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Abstract 

 

Place classification is an emerging theme in the study of human-robot interaction which 

requires common understanding of human-defined concepts between the humans and 

machines. The requirement posts a significant challenge to the current intelligent mobile 

systems which are more likely to be operating in absolute coordinate systems, and hence 

unaware of the semantic labels. Aimed at filling this gap, the objective of the research is 

to develop an approach for intelligent mobile systems to understand and label the indoor 

environments in a holistic way based on the sensory observations.  

Focusing on commonly available sensors and machine learning based solutions which 

play a significant role in the research of place classification, solutions to train a machine 

to assign unknown instances with concepts understandable to human beings, like room, 

office and corridor, in both independent and structured prediction ways, have been 

proposed in this research. The solution modelling dependencies between random 

variables, which takes the spatial relationship between observations into consideration, is 

further extended by integrating the logical coexistence of the objects and the places to 

provide the machine with the additional object detection ability. The main techniques 

involve logistic regression, support vector machine, and conditional random field, in 

both supervised and semi-supervised learning frameworks. 

Experiments in a variety of environments show convincing place classification results 

through machine learning based approaches on data collected with either single or 

multiple sensory modalities; modelling spatial dependencies and introducing semi-

supervised learning paradigm further improve the accuracy of the prediction and the 

generalisation ability of the system; and vision-based object detection can be seamlessly 

integrated into the learning framework to enhance the discrimination ability and the 

flexibility of the system. 

The contributions of this research lie in the in-depth studies on the place classification 

solutions with independent predictions, the improvements on the generalisation ability of 

the system through semi-supervised learning paradigm, the formulation of training a 

conditional random field with partially labelled data, and the integration of multiple cues 

in two sensory modalities to improve the system's functionality. It is anticipated that the 
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findings of this research will significantly enhance the current capabilities of the human 

robot interaction and robot-environment interaction. 
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Chapter One 

Introduction 

1 Introduction 

1.1 Background 

Human-robot co-existence is full of challenges as a mutual understanding may be 

required. As humans, we are more focused on using semantic labels rather than precise 

coordinates in our day-to-day language. Therefore, it may be argued that the robots 

capable of understanding semantic labels of places and other human-defined concepts are 

better equipped to effectively interact with humans because it allows communication in a 

human-friendly way. Most people would prefer giving instructions like “Go to the 

kitchen and get me some water” to their future personal service robot, rather than putting 

it precisely like “move five meters straight forward, and then turn ninety degrees 

clockwise, and then …”. More generally, teaching a machine to learn human-defined 

concepts connects the research on high-level cognition (i.e. human-robot interaction) like 

natural language processing (NLP), and the research on intelligent mobile systems (i.e. 

robot-environment interaction) like localisation and mapping. In this way, a service robot 

receiving natural verbal commands from a human is able to perform complicated tasks in 

indoor environments. In addition, semantic environment information has the potential to 

facilitate traditional research tasks such as mapping [1, 2], navigation [3], task planning 

[4], and object search and rescue [5, 6]. Therefore, research on semantic information 

acquisition, specifically place classification in this thesis, has been an important step in 

the quest for intelligent systems.  

The research on place classification addresses the problem of distinguishing 

differences between environmental locations, and assigning human-defined concepts 

(kitchen, office, corridor, etc.) to each location [7, 8], and most recently available studies 

have been conducted through probabilistic modelling and machine learning approaches. 
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A brief roadmap of related research includes the overlapping stages of heuristic-based 

solutions, standard supervised learning solutions, advanced learning paradigms (e.g. 

online learning, incremental learning, and semi-supervised learning), and hierarchical 

modelling. The types of sensors used for this purpose, approximately in the order of 

increasing informativity, include but are not limited to: sonar ring, two-dimensional 

scanning laser range finder, three-dimensional range sensor, infrared camera, standard 

RGB camera, and omnidirectional camera.  

1.2 Prospects and Problems 

Place classification has a variety of applications in robotics, among which the semantic 

mapping is the most fundamental one, as the semantic information can be directly added 

to conventional maps. A more forward-looking approach is to develop a hierarchical 

mapping scheme, which integrates the metric map, navigation map, topological map and 

conceptual map [9-11]. Other applications include navigation, task planning, place-

object interaction, and localisation, which will be discussed in more detail in the 

following sections. 

One of the problems that current place classification solutions are facing is that most 

of these solutions rely on images taken from standard camera which has inherent 

weaknesses in varying illumination conditions and may be vulnerable to occlusion due to 

the limited horizontal field of view. As many of the commercial mobile robot platforms 

are equipped with multiple sensors including active range sensors, place classification 

solutions based on these sensors have their significance. 

Another problem is about selecting the appropriate features, which is a fundamental 

problem in machine learning. Specifically, a system that simply memorises the examples 

for each environment type as templates would not be a viable solution, because it is 

negatively affected by: 1) the changes in appearance and illumination conditions (only in 

vision based solutions) [12, 13]; 2) the in-class variations due to discrepancies in shape, 

colour and texture across individual samples [14]; and 3) the interference of dynamic 

environments and human activities [12, 13, 15]. Therefore, a common practice in 
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machine learning is to construct a feature vector on the raw data. However, a high 

dimensional feature vector usually leads to overfitting, and a set of weak features does 

not provide enough discrimination ability. Thus, finding a compact feature vector 

containing representative features becomes critical.  

The way of choosing training and test data also has an influence on the overall 

performance of the system [12]. Many supervised learning based place classification 

implementations are questioned for the lack of adaptability because they use both 

training and test data sets collected from the same space. These problems can be 

summarised as the reflections of the generalisation ability of the system. Although there 

are works reported on improving the generalisation ability, through describing the 

performance of test results on unknown environments [11, 16, 17] or transferring the 

learned model between different robots [15, 18], the generalisation ability is still a 

problem worthy of further exploration. 

With regards to the modelling of contextual relationship, especially the object-place 

dependency, in the research of place classification, there are attempts to use objects as 

features to represent the environment [19], and in the research of object detection, place 

information is reported to be beneficial [20]. However, the causal relationship may run in 

both directions, but works towards integrating both place classification and object 

detection are rarely reported in literature.  

1.3 Motivations and Objectives 

The aim of this research is to improve currently available place classification solutions, 

and develop more novel and advanced approaches.  

The specific research objectives, which are set up in a problem-focused way, are 

listed as follows: 

 Develop place classification solutions for data collected from both 2D and 3D 

range sensors, including proposing a comprehensive feature set for each data 

type. 
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 Study on the properties of features, find out the relationship between the subset of 

features and the classification accuracy, and suggest optimal feature sets for 2D 

and 3D range data respectively. 

 Develop novel solutions by adopting cutting edge learning paradigms to improve 

the generalisation ability of the system. 

 Propose a model to perform both place classification and object detecting tasks 

simultaneously, by modelling the contextual information in graphical models. 

1.4 Principal Contributions 

In this thesis the following five novel contributions to the research of place classification 

and general machine learning have been presented. 

In the case of no dependency assumption between random variables: 

 Two concise and prominent feature sets, each with different merits, constructed 

from 2D laser range data have been proposed. The feature selection procedure 

has also been demonstrated because the results are data set specific. 

 A place classification solution on 3D range data has been developed, and all 

details about feature construction, feature selection, and sensor arrangement are 

provided. 

In the case of availability of dependencies between random variables: 

 A co-training-like semi-supervised learning framework SPCoGVG which enables 

the system to learn from the test data with a self-correcting mechanism has been 

proposed to improve the generalisation ability of the system. 

 The concept of simultaneous place classification and object detection has been 

introduced, and accordingly a robust and extendable framework M-SPCOD-OFP 

has been developed. 
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For the research of general machine learning: 

 A method enabling the CRF to learn from partially labelled data by marginalising 

the unlabelled random variables has been formulated and implemented. The 

implementation is adopted by a publicly accessible software toolbox. 

1.5 Organisation of this Thesis 

The thesis is structured as follows: 

Chapter Two introduces the task of place classification and related research, 

elaborates the details of the machine learning algorithms used in this research, and 

discusses the label and feature issues. 

Chapter Three presents the first two contributions of this thesis. Firstly the features 

constructed from the data collected by the 2D scanning laser range finder and the 

KinectTM sensor are introduced, and then feature selection algorithms are described. In 

the first experiment two concise feature sets with different merits constructed from the 

2D range data are identified and in the second experiment the 3D range data based place 

classification is investigated in several aspects. The content of this chapter is mainly 

based on previous publications [2, 21-24] by the author. 

Chapter Four presents the third and the fifth contributions of this thesis. The details of 

the graphical model based supervised learning solution, CRFoGVG, are described, and 

its problems are identified and discussed. Then a semi-supervised learning solution, 

SPCoGVG, is proposed for improvement. The proposed framework has been validated 

through various experiments and satisfactory results are demonstrated. In the 

implementation of the proposed framework, a technique CRFPL is developed to enable 

CRF training on partially labelled data. The content of this chapter is mainly based on 

previous publications [25-27] by the author. 

Chapter Five presents the fourth contribution of this thesis. The idea of simultaneous 

place classification and object detection is raised as an extension of the supervised 

learning solution. Two candidate models for SPCOD are developed and explained in 

detail, followed by an introduction of high-level features constructed from the image. 
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Results of comprehensive experiments and comparison demonstrate the effectiveness of 

the proposed models, especially the M-SPCOD-OFP framework. The content of this 

chapter is mainly based on the previous publication [28] by the author. 

Chapter Six summarises and concludes this thesis and provides insight into the future 

directions of research.        =>  
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Chapter Two 

Background and Literature Review 

2 Background and Literature Review 

2.1 Place Classification and Related Research 

2.1.1 Introduction 

The topic of this thesis is place classification, more specifically, indoor place 

classification, but due to the situation that similar concepts and different conventions 

between communities cause some confusion, it is worth the time and effort to explain 

these definitions. In general, there are three closely related concepts, which are place 

recognition, place classification, and scene analysis.  

Place recognition refers to the ability of a machine to recognise previously seen parts 

of the environment [12, 13, 29]. The applications of place recognition lie in qualitative 

localisation, loop closing detection, kidnap recovery, and some simultaneous localisation 

and mapping (SLAM) scenarios [5, 29, 30]. 

Place classification, also referred to as scene categorisation or semantic labelling of 

places in some literature, denotes the problem of distinguishing differences between 

environmental locations, and assigning a label (kitchen, office, corridor, etc.) to each 

location [7, 8]. A commonly held outlook is that place classification is a more 

challenging problem due to the presence of higher intra-class variation which warrants 

the formation of a conceptual model of the place [31-33]. 

Scene analysis, also known as scene understanding, image parsing or image 

understanding, targets at finding a decomposition of the sensory input (e.g. image, depth 

image, or 3D point cloud) in order to encode relational and spatial information [34]. For 

example, in vision-based indoor-space scene analysis (ISSA) tasks, four kinds of context 

including feature-feature, object-part, object-object, and place-object context are usually 

utilised to model the natural structures [35], or to separate dominant background regions 
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of interest from the remaining of foreground or object image categories [36]. Some 

literature suggests that the core of scene analysis is the segmentation process followed by 

object identification [37]. 

To distinguish these three concepts from examples: statements like “Although I have 

never been here before, my experience tells me that this is an office and that is a meeting 

room.” addresses a place classification problem; “I have been here before and I know 

this is the big shared office on level six” belongs to place recognition problems; and 

“Based on what I am seeing now, I am sure that this part is the floor and that part is a 

table” is a scene analysis problem. 

Although there are a few studies on place classification in outdoor environments [38-

41], the scope of this research is restricted to place classification for intelligent mobile 

systems operating in an indoor environment. Thus, in the following discussion, place 

classification is considered to be equivalent to indoor place classification unless 

otherwise stated. 

2.1.2 Applications, Requirements, and Benchmark 

Place classification has a variety of applications in robotics, among which the most 

straightforward one is to improve the quality of human-robot interaction (HRI). For 

example, in recent years, with the gradually improved reliability and performance of the 

place classification technique, and the emergence of practical research on special 

cognition languages, Mozos et al. proposed a linguistic framework which supports the 

map acquisition process and has been used for situated dialogue [9]; Schulz et al. 

implemented a language for robots to communicate between each other to negotiate 

spatial tasks in their individual cognitive maps [42]. 

Mapping is so far the most fundamental applications of place classification, probably 

because the semantic information can be intuitively added to conventional maps. For 

example, metric maps and occupancy grids maps are suitable carriers of place labels [1, 

2]. Other researchers point out that topological maps are more natural forms of semantic 

mapping results, as a node in the topological map is usually a semantic place unit like a 

room on the floor plan [7]. Not to mention that topological maps are less complex and 
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permit more efficient planning than metric or grid maps [43]. Therefore, semantic 

topological mapping has also received considerable attention [44, 45]. 

Many researchers hold the view that a more forward-looking approach is to develop a 

hierarchical mapping scheme, as shown in Figure 2.1. To this end, Vasudevan and 

Siegwart proposed cognitive maps on top of metric maps and topological maps [32]. The 

progenitors of the concept multi-layered conceptual mapping suggest a hierarchical 

structure which integrates metric map, navigation map, topological map and conceptual 

map, and the map building process is regarded as a human-like decomposition and 

categorisation of space [9-11]. Similarly, Pronobis and Jensfelt introduced a probabilistic 

framework combining heterogeneous, uncertain, information and human input for 

semantic mapping, which includes sensory layer, place layer, categorical layer and 

conceptual layer [46]. Semantic information together with a hierarchical mapping 

scheme will make it possible for the robot to do many things that previously could not be 

done, like behaviour-based navigation [3] or semantic knowledge based task planning 

[4].  

 

Figure 2.1: A conceptual hierarchical mapping scheme 
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Place-object interaction provides another perspective to utilise semantic knowledge 

by incorporating the well-developed object detection techniques. In this respect, Murphy 

et al. used a tree-structured graphical model to facilitate object-presence detection, and 

vice versa [47]. Torralba et al. employed semantic knowledge to provide contextual 

priors for object recognition [20]. More recently, the proposal of the concept 

simultaneous place and object recognition further reflects the need for the modelling of 

bidirectional interaction between places and objects for simultaneous reinforcement [35, 

48]. The concept has been further developed and extended in this thesis, as simultaneous 

place classification and object detection (SPCOD). 

Qualitative localisation is another, albeit weak, application which gives the robot the 

capability of recognising different places, but not estimating a precise metrical pose [31]. 

The method is also called topological localisation in some literature, and it is more like a 

place recognition task [15, 31]. As the techniques of place classification and place 

recognition have a lot of internal similarities, the progress of place classification as well 

as the above-mentioned hierarchical mapping scheme will provide valuable insight into 

the improvement of localisation. 

To our knowledge, the first systematic and prospective requirement analysis for 

indoor place classification is proposed by Pronobis and Jensfelt [8], where the authors 

described nine specific desirable characteristics of the system. In this thesis, these 

requirements, as well as requirements from other sources, are categorised into five 

aspects as follows: 

 Functionality: requirements on the functions of the system, e.g., classification, 

working in dynamic environments 

 Information input: requirements related to sensors and types of input information, 

e.g., support multiple sensory sources, context (spatial, temporal, etc.) integration 

 Learning algorithm: requirements on the learning algorithm, e.g., incremental 

learning ability, supporting new and unknown categories, and providing the measure 

of confidence of the decision 

 Internal representation: requirements on the representations of semantic information, 

e.g., semantic mapping, various levels of abstraction 
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 Performance: requirements on system performance like execution time, robustness, 

scalability, and complexity 

As an effective tool to evaluate the performance of a system, the benchmark is 

another important issue to be addressed. Although there are attempts to compare 

published methods qualitatively [8], it remains a difficulty to justify these methods 

quantitatively, mainly due to different experimental conditions and the selection of 

training and test data sets. The publication of several standard benchmark data sets for 

development, evaluation and comparison of solutions filled the gap to some extent [12], 

but it still cannot fully meet the demand for spatial-temporal information and multiple 

modalities, let alone the need for incorporating exploration or active search algorithms. 

Therefore, although it is agreed that providing benchmark data sets is the path to deliver 

comparable results, for the time being simulation is still an inevitable supplement unless 

a remote laboratory [49, 50] environment for place classification is established. 

2.1.3 Sensory Modalities 

The research on place classification has been carried out on raw data collected from 

various sensors including monocular camera, stereo camera, sonar, infrared sensor, and 

the two-dimensional scanning laser range finders, Swissranger™ and Kinect™, which 

have their advantages and disadvantages. 

As a cost effective, portable and popular sensor, the visual sensor (specifically the 

standard camera) provides nourishing raw information from the environment [12, 15, 51, 

52], but suffers from ambiguities introduced by illumination, motion blur and camera 

noise [48, 52]. As a standard camera usually has a smaller horizontal field of view than a 

range sensor, like the scanning laser range finder, as shown in Figure 2.2, occlusion 

becomes another error source when the robot is closely facing a wall or an object [5]. In 

addition, the increasing resolution and dimensionality of the visual data also constitute a 

computational complexity problem [12]. 
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Figure 2.2: Two common sensors and a comparison of their horizontal field of views 

Earlier range sensor like ultrasonic and infrared sensors are also sensitive to ambient 

light, object colour, object orientation and surface of reflection [43], but these 

disadvantages have been more or less overcome by the introduction of the laser scanner. 

Some studies show that range information extracted from the 2D scanning laser range 

finder is robust to visual variations, but perceptual aliasing remains a problem because 

the sensor cannot provide as much information as vision [31, 51, 52]. The usage of 3D 

range sensors like the Swissranger™ [53], which is believed to be more invariant to 

inner-class variations, is also described in some literature [14, 54]. However, the cost of 

this kind of professional sensing equipment limits its application. 

The introduction of the relatively low-cost Kinect™ around the year 2009, and other 

similar sensors thereafter, provides various off-the-shelf multi-sensor platforms because 

they have the advantage of simultaneously providing visual and depth information [55, 

56]. The Kinect™ sensor provides 43° vertical by 57° horizontal field of view and a 

detection distance of approximately 0.8 - 4m [57, 58]. The appearance of these sensors is 

shown in Figure 2.3. 

 

Figure 2.3: The Kinect™ and other functionally identical sensors 
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Vision based solutions for place classification have been in the forefront for many 

years [1, 33, 59, 60], with a basic assumption that a realistic scene can be represented by 

a visual descriptor without any loss of discriminative information [15]. Although not in 

the scope of scene classification for intelligent mobile systems, some implementations 

classifying human-captured photos which are ensured to be representative or 

characteristic of the scene category, provide a valuable exploration of features and 

methods [59, 61, 62]. In robotics, Wu et al. employed Bayesian filtering to classify 

indoor scenes collected by a mobile robot into five categories, and achieved an average 

accuracy of about 46% [59]. Pronobis et al. designed a vision-only recognition algorithm 

for place classification using rich global descriptors from images as the features and the 

support vector machine as the classifier, and achieved a high classification accuracy 

(above 95.5%) on five classes under stable illumination conditions [30]. An extension of 

[30] to deal with varying illumination conditions was also developed by incorporating 

the incremental learning ability [15]. Ranganathan and Jongwoo labelled the robot 

trajectories using conditional random field (CRF), and the method reached accuracies of 

above 90% on four categories [1]. Vasudevan and Siegwart suggested functional 

concepts of places based on the objects and inter-object relationships [33], and a similar 

idea was also adopted by Viswanathan et al. [60]. 

