Indoor Place Classification for Intelligent Mobile Systems

By

Lei Shi

Thesis submitted as a requirement for the degree of **Doctor of Philosophy**

School of Electrical, Mechanical and Mechatronic Systems
Faculty of Engineering and Information Technology

University of Technology, Sydney (UTS)

June, 2013

Declaration of Authorship

I, Lei Shi, certify that the work in this thesis has not previously been

submitted for a degree nor has it been submitted as part of requirements for

a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has

been acknowledged. In addition, I certify that all information sources and

literature used are indicated in the thesis.

Signed:

Date:

Acknowledgements

I would like to take the opportunity to express my gratitude to all the people who have offered me help and support during the past three and a half years of my candidature. First and foremost, I would like to give my sincere thanks to my supervisor Dr. Sarath Kodagoda for his guidance, inspiration, numerous hours of discussion, and the opportunities he has presented me. From him I learned not only the knowledge but also the research methodology, which will benefit me throughout my career. I would also like to thank Prof. Gamini Dissanayake and Dr. Rami Khushaba for their inspiration, continuous support, and their direct contributions to my research.

I wish to acknowledge Dr. Oscar Martinez Mozos at the University of Lincoln, and Dr. Andrzej Pronobis at the Royal Institute of Technology who have been in the forefront of the research on spatial understanding for intelligent mobile systems. I benefit greatly from communicating with them, and I appreciate their contributions to the community including publications, codes and publicly accessible data sets.

I appreciate the strong support from Dr. Mark Schmidt at the École normale supérieure and Prof. Massimo Piccardi at UTS, for the discussions from the feasibility to the implementation details of the theoretical ideas I proposed. I also would like to convey special thanks to Prof. Dieter Fox at the University of Washington and Dr. Cyrill Stachniss at the University of Freiburg, who supportively confirmed the ground truth on the floor plans of their laboratories; to Dr. Dejan Pangercic at the Technische Universität München, who spent his precious time in solving my problems with deploying a software package; and to many other researchers, book authors and software owners who generously helped me with my various questions.

Many thanks go to Dr. Alen Alempijevic, Dr. Ravindra Ranasinghe, Dr. Stephan Sehestedt, Dr. Liang Zhao, Mr. Gibson Hu, Mr. Lakshitha Dantanarayana, and my many colleagues who gave me hands-on help on setting up the experimental environment to collect and process data; to Ms. Helen Chan at the UTS library who has been assisting me with utilising library services; and to the administrative staff at UTS for maintaining an organised, efficient and comfortable academic environment.

Additional thanks go to my parents and friends, who are always proud of me for my achievements, and supported and cared for me throughout these years.

I extend my gratitude to the Australian Commonwealth Government for the exemption of my tuition fee and for assisting with my general living costs through the APA scholarship; to the ARC Centre of Excellence for Autonomous Systems (CAS) for subsidising my living expenses; and to the CAS and the Faculty of Engineering and Information Technology (UTS FEIT) for sponsoring me in attending local and international conferences.

Finally, I would like to thank Ms. Monique Hohnberg for proofreading my thesis and some other publications.

Publications

Journal Papers:

1. **L. Shi**, S. Kodagoda, "Towards Generalization of Semi-supervised Place Classification over Generalised Voronoi Graph", *Robotics and Autonomous Systems*, vol. 61, no. 8, pp. 785-796, Aug. 2013.

Conference Papers:

- 1. **L. Shi**, S. Kodagoda, and M. Piccardi, "Towards simultaneous place classification and object detection based on conditional random field with multiple cues", in *Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Tokyo, 2013, pp. 2806 -2811.
- L. Shi, S. Kodagoda, R. Khushaba and G. Dissanayake, "Application of CRF and SVM based Semi-supervised Learning for Semantic Labeling of Environments", in Proc. Int. Conf. Control Autom. Robot. Vis. (ICARCV), Guangzhou, 2012, pp. 835-840.
- 3. L. Shi, S. Kodagoda and G. Dissanayake, "Application of Semi-supervised Learning with Voronoi Graph for Place Classification", in *Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Vilamoura, 2012, pp. 2991-2996.
- 4. R. N. Khushaba, **L. Shi**, and S. Kodagoda, "Time-Dependent Spectral Features for Limb Position Invariant Myoelectric Pattern Recognition", in *Proc. Int. Symp. Commun. Inf. Technol. (ISCIT)*, Gold Coast, 2012, pp. 1020-1025.
- L. Shi, S. Kodagoda and R. Ranasinghe, "Fast Indoor Scene Classification Using 3D Point Clouds", in *Proc. Australasian Conf. Robot. Autom. (ACRA)*, Melbourne, 2011.
- L. Shi, S. Kodagoda and G. Dissanayake, "Laser Range Data Based Semantic Labeling of Places", in *Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Taipei, 2010, pp. 5941-5946.

