Removal and Recovery of Nutrients by Ion Exchange from Water and Wastewater

By

Monami Das Gupta

A thesis submitted to fulfilment of the requirements for the degree of Master of Engineering

University of Technology, Sydney Faculty of Engineering

June, 2011

CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature of Candidate

Monami Das Gupta June 2011 Acknowledgement

Ashim Das Gupta, Mala Das Gupta, and Monica Das Gupta for their unconditional love and support (forever and always)

Prof. Vigneswaran and Prof. Loga for all their guidance

Melanie, Bryan, Christine, Johir, Chinu, Megha, Mimi N., Ben, Karan, Ahad, Mahesh, Arjun, Melissa, Phil B., Phil vH, Dean, Belinda, Lipola, Cristein, Stephanus, Linh, Thamer, Yousef, Thanh, Wendy, Suk, Sherub, Javeed, Ganesh, Prof. Hao, Dr. Shon and Van for their endless support and encouragement

My extended family, for always being there for me and supporting my dreams and ambitions

Thank you

for making this journey a very memorable and enjoyable one

CERTIFICATE	i
Table of Contents	ii
List of Tables	V
Table of Figures	viii
Nomenclature	xiii
Abstract	XV
1. Introduction	1
1.1. Aim and Scope of Study	
2. Literature Review	
2.1. Biological Nutrient Removal	
2.1.1. Biological nitrate removal	7
2.1.2. Biological phosphate removal	7
2.1.3. Combined biological phosphate and nitro	gen removal9
2.2. Chemical Nutrient Removal	
2.2.1. Chemical phosphate removal	
2.2.2. Chemical nitrate removal	
2.3. Combination of Biological and Chemical Phos	sphate Removal 12
2.4. Adsorption / Ion Exchange	
2.4.1. Application of ion exchange with membra	ane bioreactor (MBR)14
2.4.2. Ion exchangers with affinity for nitrate re	moval15
2.4.3. Ion exchangers with affinity for phosphat	e removal17
2.4.4. Layered double hydroxides	
2.4.5. HAIX	
2.4.6. Purolite	
2.4.7. Hydrated ferric oxide (HFO)	
2.4.8. Selection of adsorbents for nitrate and photo-	osphate removal29
3. Experimental Materials and Methods	
3.1. Materials	
3.2. Methods	
3.2.1. Batch (kinetics and equilibrium) studies	
3.2.2. Purolite and anthracite column adsorption	1 study 34

Table of Contents

3.2.3.	Purolite column adsorption study	35
3.2.4.	HAIX column adsorption study	35
3.2.5.	Purolite and HFO with anthracite columns in series adsorption study	36
3.2.6.	Regeneration study	37
3.2.7.	MBR effluent as feed for column adsorption studies	37
3.3. An	alytical Methods	39
3.3.1.	Ion chromatography	39
3.3.2.	Photometric analysis	39
4. Results	and Discussion	41
4.1. Ba	tch Kinetics and Equilibrium Studies	41
4.1.1.	Purolite adsorbent	41
4.1.2.	HAIX adsorbent	53
4.1.3.	HFO adsorbent	62
4.2. Put	rolite - Anthracite Column as Adsorption Media for Nitrate and Phospha	ate
Removal	from Synthetic Water	68
4.2.1.	Breakthrough curves	69
4.2.2.	Amount of nitrate and phosphate removed in Purolite column	74
4.3. Pu	rolite Only as Adsorption Media for Nitrate and Phosphate Removal fro	m
Synthetic	Water	75
4.3.1.	Purolite column adsorption with highly concentrated synthetic feed	77
4.4. HA	AIX as Adsorption Media for Nitrate and Phosphate Removal from Synt	hetic
Water 79		
4.4.1.	HAIX column adsorption with highly concentrated synthetic feed	80
4.5. Pu	rolite and Hydrated Ferric Oxide (HFO) with Anthracite in Series as	
Adsorptio	on Media for Nitrate and Phosphate Removal from Synthetic Water	82
4.5.1.	Cumulative amounts of nitrate and phosphate removed by HFO	85
4.5.2.	Selectivity of adsorption media	86
4.6. Re	generation Study	88
4.6.1.	Distilled water wash for the regeneration of used Purolite and HFO	88
4.6.2.	NaCl wash for regeneration of used Purolite	91
4.6.3.	NaCl wash for regeneration of used HAIX	93
4.7. Us	e of Adsorption Columns to Remove Nitrate and Phosphate from MBR	
Effluent		94

