracy than unlabelled methods.

Labelled prototype selection can be likened to the training of class likelihoods in

generative classifiers, where each likelihood is estimated based on only the samples

from that class. Conversely, discriminative classifiers choose parameters based on the

information from multiple classes at once, maximizing objective functions such as the

class margin, Fisher discriminants, mutual information and others, and often prov-
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ing more accurate than their generative counterparts. Inspired by discriminative ap-

proaches, in this chapter we propose various discriminative prototype selection meth-

ods where the prototype set is chosen by weighing intra-class compactness and inter-

class separation and demonstrate their ability to outperform previous methods. We

have also recently become aware of another proposal for discriminative prototype se-

lection from Raveaux et al. [109]. In [109], the authors propose to conduct the search

for prototypes in the exponential space of possible selections by way of a genetic al-

gorithm. While this is certainly an attractive strategy, we believe that the tradeoffs

we propose between intra-class compactness and inter-class separation offer a more

immediate interpretation.

5.2 Proposed Methods

In this section, we describe the proposed approaches.

5.2.1 Prototype selection

Selecting informative prototypes from the underlying graph domain plays a vital role in

graph embedding [151]. In order to obtain a meaningful as well as class-discriminative

vector representation in the embedding space, a set of selected prototypes P = {p1, p2, . . . , pn}
should be adequately distributed over the whole graph domain, at the same time avoid-

ing redundancies in terms of selection of similar graphs [56, 100, 112].

Let us assume that the graphs in the graph domain can be classified into N different

classes, c1, . . . , cN . Given a labelled training set, C, we note as C1, . . . , CN the N sub-

sets spanned by the classes, such that C =
⋃N

n=1Cn. We then categorise the prototype

selection methods into labelled and unlabelled approaches. In the former, the selec-

tion is performed individually for each class, while the latter determines all prototypes

from the whole training set, C, ignoring the class label information. As shown in [115],

labelled selection approaches tend to deliver higher classification accuracy than corre-

sponding unlabelled approaches. Yet, existing labelled selection methods choose the

class’ prototypes based solely on the graphs in the class. In this thesis, we instead pro-

pose discriminative approaches for the selection of prototypes which consider graphs

from all classes at once maximising a function of the inter- and intra-class distances. In
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this way, we elicit prototype selection strategies imposing that the selected prototypes

for the class be well-distributed within the class, yet being discriminative with respect

to the graphs in the remaining classes.

5.2.2 Learning discriminative prototypes

The ultimate goal of prototype selection for classification is to identify the most dis-

criminative graphs in the training set , C. In our work, each of the selection algorithms

in section 5.2.3 is learned in two different ways. If the prototypes are chosen for a

class to discriminate well against all other classes, they form a one-vs-all prototype

set. Similarly, if the selection strategy tries to maximize this discrimination between

the selected class and the closest class, it obtains a one-vs-nearest prototype set.

Let Cn = {gn1, . . . , gni, . . . , gn|Cn|} and Cm = {gm1, . . . , gmj, . . . , gm|Cm|} be the

subsets of C for classes cn and cm, respectively. We adopt the following definition for

the class distance between cn and cm:

dclass(cn, cm) =

∑|Cn|
i=1

∑|Cm|
j=1 d(gni, gmj)

|Cn||Cm| (5.1)

where d(u, v) is the distance between graphs u, v and |Cn| and |Cm| are the total num-

ber of graphs in Cn and Cm, respectively. Alternative definitions are also possible, but

they are not the focus of the following work.

Based on equation 5.1, the nearest class cnnear to class cn is the class which has the

minimum class distance to cn, formally defined as:

cnnear = argmin
n=1...N,n �=n

dclass(cn, cn). (5.2)

5.2.3 Discriminative prototype selection algorithms

Based on the graph embedding definition, an appropriate choice of the prototype set,

P , plays a critical role in graph embedding as it impacts the classification accuracy.

The six deterministic algorithms used to select the discriminative prototypes in this

work are described below. In the selection of these discriminative prototypes, different

objective functions are proposed which not only provide high intra-class compactness,
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but also consider inter-class separation. The part influencing the intra-class compact-

ness is weighted by a weight, Wc, and the part controlling the inter-class separation is

weighted by Ws where {Wc,Ws} ∈ [0, 1] and Wc +Ws = 1. Each of these algorithms

is an extension of an existing labeled algorithm. All these objective functions allow

selecting an arbitrary number, K, of prototypes from each class.

5.2.3.1 Discriminative Center Prototype Selection

In discriminative center prototype selection (d-cps), a prototype set, Pn = Pn(1:K) =

{pn1, . . . , pnk, . . . , pnK}, is generated from each Cn subset, with each pnk prototype

simultaneously located near the “center” of the graphs from Cn, and away from the

graphs of the remaining classes, Cn. Prototypes are selected incrementally, with each

prototype pnk determined as a graph gnj ∈ Cn which is not already selected as pro-

totype and such that the difference between the sum of distances between gnj and all

other graphs in its class, excluding the already selected prototypes, and the sum of

distances between gnj and all other graphs in Cn is minimal:

pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[ Wc ·
∑

gni∈Cn,i �=j,
gni /∈Pn(1:k−1)

d(gnj, gni)−Ws ·
∑

gni∈Cn

d(gnj, gni) ]
(5.3)

This objective function promotes class discrimination. However, it may suffer from

redundancy as it tends to select multiple prototypes from the center of the class. More-

over, it should be noted that because the number of graphs in Cn is usually much lower

than that in Cn, the objective function in (5.3) usually takes negative values. However,

this has no impact on the minimisation.

5.2.3.2 Discriminative Border Prototype Selection

The idea of discriminative border prototype selection (d-bps) is to choose the proto-

type set, Pn, such that each pnk prototype be situated near the border of its class. The

rationale for this selection is that of having prototypes which are simultaneously mu-

tually spread apart and distant from the graphs in the other classes. Prototypes are
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selected incrementally, with each prototype pnk determined as a graph gnj ∈ Cn which

is not already selected as prototypes and such that the total sum of the sum of distances

between gnj and all other graphs in Cn, excluding the already selected prototype, and

Cn is maximal:

pnk = argmax
gnj∈Cn,gnj /∈Pn(1:k−1)

[ Wc ·
∑

gni∈Cn,i �=j,
gni /∈Pn(1:k−1)

d(gnj, gni) +Ws ·
∑

gni∈Cn

d(gnj, gni) ]
(5.4)

In contrast to the previous prototype selector, where many prototypes could be

structurally similar, this selection procedure prevents redundancy. However, it lacks

prototypes from the inner region of the class and this may lead to poorly discriminative

embedded vectors for graphs located in such regions.

5.2.3.3 Discriminative Repelling Prototype Selection

To overcome the inherent limitations of both previous approaches, discriminative re-

pelling prototype selection (d-rps) chooses the set of prototypes of each Cn sub-set

based on the following procedure: the first prototype, pn1, is selected by means of d-

cps. To select any additional prototype, pnk, k = 2 . . . K, we pick a graph gnj from the

class’ graphs not already selected as prototypes to minimize the following equation:

pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[ Wc ·
∑

gni∈Cn,i �=j,
gni /∈Pn(1:k−1)

d(gnj, gni) −

Ws · (
∑

gni∈Cn

d(gnj, gni) ·
∑

gni∈Pn(1:k−1)

d(gnj, gni)) ]

(5.5)

This objective function is similar to that in (5.3), but encourages pnk to also be

distant from all previously selected prototypes, Pn(1:k−1) = {pn1, . . . , pn(k−1)} (“re-

pelling” component). This favors mutual separation amongst the class’ prototypes
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and their more uniform distribution within the class.

5.2.3.4 Discriminative Spanning Prototype Selection

Along a similar rationale, discriminative spanning prototype selection (d-sps) selects

each prototype with the following iterative procedure: the first prototype, pn1, is se-

lected by d-cps. Each additional prototype, pnk, k = 2 . . . K, is the graph in Cn that

preserves the following conditions: be the farthest graph from the already selected

prototypes, Pn(1:k−1), as well as all graphs in the other classes, Cn:

pnk = argmax
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∑

gni∈Pn(1:k−1)

d(gnj, gni) +Ws ·
∑

gni∈Cn

d(gnj, gni)]
(5.6)

Compared to (5.5), this objective function ignores the compactness term and com-

poses the other two terms in an additive rather than multiplicative scale.