- 7. L. Shi, S. Kodagoda and G. Dissanayake, "Environment Classification and Semantic Grid Map Building Based on Laser Range Finder Data", in *workshop IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS)*, Taipei, 2010.
- 8. **L. Shi**, S. Kodagoda and G. Dissanayake, "Multi-class Classification for Semantic Labeling of Places", in *Proc. Int. Conf. Control Autom. Robot. Vis. (ICARCV)*, Singapore, 2010, pp. 2307-2312.
- 9. L. Shi, S. Kodagoda and G. Dissanayake, "Semantic Grid Map Building", in *Proc. Australasian Conf. Robot. Autom. (ACRA)*, Brisbane, 2010.

Contents

1	Int	roduc	ction	1
	1.1	Bac	ckground	1
	1.2	Pro	spects and Problems	2
	1.3	Mo	tivations and Objectives	3
	1.4	Priı	ncipal Contributions	4
	1.5	Org	ganisation of this Thesis	5
2	Ba	ckgro	ound and Literature Review	7
	2.1	Pla	ce Classification and Related Research	7
	2.1	.1	Introduction	7
	2.1	.2	Applications, Requirements, and Benchmark	8
	2.1	3	Sensory Modalities	11
	2.1	.4	Machine Learning in Place Classification	15
	2.2	Sup	pervised Learning	18
	2.2	2.1	Introduction	18
	2.2	2.2	Classifiers for Independent Prediction	21
	2	2.2.2.	1 Logistic Regression	21
	2	2.2.2.	2 Support Vector Machine	24
	2.2	2.3	Graphical Models for Structured Prediction	29
	2	2.2.3.	1 Pairwise Conditional Random Field	29
	2	2.2.3.	2 Parameter Estimation and Inference	33
	2.3	Ser	ni-supervised Learning	34
	2.4	Lab	pels and Feature Manipulation	37
	2.4	1.1	Labels: the Target Concepts	37
	2.4	1.2	Feature Construction and Selection	37
	2.5	Com		11

3	C	Classific	eation Scheme for Independent Prediction	42
	3.1	Intr	oduction	42
	3.2	Fea	ture Construction	44
	3	3.2.1 Features from 2D Laser Range Data		
	3	.2.2	Features from Kinect TM Data	47
	3.3	Fea	ture Selection	49
	3.4	Exp	eriments, Results and Discussion	51
	3	.4.1	2D Laser Range Data based Binary Classification	51
		3.4.1.	Experimental Setup	51
		3.4.1.2	2 Manual Feature Selection	52
		3.4.1.3	Place Classification in a Binary Scenario	54
		3.4.1.4	4 Conclusion	55
	3	.4.2	2D and 3D Range Data based Multi-class Classification	56
		3.4.2.	Experimental Setup	57
		3.4.2.2	2 DEFS Feature Selection	60
		3.4.2.3	Place Classification in a Multi-class Scenario	63
		3.4.2.4	Fifect of Coverage	65
		3.4.2.5	5 Conclusion	66
	3.5	Sun	nmary	67
4	C	Classific	eation Scheme for Structured Prediction	69
	4.1	Intr	oduction	69
	4.2	Gen	eralised Voronoi Graph	70
	4.3	Con	ditional Random Field for Place Classification	71
	4.4	Sen	ni-supervised Learning	73
	4	.4.1	Co-training-like Semi-supervised Learning	74
4.4.2		.4.2	CRF with Partial Labelled Data	76
	4.5	Noc	le and Edge Features	78
	4.6	Exp	erimental Setup	80

