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Abstract

For patients with type 1 diabetes mellitus (TIDM), hypoglycemia, or the state of
abnormally low blood glucose level (BGL), is the most common but acute complication
which limits their intellectual as well as physical activities. Mild hypoglycemic episodes
cause sweating, nervousness, heart plumping, confusion, anxiety, etc. which can be fixed
by eating or drinking glucose-rich food. However, if left untreated, severe episodes of
hypoglycemia may lead to unconsciousness, coma, or even death. Nocturnal episodes of
hypoglycemia are especially dangerous because sleep reduces and obscures -early
symptoms, so that an initially mild episode may become severe. Because of its severity, it is
essential for TIDM patients to be monitored and alarmed whenever a hypoglycemic

episode occurs, especially during the night.

For the purpose of hypoglycemia detection, using parameters extracted from the
electroencephalogram (EEG) is one of the most promising methods. Because it depends on
a continuous supply of glucose and is vulnerable to any glucose deprivation, the human
brain is one of the first affected organs under the occurrence of hypoglycemia. Since the
EEG is directly related to the metabolism of brain cells, a failure of cerebral glucose supply
can cause early changes in EEG signals that can be utilized in hypoglycemia detecting

devices.

The main aim of this thesis is to develop a computational methodology of non-invasively
detecting the onset of nocturnal hypoglycemia for patients with TIDM from their EEG
signals. There are two core tasks to be implemented: feature extraction and classification.

X



Feature extraction analyses a variety of EEG parameters to find features that significantly
respond to the onset of hypoglycemia. Important features will be used as inputs of the

classification in order to classify and detect hypoglycemic episodes.

Using raw EEG signals collected at four EEG channels (C3, C4, O1, O2) from five TIDM
patients who participated in an overnight hypoglycemia-induced study, four EEG
parameters (power level, centroid frequency, spectral variance, spectral entropy) within
three frequency bands (theta, alpha, beta) are extracted by spectral analysis. Statistical
analysis is applied to find parameters that significantly correlate to the transitions of
patients’ states during the study, from normal to hypoglycemic and then to recovery state.
The statistical results show that under hypoglycemic conditions, there are early changes in
the theta and alpha bands of EEG signals. The decrease in centroid alpha frequency is the
most significant feature which is consistently observed in all patients at all EEG channels
(p<0.0001). Besides, by analysing the data from the BGL range of 3.3-3.9 mmol/l, it is
established that the EEG responses to hypoglycemia only significantly occur when patients’
BGLs fall to the threshold of 3.3 mmol/l. This threshold is used to distinguish between
hypoglycemic state and non-hypoglycemic state for the classification purpose in this thesis.
As a result of the feature extraction, two EEG features of centroid theta frequency and
centroid alpha frequency are derived at two channels C3 and O2 to be used as inputs of the

classification.

In terms of classification algorithm, in this thesis, the standard multi-layer feed-forward
neural network is utilised as the classification unit. Three different training techniques are
applied to train the developed neural network, including the LM algorithm, the LM+GA
algorithm, and the LM+GA+Adaptive algorithm. The LM algorithm is based on the
popular Levenberg-Marquardt algorithm and the cross-validation technique in order to
direct the training process to one of local optimal solutions. The LM+GA algorithm
includes two consecutive steps of global search and local search. The global search is based
on a genetic algorithm which helps the training process direct to the area of the global
optimal solution. The local search is based on the LM algorithm which acts as a fine tuner
to get the training process closer to the final optimised solution. Lastly, the

LM+GA+Adaptive algorithm is introduced, as the final neural network training procedure
XI



proposed by this thesis. This algorithm consists of two consecutive stages including an
adaptive training stage implemented after the GA+LM algorithm. The stage of adaptive
training helps to adapt the optimised network yielded by the GA+LM algorithm to the new
EEG patterns of unseen subjects, thus limiting effects of the EEG wvariability on
classification results and enhancing the generalisation ability of the developed neural

network.

The final classification results produced by this thesis (80% sensitivity and 60% specificity
on the training set and 78% sensitivity and 62% specificity on the testing set) indicate that
by applying the proposed computational methodology, nocturnal episodes of hypoglycemia
can be successfully detected in patients with TIDM from their non-invasive EEG signals.
With the final performance achieved by this thesis, future works will be carried out to
pursue the final aim of the current research which is developing a non-invasive EEG-based

system for detecting hypoglycemia that can be applied into the real clinical environment.
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Chapter 1

Introduction

1.1 Problem statement

Diabetes mellitus is recognized as one of the most challenging global health problems.
Type 1 diabetes mellitus (T1DM) is a form of diabetes mellitus which is caused by the loss
of insulin-producing beta cells in the pancreas leading to insulin deficiency. TIDM is a
chronic condition and can cause a variety of serious complications for patients. The
Diabetes Control and Complication Trial (DCCT) Research Group in 1993 emphasized the
significant benefits of the intensive insulin therapy for T1DM patients. Results of the report
showed that the therapy for a mean of six years (as opposed to conventional therapy)
efficiently delayed the appearance as well as reduced the risk of retinopathy by 47%,
nephropathy by 54% and neuropathy by 60%. However, it was also highlighted that
patients who participated in the DCCT experienced a threefold-increase incidence of severe
hypoglycemia episodes over those receiving conventional therapy. This is considered as the
most common and acute complication for TIDM patients and a barrier which limits the

glycemic control therapy for diabetes patients.

Hypoglycemia is the medical term for the state produced by a lower than normal level of

blood glucose. A hypoglycemic episode can be defined as one in which a patient has a
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blood glucose level (or glycemic level) lower than 60 mg/dl (3.3 mmol/l). Episodes of
hypoglycemia are considered as a fact of life for most patients with T1IDM who owe their
lives to insulin to maintain a normal range of blood glucose level. Hypoglycemia can
produce a variety of symptoms, from mild to severe episodes (Clarke et al. 2009; Klonoff
2001). Mild hypoglycemia causes symptoms like sweating, nervousness, heart plumping,
confusion, anxiety, etc. It can be treated quickly and easily by eating or drinking glucose-
rich food to restore the blood glucose level to normal. If left untreated, a mild episode of
hypoglycemia can become a severe episode in which the patient needs assistance to treat
the event. More seriously, it can lead to seizures, coma, and even death. Hypoglycemia also
reduces the quality of life of patients as well as caregivers by causing chronic anxiety about

the future potential hypoglycemic episodes (Warren & Frier 2005).

One of the most dangerous effects of hypoglycemia is hypoglycemic unawareness which is
caused by the frequent exposure to hypoglycemia. In this situation, patients’ bodies do not
release counter-regulatory hormones which are the origin of early warning symptoms for
patients like shaking, sweating, hunger, anxiety, etc. Because of the lack of warning,
patients cannot realize the occurrence of hypoglycemia until it becomes severe and could

lead to fatal damage.

Nocturnal hypoglycemia is also especially fearful for TIDM patients because sleep can
make the symptoms unclear. Nocturnal hypoglycemia is common in patients with T1DM
and usually asymptomatic. It was reported previously that almost 50% of all episodes of
severe hypoglycemia occur at night during sleep (Group 1991). Such episodes can cause
convulsions and coma, and have been implicated as a precipitating factor in cardiac
arrhythmias resulting in sudden death--the "dead-in-bed syndrome" (Sovik & Thordarson
1999). Recurrent exposure to nocturnal hypoglycemia may gradually impair patients'
cognitive function, as well as lead to other substantial long-term morbidities including the
development of acquired hypoglycemic syndromes, such as impaired awareness of
hypoglycemia, through the putative effect of unsuspected recurrent episodes of nocturnal

hypoglycemia.
Because of its prevalence and severity, a variety of studies have been carried out, using

2



Chapter 1 Introduction

different techniques to produce systems that can monitor hypoglycemic conditions in
T1DM patients. Some of them require intermittently taking patients’ blood samples to
monitor the blood glucose levels during the day. This method gives relatively exact
information about hypoglycemic status. However, taking blood is uncomfortable for
patients, and very inconvenient to monitor continuously, especially during the night. A non-
invasive technique is obviously a better solution for these disadvantages. Continuous
glucose monitoring systems (CGMSs) use different techniques which allow monitoring the
blood glucose levels continuously and providing better information about glycemic shifting
throughout the day. However, the low accuracy of CGMSs is a prominent disadvantage of
the technique. Also, these systems still involve the minimally invasive procedure of
inserting and changing sensors over time. Currently, on the market, there are some devices
which monitor hypoglycemia non-invasively by using patients' physiological parameters
such as heart rate, skin impedance and electrocardiography (ECG) outputs. It is no doubt
that exploring and developing new techniques to monitor and detect the onset of
hypoglycemia for TIDM patients is still an open research area which has drawn the

attention of researchers around the world.

Electroencephalogram (EEG) is the recording of electrical activity along the scalp of the
human brain. Recently, EEG signals have been shown to be a powerful tool for diagnosing
and detecting various diseases and conditions. Under the occurrence of hypoglycemia, the
human brain is one of the first affected organs. Because it cannot synthesize as well as store
this primary metabolic fuel, the brain depends on a continuous supply of glucose and is
vulnerable to any glucose deprivation. In previous works, the EEG, which is directly related
to the metabolism of brain cells, was shown to have early responses to the onset of
hypoglycemia (Howorka et al. 1996; Pramming et al. 1988; Tallroth et al. 1990; Tribl et al.
1996). This research direction leads to the essential core of this thesis which is exploring
early changes in EEG parameters induced by hypoglycemic episodes which can be detected

by an advanced computational algorithm.

Inspired by the human central nervous system, neural networks have attracted many
researchers in a wide range of research areas. Neural networks have been successfully

applied to various classification and pattern recognition problems in industrial as well as
3
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real-life sectors. In the health and biomedical sectors, neural networks have also been

widely used as an effective diagnosis and detection technique. In order to avoid inherent

shortcomings of standard neural networks, different strategies of network training will be

explored to determine the most suitable network for the application of hypoglycemia

detection based on EEG signals.

1.2

Objectives of the thesis

The main objective of this thesis is to develop a computational methodology of detecting

hypoglycemic episodes non-invasively for patients with T1DM using their EEG signals. In

order to achieve this purpose, two main tasks will be focused upon.

First, EEG signals from T1DM patients will be processed to extract important
features which significantly respond to the occurrence of hypoglycemic episodes.
This involves a signal processing step to get rid of unwanted artifacts from the raw
signals and then transform EEG signals from time domain to frequency domain to
get the power spectra of the signal. Based on the power spectra, a feature extraction
step will be implemented to derive various EEG parameters. The extracted
parameters will be analysed by statistical techniques to find important features

which can significantly contribute to the performance of the classification.

After finding potential EEG features, an advanced classification algorithm will be
developed for the purpose of detecting hypoglycemia, using the extracted features
as inputs. At first phase, a standard multi-layer feed-forward neural network will be
developed and utilised as the classification unit to verify the potentiality of detecting
hypoglycemia using extracted features derived from EEG signals. Then, different
advanced strategies and algorithms for training the developed neural network will
be explored in order to enhance the general performance of the developed neural

network.
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1.3

Thesis contributions

This thesis presents a comprehensive computational methodology for non-invasive

detection of nocturnal hypoglycemic episodes from EEG signals for patients with type 1

diabetes. The five main contributions of the thesis are presented as follows:

Firstly, the thesis presents a thorough analysis of EEG signals from type 1 diabetes
adolescents during an insulin-induced study to investigate responses of EEG signals
to nocturnal hypoglycemia. By exploring various EEG parameters of patients over
three phases of the study including normal, hypoglycemia and recovery, it is shown
that EEG signals are highly correlated with patients’ conditions during the study. A
comprehensive literature review demonstrates that until now, most previous studies
exploring the relationship between the EEG and hypoglycemia only stopped at
using peak values at each frequency bin of the EEG power spectra without any trend
to extract meaningful features. The point of exploring various EEG features and
proving that they significantly respond to hypoglycemic conditions by statistical

analysis makes an important contribution of this thesis.

Secondly, the thesis provides a comparison between two blood glucose levels of 3.3
mmol/l and 3.9 mmol/l in order to investigate a blood glucose threshold at which
the EEG signals of TIDM patients starts to respond to hypoglycemic conditions.
This threshold will be used later to distinguish between non-hypoglycemic and

hypoglycemic states for the purpose of classification.

Thirdly, the introduction of two EEG features of centroid alpha frequency and
centroid theta frequency in the application of non-invasively detecting
hypoglycemia from EEG signals is another significant contribution of this thesis. As
shown in the literature review, previous works which also aimed to develop systems
for detecting hypoglycemia from EEG signals only stopped at using peak values at
each frequency bin of the EEG power spectra. This method can lead to very noisy
inputs for the purpose of classification. In this thesis, it will be demonstrated that the

two EEG parameters of centroid theta frequency and centroid alpha frequency are
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the most important extracted features which can significantly contribute to the

performance of the hypoglycemia detection algorithm.

e Fourthly, the thesis proposes a computational algorithm based on neural network for
the purpose of classification and detection of hypoglycemia. Using extracted EEG
features as inputs, feed-forward multi-layer neural networks are developed as
classification units to identify episodes of nocturnal hypoglycemia. The data from
five TIDM patients will be used to develop and validate the performance of the

proposed classification algorithms.

e Fifthly, with the aim of enhancing the classification performance, a combination of
genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm, named the
GA+LM algorithm, will be proposed for training the developed neural networks. In
this way, the advantages of each algorithm, including the global search ability of
GA algorithm and the local search ability of LM algorithm, can be utilized in order
to direct the network training process to the global optimal without trapping into
one of the local solutions. The thesis demonstrates that by applying a properly
combined strategy to train neural network, the performance of hypoglycemia

detection using only two EEG channels can be improved markedly.

e Lastly, in order to overcome one of well-known limitations of using EEG signals in
healthcare application which is the signal variability from person to person to
person, an adaptive strategy of training neural network will be introduced. The
proposed adaptive training strategy will be proved to allow the neural network to
adapt itself to a new individual user and help to enhance the generalisation ability of
the hypoglycemia detection from EEG signals. Implementing the proposed adaptive
strategy in conjunction with the GA+LM algorithm, the GA-+LM+Adaptive
algorithm will be introduced as the final procedure proposed by this thesis for
training neural network in the application of detecting hypoglycemia using EEG

signals from only two channels.
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1.4

The structure of the thesis

This thesis consists of six chapters, a bibliography and appendices. The remaining chapters

of the thesis are organized as follows:

Chapter 2 presents a comprehensive literature review of various techniques for
detecting the onset of hypoglycemic episodes in patients with type 1 diabetes. First,
the prevalence and severity of type 1 diabetes and its most dangerous complication,
hypoglycemia, will be mentioned to show the inspiration of this thesis. After that,
common techniques and devices of glucose monitoring and hypoglycemia detecting
which are currently available on the market, as well as the positives and drawbacks
of each technique will be presented. Finally, this chapter provides a review of using
EEG signals and computational intelligence, generally in biomedical systems and

specifically in the application of detecting hypoglycemia.

Chapter 3 proposes a computational methodology for EEG-based hypoglycemia
detection. This chapter consists of two main parts: feature extraction and
classification. In the feature extraction part, using data of five TIDM patients from
an overnight insulin-induced study (also called glucose clamp study), EEG signals
from four EEG channels including C3, C4, O1 and O2 are processed and analysed
by spectral analysis to extract various EEG parameters. The main aim of this part is
to explore the response of extracted parameters during the clamp study in order to
determine the most important features that significantly change under hypoglycemic
conditions. In order to do this, the correlation of each EEG parameter with the BGL
transition during the insulin-induced study including three phases of Normal,
Hypoglycemia and Recovery will be explored. Also, data at the BGL range of 3.3-
3.9 mmol/l (named as the Early Onset phase of the study) will be analysed to find a
blood glucose threshold to distinguish between non-hypoglycemic and

hypoglycemic states.

Using extracted EEG parameters from all four channels as inputs, a standard neural

network algorithm is introduced for the purpose of classification. The developed
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neural network has a feed-forward multi-layer structure which is trained by using
Levenberg-Marquardt (LM) algorithm and cross-validation technique.
Classification performance will be presented to evaluate the capability of the

detection of hypoglycemic episodes from EEG signals.

e Chapter 4 aims to propose an advanced algorithm for training neural network in
order to enhance the performance of the developed classification algorithm. To do
this, a combination of genetic algorithm (GA) and the LM algorithm will be
explored to utilize advantages as well as avoid limitations of each algorithm in
training neural network. The GA algorithm is used to locate the region of the global
optimal consistently. The LM algorithm acts as a fine tuner to help the training
process quickly converges toward the global solution. Our main objective is to
demonstrate that by applying a properly combined strategy to train neural network,
the performance of hypoglycemia detection using only two EEG channels can be

improved markedly.

e Chapter 5 introduces an adaptive strategy for training neural network in order to
improve the generalisation ability of the developed neural network. It has been
noted in previous works that EEG patterns significantly vary from person to person,
which leads to a difficulty in generalising an EEG-based system to a new user. To
overcome this, a strategy of training neural network adaptively, which allows the
neural network to adapt itself to each new individual user, will be implemented. The
results will be presented to demonstrate that by applying partly individual training,
the hypoglycemia detecting system which uses only two EEG channels can perform

efficiently.

Based on the performance of algorithms and strategies for training neural networks
which have been explored so far in this and previous chapters, the final network
training procedure for hypoglycemia detection using EEG signals proposed by this
thesis will be presented. This training procedure, named the GA+LM+Adaptive
algorithm, consists of two sequential stages including the GA+LM algorithm

implemented in conjunction with the adaptive strategy. Classification results of this
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1.5

training procedure provided at the end of this chapter are considered as the final
performance of the computational methodology of hypoglycemia detection using

only 2 EEG channels developed by this thesis.

Chapter 6 presents the overall conclusions for this research. Advantages as well as
limitations of the proposed computational methodology for non-invasively detecting
hypoglycemia in patients with type 1 diabetes using EEG signals will be mentioned
in this chapter. Finally, the potentiality and different directions of pursuing the

research in future works will be discussed.

Publications related to the thesis

There are four fully refereed international conference papers of the Institute of Electrical

and Electronics Engineers (IEEE) related to the thesis. Details about these papers are

provided as follows:

L.B. Nguyen, S.S.H. Ling, T.W. Jones & H.T. Nguyen 2011, 'Identification of
hypoglycemic states for patients with TIDM using various parameters derived from
EEG signals', 33rd Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Boston, Massachusetts, USA, pp. 2760-3.

L.B. Nguyen, A.V. Nguyen, S.H. Ling & H.T. Nguyen 2012, 'An adaptive strategy
of classification for detecting hypoglycemia using only two EEG channels', 34th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, USA, pp. 3515-8.

L.B. Nguyen, A.V. Nguyen, L. Sai Ho & H.T. Nguyen 2013, 'Analysing EEG
signals under insulin-induced hypoglycemia in type 1 diabetes patients', 35th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society Osaka, Japan, pp. 1980-3.

L.B. Nguyen, A.V. Nguyen, L. Sai Ho & H.T. Nguyen 2013, 'Combining genetic
9
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algorithm and Levenberg-Marquardt algorithm in training neural network for
hypoglycemia detection using EEG signals', 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, pp. 5386-
9.
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Chapter 2

Literature Review

2.1 Introduction

Diabetes mellitus is recognized as a challenging global health problem. Untreated diabetes
can cause many long-term severe complications including damages to the heart, blood
vessels, eyes, kidneys, and nerves. It can also lead to acute complications such as diabetic
ketoacidosis, hyperosmolar hyperglycemic state and hypoglycemia which have the

potential to lead to cognitive impairments, coma, or even progress to death.

Type 1 diabetes mellitus (T1DM) is a form of diabetes that results from an autoimmune
destruction of insulin-making cells in the pancreas. TIDM typically occurs in people under
30 years old and is the major form of diabetes in those under 10 years old. The cause of
T1DM is not known and it is not preventable with current knowledge. Patients with TIDM
depend on external insulin for their survival and the treatment must be continued

indefinitely in all cases.

The Diabetes Control and Complication Trial Research Group highlighted significant
benefits of the intensive insulin therapy, include efficiently delaying the onset as well as

reducing the risk of acute diabetic complications (Group 1993). However, the main
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adverse effect associated with intensive therapy is a two-to-threefold increase of severe
hypoglycemia which is the medical term for the state of an abnormally low blood glucose
level. Hypoglycemia is considered as the most acute but common complication of T1IDM
which can lead to unconsciousness, coma, or even death if left untreated. Obviously this is
a significant barrier to the achievement of desired glycemic control in the insulin-treated

diabetic patients.

Under the occurrence of hypoglycemia, the human brain is one of the first affected organs.
Because it cannot synthesize as well as store this primary metabolic fuel, the brain depends
on a continuous supply of glucose and is vulnerable to any glucose deprivation. The
electroencephalogram (EEG), which is directly related to the metabolism of brain cells, is
shown to have early responses to the onset of hypoglycemia. Efficiently detecting early
changes in the EEG under hypoglycemia conditions are important towards developing a

hypoglycemia monitoring system which can alarm patients and caregivers at onset.

2.2 Type 1 diabetes mellitus and the intensive insulin therapy

Diabetes mellitus is a chronic condition in which a patient’s body cannot maintain the
normal blood glucose levels. The human body requires a hormone called insulin, which is
produced by the pancreas, for stimulating the body’s cells to convert glucose (sugar) from
food into energy. In people with diabetes mellitus, insulin is no longer produced in
sufficient amounts, or the body cells do not respond adequately to the hormone. So in these
cases, when diabetes patients eat glucose, instead of being turned into energy, the glucose

stays in the blood, causing higher blood glucose levels than normal people.

Type 1 diabetes mellitus (T1DM) is one of the main forms of diabetes that occurs when the
pancreas no longer produces significant amounts of the hormone insulin, owing to the
destruction of the insulin-producing beta cells of the pancreas. Accounting for about 5-10%
of all diabetes cases (Daneman 2006), or 17.35-34.7 million people worldwide
(Organization 2012), TIDM is a serious chronic disorder which may lead to dangerous
short-term as well as long-term complications.

12
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T1DM symptoms can include excessive thirst, constant hunger, frequent urination, skin
infections or blotches, drowsiness, sudden weight loss. Although the disease onset can
occur at any age, T1DM is often referred to as juvenile-onset diabetes with over half of the
cases being diagnosed in childhood (younger than 16-18 years old) (Daneman 2006). The
incidence of TIDM in this group of ages also increases rapidly with the rate of 3% per year
(Henk-Jan Aanstoot 2007). It is also the major diabetes form in those under 10 years old
and is one of the leading chronic diseases of childhood among developed countries (Yach
2004). In the period of 2000-2009, it was reported that in Australia, the average incidence
rate of type 1 diabetes was 11.5 cases per 100,000 population per annum, in which there
were 9,308 new cases of type 1 diabetes among children aged 0—14 years and 13,756 new
cases of type 1 diabetes among those aged 15+ years (Welfare 2011).

There are several risk factors that are considered to cause TIDM even though it is still not
fully understood. It has been shown in the literature that the presence and combination of
some certain genes indicates an increased risk of developing TIDM (Bluestone, Herold &
Eisenbarth 2010; Daneman 2006; Poretsky & Ali 2010). Besides, non-genetic factors also
play an important role in the development of the disease, including older age of the mother
(Flood, Brink & Gleason 1982), first pregnancy (Patterson et al. 1994), breast feeding
(Borch-Johnsen et al. 1984), low maternal educational level, low family income (Blom et
al. 1989), exposure to some types of virus, chemicals and drugs (Poretsky & Ali 2010), etc.
Ongoing research has been devoted to the influences of individual as well as combined

factors on the disease onset.

TIDM patients with prolonged, poor glycemic control have increased likelihood of
developing vascular complications which later result in the chance that blood vessels in
different body organs are completely weakened or blocked. The long-term damage to blood
vessels may lead to cardiovascular diseases and heart attacks. Excess glucose can injure the
walls of the tiny blood vessels that nourish patients’ nerves and cause tingling, burning or
pains at the tops of the toes, fingers and gradually spread upwards even until patients lose
all sense of feeling in the affected limbs. It also often leads to kidney damage (nephropathy)
which, in many cases, results in irreversible end-stage kidney disease. In this situation,

patients require dialysis or a kidney transplant for their survival. Retinopathy, in which

13
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blocked or leaky blood vessels in the retina (a light-sensitive layer of tissue at the back of
eyes) gradually prevent the light from fully passing through and potentially leading to

blindness, is also another serious complication for patients with TIDM.

Unlike the other type of diabetes mellitus which can be efficiently managed by the
combinations of oral medications, diet and exercise, the treatment of T1DM involves an
indefinite procedure which is required for the whole of the patient’s life. To stay alive,
people with TIDM must have a constant supply of insulin through injections or an insulin
pump, along with attention to dietary management and careful monitoring of blood glucose
levels. Untreated T1DM often leads to diabetic ketoacidosis which causes cerebral edema
(accumulation of liquid in the brain). This complication is very life-threatening and
considered as the most common cause of death in pediatric diabetes (Rosenbloom & Hanas

1996).

In 1993, the Diabetes Control and Complication Trial (DCCT) Research Group highlighted
the significant benefits of intensive insulin therapy in glycemic control (the medical term
for achieving target level of glycated hemoglobin HbAlc or blood glucose for TIDM
patients). Results of DCCT showed that the intensive therapy for a mean of six years
(maintaining glycemic levels to a target HbAlc level of 7%) as opposed to conventional
therapy (with resultant mean HbAlc level of 9%) significantly lowered the risk for
retinopathy by 47%, nephropathy by 54% and for neuropathy by 60% (Group 1993). The
results indicated that the intensive therapy efficiently delays the onset and slows the
progression of the aforementioned serious complications. Besides, compared to the
conventional therapy, this therapy allows greater flexibility of meal times, carbohydrate
quantities, and physical activities, which is important in balancing the normal life of

patients.