Regarding the 2D range sensor based solutions, Charbonnier and Strauss analysed 

raw sensor data directly and modelled indoor environments using polygonal 

approximation [63]. Many algorithms aiming at topological mapping rely on detecting 

region transition to separate regions and annotate the map [64]. For example, Buschka 

and Saffiotti proposed a rectangular-fit algorithm to segment the space into room and 

corridor regions automatically [65]. Utilising the frequency components extracted from 

sonar data, Poncela et al. used pattern matching to classify observations into three 

categories, which are wall, corridor and door [3]. Tapus et al. adopted a probabilistic 

approach, Bayesian Programming, to identify seven topology situations and five door 

types [43]. With supervised learning, Mozos et al. extracted dozens of simple features 

from raw laser range data and employed the AdaBoost classifier to label an indoor 

environment consisting of rooms, corridors, doorways and halls, showing the accuracies 
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between 82% and 92% on different data sets [66, 67]. Sousa et al. obtained the accuracy 

of about 80% on a binary classification task using a subset of abovementioned simple 

features, and the support vector machine as the classifier [68]. Similar supervised 

learning schemes can be found in other literature [69]. Triebel et al. proposed an 

instance-based associative Markov network (AMN) solution to classify places and 

objects using 2D and 3D range data respectively [70, 71], but there is no integration of 

these two modalities.  

In order to exploit the merit of each sensor, multi-sensory solutions provide new 

perspectives on place classification tasks. To this end, a number of improvements have 

been made on the previously mentioned single modality based works. For example, 

Mozos et al. employed both simple features from range data and object-related features 

from vision observations [9, 16]. Pronobis et al. proposed the SVM-based discriminative 

accumulation scheme (SVM-DAS) algorithm to integrate vision and laser-based cues, 

and achieved accuracy of more than 94% under severe dynamic variations [52, 72]. 

Similar approaches have also been discussed in the literature [10, 46]. 

Another research stream is the 3D range sensor based place classification, because a 

3D description of the scene is believed to be more invariant to inner-class variations 

compared with other current techniques [14]. Swadzba and Wachsmuth used data from 

the Swissranger™ to describe the scene as a collection of planar structures, and extracted 

feature vectors to discriminate three room types, which are office, hall, and meeting 

room [14]. Without using active range sensors directly, Varadarajan and Vincze 

suggested a way to model wall, room and doorway by fusing 2D local and global 

features with geometry information obtained from stereo images for 3D indoor scene 

representation [73]. Swadzba and Wachsmuth extracted planner information from the 

Swissranger™ data and gist features from images for the place classification task [54].  

With the low-cost but advanced Kinect™ sensor, Mozos et al. evaluated features 

calculated from depth and normal image data, and obtained average correct classification 

rates of above 92% on five different place categories: corridors, laboratories, offices, 

kitchens, and study rooms [55]. Zender et al. classified two different trajectories with 
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accuracies of all the poses of the robot (during its movement) ranging from 93.18% to 

96.8% [11].  

2.1.4 Machine Learning in Place Classification 

Defining “What is machine learning” is regarded as a philosophical question [74], and so 

far the most well-known definition of machine learning is made by Mitchell [75]: 

 

A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E.  

 

According to different researchers, machine learning is explained as the field of 

research devoted to the formal study of learning, or the body of research related to 

automated large-scale data analysis [76, 77]. Depending on different setups and 

objectives, machine learning styles are usually categorised as supervised learning, semi-

supervised learning, and unsupervised learning. The taxonomy is also discussed in some 

other literature in a different way, by introducing four kinds of machine learning as 

supervised learning, reinforcement learning, generalised reinforcement learning, and 

unsupervised learning [76]. Welling examined the types of machine learning in more 

details and made a concise comparison [78]: 

 

Supervised learning deals with predicting class labels from attributes, 

unsupervised learning tries to discover interesting structure in data, semi-

supervised learning uses both labeled and unlabeled data to improve predictive 

performance, reinforcement learning can handle simple feedback in the form of 

delayed reward, active learning optimizes the next sample to include in the 

learning algorithm and multi-task learning deals with sharing common model 

components between related learning tasks. 
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In the work presented in this thesis, supervised learning and semi-supervised 

learning, which both focus on learning to produce the correct outputs given new inputs, 

are discussed. The main difference between these two styles is that the former learns 

from labelled data and the latter learns from both labelled and unlabelled data. 

At present, supervised learning is the most widely adopted approach for place 

classification. In an earlier work, using principal component analysis (PCA) and distance 

based matching, Poncela et al. employed the spectral features from sonar data to classify 

the observations into wall, corridor and door, and the resulting accuracies vary in 

different environments [3]. Tapus et al. used Bayesian programming to discriminate 

various corridor shapes and door states achieving above 82% of successful classifications 

[43]. With an Adaboost classifier and hundreds of single valued features (including 

applying different thresholds for the same feature type) from 360º laser range data, 

Mozos et al. classified the environments into four categories, with accuracies of 

approximately 92% by training and testing on the same map, and approximately 82% on 

different maps [66]. In recent years, SVM as a prominent classifier, has been gaining 

popularity over other approaches in many applications [14, 55]. Using the multi-class 

SVM on features extracted from 3D range data, Swadzba and Wachsmuth achieved 

approximately 80% accuracy [14], while the work of Mozos et al. showed accuracies 

above 92% [55]. It is to be noted that the accuracies mentioned here are achieved by 

different methods, on different data sets and may address completely different tasks. 

Therefore, a direct comparison of accuracies may not be meaningful. 

It is generally observed in the literature that considering the contextual information 

usually leads to better classification accuracies [2, 79, 80]. Typical forms of this 

information include temporal consistency [7, 48], spatial consistency [1, 16, 46, 66, 81] 

and place-object relationships [35, 48]. Besides the methods that detect change-point 

directly [81], many systems adopt probabilistic graphical models like the hidden Markov 

model (HMM) [16, 66] or the conditional random field (CRF) [1] to incorporate the 

spatial dependencies between places. For example, a trajectory naturally has a chain-like 

structure, and other representations of the space, like a topological graph, can be 

converted to tree-like or more general structures [11, 80]. However, these algorithms are 
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still facing the challenge of generalisation ability, especially when trained with data from 

one environment and tested on another. 

As widely adopted fully supervised learning has long been criticised for the lack of 

flexibility and the high cost of preparing the training data, there are emerging learning 

paradigms like reinforcement learning and semi-supervised learning which are believed 

to be more flexible, cost-efficient, and yield an improvement over supervised learning if 

certain assumptions hold [82, 83]. In reinforcement learning, the machine interacts with 

its environment by producing actions and receiving some rewards, and the goal of the 

machine is to learn to maximise the future rewards it receives [76]. Another common 

scenario in machine learning is to have a small amount of labelled and a large amount of 

unlabelled data [84] . As an extension to the supervised classification problem, the semi-

supervised learning (specifically the semi-supervised classification) aims to train a 

classifier from both the labelled and unlabelled data to achieve better performance than 

the supervised classifier trained on the labelled data alone [84].  

For the purpose of improving current supervised learning algorithms, a few variations 

have been proposed. For example, algorithms like online independent-SVM (OISVM) 

and memory-controlled incremental SVM do not require storing all incoming data, and 

have selection mechanisms to guarantee a bounded memory growth [13, 15, 83]. These 

approaches focus more on the algorithmic efficiency and can be further improved by 

utilising the contextual information. In this regard, the coSVM algorithm provides a 

semi-supervised variant of the standard SVM for structured output variables [85]. CRF 

based semi-supervised solutions have been reported in image processing, sequence 

segmentation and sequence labelling applications [86, 87]. Attempts to combine both 

SVM and CRF have also been reported in various applications [88, 89], and the more 

general kernel methods are regarded as the emerging theme [90].  
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2.2 Supervised Learning 

2.2.1 Introduction 

In this section, the fundamental elements of supervised learning including the data, the 

processes and the algorithms, will be discussed.  

Under the assumption that the random variables Y  are independent and identically 

distributed (I.I.D.), the structure of the data for supervised learning is visualised in 

Figure 2.4. An instance or observation 1 2X ,X , X
Tl l l l n

n R   X =  , which is usually in 

the form of an n -dimensional feature vector, represents a specific object. Each 

dimension of the feature vector is called a feature. Thus, an abstract of an instance lX  is 

a feature set X . A label Yl  is the desired prediction on the instance lX , and an abstract 

of Yl  is the random variable Y . 

 

Figure 2.4: I.I.D. data for supervised learning 

The data for structured prediction, which also models the dependencies between 

random variables for instance using graph models, is visualised in Figure 2.5. The graph 

comprises multiple observed nodes X  and hidden nodes Y  which are connected based 

on specific relationships. Similar to the previous I.I.D. data case, an instance represents 

a specific object (an observed node) but the symbol X is a concatenation of features 
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belonging to all observed nodes. Similarly the random variables Y  are a concatenation 

of labels belonging to all hidden nodes. 

In the following sections, the theoretical minimal unit which can be used for training 

a classifier is given the name sample. For the assumed I.I.D. data, a sample is an 

instance-label pair  ,Yl lX , and for the assumed Non-I.I.D. data, a sample is a graph 

including all observed and hidden nodes  ,l lX Y . Please refer to Figure 2.4 and Figure 

2.6 for ease of understanding. 

 

Figure 2.5: Data structure of a graph 

 

Figure 2.6: Samples for undirected graphical models 

Broadly speaking, the process of supervised learning includes two stages: training 

and test. They are known by different names in different communities, which will be 

further discussed in the following sections. Accordingly, the data set that the supervised 

learning algorithms work on, is divided into training and test data sets. A simplified 
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flow chart of the supervised learning process and corresponding descriptions are shown 

in Figure 2.7 and Algorithm 2.1. 

More generally, in real-world applications a certain measure called validation is 

usually introduced together with a validation data set to provide a feedback to the 

learning process, so that the classifier has the opportunities to fine-tune parameters, 

search for the best hypothesis or select a more representative subset of features. 

 

Figure 2.7: A simplified flow chart of the supervised learning 
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Algorithm 2.1  A simplified process of supervised learning  

Input:    Raw training data _train rawD    

    Raw test data _test rawD  

    A classification algorithm 

Output: Model M  and Classification Accuracy 

 

Process: 

Step a:  Construct feature vectors alX  from the raw training data _train rawD  

to get a labelled training data set   ,Y : 1,2,a al l
train a aD l m X   

Step b:  Train a model M  from the feature-label pairs  ,Ya al lX  

Step c:  Follow the same procedure as in Step a to construction feature vectors blX  

from the raw test data _test rawD  to get   ,Y : 1,2,b bl l
test b bD l m X   

Step d:  Predict new labels Y bl


 for each corresponding feature vector blX  based on the 

model M  

Step e:  Evaluate the performance of the classification algorithm and the model M  in 

the light of the identicalness of all Y bl  and Y bl


 

 

 

2.2.2 Classifiers for Independent Prediction 

2.2.2.1 Logistic Regression 

Logistic regression is an approach to learn functions of the form  Y |P X  in the case 

where  1 2X ,X , X
T

nX =  is the observation in the form of the feature vector containing 

discrete or continuous variables, and Y  is the corresponding discrete-valued label. It 

assumes a parametric form for the distribution  Y |P X  while directly estimating its 

parameters from the training data [91].  
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In the binary scenario, given  Y 0,1  being the label, and  0 1W , W , W
T

nW =   

being the parameter vector, the probability distribution is defined as: 
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The sum of equations (2.1) and (2.2) is one, in keeping with the property of a 

probability distribution. To simplify the expression, as per common practice the feature 

vector X  is extended with a pseudo-coordinate of a constant value of one, i.e. 

 0 1 2X ,X ,X , X
T

nX =  , where 0X 1 . Therefore, equations (2.1) and (2.2) become: 
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When a new observation cX  is available, the test process involves making a 

prediction based on equation (2.5). In other words, Y 1c   if the condition expressed as 

equation (2.5) holds, otherwise Y 0c  .  

 
 
Y 1|
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Y 0 |
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X

X
         (2.5) 

To further simplify the calculation above, by substituting equations (2.3) and (2.4) 

into equation (2.5), equation (2.6) and its equivalent form, equation (2.7) are obtained. 

Equation (2.7) is called the decision function, and the test process is called test, 

prediction or inference in different situations.  

 exp 1T W X          (2.6) 

 Tsign W X          (2.7) 
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In supervised learning, the task of finding the optimal parameter vector *W  given the 

training data set trainD  is called training, learning or parameter estimation. One of the 

approaches for training logistic regressing is to find out the parameter vector that 

maximises the conditional data likelihood [91], as shown in equations (2.8) and (2.9) 

which are equivalent.  

 * arg max Y | ;l l

l

P 
W

W X W        (2.8) 

 * arg max L
W

W W         (2.9) 

where    ln Y | ;l l

l

L PW X W  is called the log likelihood function 

By calculating the partial derivatives of the log likelihood function  L W , common 

approaches like gradient ascent are used to maximise  L W  with respect to W . 

However, overfitting is a potential risk of logistic regression and most other machine 

learning algorithms especially when the feature vector is in high dimension and the 

training data is sparse [91], because in that case the trained classifier might become too 

much adapted to the noise in the training data set [92]. Therefore, regularisation which 

encourages the fitted parameters to be small is usually employed to reduce overfitting 

[93]. L2 regularisation which encourages the sum of squares of the parameters to be 

small, is a common approach for this purpose [93]. In this way, the penalised log 

likelihood function is: 

  2* arg max ln Y | ;
2

l l

l

P


 
W

W X W W      (2.10) 

where   is a constant to determine the strength of penalty 

Logistic regression can be naturally extended to the multi-class scenario. Similar to 

the previous derivation, given  Y 0,1, k   being the label,  0 1X ,X , X
T

nX =   being 

the extended feature set, and  1 2, , kW = W W W (where 0 1W , W , W
T

j j j jn  W =  ) 

being the parameter matrix as shown in equation (2.11) (which was a vector in the 

previous binary scenario), the distribution corresponding to equations (2.1) and (2.2) in 

the binary scenario are equations (2.12) and (2.13) for the multi-class scenario. Although 



2  Background and Literature Review 

24 

 

being more computationally complicated than in the binary classification case, the 

parameter estimation and prediction follow similar ways. 
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2.2.2.2 Support Vector Machine 

Support vector machine (SVM) is a prominent learning algorithm based on a theoretical 

foundation rooted in statistical learning theory [94]. The basic idea of SVM is to map 

data into a high dimensional feature space and find an optimal separating hyper-plane 

with the maximal margin. 

Starting with the binary classification scenario for simplicity, given a set of instance-

label pairs   ,Y : 1,2,l l
trainD l m X   where  Y 1, 1   , instances X  are mapped 

into a high dimensional feature space F  via a mapping : nR F  , and the task of a 

SVM classifier is to construct an optimal separating hyperplane   0T b  W X  with a 

maximum-margin and bounded error. 

Assume that the instances are linearly separable, which is the scope of a hard-margin 

SVM as shown in Figure 2.8 (illustrated by a two dimensional case for ease of 

visualisation), then the hyperplane is in the form of 0T b W X .  

Assume that any instance lX  satisfies: 

T l
sb z W X      Y 1lif         (2.14) 

T l
sb z  W X      Y 1lif         (2.15) 
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where sz  is a positive distance value, which is usually fixed to one. One way to 

understand why sz  can be any arbitrary positive value is through the following decision 

function (2.16). The classification results will be identical no matter what positive value 

sz  holds because the scaling of W  and b  will not change the signs. 

 T csign bW X          (2.16) 

 

Figure 2.8: An illustration of the hard-margin SVM 

To find the optimal parameter vector, first of all let   Tg bX W X=  so that the 

distance from a point to the hyperplane is 
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l
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r
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W
=          (2.17) 

For support vectors which are instances lying on the boundary lines, the distance 

from any support vector to the hyperplane is sr  as shown in equation (2.18) (that is why 

lr  varies but sr  remains constant), and the amount of space between the two classes is 

  which is expressed in equation (2.19).  is called the margin [94]. 
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SVM aims to maximise the margin through the objective function: 
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And equivalently: 
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For optimisation, the Lagrangian function is constructed 
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the optimisation problem is called the primal problem and the solution is:  

 * * *

, 0
, , arg min arg max , ,

b
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        (2.24) 

Although training a SVM in the primal is possible and reported to be fast [95, 96], a 

more popular way is to solve the dual problem [97]. Based on the Karush-Kuhn-Tucker 

conditions [98], the following five equations can be derived: 
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Then the Lagrangian function becomes: 
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Equivalently, the dual problem is: 

* *
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For test, the decision function for the dual problem is  
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Dealing with linearly separable instances is a special case in machine learning 

problems, whereas a soft-margin SVM as shown in Figure 2.9, which tolerates outliers 

by introducing a non-negative slack variable l  [94], is a more practical solution. 

 

Figure 2.9: An illustration of the soft-margin SVM 

Accordingly, the primal problem for the soft-margin SVM becomes: 

2* *
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, b arg min

2 l
b l
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In equation (2.33), the positive constant C  is a penalty parameter used to control the 

amount of regularisation, and l  is a non-negative slack variable accounting for the 

amount of misclassification.  

The dual problem for the soft-margin SVM becomes: 
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Furthermore, considering the general expression of the hyperplane   0T b  W X , 

both learning and prediction depend only on the inner product    ,a b
Tl l X X . 

Therefore for implementation, a kernel trick is introduced so that it is not required to find 

out the specific definition of  . The kernel function is defined as: 

     ,a b a b
Tl l l lK  X X X X        (2.35) 

and some basic kernel functions are [99]: 

Linear:  ,
T

a b a bl l l lK X X X X   

Polynomial:    , , 0
T

a b a bl l l lK


    X X X X   

Radial Basis Function:    2
, exp , 0a b a bl l l lK     X X X X  

Sigmoid:    , tanh
T

a b a bl l l lK r X X X X  

where  ,  ,   and r  are kernel parameters. 

Although SVM is originally a binary classifier, it has also been extended by applying 

strategies such as one-against-all, one-against-one and directed acyclic graph SVM 

(DAGSVM) to deal with multi-class classification problems [12, 100]. Solutions of 

multi-class SVM as a single machine are also available [101, 102]. Throughout the work 

reported in this thesis, the multi-class implementation of the C-support vector 

classification scheme included in the LIBSVM package has been utilised [103].  

2.2.3 Graphical Models for Structured Prediction 

2.2.3.1 Pairwise Conditional Random Field 

Probabilistic graphical models capture both the uncertainty and logical structure to 

compactly represent complex real-world phenomena and to effectively learn and perform 

inference in large networks [104]. Specifically, a graphical model is a way to represent a 

joint distribution by making conditional independence assumptions: the nodes in the 

graph represent random variables, and the lack of edges represent conditional 
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independence assumptions [105]. There are directed and undirected graphical models, 

which differ in terms of their Markov properties and parameterisation [106]. Some 

typical graphical models and their relationships are shown in Figure 2.10 [79]. Each 

empty circle in Figure 2.10 represents a random variable and each filled circle represents 

an observation. 

