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Abstract

Methodology for regression beyond the mean has been a goal of researchers for many years.

This discussion provides some additional context for the important ideas in the present paper,

by recounting some of the historical background to the GAMLSS approach and pointing to the

power and appeal of fully probabilistic regression analysis in the setting of Bayesian nonpara-

metrics.
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1 Introduction

My discussion focusses on two themes, and in both, I give a personal view. One theme, at the

Editor’s suggestion, gives a little more of the historical background on some of the progenitors of the

GAMLSS (Rigby and Stasinopoulos 2005) methodology that underpins a substantial part of Kneib’s

paper; this history intersects with a few contributions of mine in semi-parametric model fitting,

penalised likelihood, etc. The second theme describes some recent approaches to ‘beyond mean

regression’ inferential problems from the standpoint of Bayesian nonparametrics – the paradigm

that I would probably adopt if I was working in the area now. Although still rather in their infancy,

such methods promise to deliver a very comprehensive solution to the inferential problems raised

in this paper, so I hope this provides a useful additional perspective.

2 Looking back

2.1 Partial splines and back-fitting

My first venture into semiparametric regression, although I didn’t use that term at the time, was

some joint work (Green et al. 1985) that aimed at a particular context – the analysis of agricultural
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field trials. This is of course one of the earliest domains of application in statistical inference, one

where many of the most fundamental ideas of our subject including the design of experiments,

linear models, analysis of variance and covariance, randomisation, etc., were first explored. This

very classical area was rather intensively re-visited in the 1980’s by researchers who were interested

in adjusting estimates of treatment or variety effects to allow for the effect of variations in ‘fertility’

across the physical extent of the field where the experiment was laid out. A generic formulation of

the problem takes the form

Y = Xβ + g + ε (2.1)

where y = (yi)
n
i=1 is the vector of crop yields indexed by plot index i, X is the n×p design matrix for

treatment, variety and other fixed effects, β the p-vector of corresponding parameters, g = (gi)
n
i=1

the so-called fertility trend and ε a vector of errors. Methods of analysis of data in this set-up

differ mainly according to the philosophy and structure of the model used for g. The standard

methods of analysis exploited various complete and incomplete block designs, so that, effectively,

spatial variations in fertility were adjusted for at the macro level by the choice of blocks, and at the

micro level by relying on the randomisation in the layout. So-called ‘neighbour’ methods effectively

model g in an explicit and more continuous manner, for example using ideas from geostatistics or

spatial processes.

New approaches to these questions were promoted by researchers who did not necessarily draw

exclusively on this classical tradition, but had other kinds of background, notably in spatial statis-

tics. The seminal paper by Wilkinson et al. (1983) stimulated a discussion that included many

novel ideas; my colleagues and I proposed a method we called ‘least squares smoothing’ which was

subsequently presented in full detail in Green et al. (1985). In this approach, the decomposition

(2.1) is fitted by minimising the penalised sum of squares

n∑
i=1

(Yi − (Xβ)i − gi)2 + λ
∑

(∆g)2j (2.2)

using (typically) the second difference operator ∆, within each contiguous line of plots in a one-

dimensional spatial array. The tuning parameter λ ∈ (0,∞) determines the trade-off between fit

and smoothness.

This work was conducted independently of the partial spline approach to semiparametric re-

gression being explored by Wahba and others (Wahba 1990) at the same time. There, the model

under consideration might be written

Yi = (Xβ)i + g(ti) + εi, i = 1, . . . , n

and the estimation criterion is to minimise

n∑
i=1

(Yi − (Xβ)i − g(ti))
2 + λ

∫
(g′′(t))2dt; (2.3)

the parallel is obvious. The partial spline model has found enormously wide use in applied statistical

methodology, and has stimulated a rich and fruitful corpus of research leading to Wahba (1990)

2



and beyond. See also Green and Silverman (1994), chapter 4. Although penalised least squares is

almost universally used as the estimation criterion, this does generate an interesting and surprising

puzzle in inference: in general the bias in estimating β in this way can be asymptotically larger than

its standard error (see Rice (1986), and, for a possible solution, Speckman (1988)). It is curious

that this fact has been widely ignored in study and use of semiparametric regression methods ever

since.