On the other hand, it was shown in the report that the intensive therapy increases three
times the incidence of hypoglycemia among patients with TIDM over conventional
therapy. For diabetes patients, hypoglycemia is the medical term of the state produced by

an abnormally low level of blood glucose. This is considered as the most common but
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highly severe complication for patients with TIDM and a serious barrier of the intensive

therapy in achieving improved diabetes control.

2.3 Hypoglycemia

Hypoglycemia, or abnormally low blood glucose concentration, is considered as a fact of
life for most patients with TIDM who owe their lives to insulin to maintain a normal range
of blood glucose level. Being firmly established since the discovery of the insulin therapy
for diabetic patients, diabetic hypoglycemia is the most feared complication and a limiting
factor of glycemic control for TIDM patients. Hypoglycemia definition varies from study
to study due to differences in study purpose and circumstance; participants’ age and their
period of taking glycemic control; measurement method to determine the concentration of
blood glucose; etc. The definition of hypoglycemia occurrence from some prominent

research groups are presented in Table 2.1.
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Table 2.1: Definition of hypoglycemia

Associated blood
Research Group Definition ssoclated oo : Associated response
glucose concentration
DCCT Research Severe Blood glucose level Requirement of
Group (1997) hypoglycemia <50 mg/dl assistance to recover
American Diabetes Hvboelveemia Plasma glucose level
Association (2005) YPosly =70 mg/dl
Mild Blood glucose level No loss of
hypoglycemia =55-70 mg/dl consciousness
Christopher et al. Moderate Blood glucose level No loss of
(2006) hypoglycemia <55 mg/dl consciousness
Severe Blood glucose level Loss of
hypoglycemia <70 mg/dl consciousness
Plasma glucose level In:;zaeseglflicr?f:n
= 65 - 70 mg/dl PIEp
secretion
Cryer (2003, 2007) | Hypoglycemia
Neurogenic and
Plasma glucose level neuroelveonenic
=50 - 55 mg/dl Eyeop
symptoms occur

Plasma glucose level = blood glucose level * 1.15
A blood glucose value of mg/dl = a blood glucose value of mmol/l * 18

Hypoglycemia develops when the rates of glucose entry into the body’s systemic
circulation are reduced relative to glucose uptake by tissues. For patients with diabetes
mellitus, hypoglycemia is caused by a mismatch between the insulin therapy and the body's
physiological demand. An inaccurate combination of insulin dosages, meals, and physical
activities can lead to a decrease in patient's blood glucose concentration or a hypoglycemia
episode. Cryer et al. (2003) classified the causes of hypoglycemia into six groups which are

listed in Table 2.2.
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Table 2.2: Causes of hypoglycemia in type 1 diabetes mellitus
(Cryer, Davis & Shamoon 2003; Strachan 2007)

Causes Examples

- Excessive dose
Inappropriate insulin injection - Inappropriate timing

- Inappropriate insulin formulation

- Misses meal
Inadequate exogenous carbohydrate

- Overnight fast
Increased carbohydrate utilization - Exercise
Decreased endogenous glucose production - Excessive alcohol intake
- Night time
Increased insulin sensitivity - Exercise
- Weight loss
Decreased insulin clearance - Kidney damage

A summary of responses to hypoglycemia as consequences of lowering blood glucose
concentration is provided in Figure 2.1 (Wolpert 2007). When the glucose concentration
falls to a certain level, hypoglycemic symptoms which reflect effects of hypoglycemia on
the patient’ body start to appear. These symptoms are normally categorized into two main
groups: autonomic group and neuroglycopenic group. Autonomic symptoms arise from the
activation of the autonomous central nervous system, including sweating, shaking, heart
pounding, hunger, and nervousness. Neuroglycopenic symptoms result from the reduced
consumption of glucose by the brain, especially in the cerebral cortex. The neuroglycopenic
group includes symptoms such as confusion, tiredness, difficulty thinking, drowsiness,
difficulty speaking. Lower blood glucose levels may lead to severe problems of

unconsciousness, convulsions, coma, flattening EEG signals and even death.
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In healthy people without diabetes, hypoglycemia is usually corrected naturally by the
combination of a number of the human body's defence mechanisms. Initially, a decrease in
insulin secretion in response to declining blood glucose levels occurs. As glucose levels
continue to fall, a number of redundant glucose counter-regulatory factors (glucagon,
epinephrine, growth hormone) are sequentially activated at specific thresholds to ensure
sufficient glucose uptake to the brain and other central nervous system tissue metabolism.
Besides, a low blood glucose level can activate some early warning symptoms which help

people acknowledge the situation and fix it by taking glucose rich food or drink.

Hypoglycemia in diabetes is a special case regarding the ability of the patient’s body to
amend the situation. In T1DM patients undergoing intensive insulin therapy, falling glucose
concentrations often do not elicit counter-regulatory responses at normal glycemic
thresholds, allowing glucose levels to drop to dangerously low values. Within the first few
years of diabetes, the glucagon secretion in response to hypoglycemia, which stimulates the
liver to convert stored glycogen into glucose released into the bloodstream, becomes lost.
After the next few years, the epinephrine production in response to hypoglycemia may also
be defective and gradually lost. Once the epinephrine response which is the origin of early
warning symptoms for the patient is lost, patients normally cannot realize the occurrence of
hypoglycemia until it becomes severe and could lead to fatal complications such as coma
and convulsions. Studies in T1DM patients have demonstrated that as few as two episodes
of antecedent hypoglycemia can blunt responses to subsequent hypoglycemia (Davis &
Alonso 2004). When counter-regulatory responses are lost, the risk of a severe
hypoglycemic episode is reported to increase at least ten times (Klonoff 2001). This
phenomenon is known as hypoglycemia unawareness which is one of the most feared

complications for TIDM patients undergoing glycemic control.

Nocturnal hypoglycemia is particularly dangerous for T1DM patients because sleep
obscures early warning symptoms, so that an initially mild episode may become severe.
The DCCT Research Group in 1991 reported that almost 50% of all episodes of severe
hypoglycemia occur at night during sleep. Such episodes can cause convulsions and coma
and have been referred to as a factor resulting in the dead-in-bed syndrome in young

diabetic patients (Sovik & Thordarson 1999). Even mild episodes of nocturnal
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hypoglycemia can lead to a variety of fearful consequences. Nocturnal hypoglycemia seems
to have no immediate detrimental effect on cognitive function; however, on the following
day, mood and well-being may be adversely affected. Recurrent exposure to hypoglycemic
episodes during the night also induces changes in counter-regulatory responses to
hypoglycemia, which later leads to impaired awareness of hypoglycemia. Because of the
potentially life threatening nature of severe hypoglycemic episodes, hypoglycemia has been
shown to reduce the quality of life for patients by causing chronic anxiety about future

potential episodes of hypoglycemia.

2.4 Hypoglycemia detection techniques

The danger of hypoglycemic episodes and adverse effects on patients’ lives have led to a
huge demand for devices that can detect the onset of hypoglycemia and give alarm to
provide enough time for patients and their caregivers to take action. A variety of techniques
have been developed which can be categorized into two main groups of blood glucose
monitoring and physiological glucose monitoring. Patients with T1DM depend on
monitoring the concentration of glucose in blood during the day to assess the effectiveness
of their insulin therapy, to adjust their diet and exercise plans. Most importantly, it allows
the detection of hypoglycemic episodes in T1DM patients, which is especially crucial for

those with hypoglycemic unawareness.
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2.4.1 Blood glucose monitoring

Blood glucose monitoring is a technique of testing the concentration of glucose in the blood
which is particularly important in the care of diabetes mellitus. It includes two different
ways of monitoring: intermittent and continuous. Different manufacturers use different
technologies which are suitable for the demand and preference of patients based on their
different pathological as well as financial conditions. Generally, they are classified into

intermittent and continuous monitors.

Intermittent monitoring is commonly performed by piercing the skin (finger) to draw blood,
then applying the blood sample to a chemically active disposable test-strip to determine the
glucose level in the blood (Figure 2.2). The greatest advantage of this method is that it
provides fairly accurate results of blood glucose concentration. Being marketed at very low
prices compared to other techniques is another advantage of this type of blood glucose
monitor. However, it can only provide the discrete blood glucose values at times of testing,
without information of trends in glucose levels which can help warn coming unwanted
episodes of hypoglycemia. Moreover, piercing the finger from time to time during day and

night brings a lot of inconvenience for patients and their families.

21



Chapter 2 Literature Review

C CH
Ultra2

Figure 2.2: An intermittent blood glucose monitoring device

Continuous blood glucose monitors, on the other hand, provide better information about
shifting blood glucose levels throughout the day. Because of its continuous characteristic,
the technology applied to this kind of monitor is totally different to intermittent monitors.
Instead of taking blood, to determine the glucose concentration in blood, continuous
monitors require sensors which measure blood glucose with minimal invasiveness through
continuous measurement of interstitial fluid or with the non-invasive method of applying
electromagnetic radiation through the skin to blood vessels in the body. Table 2.3 provides
a comparison of three continuous monitors that have been approved by the U.S. Food and
Drug Administration (FDA). Compared to the type of intermittent monitoring, continuous
monitors are marked at much higher prices. Low accuracy is one of the most prominent
disadvantages of continuous monitors. Moreover, the requirement of frequently inserting
sensors and continuous calibration also cause a lot of trouble for users, especially for young

patients.
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Table 2.3: Continuous glucose monitoring systems (CGMS)

GUARDIAN REAL-TIME Dexcom SEVEN Plus Abbott FreeStyle Navigator®
CGMS ®
FDA approval February 2007 March, 2006 March 2008
m
) e $1339 for monitor, transmitter, | * $1248 for receiyer, case, No longer marketed since April
Price charger, transmitter

charger, and 4 sensors
e $35 per sensor

$399 per 1 month 4 sensors

2010

Sensor life 3 days 7 days 5 days
Length of
13 mm 13 mm 6 mm
sensor probe
First calibration is 2 hours after
Calibrate at 10, 12, 24 and 72
insertion.  Second  calibration ) ) ] )
) ) Every 12 hours with another | hours after insertion with no
Calibration within next 6 hours after first, then

every 12 hours. Will alarm if

calibration value not entered.

device named One Touch Ultra

further calibration for the final 2

days of the 5 day wear
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2.4.2 Physiological glucose monitoring

Physiological glucose monitoring is another technique of determining the blood glucose
concentration based on physiological parameters of the patient’s body. By this way, the
monitoring process is uninvolved with the patient’s blood flow and hypoglycemic episodes
can be detected non-invasively. This technique is desirable for patients as well as their
caregivers because even minimally invasive devices bring the inconvenience of sensor
inserting and changing procedures, as well as the risk of infection. On the other hand, the
main limitation of this technique is a high false positive rate (alarm for reasons other than
hypoglycemia). This is because physiological parameters are sensitive to not only

hypoglycemia but also a huge range of reactions of the body.

Figure 2.3: The Diabetes Sentry Monitor

Designed over 20 years ago by Teledyne Avionics, The Diabetes Sentry® is a monitor
worn on the wrist which monitors for two symptoms of hypoglycemia: perspiration and a
drop in skin temperature (Figure 2.3). The presence of either sweating or a two degree
Fahrenheit drop in body temperature triggers an audible alarm that will awaken most
people. As other physiological glucose monitors, this device has the advantages of
providing protection to patients without any procedure of inserting and continuously
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changing sensors. However, it was reported that the accuracy is considerably low with true
positive rate of 50% at quite low plasma glucose level of 37 = 11 mg/dl (Nguyen et al.
2013b). Moreover, this device is only recommended for patients without hypoglycemia
unawareness who exhibit the symptoms of perspiration and/or a drop in skin temperature
under hypoglycemic conditions. The producer also comments that there are false positives
which occur whenever perspiration is present or a drop in temperature occurs due to various

reasons such as when patients are dreaming, sick, on medication or the room is too hot.

Figure 2.4: The Glucowatch G2 Biographer

The Glucowatch G2 Biographer (from Cygnus Inc., California, USA) is another non-
invasive wristwatch-like device that was approved by the U.S. Food and Drug
Administration (FDA) in 2001 for detecting trends and tracking patterns in glucose levels
in adults (age 18 and older) and children/adolescents (age 7 to 17) with diabetes. This
device provides real-time measurements of interstitial glucose concentrations at 10-min
intervals by conducting a constant low-level electric current through the skin between two
electrodes (as shown in Figure 2.4). It was reported by clinical studies (Group 2004) that
the device performs better at higher glucose levels and is not reliable with low accuracy in
detecting hypoglycemia (23% sensitivity and 51% specificity when setting the alarm level
at 60 mg/dl). With this level of accuracy, coming along with various limitations such as the
requirement of calibration using another blood glucose meter, replacement of sensors every
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23 hours, etc., this device is not recommended to be used as an independent tool for

detecting hypoglycemia non-invasively.

Figure 2.5: The HypoMon Monitor

Designed by Australian researchers at the University of Technology Sydney and later
developed by the company AIMEDICS, HypoMon is a non-invasive alarm system that
identifies night-time hypoglycemia in children and young adults aged between 10 and 25
years with type 1 diabetes. This device is intended for use during sleep-time at home,
enabling users to increase their ability to detect nocturnal hypoglycemic episodes. The
HypoMon includes a Monitor and a Belt (as shown in Figure 2.5). The HypoMon Belt,
worn comfortably around the upper chest, contains a matchbox-sized, needle-free
transmitter. The sensors communicate wirelessly with the HypoMon Monitor, logging the
body’s physiological signals, including heart rate and cardiac outputs during sleep. Using
an advanced computational algorithm to identify the onset of hypoglycemic episodes, this
device has been reported with desired accuracy and has been approved by The Therapeutics
Goods Administration (TGA) as an Australian developed, potentially life-saving, non-
invasive alarm that can protect young people with type 1 diabetes against nocturnal

hypoglycemia (Nguyen, Ghevondian & Jones 2009; Skladnev et al. 2010).
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2.5 Hypoglycemia detection from EEG signals

The human brain constitutes only about 2% of body weight, but consumes up to 20% of the
energy used by the body, more than any other organ. Glucose is an obligate fuel for the
metabolism of the brain. Because it cannot synthesize as well as store this primary
metabolic fuel, the brain depends on a continuous supply of glucose from blood circulation

and is vulnerable to any glucose deprivation.

Although hypoglycemia can produce a large number of symptoms, like sweating or
increased cardiac output, the principal problems arise from an inadequate supply of
glucose, which is the primary metabolic substrate, to the brain. Since the
electroencephalography (EEG) signal is directly related to the metabolism of brain cells, it
has been believed that hypoglycemia can cause early changes in EEG that can be non-
invasively detected. Previous studies have attempted to find out EEG changes caused by

hypoglycemia.

2.5.1 Electroencephalogram and its applications in biomedical systems

By definition, electroencephalogram (EEG) is the recording of electrical activities along the
scalp of human brain. The brain's electrical charge is maintained by billions of neurons.
Neurons are electrically charged (or "polarized") by transport proteins that pump ions
across their membranes. When a neuron receives a signal from its neighbour via an action
potential, it responds by releasing ions into the space outside the cell. Ions of like charge
repel each other, and when many ions are pushed out of many neurons at the same time,
they can push their neighbours, who push their neighbours, and so on, in a wave. When the
wave of ions reaches the electrodes on the scalp, they can push or pull electrons on the
metal on the electrodes. Since metal conducts the push and pull of electrons easily, the
difference in push, or voltage, between any two electrodes can be measured by a voltmeter.

Recording these voltages over time gives us the EEG signal.

The electric potentials generated by single neurons are far too small to be acquired by EEG

electrodes. EEG activity therefore always reflects the summation of the synchronous
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activity of thousands or millions of neurons that have similar spatial orientation. If the cells
do not have similar spatial orientation, their ions do not line up and create waves to be

detected and recorded.

In conventional applications, the EEG recording is obtained by placing electrodes on the
scalp with a conductive gel or paste to reduce the skin impedance. When measuring from
the scalp, typical adult human EEG signals are about 10puV to 100 pV in amplitude. As a
result, the signals after being recorded need to be amplified and then digitized to display

and store in computers.

Freauricular
point

Figure 2.6: The international 10-20 system seen from (A) above and (B) left the head
[Adopted from (BCI2000)]

In order to achieve uniformity in the interpretation of the EEG activity recorded globally,
the spatial locations and names for electrode placement are standardized according the
International 10-20 system as in Figure 2.6 (Towle et al. 1993). The numbers "10" and
"20" refer to the fact that the actual distances between adjacent electrodes are either 10% or
20% of the total front-back or right-left distance of the skull. Each site of the brain has a
letter to identify the lobe and a number to identify the hemisphere location. The letters F, T,
C, P and O stand for Frontal, Temporal, Central, Parietal, and Occipital, respectively. Even
numbers (2, 4, 6 and 8) refer to electrode positions on the right hemisphere, whereas odd

numbers (1, 3, 5 and 7) refer to electrode positions on the left hemisphere of the brain.
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The EEG signal is popularly described in terms of rhythmic activities or brain wave
patterns. By means of Fourier Transform, the raw EEG signals in time domain can be
transformed into frequency domain to derive brain waves. These waves are often divided
into four basic frequency bands: delta band (0.5-4Hz), theta band (4-8 Hz), alpha band (8-
13Hz) and beta band (13-30 Hz). These divisions which are based on the characteristics of
each band are somewhat different between research groups. A summary of features of each

frequency band is presented in Table 2.4

The EEG has been widely used in a variety of health and medical applications. One of the
best known applications is the detection of epileptic seizures and localization of the seizure
origin (Smith 2005). EEG helps determine seizure type and epilepsy syndrome in patients
with epilepsy, and thereby choice of antiepileptic medication and prediction of prognosis.
EEG findings contribute to the multi-axial diagnosis of epilepsy, in terms of whether the
seizure disorder is focal or generalised, idiopathic or symptomatic, or part of a specific
epilepsy syndrome. Another well-known EEG-based application is to monitor drowsiness
and detect the onset of fatigue in drivers (King, Nguyen & Lal 2006; Subasi & Kiymik
2010). Most recently, researchers have shown the potentiality of EEG signals in detecting
the freezing of gait in patients with Parkinson's disease (Cole, Roy & Nawab 2011;
Handojoseno et al. 2012). The EEG is also recognized as a prominent non-invasive means
applied in the area of brain-computer interface. The EEG based brain-computer interface
has been pursued extensively by a number of research labs to develop assistive devices
designed for use by disabled people, such as intelligent wheelchairs (Craig & Nguyen 2007;
Luzheng, Xin-An & Yili).

29



Table 2.4: Basic EEG rhythms
(Rowan & Tolunsky 2003; Sadasivan & Narayana Dutt 1994)

Wave patterns

Example of 1-second activity

Features

the highest in amplitude (250 — 300 uV) and the
slowest waves

Delta prone to eye-movement artifact contamination
(0.5-4Hz) prominent in infants and young children
e o ° ° H present in adult sleep, not present in normal adult
waking state
Theta V’\ =y normal amplitude in the range of 100 — 150 pV
(4-8 Hz) M promine.nt in yogng ch'ildren '
53 54 55 os Lo present in drowsiness in older children and adults
normal amplitude of 40-50 uV
maximal amplitude in the occipital regions
Alpha \_/\/\ /\ \ /\ \\ M/\ﬁ/\ most prominent when measured in the relaxed,
(8-13 Hz) \/ \U,/ \/ waking state with eyes closed
: = o . . . increases during drowsiness even when eyes
opened
relatively small amplitude compared to other bands
usually present on both brain sides in symmetrical
Beta distribution and most evident frontally
(13-30 Hz) low amplitude with multiple and varying

0.2 0.4 0.6 0.8 1.0

frequencies is often associated with active, busy or
anxious thinking and active concentration
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2.5.2 Correlation of EEG signals and hypoglycemia

The correlation of EEG signals and hypoglycemia has been reported by many research
groups round the world. In general, these studies can be categorized into two different
types. The first type focuses on exploring changes in EEG signals under the occurrence of
hypoglycemic episodes which can be natural or insulin-induced episodes. In terms of
hypoglycemia detection, an extensive literature review on the first type helps to identify
important EEG changes under hypoglycemic conditions which can be used as input
parameters for the detecting algorithm. Meanwhile, the second type aims to analyse the
correlation of abnormalities in EEG signals which are induced by the frequent exposure to

hypoglycemia in T1DM patients.

In this section, various studies exploring the association between EEG signals and
hypoglycemia will be reviewed. Besides, results of some recent studies carried out to
develop the alarm system to hypoglycemia using EEG signals will also be mentioned as

references for this thesis.

2.5.2.1 Studies were carried out to discover the EEG changes during hypoglycemia

One of the earliest studies was conducted in 1988 by Pramming et al. to examine the effect
of induced hypoglycemia on the electroencephalogram of 13 patients with type 1 diabetes
(Pramming et al. 1988). No changes were seen in the EEG when the BGL was above 3
mmo/1 (Figure 2.7). The spectral analysis of patients’ EEG signals revealed that at BGL of
2 mmol/l, there is an abrupt drop in alpha activity, accompanied by an increase in theta
activity. The changes were found in all of the patients with the exception of one, and in all

of the EEG channels but most prominently in the frontotemporal region.
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Blood glucose (mmol/l)
1-4 1-4 1-3 2-2 27 57 55

et N A L’\f\z‘“’f Y | :

Figure 2.7: EEG signals at different blood glucose concentrations from one patient

[Adopted from (Pramming et al. 1988)].

In 1990, Tallroth et al. implemented a study to measure and evaluate the influence of
hypoglycemia on the cerebral function before, during and right after insulin-induced
hypoglycemia by exploring quantified EEG, P300 and somatosensory evoked (Tallroth et
al. 1990). The EEG-related results of this study showed that under hypoglycemic
conditions, there are widespread increases of delta and theta activity (0-8 Hz) and an
increase of low frequency alpha activity (8.12-9.62 Hz) anteriorly over the brain, along
with a decrease of high frequency alpha activity (9.75-12.87 Hz) and beta activity (13.0-
19.37 Hz) over the posterior regions. Comparing between a diabetic group of 8 TIDM
patients and a control group of 12 age-matched healthy subjects, it was reported that the
increase of theta activity and the anterior release of alpha activity during hypoglycemia was
more marked in the diabetic group. This study concluded that most of the significant EEG

changes in the present study were found within the anterior areas.

In 1991, Bendtson et al. reported a nocturnal hypoglycemia — associated study with 8

T1DM patients which was implemented in two consecutive and one subsequent night with
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continuous monitoring of EEG (Bendtson et al. 1991). This study aimed to evaluate the
influence of both spontaneous and insulin-induced hypoglycemia on nocturnal
electroencephalogram sleep-patterns. This results of this study showed an increase in delta
and theta activity in EEG signals of only 3 patients at blood glucose levels below 2.0
mml/l. The EEG changes were found equally in all regions of the brain. These changes

were not identical in each patient, however they were reproducible.

Howorka et al. in 1996 reported an important study, investigating the relationship between
EEG parameters of vigilance in response to insulin-induced hypoglycemia in T1DM
patients with different levels of hypoglycemic unawareness (Howorka et al. 1996). From
the point of hypoglycemia detection, this study led to crucial findings which are an early
and immediate reduction in vigilance as well as changes in vigilance-associated EEG
parameters under hypoglycemic conditions. The study established that if these results are
confirmed in further investigations, EEG characteristics of vigilance might be important

tools for predicting the onset of hypoglycemia in diabetic patients.

Another study was conducted by Tribl et al. (Tribl et al. 1996) with the aim of determining
the EEG power spectra in diabetic patients with insulin dependent diabetes mellitus at
different levels of hypoglycemia, and documenting the topographical distribution of the
EEG changes (as shown in Figure 2.8). The results confirmed earlier studies on insulin-
induced hypoglycemia concerning the deceleration of electrical activity with an increase in
delta and theta activity, and a decrease in alpha activity. The changes were reported to be
most pronounced in the theta band and the most sensitive parameter was the alpha/theta
ratio. At the glucose level of 50-60 mg/dl, the increase in delta and theta activity was most
pronounced in later frontal regions. At the lower glucose level, the increase in slow

frequencies appeared in the posterior part of the brain.

In 1998, Bjergaas et al. reported a study exploring quantitative spectral analysis of EEG
signals of children (19 diabetic and 17 non-diabetic) during a gradual decline in plasma
glucose. This study aims to elucidate how EEG signals respond to hypoglycemic
symptoms; to determine the plasma glucose level at which EEG changes first appear; and to

investigate whether the anterior regions of the brain are more sensitive to hypoglycemia
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than other areas (Bjergaas et al. 1998). The results showed that with children, EEG changes
occur already at around 4 mmol/l. At around 3 mmol/l, the glucose level often experienced
by diabetic children, the EEG deterioration is substantial, and appears over the entire

cerebral cortex (as shown in Figure 2.9).
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Figure 2.8: Differences between hypoglycemia and nomoglycemia in type 1 diabetic
patients for absolute EEG power depicted in significance probability maps [ Adopted
from (Tribl et al. 1996)].
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increasing amounts of slow activity at plasma glucose 4.0, 2.9, and 2.1 mmol/l. [Adopted

from (Bjorgaas et al. 1998)].
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2.5.2.2 Studies were carried out to discover the EEG abnormalities during non-

hypoglycemia state in subjects with type 1 diabetes

In 1996, Bjergaas et al. (Bjorgaas, Sand & Gimse 1996) conducted a study to investigate if
EEG signals are affected in diabetic children with and without episodes of severe
hypoglycemia, as well as to test the assumption that the frontal lobe is more sensitive to
hypoglycemia than other cortical areas. In this study, there were 28 children with TIDM
(15 had experienced episodes of severe hypoglycemia — SH patients and 13 had not
experienced such episodes — non SH patients) and 28 age and sex-matched control children.
The study results showed an increased theta activity in the SH group bilaterally in the
frontocentral region and a slight trend toward more delta activity in diabetic children than
control children bilaterally in the occipital electrodes. The relative alpha amplitude was
decreased in the SH group at several locations. The study supported the hypothesis that the

frontal lobe is especially vulnerable to hypoglycemia.