5.2.3.5 Discriminative Targetsphere Prototype Selection

In discriminative targetsphere prototype selection (d-tps), the first and second pro-

totypes, {pn1,pn2}, for Cn are selected by means of d-cps and d-bps, respectively.

These two prototypes represent the center and farthest boundary of the class. Then,

the distance between these two prototypes, dmax = d(pn1, pn2), is computed and each

other prototype, pnk, k = 3 . . . K, is selected as the graph closest to a distance of

(k− 2)dmax/(K − 1) from pn1 and furthest away from the graphs in the other classes,

Cn. This procedure is called “targetsphere” as it is reminiscent of the evenly-spaced

divisions of a shooting target circle:

pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∣∣∣∣d(gnj, pn1)− (k − 2) · dmax

(K − 1)

∣∣∣∣−Ws ·
∑

gni∈Cn

d(gnj, gni)]
(5.7)
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5.2.3.6 Discriminative k-Center Prototype Selection

They key idea of discriminative k-center prototype selection (d-kcps) is to select the

prototypes of each class by a procedure similar to k-medoids clustering, at the same

time maintaining separation from the graphs in the remaining classes, Cn [63]. The six

steps of this method are:

1. Select an initial set of K prototypes, Pninitial
= {pn1, . . . , pnk, . . . , pnK}, by means

of any of the previous prototype selectors.

2. Construct K sets, with each set containing one of the initial prototypes: S1 =

{pn1}, . . . , Sk = {pnk}, . . . , SK = {pnK}.

3. For each other graph g ∈ Cn, g /∈ Pninitial
, find its nearest prototype in terms of

a distance between elements and add g to the corresponding set. As a result of

this, we attain a partition on Cn with K disjoint subsets and Cn =
⋃K

k=1 Sk.

4. For each set Sk, find its center graph ck by means of d-cps. This retains the

discriminative aspect of the selection.

5. For each set Sk, if its center ck is not equal to prototype pnk, replace pnk by ck.

6. If any replacement has occurred, return to step 2; otherwise, select the centers of

the K disjoint sets, {c1, . . . , cK}, as the set of prototypes, Pn.

5.3 Experimental Results

This section provides the evaluation of the proposed methods and shows the benefits

of using discriminative prototype selection approaches compared to existing methods.

To this aim, several classification tasks are carried out over a wide number and variety

of datasets including letters, digits, drawings, fingerprints and more.

5.3.1 Dataset

For extensive testing of the proposed approaches, we have chosen a total of 10 dif-

ferent graph datasets from the publicly available IAM graph database repository for
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graph based pattern recognition and machine learning [113]. Databases from the IAM

repository have been a de-facto benchmark in the last few years and many results are

available for comparison. A summary of these graph data sets together with some

characteristic properties is reported in Table 5.1. For the sake of accuracy evaluation,

each of the datasets used in the chapter is divided into three disjoint subsets which are

used for training, validation and testing. Each of these datasets is presented in greater

detail in the following subsections.

Dataset Size(tr, va, te) # classes ∅ |V | ∅ |E| max|V | max|E| Balanced

Letter low 750, 750, 750 15 4.7 3.1 8 6 Y

Letter medium 750, 750, 750 15 4.7 3.2 9 7 Y

Letter high 750, 750, 750 15 4.7 4.5 9 9 Y

Digit 1000, 500, 2000 10 8.9 7.9 17 16 Y

GREC 836, 836, 1628 22 11.5 12.2 25 30 Y

Fingerprint 500, 300, 2000 4 5.4 4.4 26 24 N

AIDS 250, 250, 1500 2 15.7 16.2 95 103 N

Mutagenicity 500, 500, 1000 2 30.3 30.8 417 112 Y

Protein 200, 200, 200 6 32.6 62.1 126 149 Y

Webpage 780, 780, 780 20 186.1 104.6 834 596 N

Table 5.1: Summary of graph data set characteristics, e.g. the size of the training (tr),

the validation (va) and the test set (te), the number of classes (# classes), the average

and max number of nodes and edges (∅ |V |, max|V |, ∅ |E|, max|E|), and whether the

graphs are uniformly distributed over the classes or not (balanced).

5.3.1.1 Letter datasets

Each graph in the letter dataset represents a distorted letter drawing. This dataset

considers the 15 capital letters of the Roman alphabet which consist of straight lines

only (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z) to build 15 different classes. For each

class, a prototype line drawing is manually constructed. These prototype drawings

are then converted into prototype graphs by representing lines as undirected edges and

ending points of lines as nodes. Each node is labeled with a two-dimensional attribute

giving its position relative to a reference coordinate system. Edges are undirected and

unlabeled. In order to test classification under different conditions, three sets of this

dataset are obtained by applying three levels of distortion (namely low, medium and

high) on each original graph. The training, validation and test sets are of size 750 each.

The graphs are uniformly distributed over the 15 classes. Figure 5.1 shows the original

graph and a graph instance for each distortion level representing letter “A”.
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Figure 5.1: Examples of letter A: Original and distortion levels low, medium and high

(from left to right)

5.3.1.2 Digit dataset

This dataset contains graphs representing different handwritten digits [48]. In each

graph, nodes represent line segments of a handwritten digit. More formally, the se-

quences of (x, y) coordinates are converted into graphs by grouping coordinate points

forming sub-paths of similar length. These sub-paths are represented by nodes labeled

with their starting and ending position relative to a reference coordinate system (i.e.

the first and last (x, y) coordinates from the respective sub-path). Successive sub-paths

are connected by undirected and unlabeled edges. Finally, the derived graphs are nor-

malized such that each corresponding digit has equal width and height.

The dataset used in this work comprises a randomly selected sub-set of totally

3500 digits (1000, 500 and 2000 samples used for training, validation and testing re-

spectively) which are uniformly distributed over the 10 classes. Figure 5.2 illustrates a

graph instance of each of the ten digit classes.

Figure 5.2: A graph example of each of the ten digit classes

5.3.1.3 GREC dataset

The GREC dataset consists of graphs representing symbols from 22 classes of archi-

tectural and electronic drawings [38]. The image can occur at five distortion levels.
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An example of each distortion level can be seen in Figure 5.3. Based on the distortion

level, a morphological operation (e.g. erosion, dilation) is applied and the result is

thinned to get lines of one pixel width. Finally, graphs are extracted from the result-

ing denoised images by tracing the lines from end to end and detecting intersections

as well as corners. Ending points, corners, intersections and circles are represented by

nodes and labeled with a two-dimensional attribute giving their position. The nodes are

connected by undirected edges which are labeled as line or arc. An additional attribute

specifies the angle with respect to the horizontal direction or the diameter in case of

arcs. For an adequately sized set, the five graphs per distortion level are individually

distorted 30 times to obtain a dataset containing 3300 graphs uniformly distributed

over the 22 classes. The resulting set is split into a training, a validation and a test set

of size 836, 836 and 1628 samples respectively.

Figure 5.3: An instance image of each distortion level

5.3.1.4 Fingerprint dataset

The graphs in the Fingerprint dataset are built by binarizing the relevant regions and

then applying a noise removal and thinning procedure. Thus, a skeletonized represen-

tation of the interest regions is extracted. Ending points and bifurcation points of the

skeletonized regions are represented by nodes. Additional nodes are inserted of reg-

ular intervals between ending points and bifurcation points. Finally, undirected edges

are inserted to link nodes that are directly connected through a ridge in the skeleton.

Each node is labeled with a two-dimensional attribute giving its position. The edges

are attributed with an angle denoting the orientation of the edge with respect to the

horizontal direction.

The dataset used in this work is based on the NIST-4 reference database of finger-

prints [152] and it consists of 2800 fingerprint images (500 samples for training, 300
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samples for validation and 2000 samples for testing) distributed over four different

classes arch, left, right and whorl from the Galton-Henry classification system. Note

that in this dataset only a four-class problem of fingerprint classification is considered,

i.e. the fifth class tented arch is merged with the class arch. Thus, class arch consists

of about twice as many graphs as the other three classes. Figure 5.4 shows an instance

of each of the four fingerprint classes.

Figure 5.4: Instances of fingerprint classes: left, right, arch and whorl (from left to

right)

5.3.1.5 AIDS data set

The AIDS dataset is based on the “AIDS Antiviral Screen Database of Active Com-

pounds” [39]. This data set consists of two classes (active, inactive), which represent

molecules with activity against HIV or not. The molecules are converted into graphs

in a straightforward manner by representing atoms as nodes and the covalent bonds as

edges. Nodes are labeled with the number of the corresponding chemical symbol and

edges by the valence of the linkage. Figure 5.5 represents one molecular compound

of both classes where the shades of gray show various chemical symbols, i.e. node

labels. The dataset used in this work consists of a total number of 2000 samples (1600

inactive elements and 400 active elements) where the samples are split into a training

and a validation set of size 250 each and a test set of size 1500.