	4.7.1.	Purolite only as adsorption media	95
	4.7.2.	Purolite and HFO column in series	97
5.	Conclu	sions	
6.	Bibliog	graphy	105
7.	Appen	dices	
	7.1. 10	% Purolite and HFO Columns in Series Data	
	7.2. Ex	tended Modelling Results	114
	7.2.1.	1% Purolite and HFO in series Modelling Experimental Data	115
	7.2.2.	3% Purolite and HFO in series Modelling Experimental Data	117
	7.2.3.	5% Purolite and HFO in series Modelling Experimental Data	

List of Tables

Table 3-1: Typical physical and chemical characteristics of Purolite (A500PS) (Purolite
2010a)
Table 3-2: Typical physical and chemical characteristics of Purolite (A520E) (Purolite
2010b)
Table 3-3: Characteristics of MBR effluents 39
Table 4-1: Nitrate and phosphate removal efficiencies (at equilibrium*) with varying
dose of Purolite (A500PS) during batch equilibrium study
Table 4-2: The values of the parameters in the Langmuir and Freundlich equation and r
values for nitrate and phosphate removal
Table 4-3: The values of the parameters in the Sips equation for nitrate and phosphate
removal
Table 4-4: Comparison of experimental values of Qe with values obtained from
isotherm models at different doses of Purolite (A500PS) for nitrate removal
Table 4-5: Comparison of experimental values of Qe with values obtained from
isotherm models at different doses of Purolite (A500PS) for phosphate removal 49
Table 4-6: The values of the parameters in the Ho model for nitrate and phosphate
removal at varying dose of Purolite (A500PS)
Table 4-7: The values of the parameters in the Ho model for nitrate and phosphate
removal at 5 g/L dose of Purolite (A500PS) (feed concentrations of 100 mg/L nitrate-N
and 50 mg/L phosphate-P)
Table 4-8: Nitrate and phosphate removal efficiencies (at equilibrium*) with varying
dose of HAIX during batch adsorption study
Table 4-9: The values of the parameters in the Langmuir and Freundlich equation and r
values for nitrate and phosphate removal
Table 4-10: The values of the parameters in the Sips equation for nitrate and phosphate
removal
Table 4-11: Comparison of experimental values of Qe with values obtained from
isotherm models at different doses of HAIX for nitrate removal
Table 4-12: Comparison of experimental values of Qe with values obtained from
isotherm models at different doses of HAIX for phosphate removal (outliers have been
removed)

Table 4-13: The values of the parameters in the Ho model for nitrate and phosphate
removal at varying dose of HAIX
Table 4-14: The values of the parameters in the Ho model for nitrate and phosphate
removal at 5 g/L dose of HAIX
Table 4-15: Nitrate and phosphate removal efficiencies (at equilibrium*) with varying
dose of HFO
Table 4-16: The values of the parameters in the Langmuir and Freundlich equation and r
values for nitrate and phosphate removal
Table 4-17: The values of the parameters in the Sips equation for nitrate and phosphate
removal
Table 4-18: Comparison of experimental values of Qe with values obtained from
isotherm models at different doses of HFO for phosphate removal
Table 4-19: The values of the parameters in the Ho model for nitrate and phosphate
removal at varying dose of HFO
Table 4-20: Breakthrough points from the column experiments using varied percentage
by mass of Purolite
Table 4-21: Number of BV for the breakthrough curves of nitrate and phosphate
removal by Purolite (shaded values were obtained from an experimental run over a
longer period of time)
Table 4-22: Number of BV for the breakthrough curve of nitrate and phosphate removal
by Purolite (A500PS) at 2 m/hr using a higher concentrated synthetic feed79
Table 4-23: Number of BV for the breakthrough curve of nitrate and phosphate removal
by HAIX at 2 m/hr using a higher concentrated synthetic feed
Table 4-24: Breakthrough points from the column experiments using varied percentage
by mass of HFO
Table 4-25: C/Co values for the breakthrough curves of nitrate and phosphate removal
by HFO (Shaded values were obtained from an experimental run over a longer period of
time)
Table 4-26: Amount of nitrate-N and phosphate-P washed (A) as a percentage of
amount adsorbed in the preceding run (B) for distilled water wash in the Purolite
column
Table 4-27: Amount of nitrate-N and phosphate-P washed (A) as a percentage of
amount adsorbed in the preceding run (B) for distilled water wash in the HFO column 91 $_{\rm vi}$