Another study conducted in 2002 by Brismar et.al aimed to investigate signs of brain
dysfunction in T1DM patients by exploring quantitative EEG parameters in 49 TIDM
adults (with good glycemic control and without history of recurrent hypoglycemia) and 51
control subjects. The study established that its most pronounced finding was a loss of fast
oscillations (alpha, beta, gamma) in both posterior temporal regions in diabetic patients
(most significant for beta activity p<0.001). There also was a decrease in beta activity
bilaterally in the anterior temporal and occipital regions as well as a slight slowness of theta

alpha peak frequency.

Hyllienmark et al. in 2005 reported a study to identify whether adolescents with TIDM
have EEG abnormalities (Hyllienmark et al. 2005). The study population included 35
T1DM patients with disease duration of 7.6+4.6 years and 45 healthy control subjects.
Compared with control subjects, the EEG signals from diabetic patients showed an increase
in slow activities (delta and theta) and a reduction in alpha peak frequency, both of which
was most pronounced in the frontal regions. The results of this study also showed a
decrease in fast activity (alpha, beta and gamma), which was most pronounced bilaterally in

the posterior temporal regions.
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2.5.2.3 Recent studies carried out to develop the alarm system to hypoglycemia using

EEG signals

An extensive literature review on the correlation between EEG signals and hypoglycemia
has shown a potential possibility of developing a hypoglycemia-monitoring system for
T1DM patients from their non-invasive EEG signals. This section provides a brief review
of several recent studies that have been carried out with the aim of developing real-time

systems that can detect hypoglycemia using EEG signals.

In 2005, Laione and Marques proposed a methodology of hypoglycemia detection based on
EEG signals (Laione & Marques 2005). This study developed a system to acquire, process
and analyse EEG signals from subjects and then used EEG parameters to classify the state
of patients into hypoglycemia or non-hypoglycemia. The classifying technique used in this
study was neural network. This study led to the result of 49.2% accuracy rate, 76%
sensitivity and 32.5% specificity when the neural network was trained and validated with
different subject groups. These results showed that hypoglycemia can be detected using
EEG signals. However, the proposed methodology needs to be developed further to
enhance the performance. To do this, this study proposed that this system would need to be
calibrated by acquiring trial EEG signals during some spontaneous episodes of
hypoglycemia together with the corresponding blood glucose levels. Obviously, this is not a
good solution because it is not an easy procedure for patients, especially since the data
needs to be under real hypoglycemic conditions. With the reported results and limitations,
this system apparently needs to be improved to get a more advanced method. However,
since being published in 2005, this study has not been further developed and elaborated to

apply to the clinical environment.

Most recently in 2010, Juhl et al. reported a study to test the hypothesis that specific
changes in the electroencephalogram during hypoglycemia can be recorded by
subcutaneous electrodes and processed by a general mathematical algorithm (Juhl et al.
2010). Although currently, this study has been continuously developed to produce a real-
time system that can detect hypoglycemia using EEG signals from the brain, it encounters a
great disadvantage of using implanted electrodes to record EEG signals. It is obvious that
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this technique, with a troublesome surgical procedure of implanting and regular replacing
electrodes, along with a high risk of infection, could not be a good solution for patients,

especially for those who are young.

2.5.2 Computational Intelligence for EEG-based hypoglycemia detection

In recent years, with the rapid growth of computer technologies, Computational
Intelligence (CI) has played an important role in the development of fundamental research
as well as real-life applications. Basically, CI is a set of nature-inspired computational
methodologies and approaches which aim to deal with complex problems to which
traditional methods are ineffective or unfeasible. Primarily it covers the subjects of artificial
neural networks, fuzzy logic, evolutionary computation and the combination of them in
various real-world applications. In the field of biomedical engineering and technology, CI
has made promising and essential contributions in developing biomedical systems that aim

to detect human health problems as well as assist people with disabilities.

Since the first form was introduced in 1943 (McCulloch & Pitts 1943), neural networks
(NNs) have grown progressively to be employed popularly in the biomedical area as a
powerful tool of classification and pattern recognition. Different neural network — based
algorithms have been developed to be used as a classification platform in various

biomedical applications:

e Monitoring drowsiness and detecting the onset of fatigue in drivers (King, Nguyen
& Lal 2006; Subasi & Kiymik 2010).

e Finding free spaces, performing obstacle avoidance and controlling travel directions
of power wheelchair to assist patients with disabilities (Nguyen et al. 2012; Nguyen
2008).

e Detecting the freezing of gait in patients with Parkinson's disease (Cole, Roy &
Nawab 2011; Handojoseno et al. 2012).

e Early diagnosis of skin cancer (Ercal et al. 1994; Sigurdsson et al. 2004); breast
cancer (Karahaliou et al. 2008; Woten, Lusth & El-Shenawee 2007), etc.
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Recently, studies implemented at the Centre for Health Technologies, University of
Technology Sydney, Australia have shown the effectiveness of employing various CI
algorithms to detect the onset of nocturnal hypoglycemia for patients with type 1 diabetes
mellitus (T1DM) using physiological parameters including skin impedance, heart rate and a
variety of cardiac outputs from electrocardiographic (ECG) signals. In 1999, Ghevondian
and Nguyen first introduced the use of a neural network algorithm in modelling of patients’
blood glucose profiles (Nguyen, Su & Nguyen 2011). This study has been leading to the
successful production of the HypoMon® System which is a non-invasive alarm for night
time hypoglycemic episodes. This HypoMon® System has been reported to employ an
effective Bayesian neural network as the classification unit to detect the onset of
hypoglycemic episodes in TIDM children (Nguyen, Ghevondian & Jones 2009). Most
recently, the combinations of neural network with evolutionary algorithms were also
reported to be effective tools in detecting hypoglycemic episodes from physiological

parameters (Nguyen et al. 2012; Nguyen et al. 2013a).

Using electroencephalography (EEG) signals to detect hypoglycemic episodes is a new
approach which has been shown to be a feasible and effective solution for patients with
T1DM. To do this, the methodology consists of two main computational tasks which are
EEG feature extraction and classification. Using extracted parameters from EEG signals as
inputs, the classification algorithm determine that the patient’s current state is
hypoglycemia or non-hypoglycemia. Recent studies have shown that neural network, as a
powerful classification unit, can potentially identify hypoglycemic episodes in T1DM
patients (Juhl et al. 2010; Laione & Marques 2005). With reported classification results and
limitations, these two studies need to be improved further to achieve better performance in

order to be applied into the real clinical environment.

39



Chapter 2 Literature Review

2.6 Discussion

Type 1 diabetes mellitus (T1DM) is a chronic illness characterized by the body’s inability
to produce insulin due to the autoimmune destruction of the beta cells in the pancreas. This
type of diabetes is most common in juveniles, but it can also develop in adults in their late
30s and early 40s. TIDM patients depend indefinitely on the external insulin treatment to
maintain their targeted blood glucose levels throughout their whole lives. However, this
treatment brings extreme burdens for most patients and their families, due to the fear of the
most common but dangerous complication which is hypoglycemia (or low blood glucose
level). Hypoglycemia has been recognized to impact all patients with T1DM, impairing
their quality of life and limiting attempts to achieve desired targets for glycemic control.
Episodes of nocturnal hypoglycemia, in which symptoms can be obscured by sleep, may

lead to significant anxiety and morbidity, especially for TIDM children and their families.

Due to the prevalence and severity of hypoglycemia in patients with TIDM, a variety of
studies have been carried out, using different methods to produce systems that can monitor
patients’ blood glucose profiles, detect the onset of hypoglycemic episodes and give alarm
to patients as well as caregivers. Some of them require gradually taking patients’ blood
samples to determine the blood glucose level (BGL). This method gives relatively exact
information about hypoglycemic status. However, taking blood is uncomfortable for
patients, and very inconvenient to monitor continuously, especially during the night. A non-
invasive technique is obviously a better solution for these disadvantages. Currently, on the
market, there are some devices which monitor hypoglycemia non-invasively using
physiological parameters such as heart rate, skin impedance and electrocardiogram (ECG)

parameters.

Under the occurrence of hypoglycemia, the human brain is one of the first affected organs.
Because it cannot synthesize as well as store this primary metabolic fuel, the brain depends
on a continuous supply of glucose and is vulnerable to any glucose deprivation (Cryer,
Davis & Shamoon 2003). Since the electroencephalogram (EEG) is directly related to the
metabolism of brain cells, a failure of cerebral glucose supply can cause early changes in
EEG signals. A number of studies have reported important traces in EEG signals induced
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by hypoglycemic episodes in TIDM patients (Bjergaas, Sand & Gimse 1996; Howorka et
al. 1996; Pramming et al. 1988). Recent studies also lead to acceptable results which show
the potential ability of detecting hypoglycemia from EEG signals (Juhl et al. 2010; Laione
& Marques 2005). Nevertheless, to our knowledge until now, none of these studies has
been elaborated towards the aim of producing a monitoring and alarm system which can

detect hypoglycemia from non-invasive EEG signals.

This research is the first stage of the project currently implemented at the Centre for Health
Technologies, University of Technology Sydney which aims to develop a system that can
detect the onset of hypoglycemic episodes from EEG signals, and then give an alarm to
provide enough time for patients and caregivers to take action. The main objective of this
thesis is to design a computational methodology to detect nocturnal hypoglycemic episodes
for TIDM patients from their EEG signals. There are two core parts contained in the
developed computation methodology, including the signal analysing and feature extraction
part, and the classification part. The developed methodology in this thesis is based on two
important criteria for developing real-life applications which are high performance and

saving computational cost.
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Chapter 3

Identification of Hypoglycemic States for Patients with

T1DM using EEG Signals

3.1 Introduction

Hypoglycemia, or abnormally low blood glucose level (BGL), is the most common but
dangerous complication of the intensive insulin therapy for patients with type 1 diabetes
mellitus (T1DM). Recurrent exposure to hypoglycemic episodes impacts the life quality of
all TIDM patients, limits their intellectual as well as physical activities, and potentially
causes irreversible and severe effects, such as cognitive impairments, seizures, coma, and

even death.

Under the occurrence of hypoglycemia, the human brain is one of the first affected organs.
Because it cannot synthesize as well as store this primary metabolic fuel, the brain depends
on a continuous supply of glucose and is vulnerable to any glucose deprivation (Cryer,
Davis & Shamoon 2003). Since the electroencephalogram (EEG) is directly related to the
metabolism of brain cells, a failure of cerebral glucose supply can cause early changes in

EEG signals which can be non-invasively detected in order to identify hypoglycemic
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episodes in TIDM patients. A number of studies have reported important traces in EEG
signals induced by hypoglycemic episodes in TIDM patients (Howorka et al. 1996;
Hyllienmark et al. 2005). Recent studies also lead to acceptable results which show the
potential ability of detecting hypoglycemia from EEG signals (Juhl et al. 2010; Laione &
Marques 2005). Nevertheless, all of these results need to be improved further in order to be

applied into the real clinical environment.

The core objective of this chapter is to build up a computational framework for detecting
hypoglycemia from non-invasive EEG signals for patients with TIDM. The developed
framework consists of two main parts which are EEG feature extraction and classification.
The raw data collected from five TIDM patients will be processed to get rid of unwanted
noises before being analysed to extract important EEG parameters or features. The
extracted EEG features will be used as inputs of a classification unit in order to detect the

onset of hypoglycemic episodes.

Specifically, the feature extraction part aims to explore physiological responses of EEG
signals during an insulin-induced nocturnal hypoglycemic study of five TIDM patients.
The association between different EEG spectral parameters and the transition of patients’
states during the study will be analysed. More explicitly, the correlation between four
spectral EEG parameters from four different EEG channels and patients' conditions during
the whole study including three different phases of Normal, Hypoglycemia and Recovery
will be investigated. The data within the BGL range of 3.3-3.9 mmol/l (60-70 mg/dl whole
blood glucose) will also be analysed to figure out the EEG responses to the potentially early
onset of hypoglycemia. Based on those analyses, EEG parameters which are most sensitive

to hypoglycemia will be established.

Using extracted EEG features as inputs, a classification algorithm for detecting the
occurrence of hypoglycemic episodes will be developed. In this chapter, a standard neural
network is created for the classification purpose. The Levenberg-Marquardt algorithm is
applied to train the neural network. Classification performance will be determined in order
to evaluate the potentiality of the detection of hypoglycemic episodes from EEG signals for
patients with TIDM.
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3.2 Methodology

3.2.1 Study protocols

All analyses of this thesis are based on the data from an overnight glucose clamp study
which was implemented at the Princess Margaret Hospital for Children in Perth, Australia.
There were five TIDM adolescents (between the ages of 12 and 18 years old) who
participated in the study. The HbAlc levels of these patients were within the range of 6.5%
and 8.9%. All experienced occasional mild hypoglycemia, as is usual during the course of

treatment in adolescents with TIDM.
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Figure 3.1: Target BGL profile of the induced hypoglycemia study

The target BGL profile of the study is plotted in Figure 3.1. Each patient underwent an
overnight study which consisted of five phases approximately: baseline (around 30 minutes
before insulin infusion, which is used for reference only), euglycemia (AB), ramp (BC),
hypoglycemia (CD), and recovery (DEF). In this study, hypoglycemia is defined as blood

glucose levels lower than 3.3mmol/l (equivalent to 60 mg/dl whole blood glucose).
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During the study, EEG signals were continuously recorded and stored by using a
Compumedics Siesta System with the sampling rate of 128 Hz. EEG electrodes were
positioned at 4 channels O1, O2, C3 and C4 according to the International 10/20 system,
referenced to Al and A2, respectively (as shown in Figure 3.2). There were also 2
electrodes placed at patients’ chins to acquire the electro-myogram (EMG) signals and 2
electrodes placed near patients’ eyes to measure the electro-oculogram (EOG) signals. The
actual BGLs were routinely collected to be used as reference using Yellow Spring

Instruments with the general sampling period of 5 minutes.

The patients’ sleep state was monitored during the study. It was determined that with dim
lighting and experienced nursing and medical staff, arousal or activation was not a
complicating factor. Also, it was concluded that the sleep quality of all patients was not

impaired by the performance of these clamp study protocols.

All data used in this thesis were collected with the approval of the Women’s and Children’s
Health Service, Department of Health, Government of Western Australia, and with

informed consent.
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Figure 3.2: Electrode positions in the study
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3.2.2 EEG feature extraction for identifying hypoglycemic states in TIDM

patients

After collecting data from the clinical hypoglycemia-associated study, raw EEG

signals from patients need to be processed to extract important parameters that can

be used to identify the state of hypoglycemia. Thanks to this step of processing,

extracting and analysing EEG parameters, significant features can be acquired to be

used as inputs of the classification algorithm for detecting hypoglycemia. A diagram

of implementing feature extraction in this thesis is provided in Figure 3.3. Details

about each task are presented in sections 3.2.2.1- 3.2.2.3.
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Figure 3.3: EEG feature extraction procedure

(P : Power ; CF : Centroid frequency ; SV : Spectral Variance ; SE : Spectral Entropy)
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3.2.2.1 Signal processing

EEG rhythms are often mixed with other biological signals, for instance EMG and EOG
signals. The presence of these signals and other noise makes analysing EEG signals
difficult. Thus, to enhance the system’s performance, noise and unexpected artifacts need to
be eliminated. To do this, in this study, raw EEG data are filtered by using an IIR highpass
filter with a cut-off frequency of 2 Hz to get rid of low frequency artifacts and a notch filter
at 50Hz to remove power noise. A visual artifact rejection method is applied to exclude
epochs contaminated with artifacts. Segments containing significant artifacts are discarded,

based on EMG and EOG signals.
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Figure 3.4: 10-second segment of raw EEG signals
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Figure 3.5: 10-second segment of EEG signals after being filtered
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After being filtered, at each blood sampling point, a 40-second epoch of non-artifact EEG
signals is extracted. Each epoch is labelled as Normal, Early Onset, Hypoglycemia or
Recovery based on the corresponding phase of the study. Referring to Figure 3.1, each state

is defined as shown in Table 3.1.

Table 3.1: Definition of patients' states

State Corresponding Corresponding segment
Blood glucose level in Figure 3.1
Normal > 3.9 mmol/l ABBI1
Early Onset 3.3 - 3.9 mmol/l B1C
Hypoglycemia < 3.3 mmol/l CD
Recovery > 3.3 mmol/l DEF

Spectral analysis is applied to explore EEG signals in frequency domain. In signal
processing, the Fourier Transform is the most common technique which provides the means

of transforming a signal x(¢z) defined in the time domain into X( /) defined in the frequency

domain:

X(f)= [ x(e)e > dt (3.1)

In the case where both the time and frequency are discrete variables, the Discrete Fourier

Transform (DFT) is applied:

X(mF)=Y x(nT)e ™" (3.2)

Considering the computational cost, the Fast Fourier Transform (FFT) is applied in this
thesis to transform the EEG signals into frequency domain. Basically, FFT is a common
technique of implementing the DFT with considerable savings in computational time. By
using Fast Fourier Transform (FFT), the relationship between epoch length and frequency

resolution is inversely proportional. A longer epoch length of signals in time domain leads
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to a higher frequency resolution, allowing better identification of small shifts in EEG power
spectrum. On the other hand, a longer epoch length results in a reduced number of data
points available for analysing and an increase in time delay. This time delay is an essential
factor for real-time systems, especially applications related to detecting health problems as
in this thesis. Therefore, choosing a suitable epoch length plays an important role in
analysing EEG signals. To do this, five different epoch lengths will be explored. The
filtered 40-second epochs of EEG signals are subdivided into smaller segments of 5

different cases as follows:
(1) segments of 1-second
(i1) segments of 2-second
(ii1) segments of 5-second
(iv) segments of 10-second
(v) segments of 20-second

By applying FFT, these segments are transformed into frequency domain which results in

the power spectrum P(f;) for each segment. With the EEG sampling frequency of 128Hz,

the frequency resolutions of the power spectrum are 1Hz, 0.5Hz, 0.2Hz, 0.1 Hz, and
0.05Hz, corresponding to epoch lengths of 1-second, 2-second, 5-second, 10-second and
20-second respectively. The power spectrum P(f;) is then subdivided into different
frequency bands. In this thesis, the delta frequency band is not analysed because of its
inherent characteristic of high artifact contamination. As a result, from the power spectrum
of each EEG segment, three frequency bands will be obtained, including theta (: 4-8Hz),
alpha (a: 8-13 Hz) and beta (f: 13-30Hz).
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3.2.2.2 Feature extraction

The main aim of implementing feature extraction is to analyse the responses of various
EEG parameters to hypoglycemic episodes and explore important features which can be
used as inputs for the algorithm of hypoglycemia detection. This is an essential part in
developing a system to detect hypoglycemia because valuable parameters can significantly
enhance the success of the detection algorithm. However, this step has been skipped in
previous studies of diagnosing and detecting health problems from EEG signals, including
the application of detecting hypoglycemia (Juhl et al., 2010; Laione & Marques 2005).
These studies usually stopped at employing the peak amplitude of each frequency bin of the
EEG power spectra or the power level of frequency bands. This may lead to noisy input to
the classification algorithm because of the highly unpredictable characteristic of EEG

signals.

In this thesis, to characterize the spectrum within each band, EEG parameters are selected
based on three main reasons: (i) the parameters have been proposed as valuable features in
a variety of EEG research; (ii) the calculation of these parameters is straightforward and
computationally efficient; (iii) the parameters give reliable results in the cases of analysing
short EEG segments (1-second; 2-second; 5-second; 10-second; 20-second) thus being
applicable in real-time patient monitoring systems, like in the application of detecting

hypoglycemia.

As a result, from the power spectrum of each frequency band, four different EEG

parameters are estimated as follows:

e Sub-band Power (P): The power level within each frequency band has been shown

as a common feature in EEG research. Previous studies indicated that there were
changes in the power level of theta and alpha bands caused by hypoglycemia
occurrence (Bendtson et al. 1991; Bjergaas et al. 1998; Howorka et al. 1996;
Pramming et al. 1988). In this thesis, the power level within each frequency band is
estimated from the power spectrum P(f;) by using a numerical integration

technique (the trapezoidal rule).
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Centroid Frequency (CF): The centroid frequency of each frequency band can be

interpreted as the center of gravity of the spectrum within each band (Dustman,
Shearer & Emmerson 1999). It is estimated as the frequency which subdivides the

area under the spectral curve within each band into identical parts.

D P

The centroid frequency of alpha band has been drawing attention from a number of
EEG studies in different areas. In many research areas, the alpha frequency activity
was often represented by using peak alpha frequency (PAF) which measures the
discrete frequency with the highest magnitude within the alpha range. Previous
studies have indicated that PAF increased from infants to adults, and then started to
decline with age (Niedermeyer 1999; Richard Clark et al. 2004; Stroganova,
Orekhova & Posikera 1999). Centroid alpha frequency, which measures the center
of gravity rather than the peak, within boundaries of the alpha band has been shown
to be a more accurate measure of the distribution of alpha band than PAF (Klimesch
1997). Estimating the centroid frequency within the boundary of alpha frequency
for each individual and calling it the individual alpha frequency (IAF), Klimesch
and his group reported that this feature relates to response time and speed of
processing information (Klimesch et al. 1996), as well as cognitive and memory

performance (Klimesch 1999).

Spectral Variance (SV): This feature is a measure of how the power spectrum is

spread out within each frequency band (Dustman, Shearer & Emmerson 1999). This
is a good indicator of changes in the power spectrum distribution of each frequency

band.

> EP(S)
V=»te——-CF
2P

2 (3.4)
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e Spectral Entropy (SE): This feature is a measure of the distribution of normalized

power spectrum within a frequency range. This feature reflects the distribution in
the power spectrum. It reaches to maximum when all frequencies in the power
spectrum have the same power level. In the case that power spectrum concentrates

in a smaller frequency range, the SE will decrease.

SE=—

|
— ;IZ (f)logP, (f;) (3.5)

where N, is the number of frequency bins within each frequency band.

As a result, a total of 48 EEG features (4 different features x 3 frequency bands x 4
channels) are estimated for each epoch. The vector of extracted features for each epoch is
considered as a data point. For comparison and classification purposes, four sets of data are
extracted, corresponding to four states of patients during the study, including Normal, Early
Onset, Hypoglycemia and Recovery. Referring to Figure 3.1, Normal is defined as segment
ABBI, Early Onset is defined as segment B1C, Hypoglycemia is defined as segment CD
and Recovery is defined as segment DEF. To reduce the variability in data, each final data

point in each set is estimated as the average of two consecutive non-overlapping points.

3.2.2.3 Statistical analysis

After being extracted, statistics is applied to compare and determine the significance of
changes in EEG parameters under the transition of patients’ state during the glucose clamp
study. First, descriptive analysis is carried out to assess each parameter’s data distribution
like mean, standard deviation, normality, skewness, etc. To compare EEG responses
between three different states of Normal, Hypoglycemia and Recovery, analysis of
differences between pairs of groups is performed using f-test for features with normal
distribution and the nonparametric Wilcoxon test for features with non-normal distribution.
The correlations between EEG parameters and actual BGLs during the study are also

analysed by using a nonparametric ranking test.
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Besides, statistical analysis is also implemented with the data from Early Onset data set
which corresponds with BGL range of 3.3-3.9 mmol/l to explore the differences of EEG
responses at two BGL thresholds of 3.3 mmol/l and 3.9 mmol/I.

In all analyses, probability values (p-values) less than 0.05 are considered to be significant.

3.2.3 Standard neural network for hypoglycemia detection

An artificial neural network (conventionally named a neural network) can be defined as a
mathematical model inspired by the human nervous system which is used for modelling
complex non-linear relationships between inputs and outputs or to find patterns in data.
Generally, it is a network of simple processing elements (neurons) which exhibits complex
global behaviour determined by the connections between the processing elements as well as
between parameters of these elements. By learning from observed or training data, neural
networks can adjust and generalise its structure during a training phase. This approach has
been employed popularly in various complex biomedical applications as a powerful tool of

classification and pattern recognition.

3.2.3.1 Neural network structure

Since the first form of neural network (the McCulloch-Pitts threshold neuron) was
proposed in 1943 (McCulloch & Pitts 1943), a variety of neural network structures has
been developed. Single-layer neural networks, with threshold activation functions, were
presented by Rosenblatt in 1958 who called them perceptrons (Rosenblatt 1958). At the
same time as Rosenblatt introduced the perceptron, Widrow and co-workers also worked
along a similar direction to introduce the adaptive linear element (Widrow & Hoff 1960).
This is a single processing unit with threshold non-linearity which is essentially the same as
the perceptron. It became clear later that these kinds of single-layer neural networks are

incapable of handling non-linear separation problems.
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Until now, a variety of network topologies have been also introduced with the aim of
enhancing the performance of function approximation and learning capability of neural
networks. The multilayer feed-forward neural network is the most popular network
topology which is constructed by multiple layers of perceptrons (Widrow & Lehr 1990).
The feed-forward network mapping allows data to travel one way only from input layer,
through hidden layers to output layer. The number of units (or neurons) in the input layer
and output layer is determined by each unique application. The number of hidden layers
and the number of neurons in each hidden layer are determined by different factors like the
developer’s experience, the application’s requirement. Recently, different statistical
theories (such as Bayesian theory) as well as evolutionary algorithms have been applied to
develop frameworks to find the most proper structure of neural networks (Leung et al.

2003; Mackay 1992; Penny & Roberts 1999).