5.3.1.6 Mutagenicity dataset

The mutagenicity dataset follows the same approach used in the AIDS dataset to con-

vert molecular compounds into attributed graphs [64]. It contains two classes mutagen
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Figure 5.5: A molecular compound of both classes: active and inactive (from left to

right)

and nonmutagen with 1250 elements each. All elements are split into three sets: train-

ing, validation and test set with the size of 250, 250 and 1500 respectively.

5.3.1.7 Protein dataset

The protein data set consists of graphs representing proteins [144]. The graphs are

constructed from the Protein Data Bank [9] and labeled with their corresponding en-

zyme class labels from the BRENDA enzyme database [123]. Based on the six enzyme

commission top level hierarchy (EC classes), this dataset consists of six classes (EC1,

EC2, EC3, EC4, EC5, EC6) to represent proteins from various EC classes. Figure 5.6

illustrates an example protein of each class.

The proteins are converted into graphs by representing the structure, the sequence,

and chemical properties of a protein by nodes and edges. Nodes represent secondary

structure elements (SSE) within the protein structure, labeled with their type (helix,

sheet, or loop) and their amino acid sequence. Every pair of nodes is connected by an

edge if they are neighbors along the amino acid sequence (sequential edges) or if they

are neighbors in space within the protein structure (structural edges). Every node is

connected to its three nearest spatial neighbors. In case of sequential relationships, the

edges are labeled with their length in amino acids, while in case of structural edges a

distance measure in Angstroms is used as a label. The total number of 600 proteins are

evenly distributed on six classes to build a training, a validation and a test set of size

200 each.
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Figure 5.6: An example of each class: EC1, EC2, EC3, EC4, EC5 and EC6 (from left

to right)

5.3.1.8 Webpage dataset

Amongst the various approaches for building graphs from web documents, the follow-

ing procedure is applied to build graphs for the webpage dataset [120]. First, all words

occuring in the web document (excluding stop words) are converted into nodes in the

resulting web graph. Each node is then attributed with its corresponding word and

frequency in the document. Next, the document is divided in the following sections:

title which contains the text related to the document’s title; link which is text in any

clickable hyperlink; and text which comprises all the ordinary text. If a pair of words,

wi and wi+1, are consecutive words in any of the above sections, a directed edge from

the node corresponding to word wi to the node of word wi+1 is inserted in the web

graph. These edges are labeled with the corresponding section label. Finally, only the

most frequently used words (nodes) are kept in the graph and the terms are conflated

to the most frequently occurring forms.

The dataset used in this work consists of 2340 documents from 20 categories

(Business, Health, Politics, Sports, Technology, Entertainment, Art, Cable, Culture,

Film, Industry, Media, Multimedia, Music, Online, People, Review, Stage, Televi-

sion, and Variety).These documents were originally hosted at Yahoo as news pages

(http://www.yahoo.com) and their number varies from only 23 (Art) up to 500 (Health).

The dataset is split into a training, a validation and a test set of equal size (780).

5.3.2 Comparison between the discriminative and labeled approaches

The aim of the evaluation described in this section is to empirically verify the power

and applicability of the feature vectors extracted by the discriminative prototype selec-

tion approaches compared to those obtained by other methods, e.g. [115]. For the sake

of comparison, the following settings are identically applied in all experiments.
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For graph embedding, the graph edit distance is computed by means of the sub-

optimal algorithms introduced in [114]. This approach shows superior performance in

time and accuracy compared to other suboptimal algorithms. The classification task

of the vector space embedded graphs is carried out by employing the support vector

machine [141]. Although any other statistical classifier could be used for this pur-

pose, SVM has a theoretical advantage as well as a remarkable empirical performance

[46]. In our experiments, we make use of an SVM with the Radial Basis Function

(RBF) kernel [126]. In [112], this kernel was reported more accurate than linear and

polynomial kernels for classifying graphs embedded in a vector space. The number

of prototypes per class, n, and the SVM parameters are tuned using a training and a

validation set, and the accuracy on the test set is then measured “blindly” by using the

parameters selected on the validation set, without any further tuning. All our experi-

ments were performed on a personal computer with an Intel(R) Core(TM)2 Duo CPU

(E8500, 3.16GHz) and 4GB RAM using Matlab R2009b. As software, we have used

the LIBSVM toolbox for Matlab [22].

In order to assess the individual contribution of the two learning approaches de-

scribed in section 5.2.2, we have first conducted experiments with feature vectors ex-

tracted with different prototype selection methods, learned with one-vs-all and one-vs-

nearest approaches (Table 5.2). All results for each dataset are then compared and the

best accuracy per dataset is displayed in bold face. According to Table 5.2, 16 out of

the top 27 prototype selectors were obtained with the one-vs-all approach rather than

the one-vs-nearest. In most cases, the differences are very limited.

We compare the proposed discriminative approaches, existing labeled prototype

selectors and, as a term of reference/baseline approach, using all the graphs in the

training set as prototypes (Table 5.4).

We first evaluate the discriminative selection approaches (d-cps, d-bps, d-sps, d-tps

and d-kcps) in comparison with corresponding labeled prototype selectors (l-cps, l-bps,

l-sps, l-tps and l-kcps) [20, 115]. These labeled prototype selectors are defined as 3.2.1-

6 with weights Wc = 1 and Ws = 0. In other word, each of the labeled approaches

is equivalent to the corresponding discriminative approach without the inter-class term

in its objective function. Table 5.3 shows that the discriminative selection strategy has

increased the classification accuracies in 42 out of 50 cases over all datasets.

Next, we report the full accuracy over the various selectors and datasets in Table
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One-Vs-All One-Vs-Nearest

Dataset d-cps d-bps d-drps d-sps d-tps d-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 99.5 99.5 99.5 99.5 99.5 99.5 99.4 99.6 99.4 99.5 99.5 99.4

Letter medium 94.4 95.6 94.0 95.4 95.4 95.4 95.4 95.4 95.2 95.2 95.4 95.0

Letter high 92.2 92.8 93.0 93.4 93.0 92.8 92.6 92.3 91.8 92.7 92.3 92.8

Digit 98.6 98.6 98.6 98.7 98.5 98.6 98.5 98.6 98.4 98.7 98.6 98.6

GREC 92.0 92.0 92.0 92.5 92.0 92.2 91.9 92.1 92.1 92.1 92.2 92.2

Fingerprint 81.2 80.6 81.1 81.6 80.9 81.4 81.2 81.0 81.6 81.6 80.8 81.5

AIDS 98.0 98.0 98.0 98.2 98.2 98.1 98.0 98.0 98.0 98.2 98.2 98.1

Mutagenicity 71.1 71.1 69.9 71.5 71.1 70.6 71.1 71.1 69.9 71.5 71.1 70.6

Protein 75.0 72.0 72.0 73.0 75.0 61.0 75.0 72.0 72.0 73.0 75.0 62.0

Webpage 82.4 82.4 82.4 82.4 82.4 82.4 82.3 82.3 82.3 82.3 82.4 82.4

Table 5.2: Classification accuracy (%) of SVM-RBF applied to graphs embedded using

different learning approaches (One-Vs-All and One-Vs-Nearest). The best result per

dataset is displayed in bold face.

Dataset cps bps sps tps kcps

Letter low +0.4 +0.4 0.0 +0.1 +7.3

Letter medium +0.6 +0.8 +1.0 +0.8 +1.2

Letter high +0.4 +0.4 +0.8 +0.8 +0.8

Digit +0.3 +0.1 +0.1 +0.2 +0.1

GREC +0.8 +0.4 +0.1 +0.8 -0.2

Fingerprint +0.2 +0.6 +0.8 +1.2 +1.4

AIDS +0.9 -0.1 0.0 +0.2 0.0

Mutagenicity +5.1 -0.1 +1.9 +2.8 +0.5

Protein +4.5 -0.5 0.0 +3.5 +1.5

Webpage +0.1 +0.1 +0.1 +0.1 +0.1

Table 5.3: Increment of classification accuracy (%) with discriminative prototype se-

lectors

5.4 (best values are highlighted in bold face). We observe that there is only one dataset

(AIDS) where the classification accuracy with the best labeled approach is as high as

that of the best discriminative approach. For all other datasets, using a discrimina-

tive approach significantly outperforms all labeled methods. Moreover, narrowing our

comparison to the discriminative prototype selectors alone, we note that d-sps gen-

erally outperforms the other methods and achieves the best accuracy in 8 out of 10

datasets.