4.7	Re	sults and Discussion	83
4	.7.1	Fully Supervised Comprehensive Training	83
4	.7.2	Fully Supervised Leave-one-out Training	83
4	.7.3	Fully Supervised Leave-many-out Training	85
4	.7.4	Semi-supervised Leave-many-out Training	87
4	.7.5	Conclusion	91
4.8	Su	mmary	92
5 S	imulta	neous Place Classification and Object Detection	93
5.1	Int	roduction	93
5.2	Ca	ndidate Models for SPCOD	94
5.3	Hig	gh-level Features of an Image	98
5.4	4 Experimental Setup		100
5.5	Re	sults and Discussion	103
5	.5.1	Performance of Place Classification	103
5	.5.2	Performance of Object Detection	104
5	.5.3	Overall Performance of SPCOD	106
5	.5.4	Object Localisation	107
5	.5.5	Conclusion	109
5.6	Su	mmary	110
6 C	Conclusions and Future Research		112
6.1	Th	esis Summary	112
6.2	Th	esis Conclusion	113
6.3	Re	commendations for Future Research.	115
Biblio	graph	y	117

List of Tables

Table 3.1: Performance of Different Feature Combinations	53
Table 3.2: Performance of the Logistic Regression Classifier	54
Table 3.3: Performance of the Logistic Regression Classifier on Noisy Raw Data	55
Table 4.1: FSCT results from SVM and CRFoGVG models	84
Table 4.2: Performance of LOO training using SVM and CRFoGVG	84
Table 4.3: Performance of SVM trained on FR79 with LMO training	85
Table 4.4: Performance of SVM trained on <i>Intellab</i> with LMO training	86
Table 4.5: Performance of CRFoGVG trained on FR79 with LMO training	86
Table 4.6: Performance of CRFoGVG trained on <i>Intellab</i> with LMO training	87
Table 4.7: Performance of SPCoGVG trained on FR79	88
Table 4.8: Performance of SPCoGVG trained on <i>Intellab</i>	88
Table 4.9: Performance of Different Classifiers in LMO scenario	91
Table 5.1: Overall Place Classification Accuracies	103
Table 5.2: Object Classification Accuracies Expressed in Precision	105
Table 5.3: Object Classification Accuracies Expressed in Recall	105
Table 5.4: Object-specific Classification Accuracies Expressed in Precision	105
Table 5.5: Object-specific Classification Accuracies Expressed in Recall	106
Table 5.6: System Performance Expressed in Overall Accuracies	107

List of Figures

Figure 2.1: A conceptual hierarchical mapping scheme	9
Figure 2.2: Two common sensors and a comparison of their horizontal field of view	s.12
Figure 2.3: The Kinect TM and other functionally identical sensors	12
Figure 2.4: I.I.D. data for supervised learning	18
Figure 2.5: Data structure of a graph	19
Figure 2.6: Samples for undirected graphical models	19
Figure 2.7: A simplified flow chart of the supervised learning	20
Figure 2.8: An illustration of the hard-margin SVM	25
Figure 2.9: An illustration of the soft-margin SVM	28
Figure 2.10: The relationship between some typical graphical models	30
Figure 2.11: An illustration of the feature manipulation techniques	38
Figure 3.1: Typical scanning laser range finder data visualised in different forms	44
Figure 3.2: The indoor environment for 2D laser range data collection	52
Figure 3.3: Test results of the binary classification	54
Figure 3.4: Real OG maps of two indoor environments	56
Figure 3.5: LISA robot (Lightweight Integrated Social Autobot)	57
Figure 3.6: Blueprint of the indoor environment at level 6, building 2, UTS	58
Figure 3.7: Examples of 360° 3D / 2D instance pairs from each class	59
Figure 3.8: The results of feature selection on features from 3D range data	60
Figure 3.9: The results of feature selection on features from 2D range data	61
Figure 3.10: Test accuracies on 360° 3D data set	64
Figure 3.11: Test accuracies on 360° 2D data set	64
Figure 3.12: Test accuracies of different coverage patterns	65
Figure 4.1: An example of the Voronoi diagram	71
Figure 4.2: An example of GVG on the grid map	71