In this thesis, considering the final aim of developing a real-time detecting system which
requires reducing the computational cost, a neural network with feed-forward three-layer
topology is developed and employed as the classification unit. The structure of the neural
network is shown in Figure 3.6. There are three layers in the network. The input layer
includes features extracted from EEG signals. The output layer consists of one output node.
The desired output (or target) is set at 1 in case of hypoglycemia and -1 in case of non-

hypoglycemia.
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Figure 3.6: Neural network structure

From Figure 3.6, the input-output relationship of the developed neural network can be

written as follows:

i=1

s R
y= Zvitansig {Z(Wyx . —by ):l -b, (3.6)

where

e Sis the number of hidden nodes

o v;,i=12..,85,1s the weight of the link between i-th hidden node and the output

e R is the number of inputs

e w;, i=1+S§,j=1+R,is the weight of the link between i-th hidden node and
the j-th input.

e b4, b, are the biases for the hidden nodes and output nodes respectively.
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e The total number of network parameters is calculated as:

Number of parameter = (R+1)*S+S+1

3.7
=(R+2)*S+1
e fansig is the hyperbolic tangent sigmoid transfer function of hidden layer
tansig(a) = % (3.8)
e +e

e Transfer function of output layer is a linear function: y(a)=a

3.2.3.2 The Levenberg-Marquardt algorithm for training neural network

One of the most important issues in developing neural network is the learning or training
process of the network. Training a neural network essentially means finding a set of
network parameters that optimise a cost function in order to achieve the best network
performance. Most of the algorithms used in training artificial neural networks employ
some forms of gradient descent. This is done by simply taking the derivative of the cost
function with respect to the network parameters and then changing those parameters in a

gradient-related direction.

The Levenberg-Marquardt algorithm is a well-known algorithm for training neural
networks which estimates the second directional derivative of the cost function in order to
direct the training process to a local minimum. It has become a standard technique for non-
linear least-squares problems, widely adopted in various disciplines for dealing with data-
fitting applications. In this chapter, the Levenberg-Marquardt algorithm is selected to be
used as the network training algorithm because it is one of the fastest training methods and
provides a steady convergence capability for the network training process. Details about the

algorithm are provided as follows.
Let the input vector be x and its associated targeted output vector be ¢ and suppose that the
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neural network produces an actual output vector of ). An objective cost function which
will be used to train the neural network is defined as the squared error E(w)=(y —¢)’. This

function can be expressed in a quadratic form as follows:

E(w) =§Z{y(x”,w>—r"}2
K (3.9)

= Z e’ (w)y=e" (w)e(w)

n=1
where N is the number of data points of the training set.

The aim of the Levenberg-Marquardt algorithm is to compute the network weight vector w

at which E(w)is minimum. To do this, the weight vector w, , will be updated from the
previous weight vector w, based on the second-order Taylor series as follows:
OE(w,) A 1

T
w, +=Aw,

2

azE(Wk) AW

E(w,,)=Ew,+Aw, )= E(w,)+ e A

(3.10)

A local minimum of the error function can be reached by taking the gradient of the function

with respect to Aw, and setting it equal to zero, leading to:
W, =w+A'g, (3.11)

where g, = VE(w) | and 4, = V2E(w)|

w=w ’ w=wy

Both the gradient and the second order of the error function would be obtained through the

application of the chain rule and the multiplication rules.

First, the gradient would be:

VE(w) = 2ZE0D 2 73 o) 200 (3.12)
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In the matrix form:
VE(w)=2J"(w)e(w) (3.13)

where J(w) is the Jacobian matrix which can be expressed as:

[ Oe,(w) de,(w)  de,(w) |
e o "
oe,(w) Oe,(w) oe,(w)
Jow=| ow,  ow,  ow,
de, (w) Oe, (W) de, (w)
L a‘/VI aWZ a‘/Vn .

Next, the second order of the error function forms the Hessian matrix whose k, j element

would be:

[viEon], =22 i{a;;w) a;fvw) e T } (3.14)
In the matrix form:
A=V’F(w)=2J"(w)J(w)+2S(w) (3.15)

where S(W) = ZN: €i(W)Vzei(W)

i=1

It is usually reasonable to assume that errors in the training set are fairly independent and

identically distributed around a mean of zero. Thus, the term S(w) can be ignored, and the

Hessian matrix can be approximated as follows:

V?F(x)=2J" (w)J(w) (3.16)
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Substitute equation (3.15) and equation (3.16) into the equation (3.11), we obtain:

Weor =w [T )T ] I (w)ew,) (3.17)

This update method is known as Gauss-Newton. Its advantage over the standard Newton’s
method is that it does not require calculation of second derivatives. However, the matrix
Hessian 4=J"J might not be invertible. In order to overcome this, an invertible

approximate Hessian matrix is introduced:
G=A+ul (3.18)

where / is a unit matrix and £ is the scaling factor that will be updated during the training

process.

By increasing £/ until a large enough number, the matrix G is certainly invertible, and

this leads to the Levenberg — Marquardt algorithm:

Wy =W =[ T 0 TOw) + | T (w)e(w,) (3.19)

or

Aw, =T w) Tw) + I | T (w)e(w,) (3.20)

In summary, for the purpose of training neural networks, the procedure of the Levenberg —

Marquardt algorithm which aims to minimize the cost function E(w)can be presented as

follows:

i.  Compute E(w,)
ii.  Initialise g, with a small value
iii.  Solve for w,_, to compute E(w,,,)

iv. If E(w,,,)> E(w,) then increase u, by a factor of y (e.g y = 10), then go to 1i1.
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v. If E(w,,,) < E(w,)then decrease y, by a factor of y, then go to iii.

3.2.3.3 Cross-validation technique for training neural network

Generalisation is one of the most important factors when assessing the performance of
neural network. In terms of classification, the generalisation of a network means that after
being trained, the network could classify data from the same class as the learning data that
it has never seen before. Ideally, the network is trained until a desired target of cost
function is gained. However, this process may lead to a prominent shortcoming of training
algorithms which is over-fitting (or overtraining). This is the situation when the network is
over-trained (training time is too long, the training cost function is forced to be a very small
value). In this case, the performance of neural network on the training data has still
improved while the performance on unseen data becomes worse, leading to a poor ability

for generalisation of the network (as shown in Figure 3.6).

In order to constrain the limitation of over-training network and enhance the network
generalisation, in this thesis, the cross-validation technique is applied. To do this, the
available data are divided into three separate subsets: a training set, a validation set and a
testing set. The training set is used to train the network by updating the network weights
and biases through minimizing a cost function (error function). During the training process,
the error function on the validation set is also monitored. The validation error normally
decreases during the initial phase of training, as does the training set error. However, when
the network begins to over-fit the data, the error on the validation set typically begins to
rise while the training error still decreases (the Over-fitting point on Figure 3.6). When the
validation error increases for a specified number of iterations, the training is stopped, and
the weights and biases at the minimum of the validation error are returned as the final
network parameters. The testing set is separated with the other two subsets and only used
for testing the performance of the final network as a data set which is totally unseen by the

training process.
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Figure 3.7: Neural network over-fitting

3.2.3.4 Definition of classification performance

Sensitivity and specificity

After being trained by Levenberg-Marquardt algorithm and cross-validation technique, the

final structure and parameters (including w, ; b, ;

v,;b, as presented in section 3.2.3.1) of
the developed neural network are determined. The classification performance of the final
network will be estimated by evaluating the sensitivity and specificity of the neural network
on each data set. Specifically, for the application of detecting hypoglycemic episodes, two

criteria of sensitivity and specificity are defined as follows:

e P
Sensitivity = ——
TP+ FN (3.21)
Specificit __ IV |
P 4 TN+ FP

where:
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True Positive (7P) is the number of hypoglycemic episodes which are correctly

classified as hypoglycemia

e True Negative (7N) is the number of non-hypoglycemic episodes which are

correctly classified as non-hypoglycemia.

e False Positive (F#P) is the number of non-hypoglycemic episodes which are wrongly

classified as hypoglycemia

e False Negative (FN) is the number of hypoglycemic episodes which are wrongly

classified as non-hypoglycemia.

In effect, sensitivity and specificity represent two types of accuracy: sensitivity is the
accuracy for actual hypoglycemic cases and specificity is the accuracy for actual non-
hypoglycemic cases. These two parameters are important criteria for assessing performance
of diagnosing and detecting human health problems. In most cases, the compromise
between these two parameters needs to be considered in order to achieve unique

requirements of each application.

In the application of hypoglycemia detection for TIDM patients, especially for patients
with hypoglycemic unawareness, the sensitivity, which represents the rate of correctly
detecting hypoglycemic episodes, is more important than the specificity. By selecting the
linear transfer function y(a)=a for neural network output layer (as presented in section
3.2.3.1), the trade-off between sensitivity and specificity can be adjusted in order to satisfy
the mentioned demand of the application by means of plotting the Receiver Operating

Characteristic curve for the combined training and validation set.
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Receiver Operating Characteristic Curve

By definition, a Receiver Operating Characteristic curve (ROC curve) presents the
compromise between the true positive rate versus false positive rate (equivalently,
sensitivity versus 1—specificity) for different thresholds of the classifier output (Figure 3.8).
That means each point on the curve is corresponding to one specific output threshold.
Utilizing the characteristic of compromising between sensitivity and specificity for each
output threshold, ROC curve is used to find the output threshold that can lead to the desired
classification performance. It is noted that in the application of hypoglycemia detection, the
sensitivity, which represents the rate of correctly detecting hypoglycemia episodes, is more
important than the specificity. Therefore, in this thesis, based on the plotted ROC curve, a
criterion for output threshold is set at the point producing classification sensitivity of 80%.
This procedure leads to desired sensitivity and relatively low but reasonable specificity for

the application of hypoglycemia detection.

The area under ROC curve (AuC) is also an important measure that presents the
performance of the classification. This parameter can be used to compare the performance
of different classifiers which are trained by using the same training set. The higher the AuC,
the better the classifier. A random classification gives an AuC of 0.5, while an ideal
classification gives an AuC of 1 (as shown in Figure 3.8). In this thesis, besides sensitivity

and specificity, AuC is also used as a criterion for assessing classification performance.
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Figure 3.8: ROC curve

3.2.3.5 Selecting the number of hidden nodes for neural network

Determining the size of the hidden layer is an important issue when developing feed-
forward multi-layer neural networks in real-life applications. It is obvious that a smaller
network size will help reduce the computational cost which is one of the main factors to be
considered when developing real-time systems. However, a neural network with a small
structure may have less power in modelling the input-output function. On the other hand, a
too big architecture may lead to a huge computation cost as well as over-fitting which
causes bad fitting when totally unseen data are applied to the neural network. In practice,
the size of the hidden layer or the number of hidden nodes is usually determined
experimentally based on the dimension of the input and output spaces as well as on the

different requirements of each application.
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In this thesis, in order to determine the hidden layer size which can produce better
performance, the number of hidden nodes is varied from 1 to 15. As a result, 15 different
neural network architectures are developed and trained by using the same training set with
the same training procedure using the Levenberg-Marquardt algorithm and cross-validation
technique. ROC curve is plotted for each case in order to select the output threshold of each
classifier. Comparisons between developed neural networks are made based on the
classification performance of AuC, sensitivity and specificity. In order to make the
comparison easier, the cut-off point that produces a sensitivity of 80% will be selected as
the output threshold for each neural network. With the same sensitivity, the higher AuC and

specificity lead to the higher performance of the neural network.
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3.3 Results

3.3.1 Blood glucose profile of patients during the glucose clamp study

During the glucose clamp study which was implemented at the Princess Margaret Hospital
for Children in Perth, blood glucose levels (BGLs) of five TIDM patients were collected
with the blood sampling period of 5 minutes. Details of the study protocols are described in
Chapter 3, section 3.2.1. The BGL profile of each patient is used as reference to determine
the corresponding state of the patient at each blood sampling point. The definition of each
state is provided in Table 3.1. The actual BGL profiles of five patients are plotted in Figure
3.9.
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Figure 3.9: Blood glucose level profiles during the glucose

clamp study of five TIDM patients

3.3.2 EEG feature extraction results

The main objective of implementing feature extraction is to analyse the responses of
various EEG features or parameters in order to determine the most important features that

significantly change under hypoglycemic conditions. These extracted EEG features later
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will be employed as inputs of classification algorithms for detecting hypoglycemic

episodes. In order to do this, three steps of analysis are carried out:

e First, group comparisons between three phases of the clinical hypoglycemia-
associated study including Normal, Hypoglycemia and Recovery will be
implemented. The correlation of each EEG parameter with the BGL transition
during the insulin-induced study will be explored to reassure the results of group

comparisons.

e Second, EEG parameters with 5 different epoch lengths of 1-second, 2-second, 5-
second, 10-second and 20-second are analysed to find the most suitable epoch

length of signals for the application of detecting hypoglycemia.

e Third, data at the BGL range of 3.3-3.9 mmol/l (which is named as the Early Onset
phase of the study) will be analysed to figure out the responses of EEG parameters
to the potentially early onset of hypoglycemia as well as to find a BGL threshold to

distinguish between non-hypoglycemic and hypoglycemic states.

3.3.2.1 Responses of EEG parameters to different blood glucose levels during the

glucose clamp study

As presented in section 3.2.2.2, at each EEG channel, 12 EEG parameters are extracted
from the data acquired during the overnight glucose clamp study and categorized into three
groups corresponding to three different phases of the study including Normal,
Hypoglycemia and Recovery. Statistical results of the comparison on each parameter at
each channel between three phases of Normal, Hypoglycemia and Recovery are presented
in Table 3.3-3.5. Significant tests are reported in bold. The EEG responses of all five

patients show significant changes during the study.

The centroid alpha frequency is shown to be the most significant feature which is highly

correlated to BGLs during the study at all four EEG channels (p=0.001 at C3, p=0.004 at
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C4 and p<0.0001 at O1 and O2). Group comparisons also indicate a significant decrease in

the centroid alpha frequency under hypoglycemic conditions, and then a re-establishment

under recovery conditions, as shown in Figure 3.10. There are significant changes in two

other features of alpha bands which are spectral variance and spectral entropy at all

channels. Under hypoglycemic conditions, decreases in these two features show that the

spectrum of the alpha band tends to concentrate on a narrower range. Based on the

mentioned results, it is established that during the occurrence of hypoglycemia, in the

power spectrum of alpha band, there is a shift toward smaller frequencies as shown in

Figure 3.11 where an example of alpha spectrums at two different states is presented.
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Figure 3.10: Comparison of centroid alpha frequency between three phases

of the study at four EEG channels
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Figure 3.11: Example of changes in alpha spectrum

The statistical results also produce a slightly significant increase in centroid theta frequency
at channel O1 and O2 as shown in Figure 3.12 (p=0.01 at O1 and 0.003 at O2). It is shown
that the responses in theta band are more significant at channel O1 and O2 than channels

C3 and C4.
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Figure 3.12: Comparison of centroid theta frequency between three

phases of the study at channels O1 and O2
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The correlation analysis indicates no change in power levels in all 3 frequency bands at all
4 channels except some slight changes in the power level of theta band at channel C3
(p=0.012); alpha band at channels Ol (p=0.026) and O2 (p=0.026); and beta band at
channel C4 (p=0.003). However, these changes are not consistent with other channels, and
with the group comparison results which provide no difference between pairs of groups.
Moreover, when analysing data from each patient, it is shown that the changes in the power
level are also not consistent with all patients (increasing in some patients, decreasing in the
other patients). Based on these analyses, it is established that these changes in the power
level at some channels are caused by body movements as well as changes in sleep stages of

patients during night.

Comparisons between data from Normal group and Recovery group indicate similarities in
most of the features at all four channels. These results demonstrate that during the study,
EEG responses from five patients at all channels significantly change under hypoglycemic
conditions and re-establish under recovery conditions. However, it should be noted that the
difference between Normal group and Hypoglycemia group is slightly stronger than the
difference between Recovery group and Hypoglycemia group. These results probably
reaffirm conclusions from previous studies that the frequent exposure to hypoglycemia can
cause alterations in EEG signals and lead to impairments to the brain functioning of
patients with TIDM (Bjergaas, Sand & Gimse 1996; Clarke et al. 2009; Cryer 2007;
Hyllienmark et al. 2005).

The statistical results also indicate similarities in EEG responses between channels in the
same brain area (i.e. Ol and O2 in occipital area; C3 and C4 in the central area).
Consequently, it is established that there is no significant difference in EEG responses
between channels lying in the same brain area but on different brain hemispheres (left or

right sides).

Based on the above analyses, it is concluded that the responses of the alpha spectrum,
especially the decrease in centroid alpha frequency under hypoglycemic conditions are the
most significant findings of the EEG feature extraction step implemented in this thesis.
This feature can be explained by the lack of vigilance or awareness which is a common
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symptom normally happening in TIDM patients under the occurrence of hypoglycemic

conditions (Howorka et al. 1996; Howorka et al. 2000). The changes in the alpha spectrum

have been reported to be associated with the vigilance level of healthy individuals as well

as people with various health problems, as shown in Table 3.2. In this context, vigilance

can be defined as the readiness of a person to have appropriate behaviours, both in quality

and quantity, in response to a given (internal or external) stimulus situation; as well as the

ability to remain alert to that stimuli for an acceptable period of time (Howorka et al. 1996;

Shi & Lu 2008).

Table 3.2: Reports of the correlation between the alpha spectrum and vigilance level

Research Group

Reported conclusions

Klimesch et al. (1990)
Passero et al. (1995)

Patients with Alzheimer’s disease (AD) have lower IAF (or
PAF) compared to age-matched controls

Klimesch et al. (1993)

During increasing memory demands, individuals with lower
memory performance decreased their IAF while controlled
individuals held their IAF constant.

Angelakis et al. (2004)

PAF is proposed as an indicator for cognitive preparedness
Subjects with traumatic brain injury have lower PAF than
normal subjects during resting after a working memory task.

Billiot et al. (1997)

In patients with chronic fatigue syndrome, PAF is
negatively correlated with total fatigue and ‘today fatigue’
reports.

Jarm et al. (2007)

The reduction of CAF is suggested as an indicator of
physical fatigue (drivers’ fatigue).

Individual alpha frequency (IAF), Peak alpha frequency (PAF), Centroid alpha frequency (CAF) are

defined in 3.2.2.2
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Table 3.3: Comparison between three phases of Normal, Hypoglycemia and Recovery

using data from channel C3

Correlation Mean + SD Groups comparison
Parameters to BGLs p-values

r p-values | Normal (N) | Hypoglycemia (H) | Recovery (R) N-H H-R N-R
P-0 -0.098 | 0.012 2.105 +1.328 2.141 +1.698 1.846 + 1.165 0.526 | 0.272 | 0.051
P-a -0.021 | 0.585 1.552 +1.333 1.611 +1.123 1.624+1.659 | 0.202 | 0.006 | 0.143
P-p -0.064 | 0.075 1.038 £ 0.633 1.238 + 1.221 0.955+0.719 | 0.452 | 0.056 | 0.115
CF-0 -0.041 | 0.294 5.628 +£0.302 5.659 +£0.331 56100290 | 0379 | 0.265 | 0.876
CF-a 0.156 | 0.001 10.255 + 0.460 9.993 +0.495 10.132+0.510 |<0.001 | 0.004 | 0.005
CF-p -0.074 | 0.055 17.411 £ 1.468 17.857 + 1.554 17.687 +£1.445 | 0.014 | 0.527 | 0.057
SV-0 -0.032 | 0.411 1.132 +0.229 1.163 +0.227 1.149+0.247 | 0.208 | 0.534 | 0.562
SV-a 0.057 | 0.143 1.844 +0.488 1.688 +0.550 1.768 £ 0.491 0.002 | 0.104 | 0.099
SV-p -0.070 | 0.069 14.513 +5.506 15.470 £ 6.309 15.538 £5.370 | 0.023 | 0.663 | 0.013
SE-0 -0.001 | 0.987 0.858 £0.032 0.859 +0.034 0.860 +0.038 0.672 | 0.454 | 0.246
SE-a 0.091 | 0.019 0.856 +0.044 0.830 = 0.064 0.847+0.051 |<0.0001 | 0.013 | 0.060
SE- 0.055 | 0.157 0.800 £0.076 0.812+0.075 0.808 = 0.078 0.251 | 0.649 | 0.106




Table 3.4: Comparison between three phases of Normal, Hypoglycemia and Recovery
using data from channel C4

— C;);'li:gg;)n Mean = SD Grou;l),s_ ‘fglrlrllg)sarison

r p-values | Normal (N) | Hypoglycemia (H) | Recovery (R) N-H H-R N-R

P-0 -0.067 | 0.071 2.059 +1.273 2.114 £ 1.300 1.991 £1.560 | 0.656 | 0.385 | 0.605
P-a -0.038 | 0.305 1.634 +1.047 1.695 + 1.084 1.754 £1.367 | 0.557 | 0.628 | 0.281
P-p -0.113 | 0.003 1.205 +0.562 1.376 + 0.996 1.166 £0.679 | 0.118 | 0.041 | 0.489
CF-0 -0.034 | 0377 5.594 +0.259 5.644 +0.323 5.630+0.289 | 0.046 | 0.706 | 0.009
CF-a 0.111 0.004 10.240 + 0.449 10.006 £ 0.478 10.104 £ 0.490 <0.0001| 0.035 | 0.037
CF-p -0.055 | 0.153 17.278 £1.378 17.763 £ 1.589 17.637 £1.555 | 0.042 | 0.761 | 0.056
SV-6 0.017 0.663 1.133 +£0.239 1.123 +£0.235 1.149+0.234 | 0.884 | 0.360 | 0.197
SV-a -0.039 | 0.311 1.814 +0.456 1.855+0.491 1.806 £0.478 | 0.395 | 0.190 | 0.557
SV-p -0.013 | 0.741 14.493 £5.625 14.993 £6.195 15.101 £5.461 | 0.573 | 0.939 | 0.487
SE-0 0.076 0.051 0.862 +0.030 0.856 + 0.034 0.862+0.037 | 0.118 | 0.014 | 0.264
SE-o 0.096 0.013 0.856 +0.036 0.845 +£0.045 0.853+£0.042 | 0.004 | 0.049 | 0.343
SE- B 0.069 0.076 0.798 £ 0.075 0.808 £ 0.075 0.805+0.085 | 0.214 | 0910 | 0.065




Table 3.5: Comparison between three phases of Normal, Hypoglycemia and Recovery

using data from channel O1

Correlation

Groups comparison

Parameters to BGLs Mean £ 5D p-values

r p-values | Normal (N) | Hypoglycemia (H) | Recovery (R) N-H H-R N-R

P-0 -0.070 | 0.075 2.218 £1.507 2.125 + 1.427 1.965 + 1.205 0.690 | 0.249 | 0.121
P-a -0.086 | 0.026 1.946 +£2.076 2.221 +2.931 2.325 + 3.839 0.011 | 0.071 | 0.316
P-p -0.015| 0.707 1.162 £0.737 1.164 +0.693 0.967 +0.517 0.719 | 0.103 | 0.109
CF-0 -0.086 | 0.013 5.661 +0.288 5.739 +£0.352 5.656 £0.294 0.027 | 0.042 | 0.767
CF-a 0.178 | <0.0001 | 10.141 +0.394 9.876 £0.453 10.110+0.434 | <0.0001 | <0.0001 | 0.398
CF-p 0.012 0.766 17.027 £1.122 17.068 + 0.903 17.283 £1.209 | 0.424 | 0.066 | 0.013
SV-0 -0.049 | 0.206 1.137 £0.233 1.199 +0.242 1.151 £0.262 0.011 | 0.057 | 0.579
SV-a 0.074 0.055 1.757+0.470 1.542 +0.601 1.713 £ 0.488 | <0.001 | 0.010 | 0.228
SV-p 0.058 0.132 13.935+5.519 13.395+5.180 13.516 £+4.988 | 0.154 | 0.093 | 0.358
SE-0 -0.007 | 0.851 0.858 £0.031 0.859 +0.034 0.861 +0.034 0.628 | 0.527 | 0.214
SE-a 0.202 | <0.0001 | 0.857 +0.046 0.813 +0.081 0.852 +£0.046 |<0.0001 |<0.0001| 0.159
SE- B 0.84 0.030 0.789 +0.070 0.795 + 0.060 0.799 +0.072 0.522 | 0.069 | 0.084




Table 3.6: Comparison between three phases of Normal, Hypoglycemia and Recovery
using data from channel O2

— Cz:*ll‘segtii;)n Mean + SD GrouII))s- :;)lr:gsarison

r p-values | Normal (N) | Hypoglycemia (H) | Recovery (R) N-H H-R N-R

P-0 -0.043 | 0.269 2.208 + 1.727 2.047 +1.388 1.897 +1.271 0.908 | 0.334 | 0.259
P-a -0.105 | 0.010 2.258+£2.618 3.363 +5.737 2.644 +4.212 0.146 | 0.033 | 0.471
P-p -0.033 | 0.389 1.121 +£0.733 1.201 +0.825 1.059 +0.612 0.922 | 0.050 | 0.137
CF-0 -0.116 | 0.003 5.650+0.275 5.754 +0.377 5.647+0.290 | 0.008 | 0.011 | 0.695
CF-a 0.178 | <0.0001 | 10.133 £0.392 9.863 £ 0.454 10.083 £ 0.432 |<0.0001 |<0.0001 | 0.229
CF-p 0.003 0.93 16.982 £ 1.150 17.074 £ 0.952 17.268 +1.260 | 0.227 | 0.060 | 0.016
SV-0 -0.076 | 0.048 1.133 +£0.244 1.196 + 0.247 1.143 £0.235 0.008 | 0.042 | 0.476
SV-a 0.122 | 0.002 1.752 £ 0.480 1.553 £0.576 1.731 £0.509 | <0.001 | 0.005 | 0.329
SV-p 0.068 | 0.079 13.755 £5.493 13.467 +£5.129 14.617+5.052 | 0.445 | 0.006 | 0.054
SE-0 -0.014 | 0.724 0.858 +0.031 0.856 +0.038 0.859 +£0.033 0.766 | 0.807 | 0.495
SE-a 0.115 0.004 0.852 +0.047 0.818+0.071 0.850 £0.048 | <0.001 | <0.001 | 0.730
SE- p 0.086 0.152 0.785 £ 0.070 0.793 £ 0.063 0.797+0.080 | 0.261 | 0.076 | 0.074




Chapter 3 Identification of hypoglycemic states for patients with T1DM using EEG signals

3.3.2.2 Comparison using different spectral epoch lengths in hypoglycemia

detection

In real-time applications using EEG signals to detect acute and spontaneous health
problems like hypoglycemia, choosing a proper epoch length for processing signals plays
an important role in determining the time delay of the detecting system. It is obvious that
on the one hand, a longer epoch length provides more information about responses
occurring inside the signal. However, on the other hand, it reduces the size of data set
available for classification algorithm, and also most importantly increases the system time
delay which can be counted from the point of starting collect data to the point of yielding
final system response (i.e. in the case of hypoglycemia detection, the final system response

is hypoglycemia or non-hypoglycemia).