Studying the optimal number of prototypes, i.e. the dimensionality of the embed-

ding vector space, is also of interest. For the results reported in Tables 5.4 and 5.2, we

have set an equal number of prototypes for each class with the balanced datasets and

proportionally equal with the unbalanced datasets in all experiments. Then, we have
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Labeled Prototype Selectors Discriminative Prototype Selectors

Dataset All l-cps l-bps l-sps l-tps l-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 99.4 99.1 99.2 99.5 99.4 99.2 99.5 99.6 99.5 99.5 99.5 99.5

Letter medium 95.0 94.8 94.8 94.4 94.6 94.2 95.4 95.6 95.2 95.4 95.4 95.4

Letter high 92.3 92.2 92.4 92.6 92.2 92.0 92.6 92.8 93.0 93.4 93.0 92.8

Digit 98.4 98.3 98.5 98.6 98.4 98.5 98.6 98.6 98.6 98.7 98.6 98.6

GREC 92.1 91.2 91.7 92.4 91.4 92.4 92.0 92.1 92.1 92.5 92.2 92.2

Fingerprint 81.0 81.0 80.4 80.8 79.7 80.1 81.2 81.0 81.6 81.6 80.9 81.5

AIDS 98.2 97.1 98.1 98.2 98.0 98.1 98.0 98.0 98.0 98.2 98.2 98.1

Mutagenicity 67.6 66.0 71.2 69.6 68.3 70.1 71.1 71.1 69.9 71.5 71.1 70.6

Protein 73.0 70.5 72.5 73.0 71.5 60.5 75.0 72.0 72.0 73.0 75.0 62.0

Webpage 82.3 82.3 82.3 82.3 82.3 82.3 82.4 82.4 82.4 82.4 82.4 82.4

Table 5.4: Classification accuracy (%) of SVM-RBF applied to graphs embedded us-

ing all the graphs in the training set (All), the labeled prototype selectors and the dis-

criminative prototype selectors (One-Vs-All strategy). The best result per dataset is

displayed in bold face.

followed the usual training-validation-test protocol to identify the optimal number of

prototypes. In addition, Figure 5.7 reports the classification accuracy on the test set as a

function of the number of selected prototypes per class. The discriminative approaches

almost invariably achieve better accuracy than their labeled counterparts at a parity of

number of prototypes, or the same accuracy with fewer prototypes. Thus, from a com-

putational point of view, the proposed selection strategy is also preferable to a labeled

strategy as it requires a smaller number of prototypes to deliver equivalent accuracy.

This translates into fewer graph edit distances to be computed for transforming each

graph, with shorter training and run-time computational times.

Considering the aforementioned definitions and explanations, the labeled approaches

are the same as the discriminative ones but with Wc = 1 and Ws = 0. Thus, studying

the optimal value of weights as well as their influence on the classification accuracy is

important. In our experiments, a grid search is used to optimize the weights. Based

on the definition Wc + Ws = 1, thus Ws is the only free parameter, making a grid

search easily feasible (the values explored range between 0.01 and 1 in 0.01 step). Ta-

ble 5.5 shows the Ws value in correspondence with the accuracies reported in Table

5.2. Furthermore, Figure 5.8 presents the classification accuracy on the test set as a

function of the value of Ws for two exemplary cases. Figure 5.8(a) shows a desir-

able case where the cross-validation accuracy is highly insensitive to the tuning of the

Ws parameter. Figure 5.8(b) shows instead a case where this empirical dependence is
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Accuracy with various prototype selection approaches and datasets as a

function of the number of prototypes per class. (a) Letter High, l-sps vs d-sps; (b)

Digit, l-sps vs d-sps; (c) Grec, l-cps vs d-cps; (d) Letter Medium, l-bps vs d-bps; (e)

Letter Low, l-tps vs d-tps; (f) Mutagenecity, l-sps vs d-sps.
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stronger. However, there still is an interval of values over which the cross-validation

accuracy is unaffected.

One-Vs-All One-Vs-Nearest

Dataset d-cps d-bps d-rps d-sps d-tps d-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 0.11 0.01 0.10 0.53 0.01 0.06 0.54 0.22 0.37 0.01 0.04 0.03

Letter medium 0.10 0.60 0.01 0.93 0.05 0.05 0.28 0.31 0.05 0.38 0.16 0.09

Letter high 0.13 0.14 0.01 0.79 0.01 0.12 0.39 0.03 0.18 0.01 0.01 0.31

Digit 0.24 0.01 0.06 0.04 0.03 0.56 0.81 0.04 0.03 0.08 0.03 0.13

GREC 0.24 0.06 0.01 0.09 0.03 0.14 0.02 0.17 0.29 0.18 0.08 0.81

Fingerprint 0.02 0.27 0.15 0.20 0.02 0.15 0.01 0.22 0.05 0.20 0.03 0.95

AIDS 0.46 0.46 0.01 0.42 0.01 0.03 0.46 0.46 0.01 0.42 0.01 0.03

Mutagenicity 0.82 0.19 0.30 0.15 0.01 0.04 0.82 0.19 0.30 0.16 0.01 0.04

Protein 0.04 0.01 0.05 0.01 0.01 0.01 0.24 0.01 0.14 0.01 0.04 0.03

Webpage 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 5.5: The Ws value of the best classification accuracy (%) reported in Table 5.2.

The Ws value which returns the best result per dataset is displayed in bold face.

(a) (b)

Figure 5.8: Accuracy with various prototype selection approaches and datasets as a

function of the value of Ws (The reported Ws value is multiplied by 100). (a) Letter

Medium, d-bps; (b) Mutagenicity, d-sps;.
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5.4 Discussion and Conclusions

Many common data types can be seen as special cases of graphs. For example, from an

algorithmic perspective both strings and trees are simple instances of graphs. A string

is a graph in which each node represents one character, and consecutive characters are

connected by an edge. A tree is a graph in which any two nodes are connected by

exactly one path. Obviously, also a feature vector x ∈ R
n can be represented as a

graph, whereas the contrary, i.e. finding a vectorial description for graphs, is highly

non-trivial. In other words, dissimilarity embedding can be applied to any objects for

which a distance can be defined, but they are most urgent in the domain of graphs

as there are no classifiers directly available, other than nearest neighbors and those

based on graph kernels. Therefore, in the case of graphs, the availability of an em-

bedding method is of crucial importance. This motivates and justifies the search for

well performing embedding methods and shows that the selection of prototypes is very

important for dissimilarity embedding of graphs.

Hence, in this chapter, we have proposed novel, discriminative approaches for se-

lecting prototypes from a class-labeled collection of graphs. The proposed approaches

select prototypes based on a trade off between intra-class compactness, intra-class uni-

form spread and inter-class separation. Experiments were carried out over a range of

datasets as diverse as letters, digits, drawings, fingerprints, antiviral compounds, muta-

genicity, proteins and web pages. From the experimental results, it is possible to draw

the following conclusions:

• the proposed discriminative prototype selectors have increased the classification

accuracy over the corresponding labeled prototype selector in 42 out of 50 cases,

with increases comprising between 0.1% and 5.1% (Table 5.3);

• the best discriminative prototype selector has outperformed the best compared

selector in all cases except one in which they scored equal accuracy, with in-

creases comprising between 0.1% and 2.0% over the range of datasets (Ta-

ble 5.4);

• training in a one-vs-all manner has achieved higher accuracy than one-vs-nearest

training in the majority of cases (Table 5.2);
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• the accuracy for the proposed discriminative approaches has proved almost in-

variably the highest for any tested number of prototypes per class (1 to 15) (Fig-

ure 5.7).