Computing the penalised least squares estimates of β and g in either the discrete (2.2) or

continuous (2.3) formulation of the partial spline model can be organised in several ways. Green

et al. (1985) described how either β or g could be eliminated from the normal equations for the

model, resulting in linear systems of dimension n or p respectively. But more commonly, models

like this are fitted by alternately minimising the penalised sum of squares with respect to β and g,

until convergence is obtained; this is ensured through a simple spectral analysis, e.g. Green and

Silverman (1994), Theorem 4.2. This iterative method is called back-fitting, see also Breiman and

Friedman (1985) and Buja et al. (1989), and is of course the key computational tool also in fitting

more general additive models.

2.2 Penalised likelihood

If we interpret the error sum of squares in (2.2) or (2.3) as a negative scaled log-likelihood, then we

can immediately see how to generalise the penalised least squares idea to non-normal models. This

idea was explored in Green (1987), and treated more thoroughly in the context of generalised linear

models in Green and Silverman (1994), chapter 5. This approach is called maximum penalised

likelihood, and the objective is to maximise

`(θ, φ)− 1
2λ

∫
g′′(t)2dt

(we drop the discrete formulation from now on). Here ` is the log-likelihood for a generalised linear

model with natural parameter θ and common dispersion parameter φ; θ is related to the linear

predictor η = Xβ + (g(ti))
n
i=1 through a link function G, with G(b′(θi)) = ηi as usual. We have

rescaled λ to account for the dispersion parameter (the variance in the normal case). Exactly the

same penalised likelihood approach can be taken not only for generalised linear models but much

more broadly: it really applies whenever the unknowns in the likelihood are a vector of parameters

β and a finite set of linear functionals of a smooth curve g; none of linearity, additivity or an

exponential family distribution are truly essential.

Again, backfitting is the usual method of computing the maximum penalised likelihood esti-

mates, and also for numerical estimation in generalised additive models (Hastie and Tibshirani

1990) with different smoothers not necessarily arising from a quadratic roughness functional.

2.3 The LMS approach to quantile regression

Although other methods of quantile regression are available, LMS, the semi-parametric approach

pioneered by Tim Cole (Cole 1988), has a great deal of appeal, especially for the kinds of biometrical
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data arising in studies of childhood growth. His idea was to model the response Yi at time ti, perhaps

the height or weight of a child aged ti, as normally distributed after a Box–Cox transformation:

Zi =
(Yi/µi)

λi − 1

λiσi
∼ N(0, 1),

where the shape, median and spread parameters λi, µi and σi (hence, ‘LMS’) are smooth functions

of ti. In Cole (1988), a rather informal approach was taken to the smoothing required here, but in

the RSS discussion of this paper I proposed fitting the same model using a more automatic/objective

penalised likelihood approach, estimating functions µ(t), σ(t) and λ(t) by maximising

`(µ, σ, λ)− 1
2αµ

∫
µ′′(t)2dt− 1

2ασ

∫
σ′′(t)2dt− 1

2αλ

∫
λ′′(t)2dt. (2.4)

The log-likelihood ` takes the form

n∑
i=1

(
λ(ti) log

Yi
µ(ti)

− log σ(ti)− 1
2Z

2
i

)
,

where Zi denotes Yi after Box–Cox transformation as above. A more complete study of this idea

was published subsequently as Cole and Green (1992), and these two papers have been widely cited

and underpin growth reference curve methods used in practice world-wide.