    Naive Bayes        HMMs              Generative directed models

Logistic Regression            Linear-chain CRFs        General CRFs

Sequence

Sequence
General 
Graph

General 
Graph

Conditional Conditional Conditional

Directed
Graphical Models

(Generative Models)

Undirected
Graphical Models

(Discriminative Models)

Adapted from literature [79]
 

Figure 2.10: The relationship between some typical graphical models 

One of the well-known graphical models is the hidden Markov model (HMM), which 

has been widely used for the applications of temporal and spatial pattern recognition 

such as speech recognition, action recognition, information retrieval and gene prediction  

[107-110]. An HMM models a sequence of observations in the form of joint probability 

of a state sequence and an observation sequence, by assuming that there is an underlying 

sequence of states drawn from a finite state set [79]. 

Unlike generative models (i.e. models of the joint distribution  ,P Y X ) such as the 

hidden Markov model (HMM) or the Markov random field (MRF), conditional random 

field (CRF) is a discriminative model estimating the conditional probability distribution 

 |P Y X  directly to achieve structured prediction. CRF, in a chain structure, is first 

introduced by Lafferty et al. as probabilistic models for segmenting and labelling 

sequence data [111]. It is claimed that CRF offers several advantages over generative 

models and some other discriminative models [111, 112]. These advantages include 

releasing the assumption that the observations are conditionally independent given the 
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hidden states, avoiding the label bias problems of models that do local probability 

normalization, and guaranteeing optimised parameter estimation for certain choices of 

factors [113]. As a CRF can be used to model spatially or temporally correlated variables 

according to the structure of the underlying graph, it has become a popular modelling 

and classification technique [114]. So far CRF has been applied to many interesting 

problems like handwriting recognition, natural language parsing, named entity 

recognition, hierarchical classification and stereo vision [79, 105, 115, 116]. 

In the work reported in this thesis, an implementation of a CRF with pairwise 

potentials by Schmidt et al. was employed as it supports our framework well [117, 118]. 

The conditional distribution of the pairwise CRF is defined as equation (2.36).  It is to be 

noted that, slightly different from learning problems with the assumed I.I.D. random 

variables, X  here is a concatenation of all observations and Y  is a concatenation of all 

hidden random variables, as shown previously in Figure 2.5. 

     ,
,

1
| Y , Y , Y ,

( ) a b a b

a b

g g g g g g
g g g

P
Z

   Y X X X
X

           (2.36) 

where g and ,a bg g are non-negative node and edge potentials respectively, and 

( )Z X  is the normalising partition function. The node potential is a function of node 

features gX  and parameter matrix W , and the edge potential is a function of edge 

features ,a bg gX  and parameter matrix V .  

Given  1X , Xi n f  being the local feature vector associated with node i , the node 

and edge features are defined as: 

1,
T

g g  X = f          (2.37) 

      ,1 ,1,X , X
T

g g n  =   

, 1, ,
a b a b

T

g g g g
   X f f         (2.38) 

    ,1 , ,1 ,1, X , X , X , X
a a b b

T

g g n g g n
      

To be specific, the edge feature set is comprised of the node features from both end 

nodes of an edge, as a common practice [117]. 
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In order to reduce the risk of over parameterisation and improve the generalisation 

ability of the model, the same set of parameter matrices is applied on all nodes and 

edges, and the node potential g  and the edge potential ,a bg g  have been constructed in 

the following forms as shown in equations (2.39) and (2.40).  

   1 2, , , , ,1
T T T

g g k g

g e e e   W X W X W XX              (2.39) 

where the parameters  1, kW = W W , 0 1W , W , W
T

j j j jn  W =  , and k is the 
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where the parameters 
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and , , ,1 , ,2 , ,2 1V , V , V
a b a b a b a b

T

j j j j j j j j n  V =   

For the convenience of further analysis, equation (2.36) is usually written in another 

form [117]:  

      | ; exp , , |P f Z Y X X Y X        (2.41) 

where     | ln exp , ,Z f 
Y

X X Y   

The parameter  , W V  is the concatenation of W and V ,  ,     denotes the inner 

product, and  ,f X Y  is called sufficient statistics [79] as expressed in equation (2.42). 

     ,
,

, Y ,Y , , Y ,
a b a b

a b

g g g g g g
g g g

f  
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By applying the clique decomposition,  ,f X Y  can be calculated by summing the 

clique potentials over all nodes and edges [119]. It also requires that the parameters be 

shared across nodes and edges. 

2.2.3.2 Parameter Estimation and Inference 

Given a training data set with m  samples (as mentioned previously, a sample here can 

be viewed as a labelled graph with full observations),   , : 1, 2,l l
trainD l m X Y  , 

the distribution  | ;P Y X   can be written as:  

   
1

| ; | ;
m

l l

l

P P


Y X Y X         (2.43) 

The maximum conditional likelihood estimation is a common approach to estimate 

the parameters  , as shown in Equation (2.44). 

 * arg max | ;P Y X


          (2.44) 

 Equation (2.44) is equivalent to minimising the negative log-likelihood: 

 * arg min NLL


          (2.45) 

As per common practice, a 
2   term can be added to the conditional likelihood 

function to improve generalisation properties, known as L2-regularisation.  

For any new observation cX , The prediction process consists of calculating: 

 * *arg max | ;cP
Y

Y Y X         (2.46) 

By combining equations (2.41) and (2.43), the negative log-likelihood function can be 

written as: 

     
1

, , |
m

l l l

l

NLL Z


     X Y X             (2.47) 

and the gradient of the negative log-likelihood is: 

       | ;
1
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m
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where        | ; , | ;  ,PE P    Y X
Y

X Y Y X X Y    

Various methods can be used to perform parameter estimation and inference for CRF, 

and the methods chosen depend on the particular situation. In this work, the loopy belief 

propagation (LBP), which is the generalisation of the forwards-backwards message 

passing algorithm to loopy graphs [120], has been adopted for parameter estimation and 

inference. 

2.3 Semi-supervised Learning 

Semi-supervised learning is a framework where an algorithm is provided with some, 

but not full supervision information [82]. In machine learning problems, obtaining 

labelled training data usually requires substantial human effort so that it becomes an 

expensive and time consuming process [121, 122]. Therefore semi-supervised learning 

paradigms are developed to provide ways to use unlabelled data which may be relatively 

easily available. Specifically, semi-supervised learning methods use unlabeled data to 

either modify or reprioritise hypotheses obtained from labelled data alone [122]. The 

field of semi-supervised learning is rapidly evolving and is not yet sufficiently mature 

[82]. Studies show that semi-supervised learning is close to human cognitive behaviour, 

which may benefit the research on both human learning and machine learning [123].  

Paradigms of semi-supervised learning include mixture models, self-training, co-

training, graph-based solutions, and semi-supervised SVM, etc. [82, 84, 124]. Mixture 

models assumes that the likelihood in a generative model is an identifiable mixture 

distribution like Gaussian mixture models, so that the mixture components can be 

identified with large amount of unlabeled data [122]. In self-training a classifier 

iteratively retrain itself using its own predictions on confidently predicted unlabelled data 

[125, 126]. Co-training is a representative paradigm of disagreement-based semi-

supervised learning algorithm [127]. It was originally proposed for two classifiers and 

assumes that features can be subdivided into two subsets, and each of them is sufficient 

to train an optimal classifier [125]. Graph-based solution defines a graph where the 

nodes are labelled and unlabeled instances, and edges reflect the similarity of examples 
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[122]; each instance in the graph spreads its label information to its neighbours until a 

global stable state is achieved on the whole dataset [128]. Semi-supervised SVM is 

introduced by Bennett and Demiriz to construct a SVM using all the available data 

including both labelled and unlabelled instances [129]. The decision boundary, though its 

margin is smaller than the fully supervised SVM decision boundary, cuts through dense 

unlabeled data regions and still separates the two classes in the labelled data [122]. In the 

work reported in this thesis, the co-training framework which trains two classifiers to 

teach each other is adopted and modified to fit the situation. Some ideas from self-

training and graph-based training are also incorporated in the framework.  

The co-training algorithm proposed by Blum and Mitchell [130] splits the features 

into two redundantly sufficient sets, and trains two classifiers on each feature set 

constructed from the labelled data. With the unlabelled data, these two classifiers 

iteratively examine new examples and add the most confidently labelled ones to the 

training set to improve the models [130, 131]. The most obvious assumption behind co-

training is the existence of two separate and conditionally independent views on the 

features, and each view alone is sufficient to perform good classification [84].  

The learning behaviour of co-training has been extensively studied in terms of both 

theoretical basis and practical performance [127, 132, 133]. It is claimed that in semi-

supervised learning, algorithms explicitly leveraging a natural independent split of the 

features outperform those that do not [134]. Further research shows that the “right” 

condition for co-training to work is something much weaker, which directly motivates 

the iterative nature of many of the practical co-training based algorithms [135]. 

The process of co-training is formalised in Algorithm 2.2 [84], and some alternatives 

with minor modifications are also available in the literature [130, 131]. Natural 

extensions of this idea include tri-training [136] and multi-view learning [137, 138]. 
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Algorithm 2.2  An implementation of the co-training algorithm 

Input:    Labelled training data   _ ,Y : 1,2,l l
train labelledD l m X   

    Unlabelled training data  _ : 1, 2,l
train unlabelledD l m m m u    X   

    View  :  _ 1 2X ,X , X
T

view n X X =   

    View  :  _ 1 2X ,X , X
T

view n X X =   

    A learning speed   

Output:    Prediction on unlabeled training data Y : 1, 2,l l m m m u     

      Two final models from classifiers   and   

 

Algorithm: 

Step 1:  Initialise   _ _ _ , Y : 1,2,l l
train view viewD l m  X   

  _ _ _ , Y : 1,2,l l
train view viewD l m  X   

       '
_ _train unlabelled train unlabelledD D  

Repeat    Until '
_train unlabelledD  is used up 

        Step 2:  Train classifier   from _ _train viewD   

        Step 3:  Train classifier   from _ _train viewD   

        Step 4:  Classify the remaining unlabelled data '
_train unlabelledD  with 

classifiers   and   separately. 

        Step 5:  Add  ’s top   most-confident predictions and corresponding 

observations to _ _train viewD  , and remove them from '
_train unlabelledD  

        Step 6:  Add  ’s top   most-confident predictions and corresponding 

observations to _ _train viewD  , and remove them from '
_train unlabelledD  

End Repeat 
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2.4 Labels and Feature Manipulation 

2.4.1 Labels: the Target Concepts 

In the research of place classification, although many researchers agree that the robot's 

space representation must at least partially overlap with human spatial concepts [11, 18], 

there remains controversy over the selection of target class labels.  

Based on observation from human spatial cognition, some researchers believe that 

space should be categorised not only geometrically but also functionally [11, 15]. For 

example, Martinez-Gomez and Caputo suggested a subdivision of rooms in terms of 

their appearance, the activities people usually perform in them, and the objects they 

contain [83]. These systems usually require rich sensory modalities and hierarchical 

concept modelling, so that a robot can integrate its understanding about distinct 

topological areas with its knowledge about the presence of certain objects [11]. On the 

contrary, systems without multiple sensory modalities tend to simplify the classification 

task and only provide basic discrimination.  

Another problem lies with the treatment of a door/doorway, which indicates the 

transition between different spatial regions, and is claimed to be the place where most 

errors occur [7, 12]. In addition, there are cases where the door/doorway is not described 

by an obvious separator, or does not even exist (e.g. cubicle-corridor transition) [64]. The 

state of the door (e.g. fully opened, partly opened, closed) also introduces extra 

uncertainty to indentify the doorway area. Therefore, in some applications, door/doorway 

is detected separately or inferred from topological analysis [11, 22, 24]. 

2.4.2 Feature Construction and Selection 

From the classifier’s perspective, either the raw data or the processed raw data can serve 

as an input, which is regarded as a vector of descriptors for the concepts to be learned. 

Manipulating the raw data through feature construction, feature extraction, feature 

selection, etc., is more of dimensionality reduction problems which are transparent to the 

learning algorithm. Regardless of the terminology that different researchers used [92, 
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139-142], in the following discussions a conventional understanding of the definitions 

shown in Figure 2.11 has been followed.  

 

Figure 2.11: An illustration of the feature manipulation techniques 

In simple terms, feature construction constructs a lower dimensional descriptor vector 

from the raw sensor observation; while feature extraction transforms a feature vector to 

another feature space but probably keeps the same dimensionality; and feature selection 

is to select a subset from currently available features so that the system meets certain 

performance criteria. All these techniques in some respects are under the umbrella of 

dimensionality reduction, which remains an active research topic and one of the 

increasingly important problems in machine learning.  

With the progress of sensor technology, more and more powerful yet affordable 

sensors have been introduced in the research of intelligent mobile systems, which also 

aggravates the problem of the curse of dimensionality [97]. For example, the measures of 

a sonar ring would be of dozens of dimensions - the raw data from a scanning laser range 

finder typically comes with a dimension of up to a thousand; and an RGB image from a 

webcam at the size of 640 by 480 pixels contains information having a dimension of 

close to a million. Too many dimensions would not be beneficial to the classification 

algorithm because it usually means more parameters in the model, which further 

increases the complexity of the model, requires longer processing time, and brings a 

higher risk of overfitting. As a result, feature manipulation becomes an effective way of 

achieving optimal system performance. In this research, the feature construction and the 

feature selection techniques which can be regarded as different levels of dimensionality 

reduction, are employed. 
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In machine learning tasks, features are descriptors of the target concept and the 

classifier works on features directly. Feature construction is of great importance because 

it affects the ability of generalisation, overhead and over-fitting of the system [22]. In 

indoor environments, the appearance of different areas could be drastically affected by 

the in-class variations and the presence of people and furniture.  

There are various features that could be used for place classification and related 

research. Using 2D range data, Mozos et al. extracted two sets of simple features from 

the raw range data and the polygonal approximation of the observed area respectively. 

Specifically, they employed about one hundred and fifty single-valued features 

(considering different thresholds) of twenty-two categories [66]. In a binary 

classification task, Sousa et al. selected fourteen single-valued features from the above 

mentioned feature set [68] . 

From 3D range data, Osada et al. proposed five features as shape signatures [143]. 

Gumhold et al. performed surface reconstruction based on line features extracted directly 

from point clouds [144]. Johnson and Hebert proposed spin images as features for 

surface matching [145]. Sadjadi and Hall derived a set of 3D moment invariants which 

are invariant under size, orientation, and position change [146]. Gibbins and 

Swierkowski reviewed several local 3D features which have been used for 3D target 

recognition and scene analysis [147].  

In accordance with the sources and levels of informativity, features from an image 

can be divided into global features derived from the whole image, local features 

computed locally, low-level features computed at the pixel level, and high-level features 

containing semantic information [12, 148]. Among low-level features, the scale-invariant 

feature transform (SIFT) features [149] and its variations, like spatial pyramid histogram, 

have dominant roles in image based solutions [1, 12, 31, 35, 150]. Solutions integrating 

other low-level features like census transform the histogram (CENTRIST) [151], Gist 

features [152], colour histogram and texture features are also reported in the literature 

[54, 81, 153, 154]. Global features are usually descriptions of low-level features from the 

whole image. In this regard, Pronobis et al. proposed the compose receptive field 

histograms (CRFH) [12] and Fazl-Erso and Tsotsos proposed the histogram of oriented 
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uniform patterns (HOUP) [155]. The high-level features like Object Bank, spatial 

pyramid matching (SPM) and Detection Bank are believed to be able to provide 

semantic meaning required to solve high-level visual tasks [19, 156-158]. 

In many situations, especially when the heuristics on the representative features of the 

target concept is limited, the feature construction process tends to be arbitrary and 

tentative, resulting in a relatively high dimensional feature set of spotty features. 

According to a prevalent point of view that a small subset of features is sufficient to 

approximate the target concept well in most learning tasks [93], finding the dominant 

features becomes an interesting issue in machine learning problems. Thus, feature 

selection algorithms are employed to reduce dimensionality and remove redundant 

features [159]. Different from other dimensionality reduction techniques like those based 

on projection (e.g. principal component analysis (PCA) or linear discriminant analysis 

(LDA) [141, 142]), feature selection techniques keep the semantic meaning of the 

features [160], and aim to select a minimum subset of features which is believed to 

outperform the whole feature set and other subsets in terms of certain criteria. Some 

obvious benefits of feature selection include: it is much cheaper to construct a subset of it 

(compared to the cost of constructing the whole feature set); fewer features results in a 

less complicated model; empirical evidence also suggests that a selected subset of 

features may improve the classification performance [92]; and more interestingly, it 

allows a better understanding of the underlying processes that generated the data [142, 

160]. 

It is generally accepted that feature selection techniques can be grouped in three main 

categories: filter; wrapper; and embedded [140, 159, 160]. The filter techniques evaluate 

the relevance of features based on the intrinsic properties of the data. They are 

independent of the classifiers and usually faster than other techniques, but the lack of 

consideration of the feature dependencies and the interaction with classifiers generally 

result in less accurate performance [159, 160]. On the contrary, wrapper techniques 

include the model hypothesis search in the feature subset search [160], and usually take 

longer time, but they are found to be more accurate [159]. Embedded techniques are 

similar to the wrapper methods but they are specific to given learning algorithms [140]. 
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For the research of place classification, Mozos reported seven best features for each of 

the four classes based on the output of the AdaBoost classifier [161], but there is not too 

much overlap between these four subsets. In the relevant area, Gao et al. proposed a 

hierarchical feature subset selection algorithm for semantic image classification, which is 

an embedded algorithm [162].  

2.5 Summary 

In this chapter, a comprehensive review of the research on indoor place classification has 

been provided. Firstly, general descriptions and discussions on applications, 

requirements, benchmark, sensory modalities, underlying techniques and related work 

were presented. Then the details of machine learning, which is the mainstream method 

for the task, were given, including supervised learning and semi-supervised learning 

paradigms, definition of target classes, and the feature manipulation techniques. 
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Chapter Three 

Classification Scheme for Independent Prediction 

3 Classification Scheme for Independent Prediction 

3.1 Introduction 

In recent decades, with the development of machine learning algorithms and the 

availability of mature solutions, supervised learning becomes the most widely adopted 

paradigm in the research on place classification. In designing a supervised machine 

learning system, data properties, features and the algorithms are three main elements that 

need to be investigated. To simplify the underlying mathematics of the modelling 

process, it is often assumed that the random variables are independent and identically 

distributed (I.I.D.).  

The choice of classifiers can make a substantial difference, so that various benchmark 

tools like Weka [163] have been released to help researchers find the best solution by 

trial and error, which becomes a standard process for designing new machine learning 

applications. In the field of place classification, most supervised learning solutions are 

based on several well-known classifiers including logistic regression, support vector 

machine, and AdaBoost. However, the literature shows that logistic regression and 

boosting are actually solving the same constrained optimisation problem [164, 165], and 

comparisons in specific applications also yield similar performance [166, 167]. SVM and 

AdaBoost are also analogous to each other [168], as the literature shows that 

mathematically a support vector algorithm can be translated into an equivalent boosting-

like algorithm and vice versa [169]. Comparisons between SVM and logistic regression 

also indicate that they both have strong discrimination power, even though SVM shows 

better performance in some situations and requires less training data [170, 171]. 