The conclusion brought forward by this framework is that prototype selection op-

erating in a class-discriminative manner is an ideal approach for selecting effective

prototypes for the ensuing classification task. Application is possible with any type of

graph including spatial, structural, temporal, spatio-temporal and others and therefore

suits a wide range of classification tasks.
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Chapter 6

Complex Event Recognition by Latent
Temporal Models of Concepts

In the previous chapters of this thesis, we have explored the use of graph embedding

for action recognition and recognition of other structural patterns. In this chapter, we

depart from graph embedding to turn our attention to very complex spatio-temporal

patterns known in the literature as “events”. Complex events are entities of high-level

semantics such as a cruise departure, a home renovation or a wedding. Early recogni-

tion approaches have been mostly based on bags of low-level spatio-temporal features

such as STIP, independent subspace analysis (ISA) and dense trajectory based HOG

(DTF-HOG). More recently, the notion of “concept” has emerged as an alternative,

intermediate representation with greater descriptive power, and concept detectors have

been used to form “bags-of-concepts” for recognition. In these approaches, the tem-

poral structure of the measurements is completely ignored. Yet, as we have seen in

Chapters 3 and 4, a human action tends to articulate over a temporal structure and that

sequential classification can help action recognition. Based on a similar rationale, in

this chapter we argue that concepts in an event tend to articulate over a similar temporal

structure and we exploit the scores of concept detectors as measurements in a tempo-

ral model. The temporal model leverages a latent state chain that jointly decodes the

concept scores and provides event recognition. However, instead of classification with

a generative approach, we have employed an equivalent undirected graphical model

called HCRF and trained this model in a maximum-margin framework [138]. This ap-
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proach has repeatedly reported higher accuracy compared to HMMs (e.g., [140, 150]).

Furthermore, various heuristics are proposed to improve the latent state initialization

and avail of the time-sparsity of the concepts. Experimental results on a sub-set of the

TRECVID MED 2011 and MED 2012 datasets show that the proposed temporal ap-

proach achieves a significant improvement in average precision at a parity of features

and concepts.

6.1 Prior Work and Our Contributions

Recognition of complex events in video is a current focus of computer vision, with po-

tential application, amongst others, to Web search, multimedia indexing and retrieval,

and real-time monitoring of public premises. In this chapter, we particularly refer to

multimedia events of complexity such as “renovating a home”, “proposing to marry”,

“meeting at the town hall”, and the like. Large samples of these events have increas-

ingly become available to researchers via public repositories such as YouTube and

Vimeo or organized collections such as the TRECVID datasets [1, 2]. Understanding

the nature of complex events can prove a fundamental requirement for their effective

recognition. For instance, it could be argued that certain complex events are defined

as a collection of activities or sub-events. Identifying optimal detectors for such struc-

tured events is the subject of much current investigation.

Approaches based on bags of low-level features such as Dollár et al.’s spatio-

temporal cuboids [37], SIFT [83], ISA [74], DTF-HOG [147], STIP [70] and motion

boundary histogram (MBH) [147], which have proved highly successful for recogni-

tion of primitive actions, have also proved effective for the recognition of complex

events as reported in, amongst others, [79, 124, 148]. This result is very important and

somehow unanticipated as it shows that, despite their complex nature, many events can

be well characterized by features of low-level semantics [59, 135, 160]. In addition,

pooling of these low-level features was proposed in [21], and [135] used a combination

of seven different low-level features in a Bag-of-Words (BoW) framework reporting

good performance on the TRECVID MED 2011 dataset [1].

While low-level features have delivered promising results, a hierarchical approach

has also become increasingly popular in recent years where more general “concepts”

are first identified and then used as atoms for the characterization and recognition of
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Birthday Party 

Figure 6.1: A birthday party event and its articulation over concepts.

complex events [59, 80, 82, 160]. Examples include concepts such as person eating,

animal approaching and rider standing on top of bike. Fig. 6.1 illustrates a birthday

party event and its articulation over concepts. Concept detectors are typically trained

in a supervised manner and the use of a hierarchical approach shows analogies with

that of attribute-based activity recognition [78]. As the objectives of computer vision

grow in semantic scope, intermediate representations are required to fill the semantic

gap. For instance, in [82] and [80], a large dataset is collected and used to train con-

cept detectors for a task of video annotation. However, their concepts are not suitable

for general videos as they were trained in constrained conditions. Loui et al. in [82]

collected a benchmark dataset containing 25 general concepts; however, they are based

on static images, not videos. Concepts have also been employed for other computer

vision problems such as image ranking and retrieval [128]. In those cases, concepts
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were used in the form of attributes [44], which can be considered as concepts with

small granularity [59]. The most recent works on complex event recognition are [160]

and [59]. The former utilized 62 action concepts as well as low-level features in a

latent SVM framework, while the latter used deep learning to find data-driven con-

cepts. Data-driven concepts are an interesting idea and have promising performance.

However, they are harder to link to a conceptual description of the videos.

Bag-of-Words methods typically ignore the time stamps in the data. Yet, events

are occurrences in time and as such they are likely to exhibit some degree of internal

dynamics and/or temporal structure. Recently, works such as [136], [77] have demon-

strated the importance of temporal structure in complex event recognition. In this

chapter, we also propose to combine the use of trained concept detectors with a latent

temporal model. We divide an event video into time slices and use the scores of con-

cept detectors as measurements in a hidden conditional random field (HCRF) [105],

learning its parameters with latent structural large margin [163]. In other approaches,

[136] proposed the use of a variable-duration latent temporal model and learned its

parameters with large margin. The main difference with our work is that [136] uses

low-level features as measurements whereas we choose to employ the scores of trained

concept detectors to benefit fom their higher-level semantics. Based on a similar ratio-

nale, [77] has used attribute scores as measurements. However, their temporal model

is based on specialized bags of binary dynamics systems (BDSs) whereas in this work

we adopt the more general latent structural max-margin framework [163]. Max-margin

learning with the structural support vector machine is an efficient approach for training

structural models since ε-approximate solutions can be obtained by only including the

most violated constraints during learning [138]. Moreover, convex-concave algorithms

allows extending the solution to models with latent variables [164]. However, the non-

convex nature of the objective makes the solution very sensitive to the algorithm’s

initialization. For this reason, we explore several initialization strategies, showing that

they attain a significant improvement in event classification accuracy. Furthermore,

moving from the empirical observation that concepts in an event may be sparse in time,

we enforce an equivalent sparsity in the latent states. In brief, the main contributions

of the proposed approach are:

• The use of concept detector scores as measurements for a latent temporal model

with the aim of leveraging on both trained concept detectors and the properties

91



of latent structural models;

• The introduction of state priors enforcing sparsity in the decoded chain of latent

states in order to mirror the time-sparse distribution of concepts in an event;

• The exploration of various state initialization to improve the quality of the latent

large margin solution;

• A comparative experimental evaluation against several types of bag-of-features

including low-level features, concepts, and combinations of low-level features

and concepts.

As datasets, we have utilized a sub-set of the NIST’s TRECVID MED 2011 [1] and

MED 2012 datasets [2]. These datasets are very probing in terms of event complexity

and cover a total of 25 event classes [43]. The experimental results show that the

combined use of concept detectors and latent temporal models significantly improves

recognition performance at a parity of features and concepts.

6.2 Proposed Methods

In this section, we refer to the graphical model as hidden conditional random field even

though we approach its learning by a maximum-margin method. The graphical model

is displayed in Fig. 6.2. The learning objective for training the HCRF with maximum

margin is defined as:

argmin
W

(
‖W‖2 + C

N∑
i=1

ξi

)
s.t.

W TΨ(ai, y
∗
1:Ti,i

, x1:Ti,i)−W TΨ(a, y1:Ti
, x1:Ti,i)

≥ 1− ξi ∀{a, y1:Ti
} 	= {ai, y∗1:Ti,i

}

(6.1)

where a is an event label, ai is the ground-truth label of event sample i, x1:Ti,i is its

sequence of measurements and y1:Ti
is an assignment for its latent states. The event

label is a binary variable taking value 1 for the given event and 0 otherwise. Each

latent state, yt, t = 1 . . . Ti, takes values over a discrete range of indices, {1 . . . Y},
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Figure 6.2: The graphical model of the hidden conditional random field. Variable a
is the event class, y1:T are the latent states and x1:T are the measurements (output of

concept detectors in this work).

representing the internal dynamical state of the HCRF. Each measurement, xt, t =

1 . . . Ti, is an F -dimensional feature vector extracted from the image (in our case, it

is the output of F = 93 concept detectors). The parameter vector, W , contains three

types of parameters, or weights:

• Y ∗Y transition weights, W tr, scoring the transitions between consecutive states,

indexed by the current and previous state values;

• Y ∗ F emission weights, W em, indexed by the current state value and the index

of the dimension in the measurement;

• Y ∗ 2 compatibility weights, W cmp, indexed by the current state value and the

event value (positive or negative class).