Table 4-28: Amount of nitrate-N and phosphate-P washed (A; estimated values) as a
percentage of amount adsorbed in the preceding run (B) for NaCl wash in regenerating
used Purolite (A500PS)
Table 4-29: Amount of nitrate-N and phosphate-P washed (A; estimated values) as a
percentage of amount adsorbed in the preceding run (B) for NaCl wash in regenerating
used HAIX94
Table 7-1: Estimated parameters for semi-empirical models for the fixed bed adsorption
of nitrate and phosphate by 1% Purolite (A500PS) and HFO 116
Table 7-2: Estimated parameters for semi-empirical models for the fixed bed adsorption
of nitrate and phosphate by 3% Purolite (A500PS) and HFO 118
Table 7-3: Estimated parameters for semi-empirical models for the fixed bed adsorption
of nitrate and phosphate by 5% Purolite (A500PS) and HFO 120

Table of Figures

Figure 2-1: A schematic representation of a BPR process (Van Loosdrecht et al. 1997) 9
Figure 2-2: Schematic representation of a University of Cape Town-(UCT)-type process
(Van Loosdrecht et al. 1997)
Figure 2-3: Scheme of the catalytic nitrate reduction (Della Rocca, Belgiorno & Meriç
2007)
Figure 2-4: Schematic representation of the LDH structure (Goh, Lim & Dong 2008). 18
Figure 2-5: Representation of an HAIX resin with quaternary ammonium functional
groups (R_4N^+) irreversibly dispersed with HFO nanoparticles (Blaney, Cinar &
SenGupta 2007)
Figure 2-6: Performance comparison of Amberlite IRA-410 and HAIX (Martin, Parsons
& Jefferson 2009)
Figure 2-7: (a) Plot of the molar (or equivalent) ionic fractions of chloride and nitrate
sorbed on the A-520E resin against those in the solution phase. (b) Calculated
separation factors of nitrate and chloride. The total equivalent ionic concentration was
0.16 mol(-)/L (Gu, Ku & Jardine 2004)
Figure 2-8: Plot of the equivalent ionic fractions of (a) sulphate and nitrate and (b)
chloride and sulphate sorbed on the A-520E resin against those in the solution phase.
The total equivalent ionic concentration was 0.16 mol(-)/L (Gu, Ku & Jardine 2004)26
Figure 3-1: Polymeric ion exchangers as host materials for preparation of HAIX
(Cumbal & SenGupta 2005)
Figure 3-2: Illustration of the three-step procedure to disperse HFO nanoparticles inside
spherical polymer beads (Cumbal & SenGupta 2005)
Figure 3-3: Schematic illustration of the experimental set up
Figure 3-4: Laboratory scale membrane bioreactor
Figure 4-1: Batch kinetics of adsorption of nitrate and phosphate on Purolite (A500PS)
at different doses of Purolite (a) 0.5 g/L, (b) 1 g/L, (c) 3 g/L, (d) 5 g/L and (e) 10 g/L . 43
Figure 4-2: Equilibrium isotherm modelling plot for nitrate removal by Purolite
(A500PS)
Figure 4-3: Equilibrium isotherm modelling plot for phosphate removal by Purolite
(A500PS)