Therefore, empirical comparison of these three classifiers may not be of much 

significance; and both theoretical and empirical evidences support the assumption that in 

the scenario discussed in this chapter, it is not the classifier but the data properties and 
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features that decide the performance of the system. In the following discussions, logistic 

regression and SVM have been adopted as the classification algorithms, due to their 

relative popularity and the availability of well-developed implementations. Regardless of 

the internal mechanism, an apparent difference between these two algorithms is that the 

logistic regression is able to provide probabilistic outputs in a natural form, which is an 

advantage in systems requiring decision fusion. Converting the SVM output to a 

probabilistic form is also possible but usually requires extra calibrations [172]. 

As stated previously, for mobile robots there are different types of sensors available, 

each with its strengths and weaknesses. Therefore, mobile robot platforms are usually 

equipped with multiple sensors, especially active range sensors (hereafter referred to as 

range sensor unless otherwise specified) and cameras [173]. Although there are studies 

carried out on either of these sensors, the work reported in this chapter is restricted to the 

range data based solutions for several reasons. First of all, considering the findings of the 

research on vision based place classification, range data based solutions have not been 

explored to a great extent, as they have been mainly studied for localisation, navigation 

and mapping. Secondly, range sensors are less likely to be affected by illumination 

conditions than cameras, especially in indoor environments. Furthermore, range sensors 

provide different interpretations of a particular environment based on distances to 

obstacles, which makes extraction from images challenging. In addition, range sensors 

have their own advantages over standard cameras (e.g. webcam), like commercial two-

dimensional range sensors (e.g. scanning laser range finder) which usually feature a 

larger horizontal field of view are relatively robust to occlusion, and three-dimensional 

range sensors (e.g. IR depth sensor) provide rich information which is not second to that 

from standard cameras. Thus, range data based place classification has been studied here 

as an alternative to the vision based solution. 

Under the assumption of I.I.D. random variables, using the logistic regression and 

SVM as classifiers, and the range sensors as raw data sources, the following discussions 

are mainly focused on the third element of a supervised learning system: features. 

Specifically, the influence of feature construction and selection techniques on the 

performance of the system is studied. 
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3.2 Feature Construction 

3.2.1 Features from 2D Laser Range Data 

In machine learning tasks, feature construction is of great importance because it can 

impact on the generalisation ability and overheads of the system [22]. Good features 

represent the target concepts well, and at the same time minimise the within-class 

variability and maximise the between-class variability [12]. Various types of features 

from the 2D laser range data have been used in the literature including spectral features 

[3] and single-valued features which capture statistical and geometric information [66].  

 

Figure 3.1: Typical scanning laser range finder data visualised in different forms 

The data collected from the Hokuyo UTM-30LX scanning laser range finder with 

270° coverage, is visualised in Figure 3.1 in the forms of: a) a non-negative beam 

sequence  1 2= , ,..., nb b bB ; b) the beam sequence corresponding to a constant angle 

interval; c) a 2D point set       2 1 1 2 2= , , , ,..., ,D n nx y x y x yP  in the Euclidean Plane and 

the curve connecting all points. For the experiments reported in this chapter, the 

following twenty one simple geometric features have been adopted [25, 161]. 

 The area ( 2 1Df  ), perimeter ( 2 2Df  ) and the normalised circularity ( 2 3Df  ) of the 

polygon specified by the observed point set 2DP  [174]; the quotient ( 2 4Df  ) of the 

area and the perimeter of the above-mentioned polygon. 
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         (3.1) 

where 1 1nx x   and 1 1ny y   
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 The average ( 2 5Df  ) and the standard deviation ( 2 6Df  ) of the beam length: 
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 The average ( 2 7Df  ) and the standard deviation ( 2 8Df  ) of the normalised beam 

length: 
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 The average ( 2 9Df  ), the standard deviation ( 2 10Df  ) and the normalised average 

( 2 11Df  ) of the difference between the length of consecutive beams: 

By defining  1 2= ,s ,...,snsS , where 1i i is b b  , and 1 1nb b  , 
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2 11Df   is the same as 2 9Df   in terms of expression but uses preprocessed beam 

ranges which are obtained by applying a maximum range threshold as the upper 

limit on the original beam ranges.  



3  Classification Scheme for Independent Prediction 

46 

 

 The average ( 2 12Df  ) and the standard deviation ( 2 13Df  ) of the relation between 

the length of consecutive beams: 
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where 1 1nb b   

 The average ( 2 14Df  ), the normalised average ( 2 15Df  ), the standard deviation 

( 2 16Df  ) and the normalised standard deviation ( 2 17Df  ) of the distances between 

the centroid and the shape boundary: 

Given  ,x yc cc  being the centre of mass (centroid) of the polygon [175], we 

define:  1 2= , ,..., nd d dD , where    22

i i x i yd x c y c    , 
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 The lengths of the major axis ( 2 18Df  ) and minor axis ( 2 19Df  ) of the ellipse that 

approximates the 2DP ; the quotient of the lengths of the above-mentioned major 

and minor axes ( 2 20Df  ). 

Given vz  being the Cartesian Fourier descriptor of the boundary curve, 1z  and 

1z  describe an ellipse which is believed to be an approximation of the observed 

point set 2DP  [161, 176]: 
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2 18 1 1Df z z           (3.17) 

2 19 1 1Df z z           (3.18) 
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 Kurtosis ( 2 21Df  ) of the beam sequence B , reflecting the degree of peakedness of 

a distribution [177, 178]: 
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3.2.2 Features from Kinect™ Data 

The Kinect™ sensor provides RGB-D data, which can be represented by a colour image 

and a 3D point cloud. The work discussed in this chapter is restricted to utilizing the 

range data only, for the reasons given in Section 3.1. 

For place classification relying on the beam sequence  1 2= , ,..., nb b bB  and the 

corresponding 3D point cloud       3 1 1 1 2 2 2= , , , , , ,..., , ,D n n nx y z x y z x y zP , the 

following twenty-seven features are proposed as computationally simple solutions. 

 Five descriptors derived from 3D moment invariants [146], including three 

relative invariants 1J  , 2J   and 3J   which are invariant under rotations, and two 

absolute invariants 2
1 2/J J   and 3

2 1/ J   which are invariant to 

transformations. 

3 1 1Df J            (3.21) 

3 2 2Df J            (3.22) 

3 3 3Df J            (3.23) 
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where 

1 200 020 002J              (3.26) 

2 2 2
2 020 002 011 200 002 101 200 020 110J                   (3.27) 

2 2 2
3 200 020 002 110 101 011 002 110 020 101 200 0112J                    (3.28) 
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       (3.29) 

where ijk are normalised central moments 

 Number of observed points within the valid range of the sensor (specified by 

sensor manufacturers, e.g. 0.8 - 4m for the Kinect™ sensor [58] ) 

 3 6 : 0.8 4.0D if n b   B        (3.30) 

 The volume ( 3 7Df  ) of the convex hull of all observed points 3DP  which is the 

smallest convex set that contains these points [179], and the number of points 

( 3 8Df  ) in the point cloud which are comprised in the facets of the convex hull 

 The average ( 3 9Df  ) and the standard deviation ( 3 10Df  ) of the distance from the 

sensor to all observed points 

 The average ( 3 11Df  ) and the standard deviation ( 3 12Df  ) of distance between the 

centroid of point cloud and all observed points 

 The lengths of three semi-principal-axes ( 3 13Df  , 3 14Df   and 3 15Df  ) of a best-fit 

ellipsoid which comprises all observed points, and the nine parameters describing 

the quadric surface of the best-fit ellipsoid 
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 The activity ( 3 25Df  ), mobility ( 3 26Df  ) and complexity ( 3 27Df  ) features which 

were originally derived for the quantitative description of electroencephalography 

(EEG) traces [180].  

3 25 0Df m           (3.32) 
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where im  is the thi  order spectral moment of a signal [180] 

3.3 Feature Selection 

Due to the fact that the original feature space is not in an extremely high dimension (tens 

of dimensions), a heuristic based manual feature selection and a wrapper algorithm have 

been applied in two different experiments.  

The wrapper algorithm, differential evolution based feature subset selection (DEFS) 

proposed by Khushaba et al. [159, 181], is a population based method which modifies 

the differential evolution float-number optimiser to select the desired number of features 

from the original feature set. The pseudo code of the DEFS algorithm for a single 

iteration is shown as Algorithm 3.1. As a rule of thumb, for a feature set with dozens of 
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features, hundreds of iterations are sufficient to find a competitive subset containing any 

desired number of features. 

 

Algorithm 3.1  Modified differential evolution optimisation for feature selection 

Input:    DNF (desired number of features) 

    NF (total number of features) 

   NP (number of population) 

          Target population (NP x DNF) 

Algorithm: 

Step 1:  Generate mutant population (NP x DNF) from the target population using the 

differential evolution algorithm 

For    1 , … , NP 

        Step 2a:  Generate a trial vector through a crossover of a target vector from the 

target population with a mutant vector from mutant population 

        Step 2b:  If there is a feature redundancy in the trial vector, employ the feature 

distribution factor in a roulette wheel to substitute redundant feature, and 

then update the feature distribution estimation model 

End for 

Step 3:  Select the target vector or the trial vector - whichever provides a smaller testing 

error to be put into the new target population. 

 

 

As shown in the pseudo code, to deal with the feature redundancy problem introduced 

by the real number optimiser, a roulette wheel weighting scheme is implemented. The 

probability of each feature is calculated from its distribution factor considering its 

frequency of occurrence in good and less competitive subsets (known as positive and 

negative distributions). For more details about the DEFS algorithm, please refer to the 

literature [159]. 
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3.4 Experiments, Results and Discussion 

3.4.1 2D Laser Range Data based Binary Classification 

3.4.1.1 Experimental Setup 

This experiment is carried out on a publicly available data set released by Mozos [182]. 

The data set is obtained by simulating a robot operating in an indoor environment in the 

University of Freiburg. The environment consists of a long corridor with several 

furnished rooms of different sizes on both sides, as shown in Figure 3.2. The simulation 

setup includes a robot equipped with two 2D scanning laser range finders mounted back 

to back yielding a 360° horizontal field of view. Training samples are drawn from the 

left half of the environment, whereas the right half of the environment is used for testing. 

The original data set includes both raw laser range/bearing data, and one hundred and 

fifty constructed features (containing the twenty one features discussed in Section 3.2.1), 

which are labelled as belonging to room, corridor and doorway. In this experiment, the 

ground truth has been re-labelled as office room and corridor, because the original 

definition of doorway may arouse some controversy as discussed in Section 2.4.1. In 

addition, the prior distribution of these concepts implies that there would not be 

sufficient training and test data from the doorway. More details and the definitions of all 

one hundred and fifty features can be found in the literature [66, 68, 161]. 

In Figure 3.2, the grey points depict the background map as a reference. The training 

data set is collected from roughly the left half of the map and the test data is gathered 

from the rest of the map. Red and blue points represent the observer’s positions manually 

labelled as in rooms and corridor respectively. It is to be noted that the described 

exhaustive data collection at a grid of five centimetres aside is nearly impossible in real-

world scenarios. 
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Figure 3.2: The indoor environment for 2D laser range data collection 

3.4.1.2 Manual Feature Selection 

Manual feature selection is a common practice in machine learning tasks [183, 184], 

especially when features have explicit semantic meanings and are of small numbers. In 

this experiment, aiming at selecting an excellent subset of the original features that come 

with the data set, an L2-regularized logistic regression classifier is employed to 

categorise the environment into three classes (because the data set is in fact labelled as a 

multi-class scenario [66]) based on different combinations of features. Many different 

feature combinations are tested and compared on the same group of samples, with the 

most prominent results listed in Table 3.1. 

There are five subsets shown in Table 3.1, Subset 1 contains the whole one hundred 

and fifty features. It is considered to be of limited practical value for two reasons: 1) it 

requires a relatively big training data set, because the number of samples in the training 

data set must be much larger than the parameters to be estimated [92]; 2) owing to the 

features that are constructed by applying different thresholds on the same algorithm, the 

dimension of the feature set can be arbitrarily high, and these features do not have as 

much semantic meaning as other features. The performance benchmark also shows that 

Subset 1 requires the longest training time. 

Subset 2 is comprised of all twenty-one single-valued features as discussed in Section 

3.2.1. As mentioned before, these features are derived from raw range/bearing data 

(which is called B series) and from a polygonal approximation of the observed area 

(which is called P series) [66, 161]. Accordingly, Subset 2 is further divided into Subset 

3 and Subset 4 which respectively contain eleven single-valued P series features only and 
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ten single-valued B series only. Subset 5 is selected on a trial and error basis and includes 

three features which are: 

 2 1Df  : The area of the polygon specified by the observed point set 

 2 6Df  : the standard deviation of the beam length 

 2 10Df  : the standard deviation of the difference between the length of 

consecutive beams 

 

Table 3.1: Performance of Different Feature Combinations 

Feature Combination Number of features Test accuracy Training time (ratio) 

Subset 1 150 98.03 % 42.36 

Subset 2 21 97.91 % 6.97 

Subset 3 11 97.60 % 3.25 

Subset 4 10 97.43 % 3.44 

Subset 5 3 97.88 % 1.00 

 

Although there were tens of thousands of samples used for both training and testing, 

Table 3.1 indicates that accuracy-wise the test results based on different feature subsets 

did not make too much difference. However, the differences in computational 

complexity associated with them are significant. The training time column in Table 3.1 

provides a comparison of the time taken in training, shown as ratio relative to the Subset 

5 scenario which takes the shortest training time. It is to be noted that the most dominant 

time is related to the feature construction (e.g. in milliseconds) but not the training / test 

(e.g. microseconds) [23]. The time consumption in all aspects generally increases in 

accordance with the number of elements in the feature vector. In this experiment, some 

features are pre-calculated so that the feature construction time is not evaluated.  

Practical-wise Subset 1 may not be feasible for the reasons discussed previously in 

this section, but all other subsets become viable options. Given due regards to the real-

time performance and computational complexity of the system, the three manually 

selected features are chosen for the rest of the experiment. 
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3.4.1.3 Place Classification in a Binary Scenario 

In this section, laser range/bearing data is classified into two categories, which are room 

and corridor. For this purpose, 51353 laser range scans (43957 of them are taken from 

rooms and 7396 of them are taken from corridors) have been used as the training data 

set. To evaluate the performance of the classifier, a test data set comprising of 38307 

observations (32214 of them are taken from rooms and 6093 of them are taken from 

corridors) has been used. Training and test data sets are collected from different parts of 

the area, as shown in Figure 3.2. 

L2-regularised logistic regression is used as the binary classifier and the classification 

performance as well as the confusion matrix and is shown in Table 3.2.  

Table 3.2: Performance of the Logistic Regression Classifier 

Test accuracy Class-specific test accuracy 

99.57% 
in Rooms:     > 99.99% 

in Corridors:     98.60% 

 
Confusion Matrix 

  Predicted Class 

A
ct

ua
l 

 C
la

ss
 

  Corridor Room 

Corridor 6008 85 

Room 0 32214 

 

Figure 3.3: Test results of the binary classification 

According to Table 3.2, accuracy of the prediction is higher when the laser 

observations are made in room environments than in corridor environments, probably 



3  Classification Scheme for Independent Prediction 

55 

 

due to the frequent and obvious visibility of rooms through corridors but less frequent 

and limited visibility of corridor areas from rooms.  

The predictions on the entire test data set are also visualised in Figure 3.3, where the 

grey points depict the background map as a reference, and the red and blue points are the 

observer’s positions labelled as in room and in corridor respectively by the classifier. 

The simulated data considered above does not contain sensor errors. In order to test 

the robustness of the classifier, another experiment is carried out on noisy data, which is 

achieved by randomly adding ±10% range uncertainty to the raw range data. The 

classification results are shown in Table 3.3, and the performance is comparably similar 

to Table 3.2 with noiseless data. 

Table 3.3: Performance of the Logistic Regression Classifier on Noisy Raw Data 

Test accuracy Class-specific test accuracy 

99.37% 
in Rooms:     > 99.99% 

in Corridors:     98.49% 

 
Confusion Matrix 

  Predicted Class 

A
ct

ua
l 

 C
la

ss
 

  Corridor Room 

Corridor 6001 92 

Room 1 32213 

 

3.4.1.4 Conclusion 

In this experiment, an approach to classify the environment around a mobile robot based 

on the 2D laser range/bearing data has been presented. The performance of different 

feature sets has been evaluated empirically on publicly accessible data set, and the results 

suggest that certain subset has an advantage over others in terms of either accuracy or 

time consumption. By applying the selected features on a binary place classification 

system, the experimental results are convincing with high test accuracies even in the 

situation of noisy sensor readings.  
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3.4.2 2D and 3D Range Data based Multi-class Classification 

Previous studies show that 2D laser range data alone can give rise to classification 

ambiguities in some environment types, especially in places where the sensor can “see” 

through glass walls and opened doors [22, 24]. For instance, as shown in Figure 3.4, in 

the real occupancy grid (OG) maps built by 2D scanning laser range finders, it would be 

challenging to distinguish between cubicles and office rooms even with the human eye. 

The cubicles usually do not have doors and their partitions do not reach to the ceiling, 

but at the level of the 2D sensor (usually mounted close to the bottom of the robots for 

obstacle avoidance purpose) they look somewhat the same as office rooms with opened 

doors or with glass doors in any state. Therefore, rather than finding out the error sources 

[2], a cost-effective solution would be to introduce an inexpensive 3D range sensor 

which provides more information. Although there is a possibility to use multiple sensory 

modalities (like 2D and 3D range sensors) for the same purpose and employ an extra 

sensor fusion algorithm, the work reported in this section focuses only on 3D range data. 

 

Figure 3.4: Real OG maps of two indoor environments 

Three-dimensional range sensors are appealing in place classification applications as 

they are able to provide rich information. The downside is that the presence of large 

amount of information leads to higher computational complexity. In this experiment, the 

solution to classify indoor environments into semantic categories using 3D range data 

from the low-cost Kinect™ sensor, is validated. The solution is characterised by a fast 

feature construction method, an efficient feature selection algorithm, and the support 

vector machine classifier. Experimental results in an indoor scenario are presented 

including comparisons between 3D and 2D range data based solutions. 
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3.4.2.1 Experimental Setup 

In this experiment, data collection is carried out using a customised robot platform called 

Lightweight Integrated Social Autobot (LISA) which was designed at the Centre for 

Autonomous Systems, the University of Technology, Sydney, as shown in Figure 3.5 (as 

of the year 2012). LISA is based on an iRobot Create® Programmable Robot [185], and 

it is equipped with a Hokuyo UTM-30LX scanning laser range finder [186] and a 

Kinect™ sensor [57]. The Kinect™ sensor provides 3D point clouds of the environment 

and has a 57° horizontal field of view and a 43° vertical field of view [57]. The reliable 

range of depth is approximately 0.8m ~ 4.0m [58]. In the experiment discussed in this 

work, RGB images from the Kinect™ sensor are only used for visualisation purposes. 

The Hokuyo UTM-30LX scanning laser range finder has a span of 30 metres with a 270° 

horizontal field of view, with an angular resolution of 0.25° [186]. 