Notation W TΨ(a, y1:T , x1:T ) is a compound notation for the HCRF score:
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W TΨ(a, h1:T , x1:T ) =
T∑
t=2

W tr
ij δ [yt = i, yt−1 = j] +

+
T∑
t=1

F∑
f=1

W em
if xtfδ [yt = i] +

+
T∑
t=1

W cmp
ib δ [yt = i, a = b]

(6.2)

Given that the states are unsupervised in the training set, their best assignment for

sample i must be inferred as

y∗1:Ti,i
= argmax

y1:Ti

W TΨ(ai, y1:Ti
, x1:Ti,i). (6.3)

This problem can be resolved by an appropriately weighted Viterbi decoder in

O(T ) time and the solution replaced in the constraints in (6.1) as estimated ground

truth. Variable ξi is the slack variable for sample i, allowed to take non-negative values

so as to let the inequality constraints be violated. The sum of the slack variables over

the training set,
∑N

i ξi, is an upper bound over the total classification error [138]. One

can then see that the objective function in (6.1) pursues a minimization of the empiri-

cal error, while regularizing the solution by enforcing the largest possible class margin.

Learning of the HCRF is obtained by alternating the solution of (6.1) and (6.3) until

convergence.

Due to the exponential number of possible combinations of a, y1:Ti
in (6.1), ex-

haustive verification of the constraints would not be feasible. However, [138] and

[163] have shown that it is possible to find ε-correct solutions in polynomial time by

using only the “most violated” constraints, i.e. the configuration of class and states

with the highest sum of score and loss:

āi, ȳ1:Ti,i = argmax
a,y1:Ti �=ai,y∗1:Ti,i

(
W TΨ(a, y1:Ti

, x1:Ti,i) + 1)
)

(6.4)

For the HCRF detector, such a configuration can still be efficiently determined in

O(T ) time by a 2-best Viterbi decoder.
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6.2.1 Latent State Initialization

Due to the presence of the latent variables, learning the HCRF is overall a non-convex

problem, whereas the solution of (6.1) is convex in isolation. Learning can be initial-

ized by either an arbitrary vector W in (6.3) or an arbitrary y∗1:Ti,i
state sequence in

(6.1). Choosing a state sequence could be preferable since it is somehow more con-

fined than selecting a continuous vector, yet learning proves very sensitive to the states’

initialization. [99] uses the states returned by an equivalent graphical model trained

generatively by expectation-maximization (EM). However, EM requires an arbitrary

initialization at its turn. In [136], the initial states are first assigned with a unique label,

and then the number of labels is reduced by agglomerative clustering. In this work, we

propose initialization strategies inspired by the assumed semantics for the states:

1. Non-informative assignment (NInf): the initial states of each positive sample are

all assigned with label 1, while those of negative samples are all assigned with

label 2.

2. Non-informative assignment with overlapping state (NInfOv): the initial states

of each positive sample are assigned with alternate labels 1 and 2 every other

frame. The states of the negative samples are assigned with alternate labels 2

and 3 likewise. This is to enforce an overlapping state across the two classes.

3. Asymmetric assignment (Asymm): given that the negative class is expected to

be more spread out (from being the combination of many classes), its states are

assigned randomly over a small range of integers, {2 . . . Y}. The initial states of

the positive examples are still all assigned with label 1.

4. Asymmetric assignment with neutral state (Sparsity): this assignment is similar

to the previous, with the addition of a further state meant to represent “no con-

cept”. This neutral state is not included in any initial assignments, rather only

reserved in anticipation of the learning stage.

6.2.2 Time-Sparsity of Concepts

To illustrate our assumption on time-sparsity of concepts in an event, in Fig. 6.3, top,

we show the output of 93 concept detectors for a “Dog show” event. Most detectors
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never activate significantly during the sequence (we use a threshold of 0.4 for visual-

ization) and the few that do typically activate for only a few frames at a time. Fig. 6.3,

bottom, shows the state trellis for the positive class: state 1 is the “no concept” state,

and state 2 activates in loose correspondence with the highest responses from the de-

tectors. This behavior supports the idea that the number of utilized concepts per event

is relatively small, and that they tend to be time-sparse.

To leverage this property, we chose to encourage sparsity in the decoded state

sequence of the HCRF by favoring transitions towards the neutral state. Given that

weights in a support vector machine are akin to log-probabilities, this could be done

by adding a prior weight to the neutral state. However, weights are not normalized

to any given scale and it is not possible to pre-determine the size of a suitable addi-

tive prior. Therefore, we decided to use a multiplicative, positive coefficient, S, on the

weights for the transitions towards the neutral state (as S∗W tr
1j ) during the computation

of both (6.3) and (6.4).
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Figure 6.3: Time-sparsity of concepts and states. The top plot shows the output of

concept detectors above 0.4 for an event of type “Dog show”. The bottom plot shows

the corresponding trellis of the states. Sparsity is evident in both the concept detectors’

outputs and the states.
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To perform our experiments, we have implemented the HCRF on top of the LatentSVM struct

package of Yu and Joachims [162]. The implementation includes functions for evalu-

ating the HCRF score (6.2), inferring the latent states (6.3), finding the most violated

constraints (6.4) and, eventually, inferring the event class of an unseen example. We

have used one model per event and one state variables for every clip in the sequence.

The number of values for each state was varied between 5 and 25. We then chose the

best value for each state on the training set.

6.3 Experimental Results

We experimented our method with video clips from the TRECVID MED 2011 and

TRECVID MED 2012 multimedia datasets. The events collected in these datasets are

among the most challenging due to their heavily variable duration (ranging from 30

seconds to 30 minutes), frame rate (from 12 to 30 fps), and resolution (from 320×480

to 1280×2000). As the evaluation metric, we have adopted the average precision

which is an average of the precision at various levels of recall (equivalent to the area

under the precision-recall curve) [59, 135]. As datasets, we have used the TRECVID

MED 2011 Event Kit Collection (EC11 hereafter) containing 2062 videos and the

TRECVID MED 2012 Event Kit Collection (EC12) consisting of 2000 videos, split-

ting them into 70% for training and 30% for testing (figure 6.4). The reason for this

selection is that we want to be able to directly compare our results with those of [59]

that used the same experimental settings but without exploiting temporal structure in

the model.

As an important note, both the concept detectors and the HCRF have been trained

on the training set alone, and the test videos have been used blindly for testing without

any further adjustment of the parameters. A total number of 93 concepts were anno-

tated over a portion of the training data. These concepts were selected based on the

description in the TRECVID competition kit and by viewing sample videos. For each

concept, at least 50 samples were selected and an SVM model trained using STIP as

features [70]. The name of annotated concepts can be found in table 6.1. In order

to compute the concepts’ scores in a video, we first divide the video into overlapping

clips, with a clip length of 180 frames and a step size of 60 frames. Subsequently, the

score of each detector is computed for every clip in the video. Finally, 93 normalized
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Figure 6.4: Examples from complex video event categories.

scores are collected from each clip leading to an intermediate representation of the

video as a multivariate time series. For training our model, we have set the sparsifying

coefficient, S, to vary over [2,5000] in logarithmic steps; ε was set over [10−2,10−6],

C to 100 and the linear kernel used as kernel. We compare our approach with the

following methods:

• Bag-of-Concepts (BoConcept): we first apply max-pooling on the time series

representation of each video, leading to a 93-dimensional vector containing the

maximum score of each concept detector in that video. We use an SVM directly

on such obtained high-level features, and we refer to this setup in the tables as

BoConcept.

• Bag-of-Words (BoW): in this case, we cluster various low-level features (STIP,

ISA, and DTF-HOG) to obtain a dictionary. Subsequently, we compute a his-

togram of word frequency for each feature. We use a codebook size of 10000 for

all the features, and min-max normalization for the histograms. We refer to this

approach in the tables by the name of the features used in the BoW framework

(i.e. STIP, ISA, and DTF-HOG).