Figure 4-4: Langmuir model Qe compared with experimental Qe for (a) nitrate and (b)
phosphate removal at varying dose of Purolite (A500PS)
Figure 4-5: Freundlich model Qe compared with experimental Qe for (a) nitrate and (b)
phosphate removal at varying dose of Purolite (A500PS)
Figure 4-6: Sips model Qe compared with experimental Qe for (a) nitrate and (b)
phosphate removal at varying dose of Purolite (A500PS)
Figure 4-7: Kinetics modelling using Ho model for nitrate removal at varying dose of
Purolite (A500PS)
Figure 4-8: Kinetics modelling using Ho model for phosphate removal at varying dose
of Purolite (A500PS)
Figure 4-9: Kinetics of adsorption of nitrate and phosphate on Purolite (A500PS) at 5
g/L dose using initial concentrations of 100 mg N/L nitrate and 50 mg P/L phosphate 51
Figure 4-10: Kinetics modelling using Ho model for nitrate removal at 5 g/L of Purolite
(A500PS) (nitrate concentration in feed was 100 mg/L)
Figure 4-11: Kinetics modelling using Ho model for phosphate removal at 5 g/L of
Purolite (A500PS) (phosphate concentration in feed was 50 mg/L)
Figure 4-12: Kinetics of nitrate and phosphate adsorption on HAIX at different doses of
HAIX (a) 1 g/L, (b) 3 g/L, (c) 5 g/L, (d) 7 g/L, (e) 10 g/L, (f) 15 g/L and (g) 20 g/L 54
Figure 4-13: Equilibrium isotherm modelling plot for nitrate removal by HAIX
Figure 4-14: Equilibrium isotherm modelling plot for phosphate removal by HAIX 56
Figure 4-15: Langmuir model Qe compared with experimental Qe for (a) nitrate and (b)
phosphate removal at varying dose of HAIX (outliers for phosphate have been removed)
Figure 4-16: Freundlich model Qe compared with experimental Qe for (a) nitrate and
(b) phosphate removal at varying dose of HAIX (outliers for phosphate have been
removed)
Figure 4-17: Sips model Qe compared with experimental Qe for (a) nitrate and (b)
phosphate removal at varying dose of HAIX (outliers for phosphate have been removed)
Figure 4-18: Kinetics modelling using Ho model for nitrate removal at varying dose of
HAIX
Figure 4-19: Kinetics modelling using Ho model for phosphate removal at varying dose
of HAIX
ix

Figure 4-20: Adsorption kinetics with HAIX at 5g/L dose using a higher concentrated
synthetic feed (initial concentrations of 100 mg/L nitrate and 50 mg/L phosphate) 60
Figure 4-21: Kinetics modelling using Ho model for nitrate removal at 5 g/L of HAIX61
Figure 4-22: Kinetics modelling using Ho model for phosphate removal at 5 g/L of
HAIX
Figure 4-23: Kinetics of nitrate and phosphate adsorption on HFO at different doses of
HFO (a) 0.5 g/L, (b) 1 g/L, (c) 3 g/L, (d) 5 g/L and (e) 10 g/L (feed concentration 50 mg
N/L and 15 mg P/L)
Figure 4-24: Equilibrium isotherm modelling plot for phosphate removal by HFO65
Figure 4-25: Langmuir model Qe compared with experimental Qe for phosphate
removal at varying dose of HFO
Figure 4-26: Freundlich model Qe compared with experimental Qe for phosphate
removal at varying dose of HFO
Figure 4-27: Sips model Qe compared with experimental Qe for phosphate removal at
varying dose of HFO
Figure 4-28: Kinetics modelling using Ho model for nitrate removal at varying dose of
HFO
Figure 4-29: Kinetics modelling using Ho model for phosphate removal at varying dose
of HFO
Figure 4-30: Nitrate and phosphate breakthrough curves with varied percentage by mass
of Purolite (A500PS, $300 - 420 \ \mu m$) (initial nitrate and phosphate concentrations were
50 mg N/L and 15 mg P/L, respectively)
Figure 4-31: Effect of Purolite amount on (a) nitrate and (b) phosphate removal
efficiency
Figure 4-32: Breakthrough curve of (a) nitrate and (b) phosphate removal by different
doses of Purolite
Figure 4-33: Effect of % Purolite on the cumulative amount of (a) nitrate and (b)
phosphate removed75
Figure 4-34: Effect of % Purolite on the cumulative amount of (a) nitrate and (b)
phosphate removed per gram of Purolite used
Figure 4-35: Effect of bed height on (a) nitrate and (b) phosphate removal for Purolite
(A520E)