In this section, in order to select an appropriate epoch length of signals, from the filtered
40-second EEG segments, EEG parameters with 5 different epoch lengths of 1-second, 2-
second, 5-second, 10-second, and 20-second will be extracted and used to compare between
Hypoglycemia phase and Normal phase. Accordingly, from the raw data set acquired from
5 TIDM patients during the glucose clamp study, for each case, the number of data points
extracted is 940, 470, 188, 94 and 47, respectively. To make the comparison simpler, only
results of four parameters from the alpha band at two channels C3 and O2 are presented.

Similarities are recognized with other frequency bands as well as EEG channels.

It is shown that there are slight differences in the results of different cases. When
comparing all 4 parameters between 2 groups, smaller epoch lengths with bigger data sizes
produce smaller p-values which indicate more significant parameters. The results show that
the smallest epoch length of 1-second, with corresponding frequency resolution of 1Hz, is
sufficient to identify shifts in power spectrum. It is clear that a smaller epoch length
produces a bigger data set, which is important in classification. However, a too small epoch
length is not necessary for some applications such as hypoglycemia detection and can lead
to higher computational cost. Based on advantages as well as disadvantages of each case,
we establish that using 5-second epoch length is sufficient for spectral analysis which can

produce a good-sized data set for classification.
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Table 3.7: Statistical results of comparing epoch lengths

1-second 2-second 5-second
Normal Hypo p-value Normal Hypo p-value Normal Hypo p-value
P-g | 2:669£3.957 | 270943.600 | 0.782 | 1.413+1.210 | 1.621+1.583 | 0.011 | 1.552+1.333 | 1.611+1.123 | 0.202
CF-o. | 9.805+0.552 9.591£0.599 | <0.0001| 10.076+0.497 | 9.831+0.548 |<0.0001| 10.255+0.460 | 9.993 £ 0.495 | < 0.001
e SV-o | 1.57840.491 1.485+0.495 0.001 1.691+0.479 1.613+0.530 0.039 1.844 +£0.488 | 1.688+0.550 | 0.002
SE-o | 0.797+0.089 | 0.773+0.103 |<0.0001| 0.824+0.065 | 0.800+0.079 |<0.0001| 0.856+0.044 | 0.830+0.064 | <0.0001
P-a 1.434+2.824 | 2.537+6.006 | 0.093 1.755+3.147 | 2.940 +5.373 0.105 | 2.258+2.618 | 3.363+5.737 | 0.146
CF-o. | 9728 +0.500 | 9.486+0.562 |<0.0001| 9.963+0.459 | 9.737+0.514 |<0.0001| 10.133 £0.392 | 9.863 £ 0.454 | <0.0001
02 SV-o | 1.503+0.496 | 1.384+0.496 |<0.0001| 1.614+0.491 | 1.494+0.564 |<0.0001| 1.752+0.480 | 1.553+0.576 | <0.001
SE-o. | 0.796+0.088 | 0.762+0.105 | <0.001 | 0.820+0.064 | 0.790+0.084 | <0.001 | 0.852+0.047 | 0.818 +£0.071 | <0.001
10-second 20-second
Normal Hypo p-value Normal Hypo p-value
P-o 1.600+1.072 1.933 £ 1.356 0.110 1.410+0.848 1.891£1.078 0.005
CF-o0 | 10.33840.376 | 10.010+0.459 | <0.0001 10.300+0.362 10.084+0.446 0.001
e SV-a 1.957+0.465 1.774+0.539 0.008 2.0334+0.365 1.808+0.576 0.019
SE-o | 0.877£0.036 | 0.856+0.058 0.012 0.893 +0.028 0.873 £ 0.049 0.034
P-o 1.392+1.926 | 3.173 £4.578 0.164 1.228 +£1.553 2.722 +£3.441 0.174
CF-o | 10.208 +£0.369 | 9.904+0.412 | <0.0001 | 10.228 +0.347 9.969 + 0.422 0.004
02 SV-o | 1.809+0.450 | 1.586=+0.589 0.006 1.836 + 0.484 1.650 £ 0.618 0.110
SE-o0 | 0.876+0.381 | 0.839+0.063 0.013 0.891 +0.028 0.860 + 0.054 0.005
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3.3.2.3 Determination of a blood glucose threshold for defining hypoglycemic state

in T1IDM patients

The determination of a blood glucose level (BGL) at which EEG parameters start to change
plays an important role in terms of identifying the hypoglycemic state from EEG signals.
As presented in Chapter 2, section 2.3, the definition of hypoglycemia by specifying a
blood glucose threshold is different from study to study and depends crucially on the aim
and available technique of each study. If this threshold is set at a high level, there is a
possibility of early detection of hypoglycemic episodes which is valuable for patients.
However, the specificity of the system may become very low, making it unreliable.
Conversely, if it is set at a too low level, the system may give alarm too late and the patient
will not have enough time to fix the situation until it becomes severe. With the purpose of
developing a system to detect hypoglycemia from EEG signals, this threshold should be
determined by finding the blood glucose level at which EEG parameters start to respond to
the hypoglycemic condition.

Until now in this thesis, the BGL of 3.3 mmol/l has been used as the threshold for
identifying episodes of hypoglycemia. In this section, the possibility of detecting an earlier
onset of hypoglycemia will be verified by exploring the responses of EEG parameters at an
earlier BGL threshold of 3.9 mmol/l. The BGL range of 3.3-3.9 mmol/l is labelled as Early
Onset phase of the study, as defined in section 3.2.2.1, Table 3.1. By comparing data
extracted from the Early Onset phase with data extracted from the Normal phase (BGLs >
3.9 mmol/l) and Hypoglycemia phase (BGLs < 3.3 mmol/l), the difference in EEG

responses at two BGL values of 3.3 mmol/l and 3.9 mmol/l will be demonstrated.

The results of group comparisons are presented in Table 3.8 and 3.9. As shown in section
3.3.2.1, there are similarities in EEG responses between EEG channels at the same brain
area. Consequently, in this section, only results from 2 channels C3 and O2 which are from
two different brain sides and areas are reported. Similar responses are recognized at the
other two channels C4 and O1. Statistical results show no significant difference between
the Normal state and Early Onset state except some slight changes at channel O2.

Comparison between the Early Onset group and the Hypoglycemia group produces
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significant changes which are similar to the differences between Normal and Hypoglycemia
groups. These results indicate that at the BGL area of 3.3-3.9 mmol/l, there are some slight
changes in EEG parameters; however, these changes are not significant until the BGL is
lower than 3.3 mmol/l. As a results, it is concluded that EEG responses to the onset of

hypoglycemia only significantly occur when patients’ BGLs fall to the threshold of 3.3

mmol/L.
Table 3.8: EEG responses when BGL=3.3-3.9 mmol/l at channel C3
EEG Group comparisons
Early Onset (EO)
parameters N-EO EO-H
P-0 1.960+ 1.464 0.197 0.434
P-a 1.509 + 1.062 0.702 0.170
P-p 1.154 +1.399 0.075 0.114
CF-0 5.632+0.267 0.782 0.615
CF-a 10.247 £ 0.268 0.904 <0.0001
CF-p 17.408 +2.382 0.387 0.002
C3
SV-6 1.161 £0.215 0.307 <0.0001
SV-a 1.750 + 0.337 0.076 0.403
SV-p 17.086 + 3.227 0.125 0.320
SE-0 0.862 +0.033 0.216 0.454
SE-o 0.868+ 0.030 0.038 <0.0001
SE- 0.760 £ 0.115 0.049 <0.001
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Table 3.9: EEG responses when BGL=3.3-3.9 mmol/l at channels O2

EEG Early Onset (EO) Group comparisons
parameters N-EO EO-H
P-6 1.943 £ 0.877 0.417 0.237
P-a 2.344 £ 0.980 0.856 0.020
P-pB 1.281 +£1.073 0.023 0.095
CF-0 5.697 £ 0.261 0.067 0.012
CF-a 10.112+0.326 0.851 <0.0001
CF-p 17.055 £ 2.046 0.029 0.764
02
SV-60 1.176 £0.238 0.097 0.615
SV-a 1.781 +£0.353 0.745 <0.001
SV-p 13.539 +4.799 0.653 0.026
SE-0 0.858 £ 0.026 0.544 0.954
SE-a 0.845 £ 0.026 0.068 0.024
SE- B 0.786 + 0.059 0.111 0.043
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3.3.3 Classification performance of hypoglycemia detection

3.3.3.1 Classification results of neural networks using all four EEG channels

As presented in section 3.2.3, with the powerful ability of modelling complex non-linear
relationships between inputs and outputs, in this thesis, feed-forward neural networks are
selected as classification units for the purpose of detecting hypoglycemia from EEG
signals. In this section, the classification performance of developed neural networks will be
presented to evaluate the capability of the detection of hypoglycemic episodes from EEG
signals for patients with T1DM.

The structure of the developed neural network is presented in Figure 3.6, including an input
layer, a hidden layer and an output layer. The size of the input layer is the number of
extracted EEG features used as inputs. The number of hidden nodes in the hidden layer is
selected to be the one giving the best classification performance as the procedure presented
in section 3.2.3.4. There is only one output node in the output layer which indicates the
state of hypoglycemia or non-hypoglycemia. The output threshold, which is used to
distinguish between hypoglycemic state and non-hypoglycemic state, is determined by

plotting the ROC curve for the trained neural network.

Based on the statistical results in section 3.3.2.1, it has been established that under
hypoglycemic conditions, the decrease in centroid alpha frequency and the increase in
centroid theta frequency are the most significant and consistent changes in EEG signals
from 5 TIDM patients. Thus, in this section, these two features at all four channels are
selected as inputs for classification. As a result, a neural network will be developed with the
structure of 8 input nodes (2 features x 2 channels), S hidden nodes and 1 output node.
Referring to equation 3.7, the total number of parameters of the developed neural network

is estimated as:
Number of parameter = (8+2)*S+1 = 105+1 (3.22)

The developed neural network is trained by the Levenberg-Marquardt algorithm (as shown

in section 3.2.3.2) and the cross-validation technique (as shown in section 3.2.3.3). To do
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this, the overall data set acquired from 5 T1DM patients is separated into 3 different data
sets including a training set, a validation set and a testing set. The training set and
validation set are formed by randomly dividing a data set from 3 patients, named patient A,
patient B and patient C. The size ratio of training set to validation set is 3:1. After being
trained, the neural network will be tested by a data set from two previously unseen patients,
named patient D and patient E. As a result, the number of data points for each data set is
presented as shown in Table 3.10.

Table 3.10: Number of data points for training and testing neural network
using the LM algorithm and the cross-validation technique

Non-
Total | H 1 i
o ypogiycemia hypoglycemia
Traming data from 3 patients A, 213 84 129
B and C, randomly
Validation | divided with ratio of 3:1 71 28 43
) data from 2 patients
Test
esting D and E 144 76 68

It is noted that selecting network architecture plays an important role in developing neural
network to achieve desired classification performance. As presented in section 3.2.3.4, in
order to determine the size of hidden layer which can produce better performance, the
number of hidden nodes S is varied from 1 to 15, corresponding to 15 different network
architectures. For comparison purposes, based on the ROC curve plotted for each case, the
point that produces sensitivity of 80% is selected as output threshold to distinguish between
hypoglycemia and non-hypoglycemia. Comparison between performances of 15 developed
neural networks is given in Table 3.11, in terms of AuC, sensitivity and specificity on the
combined training/validation data set. The number of network parameters is estimated for
each network by using equation 3.22. The reported results are the best results of 20 running

times.
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Table 3.11: Comparison between classification performance of neural
network structures of 8 input nodes, S hidden nodes and 1 output nodes

Number of Classification performance
‘Number of network
hidden nodes S parameters AuC Sen Spe
1 11 0.69 80% 39%
2 21 0.70 80% 48%
3 31 0.72 80% 45%
4 41 0.74 80% 48%
5 51 0.74 80% 49%
6 61 0.76 80% 50%
7 71 0.77 80% 49%
8 81 0.78 80% 52%
9 91 0.78 80% 51%
10 101 0.76 80% 52%
11 111 0.77 80% 50%
12 121 0.79 80% 53%
13 131 0.78 80% 54%
14 141 0.76 80% 52%
15 151 0.79 80% 54%
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Consequently, with the developed neural network of 8 inputs and 1 output, when S =1+35,
it is recognized that the AuC is small, corresponding with small specificity (smaller than
50%). S =6-+8 provide better results with AuC =0.77+0.78, and specificity higher than
50%. The best classification results we can achieve is AuC of 0.78, sensitivity of 80% and

specificity of 60% when S=8. §=9+15 produces similar results with no statistical

enhancement compared to S =8. As a result, we choose the final neural network structure

of 8 hidden nodes.

The ROC curve for the neural network with 8 hidden nodes which produces the best
classification results in 20 running times is plotted in Figure 3.13. The corresponding AuC
for the combined training/validation data set is 0.77. With this ROC curve, the threshold to
distinguish between the hypoglycemia and non-hypoglycemia states is set at -0.3764, which
produce training/validation classification results of 80% sensitivity and 52% specificity. To
show how well these results generalise to new data, the testing data from two entirely new
patients (patient D and patient E) are applied to neural network. All classification results

are presented in Table 3.12.

The classification results in Table 3.10 show that by using two features of centroid theta
frequency and centroid alpha frequency at all four EEG channels of C3, C4, Ol, O2 as
inputs, a neural network with 8 hidden nodes performs acceptably. With 80% sensitivity
and 52% specificity on the combined training/validation data set, and 71% sensitivity and
50% specificity on the testing set, it is demonstrated that hypoglycemia can be detected
non-invasively and efficiently from EEG signals. Comparing to the results reported by
other research groups using different methodologies (Bode et al. 2004; Laione & Marques
2005), it is noted that the sensitivity of 80% on the training set is desirable in terms of
hypoglycemia detection. However, the specificity of 52% can be considered as a low level,
leading to a high rate of non-hypoglycemic episodes which are wrongly classified and
alarmed as hypoglycemic episodes, causing a huge amount of inconvenience for patients
and their caregivers, especially during the night. It is obvious that more advanced
methodologies should be explored in order to enhance the overall performance of the

system.
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Figure 3.13: ROC curve plotted for the trained neural network using

data from all 4 EEG channels

Table 3.12: Classification results of the developed neural network with 8 input

nodes, 8 hidden nodes and 1 output node

Combined training/ .
validation set Testing set
AuC
Sen Spe Sen Spe
Best results 0.77 80% 52% 71% 50%
Mean results 0.75 80% 50% 69% 43%

AuC: area under the ROC curve
Sen: sensitivity ; Spe: specificity

85



Chapter 3 Identification of hypoglycemic states for patients with T1DM using EEG signals

3.3.3.2 Classification results of neural networks using only two EEG channels

Considering the issue of developing a hypoglycemia detection device which can work in
real-time and be applied in the real clinical environment, it is noted that reducing the
number of EEG electrodes benefits the device in several ways, such as: (i) minimizing the
cumbersome size of the sensor system, therefore creating more comfort for the user while
wearing the device, especially during the night; (ii) decreasing the size of data needed to be
transmitted and processed, leading to a smaller computational burden for the system,
therefore limiting the delay in time and increasing the efficiency of the system; (iii)

reducing the cost of the whole system; etc.

As presented in the previous section, when using two features of centroid theta frequency
and centroid alpha frequency from all four EEG channels of C3, C4, O1, O2 as inputs to
neural network (corresponding to 8 inputs), the classification results of the developed
neural network demonstrate the potentiality of the proposed computational methodology for
hypoglycemia detection from EEG signals. The aim of this section is to explore the
possibility of reducing the number of needed EEG channels without significantly affecting
the performance of the system. As shown in section 3.3.2.1, there are similarities in EEG
responses between EEG channels at the same brain area. Thus, in this section, only EEG
data from 2 channels C3 and O2 which are from two different sides and areas of the brain

are used as inputs for classification.

For comparison purposes, the same procedure of developing and training neural networks
by using the Levenberg-Marquardt algorithm and cross-validation technique as shown in
section 3.3.3.1 will be applied. The same data sets as presented in Table 3.10 are used to
train and test the performance of neural networks. Two features of centroid alpha frequency
and centroid theta frequency are extracted from two channels C3 and O2 to be fed into
neural networks as inputs. As a result, neural networks with the structure of 4 input nodes,
S hidden nodes and 1 output node will be developed. The number of hidden nodes § is
varied from 1 to 15, leading to 15 different network structures in order to find the hidden
layer size which produces the best classification performance. Consequently, it is
recognized that for this application, with 4 input nodes and 1 output node, the neural
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network with 9 hidden nodes yields the best classification results. All the following
reported results are corresponding with the network structure of 4 input nodes, 9 hidden
nodes and 1 output node. Referring to equation 3.7, the total number of parameters of the

developed neural network is equal to 55.

The ROC curve for the trained neural network with 9 hidden nodes is plotted in Figure
3.14. The corresponding AuC for the combined training/validation data set is 0.78. With
this ROC curve, the threshold to distinguish between the hypoglycemia and non-
hypoglycemia states is selected at -0.4649, which produce training/validation classification
results of 80% sensitivity. To show how well these results generalise to new data, the
testing data from two entirely new patients (patient D and patient E) are applied to neural
network. All classification results are presented in Table 3.13, in which the reported results

are the best and mean results of 20 running times.

Comparing to results of section 3.3.3.1, it is shown that using EEG data from only 2
channels of C3 and O2, the neural network structure with 4 input nodes, 9 hidden nodes and
1 output node produces acceptable classification results which are not significantly
different from using EEG data from 4 channels of C3, C4, O1 and O2. The similarity has an
important meaning as the number of EEG electrodes can be reduced to two, leading to a
reduction of network structure from 81 parameters to 55 parameters. With the best
classification results of 80% sensitivity and 53% specificity on the combined
training/validation set and 71% sensitivity and 54% specificity on the testing set, it
indicates that hypoglycemic episodes can be effectively detected from only two EEG
channels. Once again, in order to pursue the proposed methodology to develop a
hypoglycemic detection device that can be applied into the real clinical environment, the

achieved results need to be enhanced further.
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Table 3.13: Classification results of the developed neural network

with 4 input nodes, 9 hidden nodes and 1 output node

Combined training/
validation set

Testing set

AuC
Sen Spe Sen Spe
Best results 0.75 80% 53% 71% 54%
Mean results 0.73 80% 52% 67% 42%

AuC: area under the ROC curve
Sen: sensitivity ; Spe: specificity

True positive rate

Figure 3.14: ROC curve plotted for the trained neural network using data from all 4
EEG channels plotted for the trained neural network using data from only two EEG

channels of C3 and O2
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L
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The results demonstrate that there is a prominent difference between classification
performances on the training data set and the unseen testing set. The mean results of 20
running times even show a clearer gap (80% sensitivity and 52% specificity on the
combined training/validation data set, versus 67% sensitivity and 42% specificity on the
testing set). This difference is unwanted but common in classification applications,
especially when using EEG signals as input of classifiers. There are two main reasons

which can be used to explain this issue:

e First, the worse results on a totally unseen testing set indicate a low ability of
generalisation of the developed neural network. Because the cross-validation
technique has been applied in this chapter to avoid the over-fitting situation, this
problem can be caused by one of the well-known inherent limitations of
Levenberg-Marquardt algorithm, which is trapping into local optimal. When the
training process is trapped into one of the local optimum which is not the global
one, the neural network can perform well on the training data set, but cannot

generalise to another unseen data set.

e Second, when using EEG signals as inputs for any system, the difference between
classification results on two different groups of subjects are predictable due to the
high variability of EEG signals from person to person. This inherent characteristic
of EEG has been mentioned in various EEG-related studies as a barrier to achieve

their desired performance.

Because the ability to generalise to new users is essential for any health-care system, the
gap between classification results on the training set and testing set needs to be overcome.
As a result, the later chapters of this thesis will be dedicated to explore more advanced
solutions to consecutively deal with those two main factors specified above which cause the

difference in classification results on different groups of data.
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3.4 Discussion

In this chapter, a computational methodology of detecting hypoglycemic episodes from

EEG signals is presented, including two main tasks:

e Feature extraction: deriving and analysing various EEG parameters in order to find
important features which significantly correlate to the transitions of patients’ states

during the study, from normal to hypoglycemic and then to recovery state.

e (lassification: using extracted features as inputs, a classification algorithm based on

standard neural network is developed for detecting hypoglycemic episodes.

Using data of 5 TIDM patients, collected during an overnight insulin-induced study, the
results presented in this chapter show that by applying the proposed methodology, the
occurrence of hypoglycemic episodes in patients with TIDM can be detected efficiently

from EEG signals.

The feature extraction results indicate that under hypoglycemia conditions, there are
significant changes in the theta and alpha bands of EEG signals. At all four EEG channels,
the decrease in centroid alpha frequency is shown to be the most significant feature. This
change can be related to the decrease of patients’ vigilance which is a normal symptom for
T1DM patients when hypoglycemia occurs. Under recovery conditions, these changes are
shown to regain the normal state prior to hypoglycemia. However, this re-establishment
does not happen consistently with all features in all patients. These results lead to a
conclusion that hypoglycemia has the potential to make irrecoverable damage to the human
brain. By analysing the data from the BGL range of 3.3-3.9 mmol/l, it is concluded that the
mentioned responses to hypoglycemia only significantly occur when patients’ BGLs fall to

the threshold of 3.3 mmol/I.

Based on the results of feature extraction, centroid alpha frequency and centroid theta
frequency at four channels are established to be used as inputs for classification. A standard
neural network algorithm is developed. The Levenberg-Marquardt algorithm and cross-

validation technique are applied for training the neural network. With the classification
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results of 80% sensitivity and 52% specificity on the combined training/validation dataset,
and 71% sensitivity and 50% specificity on the testing set, it is shown that using neural
network is an effective method for classifying and detecting hypoglycemic episodes from

EEG signals.

The classification results also indicate the efficiency of using two features of centroid theta
frequency and centroid alpha frequency at four EEG channels of C3, C4, O1, O2 as inputs
of neural network. The use of four EEG channels in diagnosing and detecting human health
problems is considered to be reasonable. However, regarding the purpose of developing a
real-time system for detecting hypoglycemia from EEG signals, a reduction in the number
of EEG channels or EEG electrodes will lead to a variety of benefits. To do this, data from
only two channels of C3 and O2 are explored to be fed into neural networks, leading to
network structures of 4 input nodes (2 features x 2 channels). With the classification results
of 80% sensitivity and 53% specificity on the combined training/validation dataset, and
71% sensitivity and 54% specificity on the testing set, it is shown that there is no
significant difference between two cases of using two EEG channels and four EEG
channels. As a result, it is concluded that by using two EEG channels of C3 and O2 as
inputs, it is capable of providing desired performances for the application of detecting

hypoglycemic episodes in patients with TIDM.

It is also noted that classification results on the testing set from totally unseen patients are
poorer compared to the training set. This issue can be explained by two main reasons: (i)
the poor generalisation of neural networks caused by the common limitation of trapping
into local optimal of the Levenberg-Marquardt algorithm; (ii) the high variability of EEG
signals from patient to patient which is an inherent characteristic of EEG-based
applications. In order to enhance the overall classification performance, based on the
developed standard neural network, more advanced strategy of training will be explored in

the next chapters to deal with these two factors.
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Chapter 4

Combining Genetic Algorithm and Levenberg-Marquardt
Algorithm in Training Neural Network for Hypoglycemia

Detection using EEG Signals

4.1 Introduction

As specified in previous chapters, the computational methodology of detecting
hypoglycemia from EEG signals contains two main parts of EEG feature extraction and
classification in which the classification plays an important role in determining the
performance of the developed methodology. In terms of selecting classification algorithm
for hypoglycemia detection, artificial neural networks have been employed popularly in
biomedical areas as a powerful tool (Nguyen 2008). It has been recognized that neural
networks can successfully classify complex situations and effectively model non-linear
relationships between inputs and outputs. One of the most popular training techniques is the
Levenberg-Marquardt (LM) algorithm which is based on the second-order gradient
information of an error function in order to direct the training process to a local optimal

(Hagan & Menhaj 1994). Genetic algorithm (GA) is a derivative-free global search
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optimisation technique which is inspired by the natural evolution. This technique has been
applied widely in evolving neural network models which can efficiently drive the training

process to the global optimal (Montana & Davis 1989).

In Chapter 3, EEG signals of five TIDM patients from a glucose clamp study were
acquired and analysed to find important spectral features to be used as inputs for a neural
network - based classification unit. Being trained by the LM algorithm, the developed
neural network produced acceptable classification results which indicate the possibility of
classifying and detecting episodes of hypoglycemia from EEG signals. However, more
advanced classification strategies need to be explored in order to improve the overall

performance of the whole system.

This chapter aims to investigate different training algorithms for neural network in order to
enhance the performance of the developed neural network-based classification unit. To do
this, first, the GA algorithm is explored to assess its ability for directing the training process
to the global solution. After that, a combination of GA and LM is proposed to utilize
advantages as well as avoid limitations of each algorithm in training neural network. The
GA algorithm will be used to locate the region of the global optimal consistently. The LM
algorithm acts as a fine tuner to help the training process quickly converge toward the
global solution. The main objective of this chapter is to demonstrate that by applying a
properly combined strategy to train neural network, the performance of hypoglycemia

detection using only two EEG channels can be improved markedly.

4.2 General description of genetic algorithm

Genetic algorithm (GA) is an evolutionary computational technique that has been widely
applied to deal with complex optimisation problems where the number of variables is large
and the analytical solutions are difficult to obtain. Utilizing operations inspired by the
biological process of natural evolution where selection, mutation and crossover play a

major role, GAs have been recognized to be a powerful technique for searching the globally
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optimal solution over a domain. It has been applied in various areas such as fuzzy control
(Belarbi & Titel 2000), modelling and classification (Setnes & Roubos 2000) which
includes evolving neural network (Jagielska, Matthews & Whitfort 1999; Leung et al.
2003), etc.