• Combinations of the various low-level features and of features and concepts:

we use early fusion to combine all the low-level features (All-LL), STIPs and

concepts (as the concepts were trained over STIPs; referring to this combination

as STIP+HL) and all low-level features and concepts (LL+HL). Direct fusion of
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the low-level features and concepts seems imbalanced as their dimensions are

10000 and 93, respectively. We therefore pre-process the low-level features with

PCA to reduce their dimensionality from 10000 to 200 to make it comparable

with that of the Bag-of-Concepts histograms.
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animal eats food from a container animal grabs offered food and eats bending metal using a vice

blowing out candles on a cake bride and groom standing in front of a priest official brushing smoothing fur

casting clapping clipping nails of an animal

cutting and shaping wood cutting dishing up fillings cutting fur

cutting metal cutting ripping dancing

dancing singing in unison in a group delivering a speech exchanging vows

falling flipping the bike flipping the board and landing on it

gestures indicating directions going down on one knee grinding with the board

group dancing group marching group walking

hammering metal heating metal over a flame hugging

human holding food in front of an animal jumping over obstacles jumping with the bike

jumping with the board kissing landing with the board

lifting up body with arms legs lurching of pole marking on metal

measuring length milling around moving along a rock face

moving in a coordinated fashion multiple people jumping forward multiple people running in a race

opening closing parts opening presents passing a baton while running

placing fillings on bread polishing metal pressing ironing

putting fish in net bucket raising hands reeling in

removing fish from hook removing hubcap wheel riding bike on one wheel

rolling running running next to dog

scaling walls trees sewing sewing by hand

slicing cutting bread sliding the board slowing pace to a stop

soaping rinsing an animal somersaulting spinning the bike

spinning the bike handle spinning the board spinning with the board

spreading condiments on bread standing on the board taking a tire out

toasting bread tracing marking turning wrench unscrewing

unscrewing screwing parts walking down the aisle waving signs

attaching pieces of wood together drilling exchanging rings

holding out ring lifting machine parts making winning gestures

pulling pushing a vehicle putting ring on finger scrubbing appliance by hand

standing on top of bike wiping down an appliance working on a table top machine

Table 6.1: 93 concept’s names used in the experiments.
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6.3.1 TRECVID MED 2011 Event Collection

The TRECVID MED 2011 event collection consists of the following 15 events: Board-

ing trick (BoT), Feeding animal (FA), Landing fish (LF), Wedding (WD), Woodworking

project(WP), Birthday party (BP), Changing tire (CT), Flash mob (FM), Vehicle un-

stuck (VU), Grooming animal (GA), Making sandwich (MS), Parade (PR), Parkour

(PK), Repairing appliance (RA) and Sewing project (SP). The performance results for

the EC11 dataset are presented in Table 6.2 as average precision for each class and

overall mean value. In the first four columns, we report the results of all methods

based on STIP as low-level feature. Comparing mean values, one can see that BoW

with STIP outperforms the Bag-of-Concepts trained over the same feature. This result

is somehow expected as a similar relative performance was reported in [26] and [27].

The fusion of STIP and concepts shows only a very slight mean improvement over

STIP alone (0.25%). Conversely, the proposed method shows a major improvement

over Bag-of-Concepts of 9.25%, showing the importance of exploiting temporal struc-

ture over concepts. Moreover, it also reports an improvement of 4.95% over STIP and

of 4.70% over the fusion of STIP and concepts.

The remaining columns in Table 6.2 show that the best result is obtained when

combining all low-level features and the concepts (LL+HL). While these results of-

fer an interesting perspective about feature complementarity, they cannot be directly

compared with our method as they exploit more features. Table 6.2 also reports re-

sults from [59] and [160], showing that they are significantly outperformed by the best

methods because they use less amount of supervision in certain stages of the training

(Concept structure and concept set, respectively).

Table 6.3 shows a comparison of the average precision obtained with the different

state initialization methods. For most classes (8 out of 15) and on average, Sparsity

initialization outperforms the other initializations, confirming our empirical assump-

tion on time-sparsity of the concepts within an event. However, for other event classes,

other techniques achieve higher precision. The most notable remark is about the huge

fluctuation in performance across the various initializations, proving that learning the

objective heavily relies on effective initialization.
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Event STIP BoConcept STIP+HL Ours ISA DTF-HOG All-LL LL+HL [59] [160]

BoT 85.82 75.97 81.77 94.45 69.89 78.92 85.00 88.18 75.7 ∼ 78
FA 57.70 71.06 80.60 82.07 70.62 67.59 69.70 72.25 56.5 ∼ 60
LF 86.79 63.40 88.42 78.49 94.67 89.20 94.67 90.26 72.2 ∼ 68
WD 84.69 69.05 74.22 87.60 78.42 77.93 90.00 91.61 67.5 ∼ 76
WP 72.19 60.40 72.08 85.09 81.96 71.04 79.21 79.64 65.3 ∼ 66
BP 81.54 80.99 77.60 78.04 82.79 87.10 91.05 88.86 78.2 ∼ 76
CT 71.00 72.51 71.38 77.37 65.48 71.61 75.39 82.95 47.7 ∼ 56
FM 89.17 85.87 94.48 95.37 84.10 83.96 89.19 92.61 91.9 ∼ 84
VU 75.58 82.27 73.73 86.24 74.35 77.71 83.49 84.67 69.1 ∼ 66
GA 77.50 74.35 69.97 82.61 74.08 80.67 82.74 86.90 51.0 ∼ 52
MS 80.17 83.69 71.21 82.42 69.60 84.72 87.84 90.66 41.9 ∼ 52
PR 88.34 80.94 84.86 86.54 82.34 92.68 91.56 93.74 72.4 ∼ 74
PK 81.30 82.02 86.08 83.36 80.04 88.28 89.14 90.11 66.4 ∼ 82
RA 81.90 69.61 88.60 83.48 77.34 69.43 82.17 85.96 78.2 ∼ 74
SP 80.79 77.82 83.27 85.44 69.13 79.12 78.96 77.97 57.5 ∼ 64

Mean 79.63 75.33 79.88 84.58 76.99 80.00 85.67 86.42 66.10 68.20

Table 6.2: The average precision for the EC11 dataset using both high-level features (i.e., concepts) and low-level features.

Column 1 reports results for low-level feature STIP; column 2 report results for the concept model; and column 3 shows

results for the combination of STIP and concepts. Column 4 reports the average precision achieved by the proposed approach

(HCRF) using the concepts as measurements. Columns 5 and 6 show the average precision using ISA and DTF-HOG as

low-level features, respectively. Column 7 shows the average precision for the combination of the features of columns 1, 5,

and 6. Column 8 shows the results for the combination of the features of columns 1, 2, 5, and 6. Eventually, columns 9 and

10 show the average precision for [59] and [160], respectively.
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Event NInf NInfOv Asymm Sparsity

BoT 93.79 88.84 90.37 94.45
FA 77.07 82.07 80.26 79.54
LF 73.35 57.89 77.69 78.49
WD 85.37 51.94 86.28 87.60
WP 78.94 83.95 82.04 85.09
BP 72.60 78.04 68.27 74.83
CT 71.51 70.23 73.21 77.37
FM 95.37 45.46 94.00 94.90
VU 84.84 85.23 85.68 86.24
GA 66.31 80.43 76.34 82.61
MS 82.42 69.54 73.24 81.09
PR 83.60 86.54 86.03 86.51
PK 83.35 52.31 83.26 83.36
RA 83.48 74.12 82.93 82.97
SP 80.59 84.37 85.44 85.39

Mean 80.84 72.73 81.67 84.03

Table 6.3: Comparing initializations for EC11.

6.3.2 TRECVID MED 2012 Event Collection

The TRECVID MED 2012 event collection consists of the following 10 complex

events: Bike trick (BiT), Cleaning appliance (CA), Dog show (DS), Giving direction

(GD), Marriage proposal (MaP), Renovating a home (RH), Rock climbing (RC), Town

hall meeting (TM), Race winning (RW), and Metal craft project (MeP). The same con-

cept detectors are used also here to obtain the time series vector representation for each

video. The performance results for the EC12 dataset are reported in Table 6.5 as aver-

age precision for each class and overall mean value. Again, in the first four columns

we report the performance of all methods based on STIP as low-level feature. Com-

paring mean values, one can see that the relative rankings are the same as for EC11,

although the fusion of STIP and concepts shows a more significant improvement over

STIP alone (2.08%). The proposed method reports another remarkable improvement

of 8.92% over Bag-of-Concepts, of 6.28% over STIP, and of 4.20% over the fusion

of STIP and concepts. This result gives further evidence to the benefit of exploiting

temporal structure over the concept detector scores.
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The remaining columns in Table 6.5 show the performance of the other single low-

level features (ISA and DTF-HOG) and the fusion methods. DTF-HOG proves the

best single low-level feature. The proposed method outperforms all single features,

their fusion (All-LL), and even achieves a mean precision slightly higher than that of

the fusion of all low-level features and concepts (73.81% vs. 73.69%).

Table 6.4 shows a comparison of the average precision obtained with the differ-

ent state initialization methods. Again, for most classes (7 out of 10) and on average,

Sparsity initialization outperforms the other initializations. Significant fluctuations in

performance across the various initializations are evident also for this dataset.