Figure 4-36: Effect of bed height on (a) nitrate and (b) phosphate removal efficier	ncy for
Purolite (A520E)	76
Figure 4-37: Effect of bed height on cumulative amount of (a) nitrate and (b) photo	sphate
removed for Purolite (A520E) at 2m/hr flow rate	77
Figure 4-38: Column adsorption study with Purolite (A500PS) at 6 cm bed height	and 2
m/hr using a higher concentrated synthetic feed (initial concentrations of 100 mg	N/L
nitrate and 50 mg P/L phosphate)	
Figure 4-39: Breakthrough curve of Purolite (A500PS) at 6 cm bed height and 2 r	n/hr
using a higher concentrated synthetic feed (initial concentrations of 100 mg N/L r	nitrate
and 50 mg P/L phosphate)	79
Figure 4-40: Nitrate and phosphate breakthrough curve with HAIX at 6 cm bed he	eight
and 2 m/hr flow rate	80
Figure 4-41: Column adsorption study with HAIX at 6 cm bed height and 2 m/hr	using
a higher concentrated synthetic feed (initial concentrations of 100 mg N/L nitrate	and 50
mg P/L phosphate)	81
Figure 4-42: Breakthrough curve of HAIX at 6 cm bed height and 2 m/hr using a	higher
concentrated synthetic feed (initial concentrations of 100 mg N/L nitrate and 50 n	ng P/L
phosphate)	81
Figure 4-43: Nitrate and phosphate breakthrough curves with varied percentage b	y mass
of HFO (nitrate and phosphate concentrations in the influent feed to HFO were	
different)	83
Figure 4-44: Breakthrough curve for (a) nitrate and (b) phosphate removal by HF	O 84
Figure 4-45: Effect of % HFO on the cumulative amount of (a) nitrate and (b) pho-	osphate
removed	86
Figure 4-46: Effect of % HFO on the cumulative amount of (a) nitrate and (b) pho-	osphate
removed per gram of HFO used	86
Figure 4-47: Phosphate and nitrate removal efficiency ratio for (a) Purolite and (b) HFO
	87
Figure 4-48: Regeneration of 10% Purolite with distilled water	89
Figure 4-49: Regeneration of 10% HFO with distilled water	90
Figure 4-50: Purolite (A500PS) regeneration with 3% NaCl solution	92
Figure 4-51: HAIX regeneration with 3% NaCl solution	94

Figure 4-52: Removal of nitrate and phosphate in MBR Effluent by Purolite A500PS (3
cm bed height, 2 m/hr flow rate)
Figure 4-53: Removal of nitrate and phosphate in MBR effluent by 6 cm bed height
Purolite (A500PS) at (a) 2 m/hr and (b) 6 m/hr
Figure 4-54: Removal of nitrate and phosphate in MBR effluent by (a) 2.5% and (b) 5%
Purolite
Figure 4-55: Removal of nitrate and phosphate in MBR effluent by (a) 2.5% and (b) 5%
HFO
Figure 7-1: Breakthrough curve of 10% Purolite and % HFO (used in series) 113
Figure 7-2: Modelling plot for nitrate removal by 1% Purolite (A500PS) 115
Figure 7-3: Modelling plot for phosphate removal by 1% Purolite (A500PS) 115
Figure 7-4: Modelling plot for nitrate removal by 1% HFO 116
Figure 7-5: Modelling plot for phosphate removal by 1% HFO 116
Figure 7-6: Modelling plot for nitrate removal by 3% Purolite (A500PS)117
Figure 7-7: Modelling plot for phosphate removal by 3% Purolite (A500PS) 117
Figure 7-8: Modelling plot for nitrate removal by 3% HFO 117
Figure 7-9: Modelling plot for phosphate removal by 3% HFO 118
Figure 7-10: Modelling plot for nitrate removal by 5% Purolite (A500PS)119
Figure 7-11: Modelling plot for phosphate removal by 5% Purolite (A500PS) 119
Figure 7-12: Modelling plot for nitrate removal by 5% HFO 119
Figure 7-13: Modelling plot for phosphate removal by 5% HFO