4.2.1 Genetic algorithm

In terms of optimisation, genetic algorithms are gradient-free techniques that search for a
global optimum over a population of possible solutions by evaluating a performance
criterion (named fitness function). To do this, GAs simulate the process of natural evolution
through coding and special operators. In genetic algorithm, the space of possible solutions
of the problem first will be coded into a population of individuals or chromosomes. Each
chromosome is composed of a set of genes in which each gene represents one variable of

the problem.

A variety of coding methods have been introduced for GAs. Traditional binary coding is a
common method which is very simple to understand and implement. However, it is not
efficient when applied to multi-dimensional, high-precision or continuous problems where
the bit strings can get very long, the search space may be enormous, and the algorithm
performance will become very poor. Drawbacks of the binary coded GAs are overcome by
introducing the floating-point coding method. In this situation, each chromosome is coded
as a vector of real numbers which has the same length as the solution vector. In this way, a
large searching domain can be handled more effectively. In this thesis, the floating-point

coding method will be selected for implementing GAs.

The procedure of GA is presented in Figure 4.1. First a fitness function and termination
conditions will be defined for the optimisation problem based on the requirement of each

application. A population of chromosomes P is then initialised as follows:

P=[p, p; - P; P, ] @)
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where

e 7, denotes the number of chromosomes in the population or the population size.
The population size is a user-defined parameter which affects the performance of
GAs. Increasing 7, will increase the diversity of the search space and reduce the

probability that GAs prematurely converge to a local optimum. However, it also
increases the evolutionary time to converge to the optimal region which is an

inherent limitation of GAs.

e p. =[p P - Py - pmg], J =I+ng where 7, denotes the number of genes in the
chromosome. Each gene is corresponding to one variable of the optimisation
problem. Therefore 7, is determined by the number of variables to be tuned during

the evolutionary process.
e Each gene p; has a constrained range of 2., < D < P

At each iteration (or generation) of the GA evolving procedure, each chromosome in the

population will be evaluated by the defined fitness function:

Sfitness = f(p;) (4.2)

The better chromosomes will produce higher fitness values. The population is then updated
through a process of selection, crossover and mutation. By applying genetic operators to the
population representing the current generation, a new generation will be created with a goal
of improving the fitness. The selection chooses some chromosomes out of the population
for reproduction based on fitness values of each chromosome in the population. The

selected chromosomes undergo two genetic operators of crossover and mutation which are

governed by the probabilities of crossover (A4L.) and mutation ( 4, ). Basically, the

crossover operation helps exchange information while the mutation operation helps alter
characteristics of two selected chromosomes to generate offspring. The offspring after that

are evaluated by the fitness function to replace the worst chromosomes in the old
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population. As a result, after an iteration of selection, crossover and mutation, a new
generation is generated and ready for the next iteration. This process is repeated until one of
terminating conditions is met or when a predefined number of iteration is reached.
Whatever the stopping criterion, the chromosome with highest fitness value at the last

generation is taken as the solution to the problem.

Initialise P(z = 0)

\ 4

> Evaluate fitness function f (P(T ))

A 4

Select parents from P(r)

Crossover parents and generate offspring

A 4

Mutate offspring

A 4

Replace old parents in P (7) with the generated offspring

No Terminating
conditions met???

l Yes

Finish

Figure 4.1: Procedure of implementing GA
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4.2.2 Genetic operators

The facts of being able to explore the search space in parallel without requiring the
optimised function to be differentiable or have any smooth properties make GA feasible for
a wide range of optimisation problems. Clearly, the precision of the solution obtained
depends on a variety of factors including chromosome representation, population
initialisation, genetic operations, criteria for termination, and fitness function for
evaluation. In this thesis, genetic operations are referred to three different operations

including selection, crossover and mutation.

4.2.2.1 Selection operator

Selection is the process of randomly choosing two chromosomes out of the population for
reproduction according to their fitness values. This operation attempts to apply pressure on
the population in a similar manner to that of natural selection found in biological systems.
The higher the fitness value, the more chance a chromosome will be selected, while poorer

performing individuals will be rejected. There are several schemes for implementing the

selection process. In a common approach, a probability of selection ¢; will be assigned to

each chromosome P; based on its fitness value. As a result, a set of 7, probability values

is produced for the population. The method of assigning probabilities to chromosomes and
the rule of selecting two chromosomes out of the population depend on different techniques

(e.g. Roulette wheel selection, tournament selection, ranking selection, etc.).

In this thesis, the normalized geometric ranking selection is applied as the selection
operator. This is a ranking selection process based on a non-stationary penalty function
which is a function of the generation number. As the number of generations increases, the
penalty increases, leading to higher selective pressure to the GA to find the feasible
solution. In general, a chromosome which has higher rank will have a higher chance to be
selected. This method only requires the evaluation function to map the solutions to a
partially ordered set, thus allowing for minimization and negativity. Unlike other methods
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which are based on the real fitness values to assign the selection probability ¢;to each

chromosome, ranking methods in general assign ¢; based on the rank of each solution

when all solutions are sorted. The normalized geometric ranking selection defines the

selection probability ¢;to each chromosome by:

4 =q'(I- o) (4.3)
where:

o =12 .., n, (7, is the number of chromosomes in the population)

®  ({y 1s the probability if selecting the best chromosome

e 7 is the rank of the chromosome of which the best has » =/

° qv — qbest - (44)
]_(]_qbest) !

4.2.2.2 Crossover operator

The aim of implementing crossover is to share information between two parents
(chromosomes) obtained by the selection process. This process combines the features of the
two parent chromosomes to form two offspring, with the possibility that good

chromosomes may generate better ones. The crossover operation is governed by a pre-
defined probability of crossover L. which gives an expected number of chromosomes in
the population that undergo the crossover (=£7,). Various methods have been introduced

to implement crossover for floating-number genetic algorithm. In this thesis, Blend-a

crossover is applied as the crossover operator (Eshelman & Schaffer 1993).

98



Chapter 4 Combining genetic algorithm and Levenberg-Marquardt algorithm in training
neural network for hypoglycemia detection using EEG signals

Let assume that p; =[pj, pj; - py; - Pi, ] and p;=[p3; py; ... p3; - P3, ] are two

chromosomes that have been selected at the generation 7 to be parents for reproduction.

By applying the Blend- a crossover, the procedure to produce two offspring 0;” and 05”

are shown in Figure 4.2, where a is a positive constant.

For i=1+n, do
Estimating:

d, =|pj; — D5

X! =min(pj, 5 )-od,

X, =nex(pj, py ) +od,

Choosing uniform random real numbers # and V from the interval [X,-],Xf]

T+ .,
O] _u,

end

Figure 4.2: Procedure of implementing Blend-a crossover

P P>
Figure 4.3: The Blend-a crossover
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In the procedure of implementing Blend-a crossover, selecting o is one of the factors that
determine the balance between exploration (finding completely new solution) and
preservation (inheriting parents’ features). When a = 0, the Blend-a crossover is equivalent
to the flat crossover which generates an offspring by uniformly picking the values of genes
between (inclusively) the two parents’ genes values. By this way, the searching process
tends to be biased towards the center of the search space and can lead to an overemphasis
on preservation. Eshelman & Schaffer (1993) showed that a = 0.5 is the optimal choice in

which the Blend-a crossover picks the offspring’s genes values from points that lie on an

interval which extends 0.5/ on both sides of the interval I between the parents (as

shown in Figure 4.3)

4.2.2.3 Mutation operator

Mutation is a genetic operator which alters the genes of chromosomes in the population
with the aim that the features inherited from parents can be changed in the new generation.
By doing this, the mutation help the searching process to escape from local minima’s traps
and also maintain the diversity of the population. Unlike the crossover which is aimed to
explore new regions in the searching space, the mutation is supposed to exploit the already

sampled regions. The level of exploitation is governed by a pre-defined probability of

mutation £, which govern the number of genes that undergo the mutation (=£,,-1,.11,)).
Increasing A, tends to turn the searching process into random search so that when

,, =1, all genes will mutate.

There are different forms of mutation which have been introduced for the different kinds of
genetic coding. In this thesis, for floating-number representation, non-uniform mutation
will be investigated. With the fine-tuning capability, this mutation operator reduces
limitations of applying random mutation (or uniform mutation) in floating-number GAs.
Unlike the uniform mutation operator in which, at any generation, one gene is randomly

selected and set at a random value between its upper and lower bounds, the non-uniform
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mutation procedure depends on the generation number of the population.

Let’s assume that at the generation 7, the gene p,;- of the chromosome

p; =[p;, p, - p;; - p;, 1will undergo the mutation operation. The resulting gene 0;-” of
t+1 7+l +1 +1

the offspring o™ =[o/"" of;" ... 0;"" ... 0y, 1 is given by:

p;.+A(T,pjmaX—pl§) if r,=0 '

T+l _
i =

0 (4.5)

pl; +A(T, pl;. —p].mm) it r,=1
where

e 7, is arandom number equal to 0 or 1 only

®  Djnin and Dy are the lower and upper bounds of the gene or variable P

e T isthe present generation of the population.

e The function A(T, y) returns a value in the range [0,y] such that A(T, y) approaches

to zero when 7 increases. Because of this property, this function is able to search
the space uniformly initially (when 7 is small), and very locally at later stages.

This strategy helps to increase the probability of getting closer to the convergent

point than a random choice. The function A(T, y) is defined as follows.
()
A(r,y):y I-r T (4.6)

where 1 is a uniform random number from [0, 1], 7 is the maximum generation

number of the evolutionary process, and &,,, is a system parameter that

determines the degree of non-uniformity (or the degree of dependency on the

iteration number of the mutation operator).
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4.3 Genetic algorithm-based neural networks for hypoglycemia

detection from EEG signals

4.3.1 Genetic algorithm-based neural networks

With the ability of globally searching through complex, multimodal solution spaces without
requiring the fitness function to be differentiable, genetic algorithms have been widely
applied in developing neural networks. Different approaches to evolve neural networks
based on genetic algorithms have been introduced, including tuning network parameters,
finding optimal network structure (number of hidden layers, number of hidden nodes in
each layer), selecting input features, initialising network parameters, selecting learning
rules, etc. Depending on unique attributes of each application, hybrid approaches are also
explored to optimise both structure and parameters of neural networks, or combined sets of

initial network parameters, number of hidden nodes, learning rules, etc.

With the final aim of the project which is developing a real-time hypoglycemia detecting
system that is applicable in real-life use, the structure of neural network is expected to be
minimally reduced. A small set of 4 features from 2 EEG channels has been extracted to
feed into neural network. With the input layer of 4 input nodes and output layer of 1 input
node, it has been demonstrated in Chapter 3 and 4 that the acceptable classification
performance can be achieved with the number of hidden nodes in the hidden layers in the
range of 1-16. Therefore, optimizing this factor is not considered in this thesis, as well as

other factors of selecting input features or learning rules.

In this chapter, genetic algorithm is only explored as a training technique to optimise
network parameters. Based on the capability of globally optimisation, a genetic algorithm is
developed and applied to neural network with the aim of searching over the whole domain
and directing the training process to the global optimal region. The main features of this

process are presented as follows.
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e Population initialising
First, a population of chromosomes or individuals P=[p, p, ... ... pn[}] will be generated

in which each chromosome P;=[p;; p;; --- Dy - p,-ng], J =1+ng is a solution of the

optimisation problem. With the aim of training neural network to obtain optimal network
parameter, each chromosome in the population will be represented by the set of parameters

of neural network.

Based on a given structure of a three-layer neural network which consists of V,, input

nodes, N,; hidden nodes and N,, output node (as shown in Figure 3.5), each chromosome

in the population is expressed as follows:
[W_ij Vi by by ] 4.7)
where

- W, i=1+Ny,, j=1+N,, is the weight of the link between i-th hidden node and

the j-th input.

- W, i=1+N,,, k=I+N,, is the weight of the link between i-th hidden node and

k-th output

—  by,,b,, are the biases for the hidden nodes and output nodes respectively.

Each gene of the chromosome is one neural network parameter. As a result, the length of

chromosome 7

., which is equal to the total number of neural network parameters, is

calculated as follows.

ng=(Ny+1D)*Npyg+(Npg +1)* Ny,
:(Nin+N +])*Nhid+Nout

(4.8)

out
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e Fitness function

To learn the input-output relationship, a fitness function needs to be defined and used
during the evolution to estimate and compare the performance of chromosomes in the
population. In this thesis, the function used to estimate the fitness of each chromosome or
each solution is defined as follows:

1

[ (chromosome) = F(w) 4.9)

E(w) 1s the mean squared error function defined as:

N,

out

E(w) :ﬁi;{yk (xn,W)—tk"}z

out "=

(4.10)

where:

- W=[M§- v, b, b,] is the vector of network parameters or the current

chromosome

- ».(x",W)and ¢, are the real k-th output and its corresponding target when

feeding the inpur x" into network; k=I+N,, where N,, is the number of

output nodes in the output layer ; n=171+N where N is the number of data

point of the training set.

e Genetic operation

At each iteration (or generation) of the training process, the population is updated through a
process of selection, crossover and mutation. The selection chooses some chromosomes out
of the population for reproduction based on fitness values of each chromosome in the

population. The selected chromosomes undergo two genetic operators of crossover and
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mutation to generate offspring. The offspring after that are evaluated by the fitness function

to replace the worst chromosomes in the old population to generate a new population.
o Terminating conditions

The evolutionary process, including selection, crossover and mutation will be repeated until
one of terminating conditions is met. The best chromosome in the final population will be
considered as the final solution of the optimisation problem, which is the final set of neural

network parameters.

4.3.2 Results of hypoglycemia detection using GA-based neural network

As results of the feature extraction part presented in Chapter 3, for hypoglycemia detection
purpose, a feed-forward three-layer neural network will be developed. The structure of the

developed neural network is as follows:

e The input layer contains 4 input nodes which are corresponding with extracted
features from EEG signals (2 features of centroid theta frequency and centroid alpha

frequency x 2 channels of C3 and O2).

e The hidden layer contains S hidden nodes. The number of hidden nodes S is varied
from 1 to 16 to select the one that gives the best performance. As a result, it is
recognized that for our application with 4 input nodes and 1 output node, S = 9
yields the best classification results. The following results are corresponding with a

neural network of 9 hidden nodes.

e The output layer contains only 1 output node which indicates the state of

hypoglycemia or non-hypoglycemia.

Consequently, referring to equation 4.8, the total number of parameters of the developed

neural network is estimated as:
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Number of parameters = (N,, +N,,, +1)*N,,, +N,,,

out

=4+1+D)*9+1 = 55

For training the neural network by using the GA algorithm, the overall data set is separated
into a training set and a testing set. The training set is used to evolve neural network’s
parameters, while the testing set is used to verify the performance of the trained neural
network. The number of data points in each set is presented in Table 4.1. The training set is
formed from the data of 3 patients, who have been called patient A, B and C. This set
consists of 284 data points which includes 112 points of hypoglycemia. The testing set is
formed from data of 2 patients, who have been called patient D and E. This set consists of

144 data points which include 76 points of hypoglycemia.

Table 4.1: Number of data points for training and testing neural network using GA

Total | Hypoglycemia | Non hypoglycemia

Training (data from

patient A, B and C) 284 112 172
Testing (data from
patient D and E ) 144 76 68
A population of chromosome P=[p, p, ... ... p, ]with the population size 72,0f 50 is

P
initialised. Each chromosome p; =[p,; pi> - Dy - pl.ng], J=1I+n, is equivalent to a vector

of network parameters as shown in equation 4.7, where each gene of the chromosome is
equivalent to a network parameter. With the developed neural network of 4 input nodes, 9
hidden nodes and 1 output node, the chromosome length equals 55 which is the number of
parameters needed to evolve during the training process. The upper and lower bounds for
each gene or each network parameter are set at -3 and 3 respectively. The initial population

is generated uniformly at random.
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In this thesis, for the evolutionary process, three genetic operators are selected, including
normalized geometric ranking selection, Blend-a crossover, non-uniform mutation. Details

about the above operators are presented in section 4.2.2.1 — 4.2.2.3. For normalized

geometric ranking selection, the probability of selecting the best chromosome ¢ is set at

0.08. The probability of crossover L. and probability of mutation £, are set at 0.8 and

0.5 respectively.

The fitness function used to evaluate the neural network performance during the

evolutionary process is presented as in equations 4.9 and 4.10, where the number of output

nodes in the output layer N,, =1 and the number of data point of the training set N = 284

as shown in Table 4.1.

To stop the training process, two terminating conditions are established. One is when the

fitness function approaches a targeted value which corresponds to the point producing the

mean squared error (W) =107, If the training process cannot get to that targeted value, the

evolutionary process will be terminated at the maximum number of generations which is set
at 2000 in this thesis. This second terminating condition is necessary because it helps to
prevent the training process from one of the inherent characteristic of GAs which is slow
convergence. The evolutionary process will be stopped whenever one of the terminating
conditions is fulfilled. The best chromosome producing the highest value of fitness
function in the final population is considered as the optimal set of parameters of the neural

network.
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Table 4.2: Summary of GA setup for training neural network

Parameters

Population size

50

Gene representation

[Wij Vi by by ]

Chromosome length

55

Parameter range

Selection method

Normalized geometric ranking selection

Probability of selecting the best

chromosome Yy

0.08

Crossover operator

Blend-a crossover

Probability of crossover L.

0.8

Mutation operator

Non-uniform mutation

Probability of mutation £/,

0.5

Terminating criteria

E(w)=10"

Maximum number of generations = 2000
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A summary of GA’s parameters set up in this thesis to implement training neural network is
presented in Table 4.2. After training the neural network, a Receiver Operating
Characteristic (ROC) curve is plotted for the training set. Details about ROC curve are
provided in section 3.2.3.3. The area under the curve (4uC) is estimated to evaluate the
classification performance of the developed neural network. Based on the ROC curve, the
threshold of neural network’s output to distinguish between hypoglycemia and non-
hypoglycemia is set at the point producing classification sensitivity of 80%. The testing set

is applied to test the classification performance of GA-trained neural network.

A comparison between classification results of neural networks trained by the GA
algorithm and the LM algorithm is provided in Table 4.3. In this table, the presented
classification results are the mean and best performance of 20 running times. Details of
achieving classification results by using LM-based neural network are provided in Chapter

3, section 3.3.3.

Table 4.3: Comparison of classification results between GA and LM algorithms

Training Training set Testing set
method AuC
Sen Spe Sen Spe
GA 0.70 80% 37% 83% 40%
Mean results
LM 0.73 80% 52% 67% 42%
GA 0.74 80% 42% 73% 41%
Best results
LM 0.75 80% 53% 71% 54%

AuC: area under the ROC curve
Sen: sensitivity ; Spe: specificity
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As shown in Table 4.3, the best classification results of 20 running times indicate that the
neural network trained by the LM algorithm produces better performance than the GA
algorithm. Based on the ROC curve which corresponds to each algorithm, the point that
produces training sensitivity of 80% is selected as the output threshold for each case. In this
way, with the same acceptable sensitivity of 80% for hypoglycemia detection, it is obvious
that LM algorithm produces a more desired specificity of 53% compared to a specificity of

42% produced by GA algorithm.

However, when looking at the mean classification results of 20 running times, the positives
as well as drawbacks of each algorithm are demonstrated. Even though the LM algorithm
produces better mean classification performance on the training set (AuC of 0.73,
specificity of 52%) compared to the GA algorithm (AuC of 0.70, specificity of 37%), the
performance on the testing set produced by the LM algorithm (sensitivity of 67%,
specificity of 42%) is significantly poorer than the GA algorithm (sensitivity of 83%,
specificity of 40%).

The poor results on the testing set yielded by the LM algorithm can be explained by its
inherent characteristic of premature convergence. Due to this feature, the LM algorithm is
not effective in directing the training process to the global solution but is likely to be
trapped in a local optimum. On the other hand, the GA algorithm produces consistent
results in all running times which can be explained by its ability to direct the optimisation
process to the region of optimal solution. However, the mean classification results of 80%
sensitivity and 42% specificity yielded by the GA algorithm indicates a prominent
limitation of GAs which is inefficient in fine tuning to approach to the local optimal. As a
result, even though the GA algorithm can lead the training process to the global solution,

the classification results attained are quite low.
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4.4 Combination of genetic algorithm and Levenberg-Marquardt
algorithm in training neural network for hypoglycemia detection

from EEG signals

4.4.1 Procedure of the GA+LM algorithm for training neural network

The comparison between classification results of the neural networks trained by genetic
algorithm (GA) and Levenberg-Marquardt (LM) algorithm separately shown in section
4.3.2, demonstrates benefits as well as limitations of each algorithm. In this section, in
order to take advantage of positives and avoid negatives of each algorithm, a combination

of GA and LM (named the GA+LM algorithm) is explored for training neural network.

To do this, the neural network will be trained by a procedure of two consecutive steps of
global search and local search. Details about implementing the GA+LM algorithm for

neural network training are presented as follows:

e Global search: First GA is employed to evolve neural network’s parameters in
order to direct the training process to the region of the global solution. The
implementation of training neural network by using GA is presented in details in
section 4.3.1. The evolutionary process including selection, crossover and mutation
is applied on a population of network parameters with the aim of optimizing the
fitness function defined in equations 4.9 and 4.10. Whenever one of the terminating
conditions is met, the evolutionary process is stopped. The best chromosome with
the highest value of fitness function in the last updated population is considered as
the final solution of the GA algorithm or the final set of network parameters

produced by the Global search step.

e Local search: In order to overcome GA’s drawbacks of inefficient fine tuning and

slow convergent rate, after the global search by GA, a step of local search is
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implemented. To do this, first, the final set of network parameters obtained by the
GA algorithm will be set as initial parameters for the neural network. The LM
algorithm is then employed on this parameter set to continue training the neural
network. In this way, the LM algorithm acts as a fine tuner to help the training
process quickly converge toward the global solution. Details about implementing
the LM algorithm for training neural network are provided in Chapter 3, section
3.3.3. In brief, the LM algorithm estimates the second directional derivative of the
performance function (the mean squared error function as shown in equation 4.10),
in order to ensure the training process direct to a local optimal. To avoid
overtraining which may cause bad generalisation, the cost function on a separate
validation set is also monitored during the training process. When the validation
error keeps increasing for a given number of iterations, the training is stopped. The
parameters at that stopped iteration will be considered as the final neural network

weights and biases.

4.4.2 Results of hypoglycemia detection using GA+LM-based neural network

As presented in section 4.3.2, a neural network with the structure of 4 input nodes, 9 hidden

nodes and 1 output node is developed for the aim of classifying and detecting episodes of

hypoglycemia from EEG signals. This neural network will be trained by a 2-step procedure

of global search and local search. The global search is carried out using the GA algorithm

while the local search is carried out using the LM algorithm. The number of data points

used for each step is arranged as follows:

For training the neural network by using the GA algorithm, the overall data set of 5
participated patients is separated into a training set formed from the data of 3
patients, called patient A, B and C and a testing set formed from the data of 2
patients, called patient D and E. The number of data points in each set is presented

as in Table 4.1.

For training the neural network by using the LM algorithm, in order to implement
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early stopping, the above training set used for GA training is randomly subdivided
into an LM-training set and a LM-validation set with a ratio of 3:1. The same testing
set from 2 patients D and E will be used to verify the performance of the GA+LM-
based neural network. The number of data points in each data set for LM training is

presented in Chapter 3, Table 3.10.

After training the neural network by two steps of global search and local search as
presented in section 4.4.1, the ROC curve will be plotted for the training set (the combined
dataset of LM-training set and validation set) to estimate the 4uC as well as to determine

output threshold to distinguish between hypoglycemia and non-hypoglycemia.

Classification results are presented in Table 4.5. The reported results are the mean and best
performance of 20 run times. The ROC curve for the case producing the best performance
is plotted in Figure 4.3. For comparison, the ROC curve for the best performance produced

by GA-based training is also plotted in this figure.
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Table 4.4: Classification results of GA+LM-based neural network

AuC

Training set

Testing set

Sen Spe

Sen

Spe

Mean results

0.79

80% 57%

T4%

52%

Best results

0.82

80% 61%

75%

60%

AuC: area under the ROC curve
Sen: sensitivity ; Spe: specificity
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Figure 4.4: ROC curve

The classification results shown in Table 4.5 indicate that by combining GA and LM
algorithms to train neural network, classification performance is enhanced markedly. The
ROC curves plotted in Figure 4.2 demonstrates that the GA+LM algorithm (producing AuC
of 0.82) outperforms the GA algorithm (producing AuC of 0.74) in training neural
networks. As a result, on the same training set, the GA+LM-based neural network yields
the best results of 80% sensitivity and 61% specificity which is obviously better compared
to the best results yielded by the GA-based neural network (80% sensitivity and 42%
specificity). In terms of hypoglycemia detection, the neural network trained by the GA+LM
algorithm also produces considerable testing results 75% sensitivity and 60% specificity
(which are the best testing results of 20 running times). The consistent mean testing results
of 74% sensitivity and 52% specificity also show good generalisation of the neural network

trained by the GA+LM algorithm.

It is demonstrated that by using the GA+LM algorithm for training neural network, the
classification performance is significantly improved when compared with the GA algorithm
and the LM algorithm. This improvement can be explained by the combination of benefits
from each separate algorithm. The consistent and good generalisation of neural network
profits from the ability of the GA algorithm to direct the training process to the region of
optimal solution. This step helps the training process to avoid trapping into local optimal
which is an inherent problem of derivative-based training algorithm. Taking this advantage
of the GA algorithm, combined with the fine tuning capability of the LM algorithm, the

GA+LM algorithm produces considerably enhanced classification performance.
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4.5 Discussion

In this chapter, a combination of genetic algorithm (GA) and Levenberg-Marquardt (LM)
algorithm (named GA+LM algorithm) is investigated in training neural network with the
aim of improving the classification performance for the hypoglycemia detecting algorithm.
As a result of the feature extraction carried out in Chapter 3, four EEG parameters from two
non-invasive EEG channels of C3 and O2 are used as inputs for a neural network-based
classification unit. The developed neural network is trained by a procedure of two
consecutive steps including a step of global search and a step of local search. The global
search, based on the GA algorithm, aims to drive the training process to the region of the
global optimal. Using the solution yielded by the GA algorithm as the initial set of network
parameters, the training process continues implementing the next step of local search by the
LM algorithm. This local search step acts as a fine tuner helping the training process

(currently staying at the global optimal area) to get closer to the final global optimal.