The assumption of the normal distribution, after a quite-flexible smooth transformation, serves

to stabilise inference about the distribution of Y give t across all quantiles, and the LMS method

delivers estimates of all quantiles

ξα(t) = µ(t){1 + λ(t)σ(t)Φ−1(α)}1/λ(t)

simultaneously, where Φ is the standard normal CDF. We thus have explicit ‘plug-in’ estimates

for all quantile curves, and these come with a sanity-preserving guarantee not to touch or cross –

features not shared by all competing methods. (Indeed none of the approaches covered in Kneib’s

paper enjoy both properties.) This essentially follows from the fact that the likelihood is derived

from a model for the whole distribution of Y given x, and independently of the choice of quantile as

the target of inference, in contrast to methods that have the formal structure of penalised likelihood,

but in which the term corresponding to the likelihood itself is not in fact the probability density

for the observed data. Again, we proposed back-fitting for numerical maximisation of the penalised

log-likelihood (2.4). R code for fitting this model, and a related one based on gamma rather than

normal distributions, was given by Marx (1999).

Rigby and Stasinopoulos (2005) took the final and important step of combining the ideas of

transformation and generalised linear models, allowing on the way a fourth smooth curve to control

kurtosis as well as skewness, location and spread, to create the rich and flexible class of GAMLSS

models that are a major emphasis of the present paper; the Cole and Green (1992) LMS method is

essentially the BCCG model in the GAMLSS class.
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3 Looking forward

Since the days when penalised least squares and penalised likelihood were novel, the world of statis-

tical model-fitting has been transformed by the blossoming of interest in Bayesian analysis. There

are many reasons for this, and a reduction in scepticism about (or prejudice against) the Bayesian

paradigm is only a small part of the story. The main drivers have been the extraordinary develop-

ments in Bayesian computation, through Markov chain Monte Carlo, and many other approaches,

coupled with the huge increase in computer power routinely accessible to all statisticians, the the-

oretical developments in Bayesian analysis, in areas such as hierarchical models, nonparametric

modelling and model determination, and above all the success stories, showing that in almost ev-

ery conceivable domain of application, Bayesian methodology is delivering practical data analytic

solutions even (and perhaps especially) in complex models.

How should we think about ‘beyond mean regression’ from a Bayesian perspective? Although

Kneib takes ‘Bayesian inference’ as one of the three ‘inferential procedures’ that he concentrates

on in Section 3, his discussion does not go much beyond a Bayesian-language re-interpretation

of previously-mentioned methodologies. Few of the exciting and novel opportunities of taking a

Bayesian approach to both modelling and inference are really unleashed. Let us start again.

Given covariate/response pairs (xi, Yi), we wish to make inference about the conditional dis-

tribution of Y given x – not only for x among the observed xi, not only for x ∈ Rp, not only

for continuous Y , not only for the expectation of Y given x, not only estimating that conditional

distribution, and not only for one x at a time but potentially for many x simultaneously, or even all

x. That is, we postulate a family of distributions F = {Fx, x ∈ X}, where Y |x ∼ Fx, assume that

Yi ∼ Fxi independently (for the moment), and make inference about the family F . We should, for

example, be able to deliver the probability distribution of the set of x for which the median of Fx

is positive – an unusual but not totally outlandish target, and one that is quite beyond the reach

of a non-probabilistic analysis.

Such comprehensive inference about F is an ambitious goal indeed, and it would be naive

to pretend that, without assumptions on structure, limitations on dimensions, etc., it could be

universally practically attainable with real finite data sets. Nevertheless, Bayesian nonparametric

regression at its most general seeks to address this goal, without making parametric assumptions

on either the form of the distributions Fx or on the way these depend on x, in a fully probabilistic

framework, that includes inference about the ‘tuning constants’ arising in a corresponding penalised

likelihood set-up. This means that in principle it delivers the simultaneous posterior distribution

p(F|(xi, Yi)ni=1); intrinsically, this is regression far ‘beyond the mean’.

3.1 Bayesian nonparametrics

Bayesian nonparametric inference is not a brand-new phenomenon – modern practical methodolo-

gies have a 40-year line of descent running back to the important works of Ferguson (1973); Ferguson

(1974). As with any other Bayesian model, we begin with a prior distribution on all unknowns – in

the present case, that is a prior on F . Much, but by no means all, modern Bayesian nonparametric
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analysis begins from a prior model on F that is based on the Dirichlet process (Ferguson 1973).