   

Figure 3.5: LISA robot (Lightweight Integrated Social Autobot) 

In the following experiments, data sets are collected by the LISA robot operating in 

an indoor environment (the shared laboratory / office area, Level 6, Building 2 of the 

University of Technology, Sydney), consisting of office rooms, cubicles for student 

workstations, corridors and a common area for seminars and gatherings. The layout of 

the environment is shown in Figure 3.6 where black areas are occupied spaces and the 

green, yellow, blue and red areas represent cubicle area, corridor area, office rooms and 

common area respectively. The training and validation data sets were collected by the 

robot moving randomly in the cross patterned areas, and the test data set is gathered from 
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coloured (except black) solid areas. The environment contains glass walls and 

inhabitants during the experiments. The cubicles and the offices contain similar furniture 

but they could be arranged differently based on the needs of the occupants. 

 

Figure 3.6: Blueprint of the indoor environment at level 6, building 2, UTS  

Since a single snapshot from the Kinect™ sensor has a limited horizontal field of 

view, in the data collection process, on each position, six snapshots of different 

directions have been taken to provide approximately 360° coverage. Accordingly, the 

post-processed data which aligns six snapshots through coordinate transformation 

according to the odometry information, is called a 360° 3D instance for the rest of the 

chapter. In addition, samples on other combinations and coverage are also available to 

provide comparable results. 

Typically a 360° 3D instance comprises about 1.5 million unorganised points lying in 

a space with a 43° vertical field of view (it looks like a doughnut). By contrast, a 360° 

2D instance contains about 6.5 thousand (for simplicity, it has six overlapping laser 

scans). Examples of 3D / 2D instance pairs from four environmental categories (i.e. 

cubicle, common area, corridor, and room) are shown in Figure 3.7. The colours 

superimposed on the range readings are presented for ease of visualisation, and the 

snapshots of the 3D point cloud were rendered using MeshLab [187]. There are people 

appearing in the cubicle (sitting on the chair in front of the workstation) and common 

area (sitting on the sofa) examples, and both 3D and 2D sensors could “see” through 

glass walls. 
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Figure 3.7: Examples of 360° 3D / 2D instance pairs from each class 

The whole data set has been divided into training, test and validation data sets, and 

they are collected independently from different areas of the indoor environment. For 

training and evaluating the performance of different feature subsets, two hundred 3D / 

2D instance pairs were collected in the patterned areas shown in Figure 3.6. The 

supervised learning and the feature selection algorithms work on both training and 

validation data sets to tune the model parameters and select optimised feature 

combinations.  
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For the test, another six hundred sample pairs are collected from the remainder of the 

environment, which are excluded in the training process. The classification results on test 

data set reflect the performance of the model. Specifically, in the following experiment, 

subsets of the 3D and 2D features proposed in Section 3.2.1 and Section 3.2.2 are 

selected by the DEFS algorithm, so that they are capable of discriminating between four 

different spaces. A supervised learning algorithm, support vector machine, is employed 

to evaluate the classification performance.  

3.4.2.2 DEFS Feature Selection 

In order to find a subset of features that best interact together to solve the place 

classification problem, DEFS feature selection algorithm is applied on features 

constructed from 3D and corresponding 2D samples. Therefore, a strategic search in the 

whole feature space among all possible desired dimensions is performed, and the test 

accuracies of the best- n  features are recorded, where n  ranges from one to the 

dimension of the feature space. 

The feature selection process operates on training and validation data sets and the 

optimisation criterion is to maximise the classification accuracy on the validation data 

set. The test data set is not accessible to the selection process; therefore, the test accuracy 

corresponding to the selected subset reflects performance in the real-world. 

 

Figure 3.8: The results of feature selection on features from 3D range data 
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Figure 3.9: The results of feature selection on features from 2D range data 

The results of feature selection on features constructed from 3D and 2D range data are 

shown in Figure 3.8 and Figure 3.9 respectively, in the form of the performance and time 

overhead of selected feature subsets with the different desired numbers of features. The 

blue and red squares represent overall classification accuracies on validation and test 

data sets, with corresponding numbers of desired features. Accordingly, the green points 

stand for the execution time which is the time for feature construction only because it 

takes most of the processing time and is unavoidable in both training and test stages. The 

horizontal solid / dotted lines indicates the best performance and 95% of the best 

performance on validation and test set respectively, and the vertical dotted lines mark the 

accepted subset dimension. It is to be noted that the performance on the test data set is 

unknown in the feature selection stage, so that it cannot be used as a selection criteria. 

Thus, it can be ignored in the discussions in this section to avoid confusion. 

In these figures, feature selection has been proven to be essential to machine learning 

problems by highlighting the outstanding performance of certain feature combinations. 

Furthermore, using an optimised subset of features avoids the cost of constructing 

insignificant or even misleading features. 

Feature selection is usually application-specific, and there is no particular rule to 

accept a certain n -dimensional optimised subset, because the choice is a compromise 

between the performance and the time overhead. However, for the sake of efficiency, it 

would be a reasonable choice to focus on the end of the steep rising stage of the accuracy 



3  Classification Scheme for Independent Prediction 

62 

 

curve for the validation data set. Therefore the optimised subset which first gives a 

validation accuracy of within 95% of maximum accuracy, is adopted in the following 

experiment.  

As a result, a subset of the four features has been selected for the 3D classification 

scenario: 

 3 7Df  : the volume of the convex hull of all observed points 

 3 10Df  : the standard deviation of the distance from the sensor to all 

observed points 

 3 12Df  : the standard deviation of distance between the centroid of point 

cloud and all observed points 

 3 23Df  : one of the nigh parameters describing the quadric surface of the 

best-fit ellipsoid. 

Another subset of the five features has been selected for the 2D classification 

scenario: 

 2 2Df  : the perimeter of the polygon specified by the observed point set 

 2 10Df  : the standard deviation of the difference between the length of 

consecutive beams 

 2 11Df  : the normalised average of the difference between the length of 

consecutive beams 

 2 16Df  : the standard deviation of the distances between the centroid and 

the shape boundary 

 2 14Df  : the average of the distances between the centroid and the shape 

boundary 

An examination on the selected features shows that in the four 3D features, 3 7Df  , 

3 12Df   and 3 23Df   are more likely to be invariant to the position of the observer and 

3 10Df   is a statistic representation of the sensor data.  In the five 2D features, 2 2Df  , 

2 16Df   and 2 14Df   seem to be invariant to the position of the observer and 2 10Df   and 
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2 11Df   are statistic representations of the sensor data. It is also to be noted that the belief 

behind the feature selection algorithm is that combinations of features that contribute 

more to the performance. 

To construct the four selected features from a 360° 3D instance containing about 1.5 

million unorganised points, it takes typically 0.88s on a computer with Intel Xeon 

W3580 3.33GHz CPU. To construct the selected five features from a 360° 2D instance 

with about 6.5 thousand points on the same computer it takes typically 0.03s.  

3.4.2.3 Place Classification in a Multi-class Scenario 

As summarised in Figure 3.8 and Figure 3.9, the test results on 360° 3D and 2D 

instances have already been briefly shown in the previous section and are without 

detailed analysis. In this section, a learning model is generated from the training data set 

and thereafter has been applied on the test data set. Specifically, in the learning stage, 

360° 3D instances (and corresponding 360° 2D instances in the parallel experiment) 

from the training data set with preselected feature subset and known labels (cubicle, 

corridor, common area and room) are processed by the SVM classifier to generate a 

model. To justify the effectiveness of learning, the model is then applied on the test data 

set, resulting in a series of predictions. The degree of closeness between the ground truth 

and the predictions, in terms of test accuracy, reflects the correctness of the model. 

In this experiment, classification of 360° 3D instances gives an accuracy of 97.17% 

and 360° 2D instances yields 90.67%. To be specific, the classification performances in 

Figure 3.10 and Figure 3.11 illustrate class-specified accuracies in the 3D and 2D 

scenarios respectively. In Figure 3.10, the 3D scenario, blue, cyan, yellow and brown 

bars represent test accuracies (96.71% / 98.06% / 99.29% / 94.74%) on cubicle, corridor, 

common area and office room categories respectively. The standard deviation of these 

class-specific accuracies is 1.95%. Similarly, in Figure 3.11, the 2D scenario, blue, cyan, 

yellow and brown bars represent test accuracies (82.24% / 89.68% / 95.74% / 95.39%) 

on cubicle, corridor, common area and office room categories respectively. The standard 

deviation of these class-specific accuracies is 6.32%. 
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Figure 3.11 demonstrates that in the 2D scenario the classifier suffers from higher 

classification errors on cubicle (blue) and room (brown) categories, because they look 

extremely similar at the height of the sensor. By contrast the 3D information is able to 

provide adequate discrimination because Figure 3.10 shows that the class-specified 

accuracies on 3D data set are remarkably high and uniform.  

The error sources of misclassification come from the lack of discrimination ability, in-

class variations, possible ambiguity in the definitions of classes, and the presence of 

people and furniture in the environment. Moreover, both 3D and 2D range sensors “see 

through” glass walls in the environment, introducing another error source in both cases. 

 

Figure 3.10: Test accuracies on 360° 3D data set 

 

Figure 3.11: Test accuracies on 360° 2D data set 
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3.4.2.4 Effect of Coverage 

As stated previously in Section 3.4.2.1, a single snapshot of the Kinect™ sensor provides 

a limited horizontal field of view so that it is vulnerable to occlusion, and an instance 

used in the above experiment comprises of six snapshots of different directions to cover 

a 360° horizontal field of view. The coverage issue is further analysed below. 

In this experiment, several different sensor combination patterns are considered and 

processed for classification, and the test accuracies of different coverage patterns are 

shown in Figure 3.12. It is to be noted that as a single snapshot from the 2D sensor 

provides the coverage of 270°, so it does not necessarily need six snapshots in different 

directions to cover 360° horizontal field of view. Therefore for simplicity, an 

overlapping exists and is utilised in this experiment. 

 

Figure 3.12: Test accuracies of different coverage patterns 

The results depicted in Figure 3.12 reveal rather an expected and reasonable 

observation that by registering adjacent snapshots gradually, classification accuracies on 

the 3D instances increase in a near-linear manner. The accuracies are 62.17%, 71.33%, 

79.50%, 86.17%, 93.83% and 97.17% respectively for combinations of one to six 

snapshots, with a correlation coefficient 0.99 between the number of registered snapshots 
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and the accuracies. However, by arranging the sensor readings more symmetrically 

around the robot, the classification performance overwhelmed corresponding 

unsymmetrical configurations (81.33% vs. 71.33% for a combination of two snapshots, 

and 88.00% vs. 79.50% for a combination of three snapshots).  

When compared with samples from the 2D sensor, a single snapshot of 2D sensor 

covering 270° horizontal field of view provided more useful information, and thus 

outperforms its 3D counterpart which covers a 57° horizontal field of view, with 

accuracies of 77.67% versus 62.17%. However, a combination of two symmetrical 

snapshots of the 3D sensor, covering about 114° horizontal field of view, shows an 

accuracy of 81.33%, which exceeds that of a single snapshot of the 2D sensor.  

3.4.2.5 Conclusion 

In this experiment, DEFS algorithm has been employed to select an optimal subset of 

features constructed from 3D range data, and SVM has been applied on the classification 

tasks to discriminate the environment around a mobile robot into four categories. In a 

similar manner, corresponding observations from the 2D scanning laser range finder 

have been processed for comparison purposes.  

In the 3D scenario, experiments on the data set collected by a robot operating in an 

indoor environment demonstrated that: 1) the feature construction algorithm spends 

0.88s on average to obtain four single-valued features from a typical 360° 3D sample 

comprising about 1.5 million unorganised points; 2) the classification stage achieves 

97.17% gross accuracies using SVM classifier, with a standard deviation of 1.95% on 

class-specified accuracies; and 3) with different sensor converge patterns, a range of 

solutions with 62.17% to 97.17% test accuracies are available to cope with various 

requirements and constraints. 

However, the 3D solution based on the Kinect™ sensor also revealed a couple of 

weaknesses including: 1) taking multiple snapshots on each spot increases the workload 

in data collection, and extra efforts are required to control and record the angles between 

snapshots, and thus data in this format is usually not available in public data sets; 2) 

simulating 3D range data is much more difficult than 2D range data, which limits the 
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sources of data for the learning system; and 3) processing 3D data still takes a longer 

time than processing 2D data. Therefore in the current situation, the 3D solution is kept 

as an alternative to the 2D solution. In practical applications, there remains an option to 

combine both 2D and 3D approaches to improve accuracy wherever both sensors are 

available, but keeping separate models would be a better choice because the decisions 

can be processed in a higher level.  

The feature selection results on the two experiments demonstrated the existence of a 

minimised optimal subset of features which is specific to the setup, and the final decision 

could be influenced by subjective factors. In addition, a validation data set is also 

required in the feature selection stage. Therefore, for a specific task with sufficient 

training samples, the DEFS algorithm is recommended to investigate the feature 

selection issue. For a general place classification task (e.g. 2D laser range data based) 

with limited training data and emphasising the generalisation ability, a reasonable 

amount of features (with respect to the dimension of the raw data) is acceptable. 

3.5 Summary 

In this chapter, the supervised learning scheme for independent prediction was discussed, 

showing the feasibility of the place classification task with data collected by active 2D 

and 3D range sensors. Both manual and automatic feature selection algorithms were 

evaluated in different experiments, and the simplicity and accuracy of the selected 

subsets have been empirically proven. Considering the character of the specific 3D range 

sensor, extra investigation on the coverage patterns was also conducted. Experimental 

results show that the solution based on the 2D scanning laser range finder has its 

weaknesses at discriminating some classes like cubicle and office rooms; the solution 

designed for the KinectTM sensor demonstrated substantial improvements but it is 

computationally demanding and requires complicated operations to achieve satisfactory 

performance. Therefore, in the following work the 2D sensor is preferred due to its 

convenience. In order to make the 2D solution more competitive, a promising way to go 

is to remove the assumption of I.I.D. random variables. In most real-world scenarios the 

data is dependent, and modelling the dependency has been reported to be beneficial in 
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improving the performance of the learning system. In the next chapter, the place 

classification task with structured prediction is discussed and more effort is spent on 

increasing the generalisation ability of the system. 
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Chapter Four 

Classification Scheme for Structured Prediction 

4 Classification Scheme for Structured Prediction 

4.1 Introduction 

Even though it may not reflect the fact that data is dependent in most real-world 

situations, the independent prediction scheme under the I.I.D. random variable 

assumption is a successful simplification of a complex problem, and works well 

empirically. Nevertheless, whenever the dependencies between samples are more or less 

available, incorporating this information in the modelling process usually gives rise to 

higher system performance. In addition, modelling the dependency opens a new window 

to the place classification task since various descriptions of the dependency extend the 

potential of the system by enabling more functionality. Thus, the classification scheme 

for structured prediction described in this chapter has its significance. 

As discussed previously in Section 2.1.4, in the research of place classification, three 

types of dependency including spatial consistency [1, 16, 46, 66, 81], place-object 

relationships [35, 48] and temporal consistency [7, 48] are extensively utilised in 

different applications. In the work described in this chapter the spatial consistency is 

chosen as the dependency information due to its ready availability. The place-object 

relationships also provide meaningful information so that they are also integrated into the 

model as described in the next chapter. Study on the temporal consistency remains as the 

future work.  

A typical carrier for the spatial information is a trajectory with no loop, which can be 

abstracted as a chain (i.e. acyclic graph) with nodes and edges. Each node represents a 

place and each edge stands for the spatial connection between two places. Topological 

maps containing loops, like the generalised Voronoi graph (GVG), are more general 

cases of carriers for the spatial information. Targeting at solving similar problems once 
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and for all, the framework proposed in this chapter is based on cyclic graphs, and thus it 

provides a solution that works on general graphs. 

An extremely popular set of tools for modelling the dependency and providing 

structured prediction is the graphical models, which provide a general framework for 

representing models in which a number of variables interact, by combining graph theory 

and probability theory [188]. In this work a strong discriminative model, the conditional 

random field, is employed as the basic modelling algorithm. Although there exist some 

other frameworks of a similar setup, like the Structural SVM which is reported to be 

comparably effective to CRF [189, 190], empirically comparing algorithms of the same 

type is not the focus of this research. 

A significant feature that differentiates this research from others is the study on 

improving the generalisation of the system, which requires some customisations and 

modifications to the learning framework and the standard CRF algorithm. In order to 

assure the system trained on an environment generalises well when it is deployed on 

another environment, a semi-supervised learning framework is proposed to enable the 

system to learn from an unlabelled test data set and continue correcting the model it 

holds. More specifically, both CRF and SVM based classifiers are included in the 

framework so that they teach each other when the test data set comes up. Experimental 

results demonstrate the effectiveness of the proposed framework.  

4.2 Generalised Voronoi Graph 

The underlying technique of the generalised Voronoi graph, a graph-like topological 

representation of free space, is the Voronoi diagram (VD), which is a geometric structure 

formed by a set of points S known as sites [191, 192]. It consists of all points that have at 

least two minimally distant sites (a site is a point in S) in terms of Euclidean distance 

[191]. An example of the Voronoi diagram is shown in Figure 4.1, where the red points 

form the set S, and the blue lines (can be regarded also as a set of points) form the 

Voronoi diagram [193].  



4  Classification Scheme for Structured Prediction 

71 

 

 

Figure 4.1: An example of the Voronoi diagram 

The generalised Voronoi diagram (GVD) extends the idea of VD by replacing the 

point set S with the object set G in which the member could be any arbitrary entity [191]. 

Analogue to the definition of GVD, the generalised Voronoi graph (GVG) is a 

topological map proposed by Choset and Burdick [194], and it has quite a few roles in 

navigation, localisation and mapping [191, 194]. GVG is usually represented by meet-

points (locations of three-way or more equidistance to obstacles) and edges (feasible 

paths of two-way equidistance to obstacles between meet-points) [195]. GVG can be 

built with different resolutions according to the requirements, and in this work the finest 

available scale is adopted for future applications such as object mapping. An example of 

GVG generated on an occupancy grid map of an indoor area in the University of 

Freiburg, is shown in Figure 4.2. 

 

Figure 4.2: An example of GVG on the grid map 

4.3 Conditional Random Field for Place Classification 

GVG can be abstracted to a graph with nodes and edges to serve as the basic structure of 

a graphical model, as the example of a conditional random field over GVG (CRFoGVG) 

shown in Figure 4.3. In this figure, each empty circle is a physical robot pose 

representing a random variable (e.g. place type), and the corresponding filled circle 
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represents the observations made on the pose. The edges are physical paths between 

poses and serve as the structure of the graph. By combining GVG and CRF, Friedman et 

al. proposed the Voronoi random field (VRF) for multi-class place labelling, with the 

experimental results on leave-one-out training showing an average accuracy of 91.7% on 

four maps [80]. With the motivation of improving the system’s generalisation ability, 

this work is extended to semi-supervised learning in this thesis, so that it is capable of 

dealing with limited training data set and challenging test data set. The name VRF is 

somewhat misleading because the GVG simply provides the graph structure for CRF. 