Event NInf NInfOv Asymm Sparsity

BiT 63.25 67.72 70.68 70.39
CA 70.91 59.91 71.83 73.76
DS 59.74 62.56 58.41 68.18
GD 65.51 75.05 71.59 72.30
MaP 55.29 68.23 65.45 73.86
RH 65.68 65.50 67.44 68.81
RC 73.80 67.78 74.73 76.13
TM 66.91 72.94 69.37 74.36
RW 69.79 69.80 75.36 70.12
MeP 71.23 74.07 74.97 79.65

Mean 66.22 68.36 69.99 72.76

Table 6.4: Comparing initializations for EC12.
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Event STIP BoConcept STIP+HL Ours ISA DTF-HOG All-LL LL+HL

BiT 61.78 69.59 67.83 70.68 66.48 65.09 72.94 74.22
CA 69.68 67.27 71.27 73.76 62.95 64.22 71.11 74.15
DS 47.88 60.09 62.36 68.18 62.25 66.87 66.72 68.80
GD 54.27 56.83 48.31 75.05 58.77 66.26 62.48 60.98
MaP 77.47 66.61 73.76 73.86 65.97 64.74 79.28 79.56
RH 73.06 57.48 68.03 68.81 76.27 66.86 73.74 72.70
RC 65.60 65.41 72.83 76.13 72.09 80.99 75.41 79.60
TM 69.06 60.16 72.09 74.36 69.20 76.90 67.48 71.95
RW 74.90 72.42 77.54 79.65 76.97 71.64 75.22 75.74
MeP 81.58 73.09 82.09 77.58 65.68 67.82 69.80 79.35

Mean 67.53 64.89 69.61 73.81 67.66 69.14 71.42 73.69

Table 6.5: The average precision for the EC12 dataset using both high-level features (i.e., concepts) and low-level features.

Column 1 reports results for low-level feature STIP; column 2 report results for the concept model; and column 3 shows

results for the combination of STIP and concepts. Column 4 reports the average precision achieved by the proposed approach

(HCRF) using the concepts as measurements. Columns 5 and 6 show the average precision using ISA and DTF-HOG as

low-level features, respectively. Column 7 shows the average precision for the combination of the features of columns 1, 5,

and 6. Eventually, column 8 shows the average precision for the combination of the features of columns 1, 2, 5 and 6.

1
0
5



6.4 Discussion and Conclusions

In this chapter, we have presented an approach to complex event recognition combin-

ing a latent temporal model and trained concept detectors. The latent temporal model

is a hidden conditional random field that is learned with maximum margin. The mea-

suments for the HCRF are obtained by dividing an event clip into time slices and using

the scores of concept detectors as a time series. In the HCRF, the latent state chain

allows joint decoding of all the concepts in the event and ultimately supports event

recognition. However, learning proves heavily sensitive to state initialization and we

have therefore proposed several heuristics for initializing the latent states. In addition,

we have given empirical evidence to the time-sparsity of the concept detector scores

and proposed a strategy to promote an equivalent sparsity in the HCRF states. Experi-

mental results over video clips from the challenging TRECVID MED 2011 and MED

2012 datasets show that:

• the mean average precision of the proposed method proves 9.25% higher than a

Bag-of-Concepts methods based on the same concepts for the TRECVID MED

2011 Event Kit Collection (EC11). In addition, it is also 4.70% higher than that

of the best comparable method (combination of STIP and concepts trained on

STIP);

• the mean average precision of the proposed method proves 8.92% higher than a

Bag-of-Concepts methods based on the same concepts for the TRECVID MED

2012 Event Kit Collection (EC12). Moreover, it is also 4.20% higher than that

of the best comparable method (combination of STIP and concepts trained on

STIP);

• although our method uses concepts from STIPs alone, its mean average precision

proves higher than that of BoW methods employing other low-level features,

combinations of multiple low-level features and combinations of low-level fea-

tures and concepts with the EC12 dataset, and higher than any single low-level

feature with EC11. Such results gives further testimony to the interesting perfor-

mance of the proposed approach.

Overall, the above results give strong evidence to the benefit of exploiting tem-

poral structure over the output of trained concept detectors.
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Chapter 7

Conclusions

The main theme of this monograph is a set of methodologies aiming to incorporate

structural information in the recognition and classification of human actions in video.

However, its initial scope has also expanded to cover classification of other types of

structured data.

In Chapter 3, we have proposed a novel method for human action recognition based

on graph embedding. Graphs are a suitable representation for embedding the spatial

structure of data, and their embedding into vector spaces allows us to treat graphs as

vectors during the classification stage. Based on this rationale, we have used a graph to

represent the actor’s shape in every frame of an action video and then embedded such

a graph into a suitable shape vector. In order to also capture the temporal structure,

we have made use of sequential (temporal) classifiers such as hidden Markov models

and conditional random fields. We have tested this approach on an action dataset and

obtained a number of interesting results. Although this method does not match the

accuracy of other, existing approaches, it shows the ability to encapsulate the global

structural information in the videos and as such generates a novel methodology for

human action recognition based on graph embedding.

The experiments in Chapter 3 were conducted using a feature set based on the em-

bedded graph and simple information about the actor’s speed and location. An obvious

limitation of such a feature set is that it ignores textural information which is instead

the focus of popular spatio-temporal descriptors such as STIP, HOG, HOF and oth-

ers. Hence, in Chapter 4, we have first presented an extended hidden Markov model

- named hidden Markov model for multiple, irregular observations (HMM-MIO) -
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which is capable of processing sparse local descriptors. We have initially tested this

approach for the task of joint action segmentation and classification over a stitched ver-

sion of the KTH action dataset and the challenging CMU multi-modal activity dataset

and achieved greater accuracy compared to other existing methods. We have then

employed HMM-MIO for the fusion of the textural information of STIP descriptors

and the spatial structure provided by the embedding graphs, obtaining higher accuracy

than from either approach separately. In particular, the accuracy achieved using graph

embedding in addition to STIP descriptors was 4% higher than with STIP descriptors

alone, showing that embedded shape graphs offer complementary, global information

to local features and could be used as an augmented feature set in general application.

In the aformentioned chapters, we have also proposed discriminative prototype se-

lection approaches which have permitted a significant improvement in classification

accuracy for human action recognition compared to the state-of-the-art prototype se-

lection methods. As such, in Chapter 5, we have extended this approach and introduced

a novel comprehensive framework for selecting prototypes from a class-labeled col-

lection of graphs based on a trade off between intra-class compactness, intra-class uni-

form spread and inter-class separation. Experiments were carried out over a range of

structured data as diverse as letters, digits, drawings, fingerprints, antiviral compounds,

mutagenicity, proteins and web pages. Results have shown that this framework is capa-

ble of achieving impressive classification accuracy compared to other well-established

prototype selection methods.

In Chapter 6 of this dissertation, we have switched our focus from graph embed-

ding and human action recognition to the recognition of complex events in consumer-

uploaded Internet videos, captured with real-world settings. This task has very recently

emerged as a challenging area of research across both the computer vision and mul-

timedia communities. For this task, we have first identified a set of general “visual

concepts” and then used them as an intermediate representation for the characterisa-

tion and detection of complex events. For every video, we have collected the output of

trained concept detectors and represented the video as a time series of these features.

Finally, we have captured the temporal structure by using a graphical model with a

latent state chain that jointly decodes the concepts and provides event recognition.

Instead of a generative approach, we have trained this model in a structural maximum-

margin framework [138]. Experimental results over video clips from the challenging
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TRECVID MED 2011 and MED 2012 datasets have shown that the proposed approach

can achieve a significant improvement in accuracy (measured as average precision) at

a parity of features and concepts.

Lastly, we like to highlight areas that could be subject of future work and exten-

sions. In our judgment, the main difficulty with representing the actor’s shape by a

graph is the identification of a reliable set of nodes in each frame. Due to noise of

various nature and variable appearance, the extracted set of keypoints that we use as

nodes can vary abruptly over the frames and lead to major distortions in the graph.

A possible way to regularise this behaviour is by adding other information such as

contours, splines or region graph-cuts during the formation of the graph. Another in-

teresting area of future investigation could be the joint detection of actions and events

based on a combination of the intermediate-level representations used in this thesis:

shape graphs and concepts. Human actions, essential visual concepts and their explicit

or implicit recognition during the recognition of more complex events may eventually

lead to better performing, combined approaches.
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