When comparing with the classification results yielded by the neural network trained by the
LM algorithm in 20 running times, the proposed GA+LM algorithm produce much better
mean results on the testing set (74% sensitivity and 52% specificity versus 67% sensitivity
and 42% specificity). This outperformance of the GA+LM algorithm compared to the LM
algorithm shows the efficiency of the GA-based global search step in consistently directing

the training process to the global region.

On the other hand, the comparison between the classification performance produced by the
neural network trained by the GA algorithm and the GA+LM algorithm indicates benefits
of the LM-based local search step in training neural network. Although the GA algorithm is
effective in global searching, the mean classification results produced by the GA algorithm
(80% sensitivity and 37% specificity on the training set) show its failure to finely tune and

converge the training process to the final global optimal. By implementing one more step of
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LM-based local search, the classification performance is improved significantly up to 80%

sensitivity and 57% specificity (mean results on the training set of 20 running times).

In conclusion, by utilizing the global search ability of GA and the local search ability of
LM in training neural network, it is demonstrated that classification results of
hypoglycemia detection from EEG signals can be enhanced remarkably up to 80%
sensitivity and 61% specificity on the training set, and 75% sensitivity and 60% specificity

on the testing set.
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Chapter 5

Adaptive Strategy of Classification for Detecting

Hypoglycemia using EEG Signals

5.1 Introduction

The severity and frequency of hypoglycemia in patients with type 1 diabetic mellitus
(T1IDM) lead to the necessity of developing devices that can detect hypoglycemic episodes
and give an alarm to patients to take action before their conditions become severe and
cannot be corrected. Using EEG parameters as inputs of the computational detecting
methodology, it has been shown in previous chapters that the classification algorithm plays
an important role in determining the performance of hypoglycemia detection. In this thesis,
the artificial neural network is selected to be used as the classification unit. The
combination of genetic algorithm (GA) and the Levenberg-Marquardt (LM) algorithm
(GA+LM algorithm) is demonstrated to be an effective technique for training neural
network. As shown in Chapter 4, compared to other techniques, this training method
produces significantly enhanced classification results of hypoglycemia detection (best
classification results of 80% sensitivity and 61% specificity on the training set; 75%

sensitivity and 60% specificity on the testing set).
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The difference in classification performance between the training set and the testing set can
be explained by several causes, which include the generalisation ability of the developed
neural network and the variability of EEG signals from person to person. With the proposed
classification method of GA+LM-based neural network in Chapter 4, it is shown that the
training process is successfully directed to the global optimal area by the GA algorithm,
therefore enhancing the generalisation of the neural network. Meanwhile, the high
variability is an inherent characteristic of EEG signals which raises considerable difficulties

for most EEG-based applications in achieving desired performance.

The main objective of this chapter is to deal with the aforementioned second problem
causing the difference in classification results when the neural network is trained and tested
with EEG data from different groups of patients. To do this, an adaptive strategy of training
neural network will be explored in order to allow the classifier to customise itself to new
EEG patterns from new individual users. It will be demonstrated that by applying a
properly adaptive strategy of classification, the effect of EEG variability from person to
person can be eliminated, therefore improving the performance of detecting hypoglycemia

from EEG signals.

Lastly, based on the performance of different algorithms and strategies of training neural
networks which have been explored so far in this and previous chapters, the final network
training procedure for hypoglycemia detection using EEG signals proposed by this thesis
will be presented. This training procedure is separated into two sequential stages including
the GA+LM algorithm implemented in conjunction with the adaptive strategy.
Classification results of this training procedure provided at the end of this chapter are
considered as the final performance of the computational methodology of hypoglycemia

detection using only 2 EEG channels developed by this thesis.
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5.2 An adaptive strategy for neural network training in the

application of detecting hypoglycemia from EEG signals

5.2.1 An adaptive strategy for training neural network to enhance the

generalisation of classification

Artificial neural networks have been employed popularly in the biomedical area as a
powerful tool of classification and pattern recognition. It has been recognised that using
neural networks is a successful method in classifying complex situations. It can effectively
model non-linear relationships between inputs and outputs. When assessing the
performance of a neural network, the generalisation is one of the most important factors. In
terms of classification, the generalisation ability of a neural network means that after being
trained, the network could perform well on data of the same class as the learning data that it

has never seen before.

There are two main reasons for the limited generalisation ability of a neural network which
are over-fitting and trapping into local optimal. Over-fitting is the problem which occurs
when the training process lasts too long and the training error function (or the cost function)
is forced to be a very small value. In this situation, the network will perform very well on
that particular training set because it has memorised the training samples but it cannot learn
to adapt to new situations. Trapping into local optimal is also a common but inherent
problem of some training algorithms which leads to poor generalisation of neural network.
Due to being trapped into one of the local optimal, the classification results can be high on

the training data but not acceptable on the unseen testing data.

In this thesis, the cross-validation technique (as presented in Chapter 3, section 3.2.3.3) has
been implemented together with the LM algorithm to help the training process avoid over-
fitting while the GA algorithm (as presented in Chapter 4, section 4.3) is employed to help
the training process direct to global optimal area instead of trapping into one of the local

optimal. As a result, using EEG data from 5 T1DM patients, trained on a data set of 3
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patients and tested on another unseen data set of 2 patients, classification results are
demonstrated to be enhanced up to 80% sensitivity and 61% specificity on the training set;
75% sensitivity and 60% specificity on the testing set. This classification results show a
good ability to generalise the trained neural network on data from totally unseen
individuals. It is also shown that although the generalisation ability of neural network is
enhanced by applying the cross-validation technique and genetic algorithm, there is still a
gap between the classification performance on the training set and the testing set. This
situation can be explained by the inherent variability of EGG signals from person to person.
As this is a natural characteristic of EEG signals, it cannot be overcome totally by training

algorithms.

In many previous EEG-associated works, it has been noted that EEG patterns considerably
vary from individual to individual. This fact leads to considerable difficulties in
generalising an EEG-based system to new users. That is the reason why in most of the
studies using EEG signals as inputs for developing health-related applications (such as a
brain-computer interface), researchers normally apply some specific strategies in order to

overcome that inherent factor of EEG signals.

One common method proposed by many studies is to individualise the system for each
subject. In this way, when the system is exposed to a new subject, data from the subject will
be collected and used to train (or teach) the system to generalise itself to his/her individual
EEG patterns. Generally, this is the most effective way to eliminate the impact of EEG
variability from person to person and can considerably enhance the performance of the
system on each subject. However, individualising any system to each user is normally
accompanied by complicated procedures of initialising and operating, due to the
requirement of collecting data and on-line training the system the first time it is used.
Moreover, the fact that the system needs to be built to be able to generalise itself to each
individual, with complex requisites for designing and manufacturing, obviously makes its
cost higher. As a result, these drawbacks make the method less appealing and desirable for

the purpose of developing real-life systems that can be commercialised on the market.

Unlike the above mentioned method, in this chapter, in order to reduce the impact of signal
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variability on the overall performance of hypoglycemia detection, a strategy of training
neural network adaptively will be explored. Instead of implementing the whole process of
network training online for each new user, the training process is only allowed to adjust
itself to new EEG patterns of an unseen subject. This is accomplished by employing a step
of adaptive training in order to enhance the classification performance. To do this, the
system is initially trained and validated with data from a group of subjects. After achieving
the neural network's optimal structure as well as parameters, an adaptive training step is
applied. The previously-trained neural network is then updated by an adaptive-training
process with a small baseline set of data taken from an unseen subject. This further-trained
neural network is then tested with the testing data from that subject to validate its

performance.

In this section, in order to demonstrate the ability of the proposed adaptive strategy in terms
of enhancing the generalisation of the classification, first it will be applied to the standard
neural network trained by the LM algorithm. As shown in Chapter 3, section 3.3.3.2, using
the centroid alpha frequency and centroid theta frequency at two channels of C3 and O2 as
inputs, a neural network structure of 4 input nodes, 8 hidden nodes and 1 output node is
developed. This neural network is trained by the LM algorithm using data from 3 patients
and then tested using a testing set formed from two totally unseen patients. This approach is
shown to yield acceptable classification results for the purpose of hypoglycemia detection
(80% sensitivity and 53% specificity on the combined training/validation dataset, and 71%
sensitivity and 54% specificity on the testing set). It has been concluded that the difference
between classification performance on the combined training/validation set and the testing

set is partly caused by the inconsistency of EEG signals from patient to patient.

For the purpose of adaptive training, based on optimal network parameters obtained by the
training process, the trained neural network is then updated by an adaptive-training step
using a small baseline set of data taken from two unseen patients. By doing this, network
parameters will be further adjusted in order to be adaptable to their EEG patterns. To
evaluate the performance of this further-trained neural network, the same testing data from
those two patients that were used to test the developed network in Chapter 3 will be
applied.
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5.2.2 Classification results

As presented in Chapter 3, section 3.3.3.2, for training and testing the developed neural
network of 4 input nodes, 8 hidden nodes and 1 output node, the overall data set acquired
from 5 TIDM patients, who participated in the overnight glucose clamp study, is separated
into 3 different data sets including a training set, a validation set and a testing set. The
training set and validation set are formed by randomly dividing the data set from 3 patients
who have been called patient A, B and C. The size ratio of training set to validation set is
3:1. The testing set is formed from the data of two other patients who have been called
patient D and E. Details about the number of data points for each data set is provided in

Chapter 3, Table 3.10.

In this section, in order to implement the step of adaptive training, another data set, named
the baseline data set, is formed by taking 30 data points from the baseline phase of each
patient D and E (as defined in Chapter 3, section 3.2.1). Based on the corresponding blood
glucose levels, all data points in this baseline phase are classified as being in a non-
hypoglycemic state. This baseline data set from two patients D and E is then blended into
the data set from 3 patients A, B, and C to form a new data set, called the adaptive training
data set which will be used to update the network in the step of adaptive training.
Consequently, the adaptive training data set consists of 344 data points in which there are
112 points of hypoglycemia. By further training the network using the adaptive training
data set that includes a small part of data from patients D and E, the previously trained

network can adjust itself to the new EEG patterns of the unseen patients.

As a result of the network training process, by using the LM algorithm and the cross-
validation technique implemented in Chapter 3, the final neural network structure with
optimal network parameters has been derived. For the adaptive training purpose, the
previously achieved optimal network parameters are set as initial weights and biases of a
neural network with the same structure of 4 input nodes, 8 hidden nodes and 1 output node.
Afterwards, the adaptive training step will be implemented on this neural network, using
the adaptive training data set. The adaptive training procedure is also implemented by the

LM algorithm and the cross-validation technique. To carry out the cross-validation
123



Chapter 5 Adaptive strategy of classification for detecting hypoglycemia using EEG

signals

technique, the adaptive training data set is then randomly subdivided into a training set and

a validation set with the ratio of 3:1.

The network 1is trained until one of the terminating conditions is met. At this step of

adaptive training, the terminating conditions are set up as follows:

E(w)=10"

E(w)on the validation set keeps increasing for 200 iterations

where E(w) is the error function which is used as a cost function for the training process

defined in Chapter 3, section 3.2.3.2. After the adaptive training step is stopped, the ROC

curve for the further-trained neural network will be plotted to re-estimate the output

threshold to distinguish between hypoglycemia and non-hypoglycemia states by selecting

the point that produces the classification result of 80% sensitivity on the adaptive training

data set.
Table 5.1: Classification results of the developed neural network with
4 input nodes, 9 hidden nodes and 1 output node
Training set Testing set
Sen Spe Sen Spe
Best results 80% 53% 71% 54%
Original
Training
Mean results 80% 52% 67% 42%
Best results 80% 58% 74% 55%
Adaptive
Training
Mean results 80% 54% 70% 51%

Sen: sensitivity ; Spe: specificity
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To show how well the neural network updated by the step of adaptive training generalises
to two testing patients D and E, the testing data set is applied to the further-trained neural
network. All classification results are presented in Table 5.1, in which the reported results
are the best and mean results of 20 running times. For comparison purposes, classification
results yielded by the original training process implemented in Chapter 3 are also presented

in this table.

The classification results of 20 running times indicates that the neural network which is
further-trained by the adaptive strategy produces better performance compared to the
originally trained network. It is shown that by applying partly individual training and
allowing the neural network to adjust itself to the EEG patterns of each subject, the mean
classification results of 20 running times on the two testing patients are markedly enhanced
from 67% sensitivity and 42% specificity up to 70% sensitivity and 51% specificity. It is
widely known that the LM algorithm can drive the training process to be trapped into one
of the local optimal solutions which leads to the low network ability to generalise.
Consequently, the aforementioned mean classification performance indicates that the
impact of the variability of EEG signals from subject to subject on classification
performance can be eliminated by implementing the adaptive training strategy, therefore

enhancing the generalisation of the overall system.

As shown in Table 5.1, it is noted that there is a slight difference between the classification
results on the training set, between the neural network trained by the original training
process with the adaptive training process (mean results of 80% sensitivity and 52%
specificity versus 80% sensitivity and 54% specificity). This insignificant difference can be
simply explained by the addition of 60 baseline data points from 2 patients D and E to the
original training data set when implementing the step of adaptive training. Because the
purpose of this adaptation step is tuning the developed neural network's parameters
obtained by the original training process in order to adapt the neural network to EEG
patterns of the two new patients, this similarity of classification performance on the training

set is reasonable and predictable.

The classification performance obtained in this section implies that in the application of
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hypoglycemia detection from EEG signals, the inherent drawback of the EEG which is the
substantial signal variability from person to person can be considerably limited by
implementing the adaptive training strategy to update the LM-trained neural network.
Combined with the classification performance yielded by the advanced training method of
GA+LM algorithm proposed in Chapter 4, it is suggested that a combination of different
training strategies can successfully enhance the generalisation ability of the neural network -
based classification unit for hypoglycemia detection from EEG signals. This combination
will be explored in the next section in a way that it can overcome limitations of training
algorithms as well as EEG signals with the aim of improving the ability of the overall

system to generalise to new subjects.

5.3 Implementation of GA+LM algorithm in conjunction with
adaptive strategy in training neural network for hypoglycemia

detection from EEG signals

5.3.1 Procedure of the GA+LM+Adaptive algorithm for training neural

network

Thus far in this thesis, artificial neural networks have been demonstrated to be an effective
method of classification for the application of detecting episodes of hypoglycemia from
EEG signals for patients with TIDM. In order to improve the performance of neural
networks for hypoglycemia detection, especially the generalisation of networks, different
training techniques and strategies have been explored. Combining the global search ability
of genetic algorithm (GA) with the local search ability of the Levenberg-Marquardt (LM)
algorithm, the GA+LM algorithm proposed in Chapter 4, section 4.4 is shown to be
effective in directing the network training process to the global optimal, therefore
significantly enhancing the classification performance of the developed neural network.

Meanwhile, classification results presented in section 5.2 indicate that the adaptive strategy
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of training network is a capable approach for dealing with the variability of EEG signals
from person to person in order to enhance the ability to generalise to a totally new subject

of the whole system.

In this section, with the aim of utilizing advantages of both approaches, the GA+LM
algorithm will be implemented in conjunction with the adaptive strategy for training neural
network as the final neural network training procedure proposed by this thesis for
hypoglycemia detection using EEG signals. Using the EEG data acquired from five patients
who participated in the overnight glucose clamp study, the final network training procedure
(named the GA+LM-+Adaptive algorithm) which consists of two consecutive stages will be
applied. Details about each stage of the proposed GA+LM-+Adaptive algorithm for neural

network training is provided as follows:

e Stage 1: The developed neural network is initially trained by the GA+LM algorithm
using a training set which is formed from the data of three patients who have been
called patient A, B and C. In brief, this stage aims to guide the training process to
the global optimal solution by two sequential steps. The first step of GA training
helps to direct the training process to the region of the global optimal without
trapping into local optimal solutions, while the second step of LM training acts as a
fine tuning tool, managing to drive the training process closer to the final optimal
solution. Details about using the GA+LM algorithms to train neural network are

provided in section 4.4.1.

e Stage 2: In the beginning of this stage, the optimal set of network parameters
obtained by the GA+LM algorithm in Stage I will be set as initial parameters for
the developed neural network. Then the second stage of adaptive training will be
applied. Details about the adaptive strategy of training neural network are provided
in section 5.2. Briefly, the trained neural network obtained by Stage 1 will be
adaptively updated by a further-training step in order to help the network customise
itself to EEG patterns of new users. This step of further training is carried out by
utilizing a small baseline set of data taken from two unseen patients (who have been

called patient D and E) added to the original training set to form a new adaptive
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training set. In this stage, the LM algorithm is applied to train the network.
Whenever one of the LM terminating conditions is fulfilled, the stage of adaptive
training will be stopped. The set of network parameters at the last training iteration
will be acquired as the final optimal network solution of the GA+LM+Adaptive
algorithm for training neural network proposed by this thesis. The same process of
plotting ROC curve for the final neural network will be applied to estimate the
output threshold to distinguish between hypoglycemia and non-hypoglycemia.
Based on this threshold, the testing data from two patients D and E will be applied

to verify the performance of the final neural network.

A summary of the procedure to implement the GA+LM-+Adaptive algorithm for training
neural network is presented in Figure 5.1-5.2. In this procedure, terminating conditions
defined for each stage are presented as in Table 5.2. At each step of the training process,
whenever one of the terminating condition is fulfilled, the training will be stopped and the
set of network parameters at the terminating iteration will be considered as the optimal
parameters set produced by that training step. The set of network parameters obtained at the
final terminating iteration of the second stage will be considered as the final optimal

solution of the network training process.
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Table 5.2: Terminating conditions setting for training neural networks by the
GA+LM+Adaptive algorithm

Stage of training Terminating conditions
E(w)=10"
Global search by
GA algorithm

Maximum number of generations = 2000

Stage 1
[ E(w)=10"
Local search by
LM algorithm E(w)on the validation set keeps increasing
| for 200 iterations
- E(w)=10"
Adaptive training
Stage 2
by LM algorithm E(w)on the validation set keeps increasing
| for 200 iterations

E(w) : the error function which is used as cost function for the training process,
defined in Chapter 3, section 3.2.3.2.
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5.3.2 Classification results

In this section, for classification purposes, a neural network structure of 4 input nodes
(including 2 EEG features of centroid theta frequency and centroid alpha frequency at two
channels C3 and O2), 9 hidden nodes and 1 output node is developed as the classification
unit. With the aim of training the developed neural network using the GA+LM+Adaptive
algorithm, data from 5 T1DM patients who participated in the overnight hypoglycemia-
associated study are grouped into different data sets corresponding to each stage of the
training process. The number of data points used for training and validating in each stage is
summarized in Table 5.3. Details about forming data sets for each stage are provided in

sections 3.3.3.1,4.3.2 and 5.2.2.

The developed neural network is trained by the GA+LM+Adaptive algorithm which
includes two consecutive stages of the GA+LM algorithm implemented in conjunction with
the adaptive training strategy. The optimal solution of network parameters produced by the
first stage is set as the initial network parameters ready for the start of the second stage.
Whenever one of the terminating conditions is fulfilled, the final set of network parameters
produced by the second stage is obtained and considered as the final optimal solution of the

network training process.

After being trained by the GA+LM+Adaptive algorithm, the ROC curve of the trained
neural network will be plotted for the adaptive training set (the combined dataset of
Adaptive-LM-training subset and Adaptive-LM-validation subset, referring to Table 5.3) to
estimate the AuC as well as to determine the cut-off point which produces a classification
sensitivity of 80% on the adaptive training set. The ROC curve which corresponds with the
best classification results in 20 running times is provided in Figure 5.3, producing the AuC
of 0.79 and the cut-off point of -0.3013. Using this cut-off point as output threshold to
distinguish between hypoglycemia and non-hypoglycemia, classification performance on
each dataset will be determined. All final classification results are presented in Table 5.3.

The reported results are the mean and best performance of 20 running times.
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Table 5.3: Number of data points for training and testing neural network using
GA+LM+Adaptive algorithm

Non-
Total H
ota ypo hypo
Global search 284 112 172
St 1 (dat LM -
age 1 (data from v 213 84 129
patients A, B and C) Local | Training
search
Training LM -
Validation N 28 43
Stage 2 ( data from Adaptive-LM- )58 84 174
patients A, B and C Training
+ baseline data from Adaptive-LM-
: oL 86 28 58
patients D and E) Validation
Testing (data from patients D and E) 144 76 68

Hypo: Hypoglycemia
Non-Hypo: Non-hypoglycemia
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Table 5.4: Classification results of the neural network with 4 input nodes, 9

hidden nodes and 1 output node trained by the GA+LM+Adaptive algorithm

Training set Testing set

AuC Sen Spe Sen Spe

Best results 0.82 80% 61% 75% 60%

GA +LM

Mean results 0.79 80% 57% 74% 52%
GA + LM Best results 0.79 80% 60% 78% 62%
+ Adaptive

Mean results 0.78 80% 57% 76% 59%

AuC: Area under the curve
Sen: sensitivity ; Spe: specificity

e
\‘

o
()}

o
~

True positive rate
o
(&)}

o
w

o
[N

0.1

|
|
|
|
|
|
|
|

[}
0 0.2 04 0.6 0.8 1
False positive rate

Figure 5.3: ROC curve
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Classification results presented in Table 5.4 show that the GA+LM+Adaptive algorithm is
an effective method of training neural network in the application of hypoglycemia
detection. In all 20 running times of network training, it is recognised that by implementing
one more stage of adaptive training after the first stage of the GA+LM algorithm, the
classification performance is enhanced considerably. With the same network structure of 4
input nodes, 9 hidden nodes and 1 output node, compared to the performance yielded by the
GA+LM algorithm implemented in Chapter 4, the neural network trained by the
GA+LM+Adaptive algorithm produces improved mean results of 76% sensitivity and 59%
specificity on the testing set. With the mean performance on the training set of 80%
sensitivity and 57% specificity, these results show that the developed neural network has a

good capability of generalising to unseen data from new subjects.

The enhancement of generalisation generated by applying GA+LM+Adaptive algorithm for
training neural network can be explained by the combination of advantages of each training
stage. With the ability of the GA+LM algorithm to consistently direct the training process
to the global optimal solution, the Stage I helps to overcome the limitations of trapping into
local optimal as well as over-fitting of gradient-based training algorithms. With the ability
of the adaptive training stage to allow the network to customise itself to new EEG patterns
of unseen testing data, the Stage 2 helps to overcome the variability of EEG signals from

subject to subject.

The best classification performance yielded by the final methodology of classification
presented in this section (80% sensitivity and 60% specificity on the training set and 78%
sensitivity and 62% specificity on the testing set) demonstrates that nocturnal
hypoglycemic episodes can be successfully detected for patients with TIDM using EEG
signals from only two EEG channels. With the use of a neural network with the structure of
only 4 input nodes, 9 hidden nodes and 1 output as the classification unit, combined with an
efficient strategy for training the developed network adaptively, there is the potential to
pursue the proposed computational methodology to develop a device for the purpose of
detecting hypoglycemia for TIDM patients from EEG signals that can be used in the real

clinical environment.
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5.4 Discussion

In this chapter, an adaptive training strategy is investigated for training the neural network
developed in previous chapters with the aim of eliminating the impacts of variability in
EEG signals from person to person on classification performance of hypoglycemia
detection. It has been shown that the inconsistency of EEG patterns between different
individuals is one of the reasons causing the dissimilarity in classification results between
the training set and testing set from unseen subjects. For the purpose of enhancing the
ability to generalise to new users of the developed neural network, the strategy of training
network adaptively allows the neural network to customise itself to the distinctive EEG
patterns of each unseen patient by a further training step. Setting the optimised set of
network parameters yielded by the original training step as initial weights and biases, the
training process continues implementing the step of adaptive training to update the
previously obtained neural network. This adaptive training step is based on an adaptive
training data set, including the original training set plus a small baseline non-hypoglycemic

data set from unseen testing subjects.

The classification results presented in this chapter demonstrate that the proposed adaptive
strategy of training neural networks is an effective approach which remarkably improves
the classification performance on unseen subjects. Due to the well-known drawback of
trapping into local optimal of the LM algorithm, it has been shown in chapter 3 that the
limited mean classification results of 20 running times on the testing set of 67% sensitivity
and 42% specificity are predictable. Consequently, with the results of 70% sensitivity and
51% specificity yielded by implementing one more step of adaptive training as shown in
section 5.2, it is concluded that the influence of EEG variability on classification

performance can be reasonably eliminated.

It should be noted that in terms of hypoglycemia detection, the adaptive strategy of training
neural network proposed in this chapter is dissimilar from the calibration technique that has
been used widely in most devices that are currently available on the market, which aim to
monitor patients’ blood glucose concentration and detect hypoglycemic episodes. Because

the main purpose of calibration is to help a system learn about physiological responses of a
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patient’s body to changing conditions throughout the day, usually this technique requires
users to carry out the calibration frequently during its operating period, even several times
in a day (for example, the Guardian Real-Time Continuous Glucose Monitoring System
from Medtronic requires the first calibration at 2 hours after sensor insertion, the second
calibration within the next 6 hours after the first, and then every 12 hours during the
operating period). Meanwhile, the adaptive strategy proposed here aims to help the neural
network training process customise itself to the distinctive EEG patterns of a new user,
therefore requiring implementation only once on the first time exposure to the device

during their normal, non-hypoglycemic state

As a result of exploring various techniques for training neural networks that have been
carried out in Chapters 4 and 5 with the aim of enhancing the generalisation of the neural
network-based classification unit, a procedure named the GA+LM+Adaptive algorithm has
been introduced in this thesis. This includes two sequential stages of the GA+LM algorithm
in conjunction with the adaptive training strategy, implemented as the final neural network
training method. Using data from 5 TIDM patients who participated in the overnight
insulin-induced hypoglycemia-associated study, the proposed method is applied to train a
neural network structure of 4 input nodes (including centroid theta frequency and centroid
alpha frequency at two channels C3 and O2), 9 hidden nodes and 1 output node (indicating
hypoglycemic or non-hypoglycemic state). Compared to other approaches that have been
implemented throughout the thesis (including LM algorithm, GA algorithm, GA+LM
algorithm), the final GA+LM+Adaptive algorithm is shown to yield the best classification

results.