Throughout this chapter, the name of CRFoGVG has been proposed for ease of 

understanding. The learning framework of the fully supervised CRFoGVG is shown in 

Figure 4.4 

 

Figure 4.3: An example of CRF over GVG 

 

Figure 4.4: The learning framework of fully supervised CRFoGVG 
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4.4 Semi-supervised Learning 

As introduced in Section 2.3, semi-supervised learning algorithms automatically exploit 

the unlabelled data in addition to the labelled data to improve learning performance, with 

the underlying belief that the unlabelled data contains some helpful information about 

the real data distribution [130, 196]. This has motivated the development of the semi-

supervised place classification over a generalised Voronoi graph (SPCoGVG) 

framework, which exploits the merits of both the generalisation properties of SVM and 

the spatial class dependencies provided by CRF [89]. The main difference between the 

SPCoGVG and the CRFoGVG mentioned in Section 4.3 lies in that CRFoGVG is a fully 

supervised learning framework.  

The work by Brefeld and Scheffer can be regarded as the most closely related work 

[85]. It considers a co-training framework for semi-supervised learning in structured 

prediction models focusing on structured SVM. The SPCoGVG proposed in this chapter 

is focused on CRF, and the primary difference between SPCoGVG and the work of 

Brefeld and Scheffer is that SPCoGVG incorporates partial labelling. Although partial 

labelling in CRF has been examined before [86], partially labelled data has not 

previously been used within the co-training framework. Also to be noted is that the 

proposed work provides an alternative but mathematically equivalent computational 

strategy to the approach reported in [86]. 

The proposed SPCoGVG includes two semi-supervised techniques which are co-

training and graph-based semi-supervised learning. The former technique uses two 

classifiers to teach each other and the latter technique takes advantage of the contextual 

consistence of instances. It is to be noted that although many semi-supervised learning 

solutions have been reported with great empirical success, none of the current 

approaches are guaranteed to be superior, and sometimes the exploitation of unlabelled 

data may lead to performance degeneration [196]. 
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4.4.1 Co-training-like Semi-supervised Learning 

It is generally accepted that SVM has the prominent generalisation ability and CRF has 

the advantage of using contextual connectivity. Although there are some attempts to 

combine their excellence by using the output scores of standard I.I.D. classifiers as the 

input of graphical models [80], these fully supervised approaches do not guarantee better 

performances in the challenging scenarios such as the one described in the experiment 

part of this chapter. In addition, some emerging semi-supervised techniques emphasising 

both the generalisation ability and consistency have been reported to be successful in 

specific applications [88-90], and are worth exploring in the future, but the 

implementation involves complicated modifications for the current task. Therefore, the 

co-training-like semi-supervised learning framework, SPCoGVG, has been proposed in 

this chapter by assuming that the agreed decisions of both classifiers are more likely to 

be correct, and this will allow the system to learn from both the training data and the 

agreed test data to improve the classification accuracy.  

Specifically, as shown in Figure 4.5 and the corresponding pseudo code in Algorithm 

4.1, the proposed algorithm iteratively picks up the test instances believed to be correctly 

identified, mixes them with the original training data and improves each model, until the 

agreement rate of SVM and CRFoGVG on test data cease to increase. 

 

Figure 4.5: Schematic flow chart of the proposed framework SPCoGVG 
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Algorithm 4.1  Semi-supervised place classification over a generalised Voronoi graph 

Input:    GVGtrn , GVGtst       The Voronoi structures of the training and test maps 

               trnX , tstX    The original training and test data collected from the GVG nodes  

               trnY                Labels of training instances 

Output: tstY                 Labels of test instances 

 

Algorithm: 

Step 1a:    Generate CRFoGVG model MCRF  from trnX , GVGtrn  and trnY  

Step 1b:    Generate SVM model MSVM   from trnX  and trnY  

Step 2a, 2b:    Calculate the CRFoGVG prediction CRFY , the SVM prediction SVMY , 

and their agreement rate R  

Repeat 

        Update R R  except for the first time 

        Step 3, 4a:    Take those agreed by both SVM and CRFoGVG predictions _tst agX , 

                              _tst agY , train a new CRFoGVG model MCRF  from trnX  , GVGtrn ,  

        trnY  and _tst agX , GVG tst , _tst agY   (with partially labelled data) 

        Step 3, 4b:    Mix _tst agX , _tst agY  with the original training data trnX , trnY  and 

     generate a new SVM model MSVM  

        Step 2a:    Calculate a new CRFoGVG prediction CRFY  on tstX , GVGtst  

        Step 2b:    Calculate a new SVM prediction SVMY  on tstX  

   Calculate a new agreement rate R  from SVMY  and CRFY  

Until    R R   

tstY  equals to previous CRFY  (or previous SVMY ) 
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4.4.2 CRF with Partial Labelled Data 

The introduction of the semi-supervised learning leads to a change in the graph structure, 

resulting in CRF having partially labelled data (CRFPL) as shown in Figure 4.6. As is the 

standard approach, ignoring fully-unlabelled data will probably break the graph structure 

and resulting in missing out on useful information [87]. Therefore, modelling the new 

structure requires an extension of the conventional CRF parameter estimation algorithm 

to handle partially labelled data by marginalising out the unlabelled random variables, so 

that it can work on more realistic scenarios where not all the training data is properly 

labelled. Although the issue has been addressed in other literature on chain-like 

structures [197] or for scene segmentation applications [86], an alternative computational 

strategy is adopted for this task considering the original pairwise CRF implementation. 

 

Figure 4.6: An example of CRFPL 

The conditional distribution of the pairwise CRF, in the form as shown in equation 

(2.41) in Section 2.2.3.1, is repeated here for convenience. 

      | ; exp , , |P f Z Y X X Y X    

where     | ln exp , ,Z f 
Y

X X Y   

By introducing the unlabelled data to the above equation, Y  is split into  ,Yk Yu  

where Yk  are known labels and Yu  are unknown labels. Yk  is further defined as 

containing Yka  and Ykb , where Yka  corresponds to the nodes whose direct 

neighbours are all labelled, and Ykb  are for the nodes whose direct neighbours contain 

unlabelled node(s). 
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The new conditional distribution becomes: 

   | ; , | ;P P
Yu

Yk X Yk Yu X        (4.1)  

      exp , , |f Z 
Yu

X Y X       (4.2) 

And accordingly the parameter estimation problem becomes: 
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Following the common regularisation approach, a 
2   term is added to 

 | ;P Yk X   known as L2-regularisation in the implementation. The negative log-

posterior can be written as: 
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Now, the gradient of the negative log-likelihood function is: 
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where        | ; , | ;  ,l
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It is to be noted that the presence of  |Zu X  makes the problem non-convex and 

theoretically the approximate inference algorithm for general graphs, loopy belief 

propagation, may trap in a local minima. 

4.5 Node and Edge Features 

CRFoGVG modelling uses features associated with both the nodes and the edges. In the 

experiments reported in this chapter, the node features constructed from 2D laser range 

data include those discussed in Section 3.2.1, and the activity, mobility and complexity 

features which are analogous to the last three features discussed in Section 3.2.2. In 

addition, the spatial connectivity information provided by the GVG introduces some 

other features to describe a node. Therefore, the following four GVG edge-length-based 

connectivity features have also been added to the node features. 

 The maximum value, minimum value, average value and the standard deviation of 

the Euclidean distances to the neighbours (GVG edge lengths). 

There are several reasons for adding more features to the node rather than cutting 

down the dimensionality. First of all, CRF usually works with a very high dimensional 

feature space and is able to handle a large number of features well [198, 199]. Secondly, 

compared with image processing applications which usually use tens of thousands of low 

level features as the input of CRF, the thirty-one features discussed here are already in a 

much lower dimension. Thirdly, the feature selection techniques may not be appropriate 

here because the wrapper based feature selection algorithms reported in the independent 

prediction scenario have some empirical difficulties in CRF based solutions [115], and 

there are insufficient samples to provide validation. Last but not least, as previous 

experiments in Chapter Three show, feature selection results are case specific and 

somewhat subjective. The optimal subset of features for a task with certain data, 

classifier and target labels may still not be optimal for a similar task with different setup. 

Due to the objective of this study being improving the generalisation ability, in the 

following experiments, the above-mentioned thirty-one single-valued features were 

employed as the node features. 
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As per common practice, the edge features share the node features of two end nodes 

[117]. On top of that, for this task another set of features called centrality which is a 

family of functions assigning numerical values to each node of a graph, has been 

introduced to the edge features. As a common descriptor of the importance of an 

individual node, the concept of centrality has a growing popularity in the social network 

and biological network analysis [200]. There are quite a few types of centrality features 

available in different applications [200-202]; Considering their complexity and 

performance, based on heuristics the four most common centrality features namely 

degree centrality, eigenvector centrality, closeness centrality, and modified betweenness 

centrality, have been chosen.  

Mathematically, a graph can be represented by a symmetric adjacency matrix 

ij N N
a


   A , where N  is the number of nodes. The elements of A  are defined as: 

1  if there is an edge between nodes  and

0 otherwise                                             ij

i j
a


 


          (4.9) 

 Degree centrality, the number of edges attached to a node, is defined as: 

 
1

N

deg ij
j

C i a


                (4.10) 

 Eigenvector centrality, an extension of the degree centrality by considering the 

number of connections both of a node and of its neighbours, is defined as: 
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               (4.11) 

where  is a constant. 

Equation (4.11) can be rewritten as: 

eiv eiv C AC               (4.12) 

Therefore, eivC  is an eigenvector of the adjacency matrix A  with eigenvalue  . 

 Closeness centrality, the reciprocal of the sum of all i -related geodesic distances 

within the network [200], is defined as: 
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              (4.13) 
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where  ,dist i j  is the geodesic distance defined as the shortest path in terms of 

number of edges traversed between a specified pair of nodes [201]. 

 Shortest-path betweenness centrality, the fraction of geodesic paths between 

other nodes that the evaluated node falls on [201], is defined as: 

   mn
spb

m V m i n V n i mn

i
C i


     

               (4.14) 

where mn  is the number of shortest paths between nodes m and n , and  mn i  

is the number of shortest paths between nodes m and n  using node i as an 

interior node.  

In the current implementation, considering the properties of the GVG, the above 

definition of shortest-path betweenness centrality has been modified by assigning 

the maximum betweenness centralities of a node’s two-nearest neighbours to the 

node being evaluated. Therefore, the feature has been referred to as modified 

betweenness centrality hereinafter. 

4.6 Experimental Setup 

The data sets used in the following experiments were collected in six real-world grid 

maps of different international university indoor environments (including the Centre for 

Autonomous Systems at the University of Technology, Sydney, several buildings in the 

University of Freiburg, the German Research Centre for Artificial Intelligence in 

Saarbruecken, and the Intel Lab in Seattle). As shown in Figure 4.7, areas filled with 

different colours (other than black and white) represent free space belonging to a variety 

of space types according to the legend in the bottom right corner. The GVG of the 

individual map, which is created using the software MapViewer 2.3 [203] and post 

processed in Matlab® [204], is drawn in black where dots and lines represent nodes and 

edges respectively. It is to be noted that these images in Figure 4.7 are not to scale and 

unconfirmed parts are removed. 
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Bldg. 79, Uni-Freiburg (Fr79) 

   

    Unknown, Uni-Freiburg (FrUA)  Unknown, Uni-Freiburg (FrUB) 

   

        Lv. 6, Bldg. 2, UTS (UTS26)          Intel Lab. Seattle (Intellab) 

     

    DFKI Saarbruecken (SarrB) 

Figure 4.7: Real-world grid maps from different international universities. 
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A simulated robot equipped with two back to back mounted virtual on-board 2D 

scanning laser range finders having a maximum detection range of 30 metres and a 

horizontal field of view of 360°, navigated through the grid maps while capturing data. 

The idea of generating the simulated laser range data on real grid maps is due to the 

infeasibility of visiting all the international sites for data collection. Using publicly 

available data sets seems to be plausible as well, but this approach met with minimum 

success due to the unavailability of observations made at estimated GVG nodes. 

Although gathering real-world data from UTS is possible, the same simulation is 

conducted to maintain a consistency of approach and avoid the uncertainty introduced by 

localisation and path planning. In the feature construction process, the centrality features 

introduced in Section 4.5 were computed using both Ucinet [205] and Matlab®. 

The human defined spaces given in Figure 4.7 are of high complexity and require 

substantial information to classify. The sensor used in this work is a 2D laser range 

measurement system, and hence does not contain enough discriminative information to 

segregate all the given categories. Therefore, target classes were redefined as: Class 1 - 

space designed for a small number of individuals including cubicle, office, printer room, 

kitchen, bathroom, stairwell and elevator; Class 2 - space for group activities including 

meeting room and laboratory; and Class 3 - corresponds only to the corridor. The 

utilisation of three classes in the current implementation is justified as the focus of this 

work is targeted at implementing a proof of concept for a generalised solution rather than 

a complex semantic classifier. However, it could be noted that the framework proposed 

in this chapter will be extended to much more classes observed with complex sensors 

like the Kinect™ sensor. 

Among the six environments, two of them contain spaces covering all three classes 

(referred to as complete maps hereinafter, and marked by a star in the tables reporting 

experimental results) and the other four contain parts of these classes (referred to as 

incomplete maps hereinafter). 
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4.7 Results and Discussion 

The results and discussion section is divided into subsections for the convenience of the 

reader. First, a benchmark is established by training and testing on the same data. Then a 

practically feasible fully supervised leave-one-out (LOO) training is performed and 

tested. Thereafter, a more general and challenging leave-many-out (LMO) training is 

carried out.  

The name leave-one-out is the same as in the concept of Leave-One-Out Cross-

Validation. To be specific, each sample in turn is left out, and the learning algorithm is 

trained on all the remaining samples [74]. The performance of the classifier is judged by 

the correctness of the prediction on the remaining sample. Similarly, the leave-many-out 

uses a portion of the samples (actually only one sample in the following experiments) for 

training and the rest for testing. Therefore, it is generally expected that the leave-one-out 

scheme shows higher performance than the leave-many-out scheme on the same data set, 

and the latter is more challenging. 

4.7.1 Fully Supervised Comprehensive Training 

In this scenario, the data in each map was used for training the SVM and CRFoGVG 

classifiers and was tested on the same data. The method is hereinafter referred to as fully 

supervised comprehensive training (FSCT). Although there is no significant meaning to 

the results in terms of practical deployability, the result from FSCT serves as a ceiling or 

benchmark. It can be seen in Table 4.1 that CRFoGVG in general outperforms SVM due 

to correctly modelling of contextual relationships. 

4.7.2 Fully Supervised Leave-one-out Training 

This part of the experiment is based on fully supervised leave-one-out training. Five of 

the total six data sets were selected as training data, and the remaining data set was used 

for the test. The results using SVM and CRFoGVG are summarised in Table 4.2. As 

expected, it could be noted that both SVM and CRFoGVG have an overall reduction in 

accuracies compared with those presented in Table 4.1. In addition, a further 
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investigation on the low accuracies in both cases shown on the map Intellab reveals that 

the existence of furniture resulting in high similarity of the 2D laser rage/bearing 

observations between office rooms and meeting rooms, and neither the narrow corridors 

nor the small meeting rooms in Intelllab have similar attributes in other maps. 

 

Table 4.1: FSCT results from SVM and CRFoGVG models 

Map 
Overall accuracy 

(SVM) 

Overall accuracy 

(CRFoGVG) 

UTS26 97.02% 97.90% 

Fr79* 94.94% 99.51% 

FrUA 98.18% 99.45% 

FrUB 100.00% 99.19% 

Intellab* 92.43% 98.43% 

SarrB 100.00% 100.00% 

   

Average 97.10% 99.08% 

 
 

Table 4.2: Performance of LOO training using SVM and CRFoGVG 

Map 
Overall accuracy 

(SVM) 

Overall accuracy 

(CRFoGVG) 

UTS26 93.35% 95.53% 

Fr79* 92.23% 99.38% 

FrUA 97.47% 99.13% 

FrUB 99.19% 98.87% 

Intellab* 85.47% 76.78% 

SarrB 93.71% 92.84% 

   

Average 93.57% 93.76% 
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4.7.3 Fully Supervised Leave-many-out Training 

The objective of the research reported in this chapter is to improve the generalisation 

ability under the constraint of limited training data. Therefore, in this experiment the 

performance of the original SVM and CRFoGVG based solutions in the leave-many-out 

training (a situation of limited training data) scheme was evaluated. As there are two 

complete maps Fr79 and Intellab, without loss of generality, they are used in turn as the 

training data set, and the remaining five data sets serve as test data sets.  

Results from the SVM based approach, as shown in Table 4.3 and Table 4.4, indicate 

that the model generated by training with Fr79 does not generalise the target concepts 

well, while the model generated by training with Intellab data generates a better model. 

On the contrary, as shown in Table 4.5 and Table 4.6, the CRFoGVG model generated 

from the map Fr79 has significantly better results probably due to the more general GVG 

structure of the map Fr79. However, CRFoGVG still has sporadic poor accuracies when 

tested on different maps. 

This shows that even though the leave-many-out strategy is closer to the practical 

application, it failed to deliver higher classification accuracies while used in the fully 

supervised framework, because it has a very high variation in accuracies. This leads to 

the development of a semi-supervised learning strategy. 

 
Table 4.3: Performance of SVM trained on FR79 with LMO training 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 83.54% 100.00% --- 38.36% 

FrUA 92.72% 99.53% --- 58.57% 

FrUB 80.74% 100.00% --- 33.52% 

Intellab* 79.89% 85.46% 73.57% 74.51% 

SarrB 82.43% 100.00% --- 52.91% 

     

Average 83.86%    
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Table 4.4: Performance of SVM trained on Intellab with LMO training 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 87.74% 94.27% --- 69.84% 

Fr79* 88.34% 89.96% 80.09% 88.58% 

FrUA 96.04% 98.67% --- 82.86% 

FrUB 97.25% 99.54% --- 91.62% 

SarrB 85.68% 97.92% --- 65.12% 

     

Average 91.01%    

 

Table 4.5: Performance of CRFoGVG trained on FR79 with LMO training 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 96.15% 98.09% --- 90.82% 

FrUA 99.29% 99.34% --- 99.05% 

FrUB 98.87% 98.86% --- 98.88% 

Intellab* 81.12% 97.06% 76.26% 54.76% 

SarrB 99.78% 100.00% --- 99.42% 

     

Average 95.04%    
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Table 4.6: Performance of CRFoGVG trained on Intellab with LMO training 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 86.43% 100.00% --- 49.18% 

Fr79* 97.66% 99.82% 100.00% 85.83% 

FrUA 97.31% 99.62% --- 85.71% 

FrUB 96.60% 96.36% --- 97.21% 

SarrB 59.00% 46.02% --- 80.81% 

     

Average 87.40%    

 

4.7.4 Semi-supervised Leave-many-out Training 

The generalisation ability of the SPCoGVG, which uses both SVM and CRFPL in a co-

training framework as proposed in Section 4.4, is analysed here.  

Similar to the previous experiment, one complete map at a time was used as the 

training data set and the remaining maps provided the test data set. The learning process 

does not stop until the useful information from the test data is believed to be fully 

exploited. The classification results are presented in Table 4.7 and Table 4.8. Comparing 

those with the results from the fully supervised leave-many-out training (Table 4.3 to 

Table 4.6), results from the SPCoGVG framework show improvements in many aspects. 