Nomenclature

- BPR = biological phosphate removal
- BV = bed volumes
- $Cl^{-} = chloride$
- CO_3^{2-} = carbonate
- COD = chemical oxygen demand
- CR = chemical reduction
- $Fe^{3+} = iron (III)$
- g/L = gram per litre
- $H_2PO_4^- =$ dihydrogen phosphate ion
- HAIX = hybrid anion exchanger
- HCl = hydrochloric acid
- HCO_3^- = bicarbonate
- HFO = hydrated ferric oxide
- HPO_4^{2-} = monohydrogen phosphate ion
- hr = hours
- LDHs = layered double hydroxides
- MBR = membrane bioreactor
- mg N/L = milligram nitrogen per litre
- mg NO_3^- / L = mg nitrate per litre
- mg P/L = milligram phosphorus per litre
- mg PO_4^{3-} / g = mg phosphate per gram
- mg/L = milligram per litre
- min = minutes
- mL/min = millilitre per minute
- mM = milli Molar
- N = nitrogen
- NaCl = sodium chloride
- NaOH = sodium hydroxide
- Nitrate-N = N in the form of nitrate
- Nitrite-N= N in the form of nitrite

nm = nanometre $NO_3^- = nitrate$ oyster-zeolite = resin with crushed oyster shells P = phosphoruspH = measure of the acidity or basicity of an aqueous solution ppm = parts per million Purolite (A500PS) = used in the decolourisation of sugar syrups Purolite (A520E) =Purolite (nitrate selective) $SO_4^{2-} = sulphate$ Ti^{4+} = titanium (IV) TiO_2 = titanium dioxide U = uraniumU(IV) = uranium (IV)UCT = University of Cape Town-type process VFA = volatile fatty acids zeolite = an aluminosilicate mineral

 Zr^{4+} = zirconium (IV)

Abstract

In this study, a fixed bed ion exchange system for nutrient removal and recovery for water and waste water was developed and tested for nitrate and phosphate. A posttreatment consisting of a fixed bed bed ion-exchange system with a Purolite and an HFO column in series and individually was used to remove and recover nitrate and phosphate from synthetic water and wastewater. The efficiency of the ion exchange materials incorporated into the anthracite matrix at 1, 3, 5 and 10%, in their ability to remove and recover these nutrients was investigated. Another ion exchange material, HAIX, was also investigated for the removal and recovery of nitrate and phosphate. Also, the study considered regeneration and reuse of the ion exchange media in order to see how long the system can effectively remove and recover nitrate and phosphate before saturation. Purolite was found to exhibit a higher capacity for the removal of nitrate than for phosphate. HFO was found to exhibit a higher capacity for the removal of phosphate than for nitrate. Both these media were required in series to remove both nitrate and phosphate. Increase in dose of the two ion exchange materials incurred an increased in removal efficiency of nitrate and phosphate. However, the selectivity of Purolite for nitrate and HFO for phosphate decreased with increase percentage by mass of the ion exchanger in the anthracite matrix. Regeneration was undertaken using a distilled water wash as well as 3% NaCl wash. It was found that NaCl successfully regenerated the exhausted media for reuse. Distilled water wash was not a successful medium for regeneration. A column experiment was also conducted with MBR effluent to investigate the possibility of removing the nitrate and phosphate. Both N and P in the MBR effluent were found in different forms (as NH₄ - N, organic N, inorganic and organic phosphorus). Other competing anions like Cl^{-} and SO_{4}^{2-} were also present in the feed. Despite the different forms of N and P as well as competing anions, the Purolite and HFO in series system still had a removal efficiency of 87-100%. The column was able to remove almost 100% of nitrate and phosphate in the effluent. The Langmuir, Freundlich and Sips isotherm models were used to model the equilibrium isotherm of nitrate and phosphate removal by Purolite (A500PS), HAIX and HFO. The results show that the experimental data satisfactorily fitted to all three models. The kinetic data for the adsorption of both nitrate and phosphate were satisfactorily described by the Ho model. The fit for phosphate on HFO was less satisfactory than the other adsorbents.