Figure 4.3: An example of CRF over GVG	72
Figure 4.4: The learning framework of fully supervised CRFoGVG	72
Figure 4.5: Schematic flow chart of the proposed framework SPCoGVG	74
Figure 4.6: An example of CRF _{PL}	76
Figure 4.7: Real-world grid maps from different international universities	81
Figure 4.8: Test results of the of the SPCoGVG framework	89
Figure 4.9: Comparisons of experimental results shown in box-and-whisker diag	rams 90
Figure 5.1: Single sensory modality place classification model	95
Figure 5.2: Multiple sensory modalities SPCOD with individual object feature	96
Figure 5.3: Multiple sensory modalities SPCOD with object feature pool	98
Figure 5.4: The process of constructing the OFP for the M-SPCOD-OFP	100
Figure 5.5: The blueprint of the data collection environment.	102
Figure 5.6: Examples of object localisation in an office environment	108
Figure 5.7: Examples of object localisation in bathroom and stairwell	108
Figure 5.8: Examples of object localisation in kitchen	109
Figure 5.9: Examples of object localisation in printer room.	109
Figure 5.10: A generalised M-SPCOD-OFP model	110

Acronyms and Abbreviations

2D Two-dimensional

3D Three-dimensional

AMN Associative Markov Network

CENTRIST Census Transform Histogram

COLD COsy Localisation Database

CRF Condition Random Field

CRFoGVG Condition Random Field over the Generalised Voronoi Graph

CRF_{PL} CRF having Partially Labelled Data

CRFH Compose Receptive Field Histograms

DAGSVM Directed Acyclic Graph SVM

DEFS Differential Evolution based Feature Subset Selection

DNF Desired Number of Features

EEG Electroencephalography

FSCT Fully Supervised Comprehensive Training

GVD Generalised Voronoi Diagram

GVG Generalised Voronoi Graph

HMM Hidden Markov Model

HOG Histogram of Oriented Gradients

HOUP Histogram of Oriented Uniform Patterns

HRI Human-robot Interaction

I.I.D. Independent and Identically Distributed

IR Infrared

ISSA Indoor-space Scene Analysis

LBP Loopy Belief Propagation

LDA Linear Discriminant Analysis

LISA Lightweight Integrated Social Autobot

LMO Leave-many-out

LOO Leave-one-out

MRF Markov Random Field

M-SPCOD-IOF Multiple Sensory Modalities SPCOD

with Individual Object Feature

M-SPCOD-OFP Multiple Sensory Modalities SPCOD with Object Feature Pool

NF Number of Features

NLP Natural Language Processing

Non-I.I.D. Non Independent and Identically Distributed

NP Number of Population

OB Object Bank

OFP Object Feature Pool

OG Map Occupancy Grid Map

OISVM Online Independent-SVM

PCA Principal Component Analysis

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localisation and Mapping

S-PC Single Sensor Modality Place Classification

SPCOD Simultaneous Place Classification and Object Detection

SPCoGVG Semi-Supervised Place Classification over

a Generalised Voronoi Graph

SPM Spatial Pyramid Matching

SVM Support Vector Machine

SVM-DAS SVM-based Discriminative Accumulation Scheme

VD Voronoi Diagram

VRF Voronoi Random Field

Abstract

Place classification is an emerging theme in the study of human-robot interaction which requires common understanding of human-defined concepts between the humans and machines. The requirement posts a significant challenge to the current intelligent mobile systems which are more likely to be operating in absolute coordinate systems, and hence unaware of the semantic labels. Aimed at filling this gap, the objective of the research is to develop an approach for intelligent mobile systems to understand and label the indoor environments in a holistic way based on the sensory observations.

Focusing on commonly available sensors and machine learning based solutions which play a significant role in the research of place classification, solutions to train a machine to assign unknown instances with concepts understandable to human beings, like room, office and corridor, in both independent and structured prediction ways, have been proposed in this research. The solution modelling dependencies between random variables, which takes the spatial relationship between observations into consideration, is further extended by integrating the logical coexistence of the objects and the places to provide the machine with the additional object detection ability. The main techniques involve logistic regression, support vector machine, and conditional random field, in both supervised and semi-supervised learning frameworks.

Experiments in a variety of environments show convincing place classification results through machine learning based approaches on data collected with either single or multiple sensory modalities; modelling spatial dependencies and introducing semi-supervised learning paradigm further improve the accuracy of the prediction and the generalisation ability of the system; and vision-based object detection can be seamlessly integrated into the learning framework to enhance the discrimination ability and the flexibility of the system.

The contributions of this research lie in the in-depth studies on the place classification solutions with independent predictions, the improvements on the generalisation ability of the system through semi-supervised learning paradigm, the formulation of training a conditional random field with partially labelled data, and the integration of multiple cues in two sensory modalities to improve the system's functionality. It is anticipated that the

findings of this research will significantly enhance the current capabilities of the human robot interaction and robot-environment interaction.