For example, when trained on FR79, SPCoGVG outperforms SVM on all test maps and 

achieves similar performance as CRFoGVG; when trained on Intellab, SPCoGVG 

demonstrates superior and stable performance over the other two classifiers. 
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Table 4.7: Performance of SPCoGVG trained on FR79 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 89.84% 100.00% --- 61.97% 

FrUA 97.71% 99.34% --- 89.52% 

FrUB 99.19% 100.00% --- 97.21% 

Intellab* 86.89% 95.01% 84.01% 73.81% 

SarrB 93.71% 100.00% --- 83.14% 

     

Average 93.47%    

 

Table 4.8: Performance of SPCoGVG trained on Intellab 

Map 
Overall 

accuracy 

Class-specific accuracy 

Class 1 Class 2 Class 3 

UTS26 90.72% 99.76% --- 66.89% 

Fr79* 92.04% 94.98% 78.35% 91.34% 

FrUA 96.52% 99.15% --- 83.33% 

FrUB 98.71% 100.00% --- 95.53% 

SarrB 88.72% 99.31% --- 70.93% 

     

Average 93.39%    

 

Figure 4.8 visualises the classification results given in Table 4.7. In Figure 4.8, the 

GVG nodes of the individual map are labelled as belonging to three semantic classes, 

according to the legend shown in the bottom right corner. It demonstrates satisfactory 

high classification accuracies, although there still exist some errors in Class 3 (corridor) 

of the maps UTS26 and Intelllab due to their uniqueness. However, the main point to 

note is the lower variation in accuracies than that of the fully supervised accuracies, 

which will be discussed next. 
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    Unknown, Uni-Freiburg (FrUA)                Unknown, Uni-Freiburg (FrUB) 

    Accuracy 97.71%                  Accuracy 99.19% 

          

Lv. 6, Bldg. 2, UTS (UTS26)       Intel Lab. Seattle (Intellab) 

         Accuracy 89.84%    Accuracy 86.89% 

         

    DFKI Saarbruecken (SarrB) 

 Accuracy 93.71% 

Figure 4.8: Test results of the of the SPCoGVG framework 

Figure 4.9 shows the overall comparisons of the results of the methods reported in 

Section 4.7.1 to Section 4.7.4 in the box-and-whisker diagram [206]. It comes as no 

surprise that the fully supervised comprehensive training (trained and tested on same 
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data) gave rise to the highest accuracies with the lowest variation in accuracies (SVM: 

97.10% ± 2.98%, CRFoGVG: 99.08% ± 0.77%). Leave-one-out fully supervised training 

also provides reasonably accurate results (SVM: 93.57% ± 4.78%, CRFoGVG: 93.76% 

± 8.70%).  

In the situation of limited training data, by averaging over all cases, leave-many-out 

fully supervised training demonstrates the worst classification accuracies and the largest 

variations (SVM: 87.44% ± 6.18%, CRFoGVG: 91.22% ± 12.87%), while the proposed 

SPCoGVG has improved classification accuracies with reduced variations (93.43% ± 

4.41%). This is in fact convincing towards generalisation. It also demonstrates that the 

proposed leave-many-out SPCoGVG is competitive with the fully supervised leave-one-

out training scheme which was provided with sufficient training data.  

 

Figure 4.9: Comparisons of experimental results shown in box-and-whisker diagrams 

The results of a further comparison in leave-many-out scenario only, as shown in 

Table 4.9, also supports the argument that semi-supervised learning “on-the-spot” 

improves the generalisation ability and stability of the system. 
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Table 4.9: Performance of Different Classifiers in LMO scenario 

 SVM CRFoGVG SPCoGVG 

Overall accuracy 

(over 10 entries) 

 

87.44% ± 6.18% 91.22% ± 12.87% 93.43% ± 4.41% 

Overall class-specific 

Accuracy 

(over 22 entries) 

80.68% ± 20.30% 88.78% ± 17.23% 89.25% ± 12.12% 

 

4.7.5 Conclusion 

The work described and proposed a semi-supervised place classification framework 

(SPCoGVG) with the objective of improving the generalisation ability of a learning 

system. It was the ultimate goal to train with one data set collected at one university 

environment and test it at other international university environments (leave-many-out 

training). The proposed SPCoGVG was based on the SVM and CRFoGVG because they 

are complementary. The problem of training CRF with partially labelled data has been 

successfully solved using CRF parameter estimation with the maximum conditional 

likelihood estimation marginalising the unknown labels.  

Experimental results showed that with abundant and diversified training data, both the 

SVM and CRFoGVG based approaches generalised well on test data. However, with 

leave-many-out training they often gave rise to poor accuracies. The proposed co-

training-like semi-supervised learning algorithm SPCoGVG has proven to have 

comparable results with those of the leave-one-out training schemes showing improved 

generalisation ability. The generalisation ability of the proposed algorithm was further 

reinforced by the lower variations in the testing accuracies in different environments.  
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4.8 Summary 

In this chapter, a graphical model based approach was implemented to solve the problem 

of places classification considering the dependencies between random variables, which is 

closer to the real-world scenario and consequently leads to an improved performance. In 

addition, targeting at an enhanced generalisation ability, a co-training-like semi-

supervised learning framework together with an algorithm to train the conditional 

random field with partially labelled data, were proposed to enable the learning system to 

adjust itself after being deployed. Experimental results showed the effectiveness of this 

framework.  

However, owing to the discrimination ability of the sensor used, in the work reported 

in this chapter the environments were assumed to consist of three general classes. In 

order to further extend the discrimination ability and functionality of the system, data 

from the camera will be incorporated to provide stronger place classification ability as 

well as to introduce the object detection function. Accordingly, simultaneous place-

object reinforcement would improve the performance on both place classification and 

object detection, leading to the simultaneous place classification and object detection 

solution that will be discussed in the next chapter. 

 

 

 



 

93 

 

Chapter Five 

Simultaneous Place Classification  

and Object Detection 

5 Simultaneous Place Classification and Object Detection 

5.1 Introduction 

The previous chapters have shown that the place classification capacity of a system is 

achievable by supervised learning schemes and range sensors. Considering the 

dependencies between random variables and introducing semi-supervised learning 

techniques further improve the generalisation ability of the system. However, the system 

still has great potential to be extended with more functionality without compromising 

performance by incorporating place-object relationships. 

Intuitively, prediction on the environment type helps to identify the objects in it, and 

knowledge about objects increase the certainty of the estimation on the environment 

type. For example, a kitchen is more likely to have a dishwasher than a printer in it, and a 

monitor is more likely to be in an office than in a bathroom. By using the place-object 

relationships in one direction, many researchers by default assume a causal rather than an 

interactive relationship between places and objects. Thus, their objectives are on either 

place classification or object detection alone [19, 20, 47, 156]. Other researchers point 

out that the place-object relationships may create a chicken-and-egg dilemma, so that 

modelling the bidirectional interaction between places and objects for simultaneous 

reinforcement would be a better solution. Under the concept of simultaneous place and 

object recognition, Kim et al. extended the hidden Markov model (HMM) by 

incorporating bidirectional context of objects, and Luo et al. proposed a hierarchical 

random field [12][13]. Both of these vision based solutions adopted low level features 

from images for object recognition which has limitations as the visual task becomes 

higher and higher level, and modelled the coexistence of objects which is 
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computationally expensive (  2nO , where n  is the number of objects). Yao et al. 

proposed a holistic conditional random field to simultaneously reason about regions; 

location, class and spatial extent of objects; and the type of scene [207]. The algorithm is 

designed for a single still image. 

The concept of simultaneous place classification and object detection (SPCOD) 

proposed in this chapter is a natural evolution of the current research on place 

classification which has been carried out based on various sensory data to a reasonable 

level of success. It refers to the task of simultaneously distinguishing differences 

between various environmental locations and determining the presence of certain objects 

in the environment. Specifically, the objective is achieved by a supervised learning 

framework based on pairwise CRF, and data from the scanning laser range finder and the 

camera. Features from the laser range data and the images provide environmental 

discrimination ability and object detectors respectively, and the pairwise CRF based 

framework models the place-place and place-object relationships.  

The SPCOD described in this chapter is a supervised learning scheme by introducing 

more functions to the CRFoGVG discussed in Section 4.3. Although it can be smoothly 

extended to a semi-supervised learning framework, like the CRFoGVG proposed in 

Section 4.4, due to the availability of real world data the intent of this chapter is 

restricted to demonstrating the feasibility of the framework in supervised learning tasks.  

5.2 Candidate Models for SPCOD 

In this research, three methods based on pairwise CRF are proposed and two of them are 

designed for SPCOD.  

As shown in Figure 5.1, the single sensor modality place classification (S-PC) can be 

regarded as the same as the CRFoGVG discussed in Chapter Four, but in this chapter the 

new name S-PC is adopted for consistency with other SPCOD models. In other words, S-

PC is a CRF built on top of the spatially connected topological map, GVG. This method 

does not have object classification capability but it serves as the foundation of the two 
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other models proposed for SPCOD. In addition, it provides useful reference results on 

the discrimination ability.  

 It is to be noted that the chain-like structure in Figure 5.1 and in other models, does 

not mean a restriction on the types of graph. All the models and solutions proposed in 

this chapter are based on cyclic graphs, so that they are able to work on general graphs. 

observations
(features)

latent random variables
(labels to be predicted)

 0,1, ,kYp  Xp

Place

 

Figure 5.1: Single sensory modality place classification model 

By defining  Y := Yp  and  X := Xp , the form of the conditional distribution of the 

pairwise CRF, corresponding to Figure 5.1, is the same as the one described by equation  

(2.36) in Section 2.2.3.1, which is repeated here for convenience. 
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The multiple sensory modalities SPCOD with individual object feature (M-SPCOD-

IOF), shown in Figure 5.2, is a derivation of S-PC by adding object nodes, so that there 

is one type of place node representing a certain environment type, and at least one type 

of (usually multiple types of) object nodes representing the presence of a certain object.  

In the M-SPCOD-IOF model, the edges between place nodes correspond to spatial 

connectivity, like in the S-PC model. On the contrary, the edges between place nodes and 

object nodes represent logical co-existence (e.g. the possibility of “a monitor in an 

office” or “an office has a monitor in it”). The co-existence of objects (e.g. the possibility 

of “seeing both fridge and printer at the same time”) is not modelled, otherwise the 

complexity of the model will increase dramatically with the categories of object nodes, 

and dealing with an almost fully connected graph is not the intension of probabilistic 

graphical models.  
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In this model, as an ideal setup, each object is described by only one feature which is 

the highest value in the object bank response map according to the specific object over 

all scales. In other words, the underlying assumption is that, in an image, the probability 

of having a certain object (e.g. chair) is best represented by the highest responses of the 

image to the corresponding pre-trained object filter (e.g. chair filter). 

 
   
0,1, ,

0,1 , 0,1, ,h
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 h
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Figure 5.2: Multiple sensory modalities SPCOD with individual object feature 

By defining  , hY := Yp Yo ,  , hX := Xp Xo  (where    is the concatenation of all 

elements, Yp  are random variables for place nodes, hYo  are random variables for the 

type h  object nodes, Xp  and hXo  are corresponding observations, and h  representing 

different object types), the pairwise CRF for the M-SPCOD-IOF model corresponding to 

Figure 5.2, as an extension of the conditional distribution of the pairwise CRF described 

by the equation  (2.36) in Section 2.2.3.1, can be expressed as: 
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In equation (5.1), given X being the full observation, ( )Z X  in the first term is the 

normalising partition function, the second term models place-place relationship, the third 
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term models place-object relationships, the fourth term models place nodes only, and the 

fifth term models object nodes only.  

Solving the M-SPCOD-IOF model described in equation (5.1) does not require 

significant changes in current algorithms for the standard pairwise CRF model. The only 

difference lies in assigning individual parameter sets to different node types and edge 

types. For instance, all place-chair edges share the same set of parameters. 

However, in the M-SPCOD-IOF model, using one feature to describe each object is 

somewhat risky, not only because of the accuracy involved in constructing the alleged 

representative feature, but also due to the fact that a certain object may also be indicated 

by other object filters. A case in point is that a computer screen in an image may also 

respond well to “television filter” and “laptop filter”, or even “window filter” due to the 

reflection. Considering that the pairwise CRF deals with a relatively high dimensional 

feature space well, introducing more features for each object (i.e. about two hundreds 

features in this case) is expected to provide better system performance. 

Following this assumption, the multiple sensory modalities SPCOD with object 

feature pool (M-SPCOD-OFP), shown in Figure 5.3, further expanded M-SPCOD-IOF 

by introducing an object feature pool (OFP) due to the consideration that an object may 

not only be described well using the corresponding object filter, but could also be 

represented by other object descriptors [148]. Therefore, the OFP for a scene contains the 

peak values of responses from all available object filters (currently two hundred and 

eight object filters in the object bank) over all scales, which presumably represents the 

presence/absence of the corresponding objects. It is the classifier’s task to assign proper 

parameters to combine these features for each object node, so that the OFP is shared 

across all objects. 
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Figure 5.3: Multiple sensory modalities SPCOD with object feature pool 

The underlying pairwise CRF for the M-SPCOD-OFP model, shown in Figure 5.3, is 

the same as that of the M-SPCOD-IOF model, which is expressed in equation (5.1), but 

the definition of X  is slightly different, which is  , OFPX := Xp X  in this case (where 

OFPX  are observations in the form of object feature pool). 

It is to be noted that in all above models, the feature vector constructed from the laser 

range data for place nodes is the same as that used for the CRFoGVG model discussed in 

Section 4.3. The feature vector for object nodes is constructed from the images and will 

be discussed in the following sections. Both place-place and place-object edge feature 

vectors take features from both end nodes, and the place-place edge feature vector also 

includes the centrality features as in the CRFoGVG model. 

5.3 High-level Features of an Image 

As discussed previously in Section 2.4.2, both low-level and high-level features are 

widely employed in image processing tasks. Low-level features like GIST and SIFT-

SPM are derived at the pixel level to characterise images in a statistical way, and high-

level features like the Object Bank usually analyses images in a semantically meaningful 

way [19, 148]. As it is suggested that low-level image features are inadequate to capture 

complex semantic meaning required to solve high-level visual tasks [158], in this 

research, the Object Bank algorithm is adopted to construct object features from an 
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image, because it serves the objectives of this study well with extra convenience due to 

off-the-shelf object filters.  

The Object Bank is a high-level image representation which was originally designed 

for scene classification tasks [19]. It constructs a feature vector through collecting 

responses to object filters which are trained classifiers in the histogram of oriented 

gradients (HOG) feature space [208, 209]. The responses are basically heat maps 

indicating the strength of the response when the object filter is placed in each position 

[208]. Although the Object Bank shows superior performance over other vision-based 

scene classification solutions [19], researchers point out that its high performance on 

scene classification tasks is mainly due to the high dimensional vectors of local scale-

space features [148, 208]. Specifically, in the literature [19] each image is represented by 

a feature vector which has a dimension of: the product of the number of the object filters; 

the number of the scales; and the number related to the pyramid levels. For example, 

when using two hundred and eight object filters, twelve scales, and three pyramid levels 

(20 + 22 + 24 = 21 blocks), the dimension of the feature vector will be 52416. Therefore, 

without a huge amount of samples and further study, the reasons for the empirical 

effectiveness of the Object Bank features on vision based scene classification tasks 

remain unexplained. 

Even though the Object Bank does not guarantee adequate semantic coherence in 

terms of object detection [148, 208], it provides an intuitive representation of objects in 

an image, which is analogous to the results of template matching. The benefits of using 

Object Bank as object features include: a) it provides various off-the-shelf object filters 

based on pre-trained models; and b) it has the potential for precise object localisation. 

However, the downsides include that: it does not hold any information on whether or not 

the object is in the scene; the response map is based on segmenting an image into 

rectangles so that identifying the outlines of objects become impossible; and there are no 

criteria to determine the segmentation resolution. 

In the models proposed in Section 5.2 for the SPCOD task, to avoid the high 

dimensionality problem, only one feature corresponding to each object filter is used to 
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construct the feature vector. The decisions on the presence/absence of objects are made 

by classifiers to alleviate the semantic incoherence of the Object Bank features.  

Further, in the M-SPCOD-OFP model, to deal with the inherent inaccuracy of the 

Object Bank, an object feature pool is introduced to utilise the object bank features as 

latent information. The process of constructing the OFP is shown in Figure 5.4. For each 

object filter, eight by eight response maps in twelve scales are generated and the 

maximum response strength is regarded as the feature indicating the presence/absence of 

that object. 

 

Figure 5.4: The process of constructing the OFP for the M-SPCOD-OFP 

5.4 Experimental Setup 

For the research reported in this chapter, a subset of the freely available COsy 

Localisation Database (COLD) [210] is adopted to validate the proposed models. COLD 

contains seventy-six sequences collected in three different indoor environments, using 

the same sensor setup in rooms of different functionality and under various 

environmental conditions [210]. The three data sets are called COLD-Saarbruecken, 

COLD-Freiburg and COLD-Ljubljana respectively. The thirty-two sequences acquired at 
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the Language Technology Laboratory at the German Research Centre for Artificial 

Intelligence in Saarbruecken (COLD-Saarbruecken) does not contain sufficient images 

with high occurrence of objects. The eighteen sequences collected at the Visual 

Cognitive Systems Laboratory at the University of Ljubljana (COLD-Ljubljana) cover 

only one area for each environment type and the data set does not provide any range 

data. Therefore, the following experiments are carried out on sixteen sequences in the 

COLD-Freiburg data set obtained at the Autonomous Intelligent Systems Laboratory at 

the University of Freiburg, as the environment consists of rich object density with the 

bonus of the available scanning laser range finder data.  

Based on the properties of the COLD-Freiburg data set, data collected from three 

trajectories containing all target places and objects were used for training, and another 

thirteen trajectories under different lighting conditions were divided into three groups for 

testing. To clarify the terms, a sample is the data collected on a whole trajectory, and an 

instance is an observation (a set of scanning laser range finder data and an image) made 

on a node (a pose) of a trajectory. To reduce the overhead of the system, the observations 

were down sampled spatially to keep them about a half metre apart on the trajectory. 

In the test data, Group 1 consists of six samples (shorter trajectories in the same area 

where the training data set are gathered) under three lighting conditions (cloudy, night, 

and sunny). Group 2 covers three samples (approximate revisits of the training 

trajectories) under three lighting conditions (cloudy, night, and sunny). Group 3 contains 

four samples (trajectories in a new area which is slightly overlapped with the training 

trajectories) under two lighting conditions (cloudy and sunny). For easier remembering, 

from the perspective of training, Group 1 can be thought of as familiar data, Group 2 can 

be thought of as approximately replicated data, and Group 3 can be thought of as 

unfamiliar data. 

To be specific, the blueprint of the data collection areas at the University of Freiburg 

is shown in Figure 5.5. The training data set is collected in part A of the blueprint, and 

the Group 1 and Group 2 test data set are gathered also in part A, but following different 

trajectories and providing dissimilar coverage. The Group 3 test data set is obtained from 

part B of the blueprint. 
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Figure 5.5: The blueprint of the data collection environment 

As mentioned previously, a single observation consists of a sequence of 180° 

scanning laser range finder data collected by a SICKTM laser scanner [211] and a 

640 480 pixels colour image came from a CCD camera. The corresponding pose of the 

robot, which was estimated during the acquisition process using a laser-based 

localisation technique, was also provided in the data set [210]. 