The mean classification results of 20 running times (80% sensitivity and 57% specificity on
the training set and 76% sensitivity and 59% specificity on the testing set) indicate that the
proposed GA+LM+Adaptive strategy is an effective neural network training procedure
which successfully enhances the generalisation of the developed network. By utilizing the
GA algorithm capability of global searching and the LM algorithm capability of fine
tuning, and by combining with the adaptive training strategy which allows the neural
network to adapt itself to EEG patterns of new subjects, it is shown that the

GA+LM+Adaptive algorithm successfully directs the training process to the global optimal
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solution without trapping into local optimal, as well as significantly eliminating the

variability of EEG signals from person to person.

Lastly, with the best classification performance of 80% sensitivity and 60% specificity on
the training set and 78% sensitivity and 62% specificity on the testing set, it can be
concluded that the final methodology of classification proposed by this thesis successfully
performs in the application of hypoglycemia detection for TIDM patients using only two
EEG channels. It should be noted that due to the importance of the rate of correctly
identifying hypoglycemic episodes, the classification results of 80% sensitivity and 60%
specificity, which are approximately equivalent on both training data and testing data, are
reasonable and desirable for the purpose of monitoring and detecting episodes of

hypoglycemia for patients with TIDM.
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Conclusion and Future Work

6.1 Discussion and conclusion

Hypoglycemia, or the state of abnormally low blood glucose level (BGL), is the most
common but dangerous complication of the intensive insulin therapy for patients with type
1 diabetes mellitus (T1DM). Hypoglycemia impacts life quality of all TIDM patients,
limits their intellectual as well as physical activities, and potentially causes irreversible
severe effects, such as cognitive impairments, seizures, coma, and even death. A study in
2004 reported that severe hypoglycemia (defined as episodes in which patients need
assistance to re-establish the normal BGL) happens in one third of 1076 self-reported
participants with an incidence rate of 1.3 episodes/patient-year (Pedersen-Bjergaard et al.
2004). Nocturnal hypoglycemia is especially dangerous because sleep reduces and obscures
early warning symptoms, so that an initially mild episode may become severe. It was
reported previously that almost 50% of all episodes of severe hypoglycemia occur at night
during sleep (Group 1991). Because of its severity and prevalence, intensive research has
been devoted to the development of systems that can detect the onset of hypoglycemic
episodes, and then give an alarm to provide enough time for patients and their caregivers to

take action.
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Under the occurrence of hypoglycemia, the human brain is one of the first affected organs.
Because it cannot synthesize as well as store this primary metabolic fuel, the brain depends
on a continuous supply of glucose and is vulnerable to any glucose deprivation (Cryer,
Davis & Shamoon 2003). Since the electroencephalogram (EEG) is directly related to the
metabolism of brain cells, a failure of cerebral glucose supply can cause early changes in

EEG signals.

The core objective of this thesis is to introduce a computational methodology of detecting
nocturnal hypoglycemia non-invasively from EEG signals for TIDM patients. Two main
tasks have been implemented throughout the thesis: (i) analysing EEG signals to extract
important features that significantly change under the transition from non-hypoglycemic
state to hypoglycemic state; (ii) classifying and detecting hypoglycemic episodes, using
EEG features extracted from the previous task as inputs. It is established by this thesis that
episodes of hypoglycemia can be detected non-invasively and efficiently by an advanced
neural network-based classification algorithm, using two features of centroid theta

frequency and centroid alpha frequency as inputs of the algorithm.

The proposal of applying two EEG features of centroid theta frequency and centroid alpha
frequency in detecting hypoglycemia is an important contribution of this thesis. The
decrease in centroid alpha frequency has been used as a sign of reduction of vigilance in
subjects with some other health problems (fatigue, Alzheimer, etc.). It has been shown in
this thesis that in all 5 TIDM patients who participated in the glucose clamp study, under
hypoglycemic conditions, there is a significant decrease in centroid alpha frequency and
there is also a slight increase in centroid theta frequency. Because the lack of vigilance is
also a common symptom happening in T1DM patients under hypoglycemic conditions, the
two aforementioned changes in centroid alpha frequency and centroid theta frequency can
be considered as signs of the early onset of hypoglycemia (occurring at BGL of 3.3

mmol/l).

Using the two aforementioned features as inputs, a neural network-based classification unit
with different training strategies is explored to develop a computational algorithm for

detecting the onset of hypoglycemia.
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The Levenberg-Marquardt (LM) algorithm is one of the most popular techniques
for training neural networks which is based on the second-order gradient
information of an error function in order to direct the training process to a local
optimal. Standard neural networks trained by the LM algorithm were shown in this
thesis to produce acceptable classification results which demonstrate the potential
of the proposed methodology for hypoglycemia detection. With the aim of
reducing computational burden for the system, a smaller number of EEG
electrodes will be preferred. Thus, it is proposed by this thesis to use only EEG
data from two channels C3 and O2, which are from two different sides and areas
of the brain are used, as inputs for classification. As a result, a neural network with
a structure of 4 input nodes (2 features x 2channels), 9 hidden nodes and 1 output
node (indicating the state of hypoglycemia or non-hypoglycemia) is developed.
This neural network, trained by the LM algorithm provides the best classification
performance of 80% sensitivity and 53% specificity on the combined
training/validation set and 71% sensitivity and 54% specificity on the testing set.
These classification results demonstrate that hypoglycemic episodes can be
effectively detected by the proposed methodology of using EEG signals and neural
networks. Nevertheless, based on the developed neural network, more advanced
algorithms for network training need to be explored in order to enhance the overall
performance, as well as to improve the generalisation ability of the trained

network on new data from unseen subjects (i.e. testing set).

In order to overcome a well-known inherent drawback of the LM algorithm which
is potentially driving the training process to be trapped in a local optimum, a more
advanced technique, named GA+LM algorithm was explored. For the purpose of
neural network training, this algorithm implements two consecutive steps of global
search and local search. Based on a genetic algorithm (GA), the global search
helps to direct the training process to the region of the global optimal without
trapping in a local optimal solution. Using the solution yielded by the GA
algorithm as the initial set of network parameters, the local search step acts as a

fine tuner helping the training process (currently staying at the global optimal area)

141



Chapter 6 Conclusion and Future Work

to get closer to the final global optimal. By utilizing advantages of both GA
algorithm and LM algorithm, the GA+LM algorithm is shown to produce
markedly enhanced classification performance up to 80% sensitivity and 61%
specificity on the training set, and 75% sensitivity and 60% specificity on the

testing set.

e In order to limit effects of the variability in EEG signals from subject to subject
which led to considerable difficulties in generalising the system to new users, an
adaptive strategy of training neural network was applied in this thesis. The training
process first set the optimised set of network parameters yielded by the original
training step as initial network weights and biases and updated the obtained
network by one more step of adaptive training. This step was implemented by
using an adaptive training data set which included a small baseline non-
hypoglycemic data set from unseen testing subjects. By doing this, the network
was allowed to adapt itself to the new EEG patterns of testing subjects, therefore
enhancing the generalisation ability of the developed neural network as well as the

overall performance of the whole system.

e Utilizing advantages of each training strategy explored throughout the thesis, a
final training algorithm, named the GA+LM+Adaptive algorithm was proposed for
the purpose of classifying hypoglycemia from EEG signals in TIDM patients. The
algorithm consisted of two sequential training stages. Stage 1 implemented the
GA+LM algorithm to help the training process direct to the global optimal
solution. Using the optimised network parameters yielded by Stage 1 as initial
network weights and biases, Stage 2 implemented the adaptive training using the
adaptive training dataset to help the training process customise the network to the
distinctive EEG patterns of each new subject. With the same data from 5 TIDM
patients who participated in the overnight hypoglycemia-induced study, the
network trained by the GA+LM+Adaptive was shown to produce significantly
enhanced classification performance up to 80% sensitivity and 60% specificity on
the training set and 78% sensitivity and 62% specificity on the testing set. These

classification results, which are considered as the final performance yielded by this
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thesis, demonstrate that hypoglycemia can be effectively detected from EEG
signals by the proposed classification method of using neural network trained by

the GA+LM+Adaptive algorithm.

6.2 Future work

In this thesis, a computational method for early detection of nocturnal hypoglycemia using
parameters extracted from non-invasive EEG signals was demonstrated. It should be noted
that for the purpose of monitoring BGLs and detecting hypoglycemia for TIDM patients,
using EEG signals as inputs is a new research area. While devices using other kinds of
physiological signals or parameters (e.g. skin temperature, skin impedance, heart rate,
cardiac parameters, etc.) have been explored, developed and commercialised much earlier,
systems that aim to detect hypoglycemia from EEG signals are still under research and not
available on the market. As a new area of research, it can be established that the results
achieved by this thesis are acceptable and comparable to other methods of detection. With
the potential results yielded by the proposed methodology, there are some possible research
directions that would be explored in future works in order to enhance the performance of

the overall system.

As shown in this thesis, four different EEG parameters are analysed to find their
correlations with the occurrence of hypoglycemia during night in five participated T1IDM
patients. The theta centroid frequency and alpha centroid frequency are proved to be two
important features which significantly changes under the onset of hypoglycemia. For the
purpose of detecting hypoglycemia from EEG signals, finding significant EEG features
which can be used as inputs of the classification algorithm plays one of the most essential
roles in determining the effectiveness of the system. It is expected that there are other EEG
parameters that also significantly respond to the occurrence of hypoglycemia. Thus, in the
future, different EEG parameters can be continuously explored to find other features that

can enhance the performance of the system.
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In terms of classification algorithms, standard multi-layer feed-forward neural networks

have been shown to be effective classification units for detecting hypoglycemia. In order to

improve the accuracy of hypoglycemia detection, in the future, more advanced algorithms

can be explored. To do this, there are several options to be investigated.

First, neural networks with more complicated structures can be developed to
enhance the classification efficiency. However, it should be noted that complex
network structures will lead to the burden of cumbersome computational cost which
may slow down the system operation when implementing the network in real-time.
Because this research aims to develop the computational methodology for a
detecting system that can effectively work in real-life, this direction has not been

explored by this thesis.

Second, based on the developed standard neural network, different techniques to
train and optimise the network structure as well as parameters can be investigated in
order to enhance the effectiveness of the developed neural network. In this thesis,
three strategies of LM algorithm, GA+LM algorithm and GA-+LM+Adaptive
algorithm have been introduced for the purpose of training neural network. It is
shown that the GA+LM-+Adaptive algorithm remarkably enhances the performance
of the developed neural network in the application of detecting hypoglycemia. It is
expected that more advanced training techniques will help drive the training process
closer to the global optimal solution, hence improving the overall classification
performance. Furthermore, finding the optimised network structure (i.e. the number
of hidden nodes) is also a potential direction which can be implemented in the

future.

One of the limitations of this current study is the shortage of data. The data set collected

from five participated TIDM patients is sufficient to establish that the onset of

hypoglycemia induces early changes in EEG signals which can be detected by using the

proposed computational methodology. However, in order to apply this method to develop a

hypoglycemia detecting system that can perform in real clinical environments, more data

will be needed to validate the achieved results of this thesis. To do this, other clinical
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studies with more participants can be implemented in future, in which EEG signals from
other brain areas will also be acquired with the aim of comparing and finding the most

suitable positions to place EEG electrodes for the detecting system.

Furthermore, it is noted that the data set used in this thesis was acquired from a glucose
clamp study, which involved a procedure of inducing hypoglycemia, rather than natural
hypoglycemia. Previous works indicated that physiological responses to induced
hypoglycemia and natural occurring or spontaneous hypoglycemia are dissimilar. In future
work, natural hypoglycemia associated studies would be carried out to validate the
possibility of the proposed methodology in detecting the onset of hypoglycemia that occurs

spontaneously in the real life.

In conclusion, based on the methodology developed in this thesis, future works will be
carried out to pursue the final purpose of developing the real-time system that can
efficiently and continuously monitor patients’ conditions and alert them as well as their

caregivers when the onset of hypoglycemia is detected.
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Appendix A

Programming Implementation

A.l. Feature extraction using Labview

In this thesis, signal processing and feature extraction is implemented in Labview. The
following works are built up for the purpose of estimating four EEG parameters of sub-
band power, centroid frequency, spectral variance and spectral entropy within each
frequency band. The data read into the program is filtered EEG signals. The signal filtering
task is implemented by another Labview program. Non-artifact EEG data, after being read

into the program, is processed by the provided program for the following purposes:
e Segmenting non-artifact data into 5-second epochs
e Transforming each epoch into frequency domain

e Dividing the power spectra of each epoch into three frequency bands of theta (4-
8Hz), alpha (8-13Hz), beta (13-30Hz)

e Extracting four aforementioned EEG parameters from each frequency band of each

5-second epoch of signal
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A.2. Classification using Matlab

The following work is built up, based on the neural network toolbox in Matlab, for the

following purposes:

Develop a multi-layer feed-forward neural network to detect hypoglycemic
episodes, using 4 EEG parameters (centroid theta and centroid alpha at two

channels C3 and O2 as inputs) as inputs

The developed neural network is trained by the LM+GA-+Adaptive algorithm
proposed by this thesis, implementing the LM+GA algorithm in conjunction with

the adaptive strategy.

The overall data set collected from 5 participated patients are divided into three
different set of training set, validations set and testing set. The training and
validation set are formed from data of 3 patients, named patients A, B, and C,
randomly divided with the ratio of 3:1. The testing set is formed from data of 2

patients, named D and E.

With the aim of implementing the adaptive training, the adaptive training set is
formed by adding 30 baseline non-hypoglycemic data points from each patient D

and E into the original training set.
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o)

% This m-file implements training neural network by the
LM+GA+Adaptive algorithm, in which training and validation sets
are randomly divided from data of 3 patients A, B, C with ratio
of 3:1. Testing set is formed from data of 2 patients D and E.
It's used to develop and train neural network as the final
procedure proposed by Bich Lien Nguyen's thesis.

)

% Loading data

clear all;

close all;

load normal 5s; load hypo 5s;load addpD; load addpE;
% Deriving centroid theta frequency and centroid alpha frequency
at two channels C3 and 02

hypo2=[hypo 5s(4:5,:);hypo 5s(40:41,:)];
normal2=[normal 5s(4:5,:);normal 5s(40:41,:)];
addpD=[add2 (4:5, :);add2(40:41,:)1;
addpE=[add4 (4:5, :) ;add4 (40:41,:)1;

% normalZ=nor 5sN;hypo2Z2=hypo 5sN;
data=[normal2 hypo2 addpD addpE];

o)

% Processing data

for i=1:4
data2 (i, :)=mapminmax (data(i,:),-1,1);
end
normal2=data2 (:,1:240); hypo2=data2(:,241:428);
add datapD=data2(:,429:458);add datapE=data2(:,459:488);

hypo pA=hypo2(:,1:36);hpA=size (hypo pA,2);
hypo pD=hypo2(:,37:76) ;hpD=size (hypo pD,?2);
hypo pB=hypo2(:,77:112) ;hpB=size (hypo pB,2);
(:
(:

14

hypo pE=hypo2(:,113:152) ;hpE=size (hypo pE, 2)
hypo pC=hypo2(:,153:188) ;hpC=size (hypo pC,2);

normal pA=[normal2Z(:,1:40)];npA=size (normal pA,?2);
normal pD=[normal2(:,41:68)];npD=size (normal pD,2);
normal pB=[normal2Z(:,69:132)];npB=size(normal pB,2);
normal pE=[normal2(:,133:180)];npE=size (normal pE,2);
normal pC=[normal2(:,181:239)];npC=size (normal pC,2)

% Forming training set from data of 3 patients A, B and C

ntrain=size ([normal pA normal pC normal pB]J,2);
htrain=size ([hypo pA hypo pC hypo pB],2);
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input = [normal pA normal pC normal pB hypo pA hypo pC hypo pB];
target = [-ones(l,ntrain) ones(l,htrain)];

o)

% Forming testing set from data of 2 patients D and E
testpDE=[normal pD normal pE hypo pD hypo pE];

% Forming adaptive training set

retraindata=[add datapD add datapE input];

retraintarget =[-ones(l,size([add datapD add datapE],2)) target];
retraindatal=[add datapD add datapE];
retraintargetl =[-ones(l,size([add datapD add datapE],2))];

retrainpDE=-ones (1, size ([add datapD add datapE],2));

o)

% Developing a feed-forward neural network
net = newff (input, target, 9);

% Setting bounds for network parameters

bounds=ones (55,1) *[-3 3];

o\

Training the set of network parameters by Genetic algorithm

o°

Setting up GA parameters

Initializing population

o°

num=50; % number of populations

numVars = size (bounds,1); % Number of wvariables

rng = (bounds(:,2)-bounds(:,1))"'; % The variable ranges'
xZomeLength = numVars+l; %$Length of string is numVar + fit
intpop = zeros (num, xZomeLength) ; %$Allocate the new
population

intpop (:,l:numVars)=(ones (num, l) *rng) .* (rand (num, numvars) ) + (ones (n
um, 1) *bounds (:, 1) ") ;

for i=1:num

[intpop (i, :)intpop (i, xZomelength) ]=gaNNfit (intpop (i, :),net, input, t
arget) ;

end

opts = [le-6 1 1];
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)

termOps=[20007];

% Default termination information

termFN="maxGenTerm';

% Mutation operator

mutENs=['"'nonUnifMutation'];
% mutOps=[2 25 3];
% mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation

unifMutation'];

mutOps=[4 0 0;6 termOps(l) 3;4 termOps(l) 3;4 0 0];

[}

s Crossover operator

xOverFNs=["'arithXover'];
% xOverFNs=['blendXoverl'];
x0verOps=[2 0;2 3;2 0];

% Selection operator

selectFN=['"'normGeomSelect'];
selectOps=[0.2];

xOverFNs=parse (xOverFNs) ;
mutFNs=parse (mutFNs) ;

startPop=intpop;

xZomelLength = size(startPop,?2); %$Length of the
xzome=numVars+fittness

numVar = xZomelength-1; SNumber of variables

popSize = size(startPop,1); $Number of individuals in the
population

endPop = zeros (popSize,xZomelLength); %A secondary population
matrix

cl = zeros (1l,xZomelLength) ; % An individual

c2 = zeros (1l,xZomeLength) ; % An individual

numXOvers = size (xOverFNs, 1) ; % Number of Crossover operators
numMuts = size (mutFNs,1); % Number of Mutation operators
epsilon = opts (1) ; % Threshold for two fitness to differ
oval = max (startPop(:,xZomelLength)); % Best value in start
population

bFoundIn 1; % Number of times best has changed
done = 0; % Done with simulated evolution

gen = 1; % Current Generation Number
collectTrace = (nargout>3); % Should we collect info every gen
floatGA = opts(2)==1; % Probabilistic application of ops
display = opts(3); % Display progress
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while (~done)
$Elitist Model

[bval,bindx] = max(startPop(:,xZomelength)); %Best of current
population
best = startPop(bindx, :);

if collectTrace

traceInfo (gen,l)=gen; %current generation
traceInfo(gen,2)=startPop (bindx, xZomelLength) ; %Best fittness

)
( )
traceInfo(gen, 3)=mean (startPop (:,xZomeLength)); %$Avg fittness
traceInfo(gen,4)=std(startPop(:,xZomeLength)) ;

end
if ( (abs(bval - oval)>epsilon) || (gen==1)) %If we have a new
best sol
if display
fprintf (1, '\n%d %f\n',gen,bval); %Update the display
end
bPop (bFoundIn, :)=[gen startPop (bindx, :)];%Update bPop Matrix
bFoundIn=bFoundIn+l; %Update number of changes
oval=bval; %Update the best wval
else
if display
fprintf (1, '%d ',gen); %0therwise just update num gen
end
end

o\

Running ga

for i=1:numXOvers,
for j=1:x0OverOps(i,1),
a = round (rand* (popSize-1)+1); %Pick a parent
)

b = round(rand* (popSize-1 %$Pick another parent

xN=deblank (xOverFNs (i, :)) ; %$Get the name of crossover
function

[cl c2] = feval (xN,endPop(a, :),endPop (b, :),bounds, [gen
x0verOps (i,:)1)

if cl(l:numVar)==endPop (a, (l:numVar))
cl (xZomeLength)=endPop (a, xZomeLength); % Make sure we
created a new solution before evaluating
elseif cl (l:numVar)==endPop (b, (1:numVar))
cl (xZomeLength)=endPop (b, xZomeLength) ;

else
% [cl cl (xZomeLength)]=' evalFN ' (cl, [gen evalOps]);
[cl cl(xZomeLength) ]=gaNNfit (cl,net, input, target);

end

if c2(l:numVar)==endPop (a, (l:numVar))
c2 (xZomeLength)=endPop (a, xZomeLength) ;
elseif c2(l:numVar)==endPop (b, (1:numVar))
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c2 (xZomeLength)=endPop (b, xZomeLength) ;

else
% [c2 c2 (xZomeLength) ]="' evalFN ' (c2, [gen evalOps])

[c2 c2(xZomeLength) ]=gaNNfit (c2,net, input, target) ;

end

endPop (a, :)=cl;

endPop (b, :)=c2;
end

end

for i=1:numMuts,
for j=l:mutOps(i,1),
a = round (rand* (popSize-1)+1);
cl = feval (deblank (mutFNs (i, :)),endPop(a, :),bounds, [gen
mutOps (i,:)]);
if cl(l:numVar)==endPop (a, (l:numVar))
cl (xZomeLength)=endPop (a, xZomeLength) ;
else
[cl cl(xZomeLength) ]=' evalFN '(cl, [gen evalOps]);
[cl cl(xZomeLlength) ]=gaNNfit (cl,net, input, target);
end
endPop (a, :)=cl;
end
end

o°

gen=gen+1;
done=feval (termFN, [gen termOps],bPop,endPop); %See if the ga
is done

startPop=endPop; $Swap the populations
[bval,bindx] = min(startPop (:,xZomelLength)); %Keep the best
solution
startPop (bindx, :) = best; $replace it with the worst
end
[bval,bindx] = max(startPop (:,xZomelLength)) ;
if display
fprintf (1, '\n%d %f\n',gen,bval);
end

x=startPop (bindx, :) ;
bPop (bFoundIn, :)=[gen startPop (bindx,:)];

if collectTrace
traceInfo(gen, 1l)=gen; %Scurrent generation
traceInfo(gen,2)=startPop (bindx, xZomelLength); %Best fittness
traceInfo(gen, 3)=mean (startPop (:,xZomelLength)); %$Avg fittness
end
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% Updating neural network with the optimised parameters set
obtained by GA

net.IW{1l,1l}=reshape(best(1:36),9,4);
net.LW{2,1}=best (37:45);
net.b{l,1}=best (46:54)"';
net.b{2,1}=best (55);

% Implementing the second step of local search by LM algorithm

% Setting parameters for training network by the Levenberg-
Marquardt algorithm and cross-validation technique

net.layers{l}.transferFcn='"tansig';
net.layers (BCI2000) .transferFcn="purelin';

o

net.performFcn="mse"';

net.trainFcn="'trainlm';
net.inputs{l}.processFcns={'removeconstantrows'};
net.outputs (BCI2000) .processFcns={'removeconstantrows'};
net.dividefcn="'dividerand';

net.trainParam.max fail = 200;

net.trainParam.mu = 0.002; % Initialize Mu
net.trainParam.mu dec=0.8 ; % Mu decrease factor
net.trainParam.mu inc=1.2; % Mu increase factor

net.trainParam.min grad=1e-100;

o)

o

net.divideParam.trainRatio=3/4;
net.divideParam.valRatio=1/4;
net.divideParam.testRatio=0;

% Training network by the LM algorithm
netl=train (net, input, target);

% Updating neural network with the optimised parameters set
obtained by LM+GA algorithm

net2=train(netl, retraindata, retraintarget);

% Plotting ROC curve for the final optimised network

yl=sim(net2, input) ;

[X,Y,THRE, AUC, OPTROCPT, SUBY, SUBYNAMES] = perfcurve([-
ones (l,ntrain) ones(l,htrain)], [yl],'1");
plot (X,Y)

xlabel ('False positive rate'); ylabel ('True positive rate')
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)

index=find (¥Y>=0.80,1)+1;

% Acquiring cut-off point of neural network based on ROC curve

Threshold=THRE (index) ;

o)

o)

% Estimating network performance

% Calculate classification results on the combined training-

validation set

sizedata=size (input,2);

a=0;al=0;
b=0;b1=0;

o

o

for m=1l:sizedata
if m<=(sizedata-htrain)

a=a+1l;
if y1(1,m)<=Threshold
al=al+1l;
end
end
if m>(sizedata-htrain)
b=b+1;
if y1(1,m)>Threshold
bl=bl+1;
end

end
end

o)

o

spe train=al/a;
sen train=bl/b;
acc_train=(al+bl)/ (atb);

% Calculate
D and E

classification results on the testing set of patients

y pDE=sim (netl, testpDE) ;

for k=1l:length(y pDE)

if k<=(length(y pDE)-hpD-hpE)

end

h=h+1;

if y pDE(1l,k)<=Threshold
hl=hl+1;

end

if k>(length(y pDE)-hpD-hpE)

1=1+1;
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if y pDE (1, k)>Threshold
11=11+1;
end
end
end

[o)

spe_test pDE=hl/h;
sen test pDE=11/1;
acc_test pDE=(hl1+11)/ (h+l);
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