For training, place nodes are labelled based on matching the blue-print map with 

poses where the observations are made, and the presence/absence of target objects in a 

scene are manually labelled. It is to be noted that in this research, no effort has been 

made on providing ground truth about the precise object position in the images. The 

target concepts include six places and ten objects which will be explained in the 

following sections. 
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5.5 Results and Discussion 

In the following experiments, the capabilities of different models proposed in Section 

5.2, in comparison with the independent classifier (SVM in this case) are discussed, in 

terms of their performances on place classification, object detection, overall result, and 

extra functionality, whichever is applicable. 

5.5.1 Performance of Place Classification 

In this experiment, places are classified into six categories (printer room, corridor, 

kitchen, office, bathroom and stairwell) using different methods as describe in Section 

5.2. The extra difficulties in this experiment lie in that 1) the system is validated on real 

data rather than simulated data, 2) only 180° laser range coverage is provided rather than 

360°, and 3) there are six places including similar environmental types to be predicted. 

The overall place classification accuracies achieved are compared in Table 5.1. 

 
Table 5.1: Overall Place Classification Accuracies 

 Group 1 (%) Group 2 (%) Group 3 (%) 

SVM 79.75 ± 1.80 78.73 ± 1.45 75.27 ± 1.43 

S-PC 90.93 ± 6.18 94.93 ± 1.39 79.81 ± 2.19 

M-SPCOD-IOF 93.31 ± 2.44 92.51 ± 4.35 83.73 ± 3.49 

M-SPCOD-OFP 96.28 ± 1.36 94.17 ± 5.38 81.98 ± 1.76 

 

First of all, test results show that all three graph-model-based methods (S-PC, M-

SPCOD-IOF and M-SPCOD-OFP) outperform SVM on all samples, which highlighted 

the importance of modelling the contextual information of instances, which is also in 

consistent with the results shown in Chapter Four.  

Both M-SPCOD-IOF and M-SPCOD-OFP outperform S-PC on nine and eleven out 

of thirteen samples respectively, which suggests the benefit of introducing the object 

information on improving not only the accuracies, but also the discrimination ability of 

the place classification system. 
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M-SPCOD-OFP outperforms M-SPCOD-IOF on eight out of thirteen samples, and 

M-SPCOD-OFP shows slightly better accuracies than M-SPCOD-IOF according to 

Table 5.1. Therefore, in the current setup the choice of the type of object feature does not 

seem to affect place classification accuracies significantly. 

5.5.2 Performance of Object Detection 

In this experiment, a single observation from the camera is categorised into containing or 

not containing the following ten objects: chair; sofa; table/writing desk; computer 

monitor; printer; stairs/step; dishwasher; fridge; closet/cupboard; and sink.  

Instead of using the overall accuracy as the judging criteria, precision and recall are 

adopted to describe the correctness of the decision on presence and absence of a 

particular object in the scenes. This is done to remove the disguise of a biased prior 

distribution (i.e. there is usually much more absence than presence of an object in the 

natural world) [212]. Definitions of precision and recall are shown in equations (5.2) and 

(5.3)[213] . For the ease of understanding, taking the object monitor for example, 

precision answers the question that “what is the percentage of the claimed images 

containing monitor is correct?”, and recall answers the question that “what is the 

percentage of images containing monitor is correctly identified”. 

True positives
Precision

True positives + False positives
      (5.2) 

True positives
Recall

True positives + False negatives
       (5.3) 

The object classification results are shown in Table 5.2 and Table 5.3 in terms of 

precision and recall respectively, and corresponding object-specific classification results 

are shown in Table 5.4 and Table 5.5.  

According to Table 5.2 and Table 5.3, the M-SPCOD-IOF model outperforms SVM 

(using the same IOF features) as the latter may not be able to work properly using only 

one feature. On the contrary, as indicated in Table 5.2, Table 5.3, Table 5.4 and Table 

5.5, the performances of the M-SPCOD-OFP model and SVM (using the same OFP 
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features) are very comparable, with superior performances than the M-SPCOD-IOF 

model. This justifies the introduction of the object feature pool.  

Table 5.2: Object Classification Accuracies Expressed in Precision 

 Group 1 (%) Group 2 (%) Group 3 (%) 

M-SPCOD-IOF 54.14 63.98 31.22 

SVM (IOF) 4.76 10.00 11.54 

 

M-SPCOD-OFP 70.47 75.96 38.07 

SVM (OFP) 65.62 72.02 43.78 

Table 5.3: Object Classification Accuracies Expressed in Recall 

 Group 1 (%) Group 2 (%) Group 3 (%) 

M-SPCOD-IOF 39.40 43.39 29.65 

SVM (IOF) 0.69 1.64 1.87 

 

M-SPCOD-OFP 63.32 65.13 34.10 

SVM (OFP) 63.22 62.10 40.57 

Table 5.4: Object-specific Classification Accuracies Expressed in Precision 

 M-SPCOD-OFP (%) SVM (OFP) (%) 

Chair 57.85 57.35 

Sofa 57.14 62.22 

Table, desk 67.11 59.72 

Monitor 53.82 32.03 

Printer 54.16 50.35 

Stairs 69.23 92.31 

DishWasher 57.14 62.22 

Fridge 58.33 52.38 

Closet, cupboard 62.59 52.81 

Sink 87.71 92.42 



5  Simultaneous Place Classification and Object Detection 

106 

 

 

Table 5.5: Object-specific Classification Accuracies Expressed in Recall 

 M-SPCOD-OFP (%) SVM (OFP) (%) 

Chair 57.27 52.30 

Sofa 44.64 58.33 

Table, desk 64.53 64.84 

Monitor 42.22 36.07 

Printer 53.71 53.15 

Stairs 35.13 74.36 

DishWasher 44.64 58.33 

Fridge 30.95 35.71 

Closet, cupboard 58.63 33.78 

Sink 88.84 86.00 

 

With similar performances expressed in precision and recall, a direct comparison 

between the overall object classification accuracies of the M-SPCOD-OFP model and 

SVM (using the same OFP features) becomes meaningful. In addition, although the 

performance of the former method (95.43 ± 1.60%) is slightly better than the latter 

method (94.36 ± 2.03%), it does not strongly support the expectation that knowing the 

place will facilitate object classification. This is because of the facts that: 1) the local 

evidence (i.e. the Object Bank features) is not strong enough as object descriptors; 2) the 

SVM classifier works well on this binary classification task; 3) the room to improve 

current relatively high accuracies is limited; and 4) extra training and test samples are 

required to provide more statistically convincing results.  

5.5.3 Overall Performance of SPCOD 

The overall performance of place classification and object detection using three different 

methods, on thirteen sequences, is shown in Table 5.6. The M-SPCOD-IOF and M-

SPCOD-OFP models perform the tasks of classifying places and detecting objects 

simultaneously to provide structured predictions, and the SVM solution processes 
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instances independently and makes independent predictions. The feature set employed 

for the SVM-based object detection is the OFP, which has been demonstrated to be more 

effective than the IOF in Section 5.5.2.  

The overall classification accuracies suggest that the proposed two methods,  

M-SPCOD-IOF and M-SPCOD-OFP, are capable of classifying places and objects 

simultaneously at reasonably high accuracies. In addition, both of them outperform the 

highest accuracies achieved by SVM on the same data set, mainly due to their improved 

accuracies on place classification demonstrated in Section 5.5.1. 

 
Table 5.6: System Performance Expressed in Overall Accuracies 

SVM (%) M-SPCOD-IOF (%) M-SPCOD-OFP (%) 

92.88 ± 2.04 93.29 ± 1.90 95.06 ± 2.03 

 

5.5.4 Object Localisation 

The current focus of this research is to determine the presence or absence of objects, 

rather than geometrically localising them. On the contrary, regardless of the accuracy, 

the Object Bank is capable of providing extra information on the object location due to 

its inherent property (i.e. the response map mechanism), although it does not hold any 

information on the presence of the object. Therefore in an image, relying on the peak 

response to certain object filter and the prediction from SPCOD, it is possible to locate 

the object in the image. 

Some example results from object localisation are presented in Figure 5.6, Figure 5.7, 

Figure 5.8 and Figure 5.9, which illustrate the potential benefit of SPCOD (not fully 

proven, as discussed previously). These figures, as the output of SPCOD algorithm, are 

predicted as containing the marked objects, and the locations of these objects are decided 

by the highest response value of the corresponding object filter from the Object Bank. 

No quantitative assessment is made here because the training data is not labelled with 

ground truth for objects’ locations, so that the readers are required to make subjective 

judgement on the accuracy and usefulness of this additional function. 
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The results show some potential benefit of SPCOD. For instance, detecting the fridge 

and the dishwasher in the kitchen environment, shown in Figure 5.8, from the image 

could be very challenging, but taking the environment type into consideration makes it 

easier. The stairs in Figure 5.7 have no obvious feature in the image, but knowing the 

spatial connectivity will facilitate the decision making processes. These examples also 

show the difficulties of precise object localisation because of the different shapes and 

sizes of objects, and the lack of guidelines for selecting the detector’s scales. 

  

 
Figure 5.6: Examples of object localisation in an office environment 

  

 
Figure 5.7: Examples of object localisation in bathroom and stairwell 
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Figure 5.8: Examples of object localisation in kitchen 

  

 
Figure 5.9: Examples of object localisation in printer room 

The object localisation is not the main objective of this research, and acquiring the 

ground truth of object locations is a complicated and time consuming task; therefore, in 

this chapter no further quantitative analysis on the object localisation accuracy is 

provided. 

5.5.5 Conclusion 

In the above experiments, performances of different algorithms on place classification 

demonstrate that an independent classifier has problems discriminating between 

environmental types of similarity; modelling dependencies between random variables 

provides some improvements; and incorporating object features from the images offers a 
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further benefit. The proposed SPCOD models were also evaluated on the object 

detection function to determine the presence of certain objects, and the proposed M-

SPCOD-OFP model delivered comparable results to the independent classifier and 

showed the necessity of using the Object Bank features as latent information. Overall 

system performance supported the idea of SPCOD, and the mutual reinforcement of 

place and object information was partially proven. The system also demonstrated limited 

object localisation ability. 

Theoretically, the pairwise CRF based framework does not necessarily rely on 

particular sensory modality or feature, so that it has a great extensibility. For example, in 

the generalised M-SPCOD-OFP model, shown in Figure 5.10, an arbitrary number of 

object nodes can be introduced without computing any new features from the images. 

Although a more complicated model requires longer time on labelling the ground truth 

and estimating parameters, it is also capable of detecting a large number of objects.  

 

Figure 5.10: A generalised M-SPCOD-OFP model 

5.6 Summary 

In this chapter, with the assumption that object and place information corroborate each 

other, the CRFoGVG model discussed in Chapter Four has been extended with object 

nodes to tackle the challenging task of simultaneous place classification and object 
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detection. Two pairwise CRF based SPCOD models have been proposed and 

implemented to classify the robot’s environment into six place categories and determine 

the presence of ten objects in the scene. Simple statistical and geometrical features 

extracted from laser range data and reorganised Object Bank descriptors constructed 

from the images were adopted. Experimental analysis was performed on publicly 

accessible data sets collected in an indoor environment with different environmental 

conditions, and experimental results demonstrated the capabilities and potentials of the 

proposed models, especially the M-SPCOD-OFP framework, on the SPCOD task.  
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Chapter Six 

Conclusions and Future Research 

6 Conclusions and Future Research 

6.1 Thesis Summary 

This thesis proposed five novel contributions in the field of machine learning based place 

classification and related research areas. In the order of their occurrence in this thesis 

these contributions are given below. 

Without considering the dependencies between random variables: 

 Related work on 2D laser range data based place classification has been further 

studied towards constructing a concise feature set. Feature selection results on both 

heuristic and wrapper based approaches demonstrate that on certain setup, reasonably 

high accuracies can be achieved by creating a feature space with several dominant 

features. In the case that both the generalisation ability and the execution time of the 

system are critical requirements, another feature set containing twenty one single-

valued simple geometric features is recommended. 

 A place classification solution based on 3D range data from the Kinect™ sensor is 

proposed. A feature set including twenty-seven single-valued simple geometric 

features has been constructed from the 3D point cloud, and a features selection graph 

is also provided. As a single observation from the Kinect™ sensor has a smaller 

horizontal field of view when compared with the 2D scanning laser range finder, the 

effect of different combination schemes of multiple Kinect™ sensors to provide 

larger coverage has been investigated. Experimental results show that under similar 

coverage, a feature set of about the same dimension constructed from the Kinect™ 

data generally outperforms that from the 2D laser range data. Therefore, apart from 

some inconvenience of implementation, the Kinect™ sensor based approach 

provides an alternative solution.  
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With modelling dependencies between random variables are as follows: 

 Aiming at improving the generalisation ability of the system, a co-training-like semi-

supervised learning framework SPCoGVG has been proposed to allow two 

classifiers (SVM and CRFPL) to learn from test data and teach each other, leading to 

improved system performance. 

 In order to train a CRF with partially labelled data, a pairwise CRF based 

implementation has been proposed by marginalising the unlabelled random variables. 

The proposed solution CRFPL is a general-purpose algorithm and an extension of the 

standard CRF framework. It has been integrated into a publicly accessible Matlab 

implementation of pairwise CRF [118].  

 The concept of simultaneous place classification and object detection has been 

proposed to combine two tasks in one framework, which is believed to be closer to 

the real-world scenario. By introducing object nodes and image features to the 

previous structured prediction scheme CRFoGVG, two SPCOD models have been 

introduced and tested. Experimental results demonstrate the capabilities and potential 

of the proposed frameworks. 

6.2 Thesis Conclusion 

In this thesis, two major machine learning schemes and a functional expansion of 

research on place classification were discussed. 

In the place classification scheme for independent prediction, supervised learning 

approaches based on 2D and 3D range data, and logistic regression and support vector 

machine classifiers, were described and compared. An effort was also made to 

understand the connection between representative features and prediction accuracies. 

Satisfactory experimental results showed that the range data based place classification 

problem can be solved through employing supervised learning approaches with several 

dominant features. Under similar sensory coverage, the optimal feature set constructed 

from 3D range data is believed to be more representative than its counterpart of similar 

size obtained from 2D range data. However, due to the physical limitations of the 

Kinect™ sensor, the 3D solution was recommended as a backup choice. 
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In the place classification scheme for structured prediction, which takes the contextual 

relationship between samples into consideration, with the objective of improving the 

generalisation ability of the system, a co-training-like semi-supervised learning paradigm 

was proposed based on a supervised conditional random field solution and a SVM 

classifier. The two classifiers involved learning from the test data as well as from each 

other to reach a nearly consensus decision on the unlabelled instances. The issue of 

training CRF with partially labelled data was solved separately by formulating the 

marginalisation process, as an independent theoretical contribution. Experimental results 

demonstrated that incorporating the contextual information led to higher system 

performance, and introducing the semi-supervised learning framework improved the 

generalisation ability of the system. 

The supervised place classification scheme for structured prediction was further 

expanded by adding the function of object detection. Specifically, both place 

classification and object detection tasks are performed by the proposed SPCOD 

framework to make a compromised holistic decision. Experimental results suggested that 

the proposed graphical model based solution surpasses a combination of the single-

function SVM classifier, and holding information on either the type of place or the 

presence of objects was partially proven to be helpful in predicting the other (i.e. the 

presence of objects or the type of place).  

Regarding the deployment, in the situation that complexity and time performance are 

the main concerns and the generalisation ability is not a critical requirement, a classifier 

making independent predictions with a feature selection process (e.g. SVM plus DEFS) 

is recommended. Empirical experience suggests that in similar environments and using 

Hokuyo UTM-30LX scanning laser range finder, a conservative target accuracy of 85% 

can be achieved for up to four target place types. The availability of a Kinect™ will 

further improve the performance to at least 90% with using depth information only. If a 

topological representation is provided for each environment, and the generalisation 

ability needs to be enhanced, the co-training-like semi-supervised place classification 

scheme is a better choice. In this case an overall accuracy of 85% above can be achieved 

using 2D scanning laser range finder only, even in unseen environment and up to three 
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target place types. In the case that both multiple sensors (including the camera) and 

topological structures are available, and the functionality and discrimination ability are 

of the most interest, the M-SPCOD-OFP should be adopted. A trained system working 

on unseen environments to predict up to six different target place types can meet place 

classification accuracy above 80%. It also provides extra object detection and qualitative 

object localisation functionalities. All estimated performances of the suggested methods 

are in practice are based on a conservative basis. 

6.3 Recommendations for Future Research 

All of the research topics covered in this thesis, including place classification (more 

generally, environment perception for mobile intelligent systems), supervised and semi-

supervised machine learning, and graphical models, are rapidly evolving research areas. 

It is possible that other methods and techniques may improve the results reported in this 

thesis. Particularly, on the basis of the work presented in this thesis, the following topics 

are recommended for future research and development. 

 Build a comprehensive and dynamic database for the research of environment 

perception, which is analogous to the ImageNet database for image processing [214]. 

This is suggested in order to facilitate both standard supervised learning and lifelong 

learning [215]. 

 There are various sensors and a wide range of corresponding features available for 

the task of place classification, and different classification algorithms and feature 

selection techniques may lead to dissimilar results. Thus for a specific case, some 

sort of comparison should ideally be done before implementation. 

 To practically tackle the coverage issue, the Kinect™ sensor based place 

classification solution could take advantage of the results of SLAM to incrementally 

obtain larger coverage in a certain location with a tolerable error. In this way, the 

system needs to keep sensor data in memory for a certain period of time, but it also 

makes online place classification and 3D environment modelling possible. 

 The supervised learning framework for structured prediction discussed in Chapter 

Four relies on the static topological map, GVG. However, the GVG also has its role 
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in path planning [216], and thus can be constructed incrementally [195]. Therefore, 

by introducing a dynamic GVG, and keeping the offline training process unchanged, 

online tests for place classification become possible. 

 The proposal of the semi-supervised learning framework SPCoGVG is an attempt 

towards introducing novel learning paradigms to the place classification task but the 

co-training-like solution is not the only way to achieve the goal. The possibility of 

using other semi-supervised learning frameworks like mixture models, graph-based 

solutions and semi-supervised SVM remains unexplored. 

 In the proposed simultaneous place classification and object detection framework, 

the effect of holding object information on facilitating the place classification has 

been empirically proven, but knowing the place types did not significantly improve 

the results of object detection. The reason was assumed to be the lack of 

discriminative features for the objects. Therefore, further research on the Object 

Bank or similar high-level features would solve the issue and improve the system 

further. 

 The proposed simultaneous place classification and object detection framework has 

the potential to bridge the research on both place classification and scene 

understanding, through replacing the object nodes in the SPCOD models by a CRF 

sub-graph for scene understanding. This would be an important step towards the 

conceptual hierarchical mapping discussed in Section 2.1.2. 

 Apart from the common practice of utilising the place classification results to label 

the observer’s locations, the information can also be utilised to label the free space on 

grid maps [2] or the observed entities [22]. Related research involves decision fusion 

and a compact representation of the environment. 
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