The Dirichlet process model for a single unknown distribution F is essentially the simplest nat-

ural generalisation to a general parameter space of the Beta prior on the parameter θ of a binary

distribution (1− θ, θ); this is the only prior on distributions that is conjugate to i.i.d. sampling. As

well as this desirable property, which delivers obvious advantages for computation of posterior infer-

ence, the Dirichlet process enjoys strong theoretical properties, notably a richness of support that

guarantees posterior consistency in several senses and settings. There are several equivalent defini-

tions of the Dirichlet process, but the simplest to state is that a random distribution G on a space Ω

follows a Dirichlet process DP (α,G0) if for every partition {Bj}kj=1 of Ω, (G(B1), G(B2), . . . , G(Bk))

has a Dirichlet distribution with parameters (αG0(B1), αG0(B2), . . . , αG0(Bk)).

In most applied Bayesian methodology based on Dirichlet process models, the resulting random

distributionG serves as the assumed model not directly for the observed responses Yi, but for datum-

specific parameters of which the Yi are noisy versions. Such Dirichlet process mixture processes

are (countably-) infinite mixture models that are both flexible and of great explanatory power.

The weights on the components turn out to be generated a priori by a so-called ‘stick-breaking’

construction πh = Vh
∏
l<h(1− Vl), the Vl being i.i.d. Beta(1, α) variates.

For a comprehensive modern view on Bayesian nonparametrics, based on the Dirichlet process

and otherwise, we refer the reader to Hjort et al. (2009).

3.2 Regression via density estimation

The simplest and earliest approach to using the Dirichlet process for nonparametric regression in-

volves a clever trick, that takes us back to the original sense of the word ‘regression’ as meaning a

conditional distribution in a bivariate/multivariate population. Müller et al. (1996) proposed to fit

a Dirichlet process gaussian mixture model to {(xi, Yi)ni=1} data, and then to deliver the conditional

distribution of Y given x, exploiting the simple and explicit form this takes in a mutlivariate gaus-

sian distribution. This analysis is available without programming through use of the DPcdensity

function in the R package DPpackage (Jara et al. 2011).

Figure 1 shows some aspects of an analysis of the Munich rental data, including decile curves

computed from the expected posterior conditional distribution function for Y (net rent) given x

(area). As can be seen, this completely probabilistic analysis delivers conditional distributions that

change smoothly and quite markedly with the covariate in location, spread and shape. This is just

a simple example, and the methodology supports more elaborate modelling, including adjustment

for other covariates.

In brief the model formulation here assumes that each data point (xi, Yi) is i.i.d. distributed

according to a multivariate normal Np+1(µi,Σi) say, i = 1, 2, . . . , n, where the parameter pairs

{(µi,Σi)} are drawn i.i.d. from a common distribution G given a Dirichlet process (α,G0) prior.

The concentration parameter α has a fixed Gamma prior, and the baseline distribution G0 assumed

to be Normal–inverse Wishart whose parameters in turn have weakly informative hyperpriors.
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3.3 More recent methods

The analysis just described is a simple and convenient way of generating a very flexible analysis

of regression data, but is subject to a criticism that can be important practically in the case

that the covariate x is very irregularly distributed in the sample data. The Müller et al. (1996)

approach essentially fits an infinite Normal–inverse Wishart model to the {(xi, Yi)ni=1} data. Thus,

irrespective of the distribution of Y given x in the data, if the covariate x is clustered, then the

method tends to fit a large number of components, a kind of over-fitting through unnecessarily

modelling the distribution of x; as a result, there will be diminished borrowing of strength between

observations, adversely affecting quality of fit. To some extent, this issue arises even when x is

more homogeneously distributed in the data, but is high-dimensional; again the model will focus

more on modelling x than on Y given x (Wade et al. 2012).

There are a number of recently-proposed methods designed to avoid this difficulty; below I

mention only a very small selection.

Dependent Dirichlet processes. MacEachern (1999) introduced a framework for very general

nonparametric modelling of distributions Px varying with covariates or spatial coordinates x. These

are constructed by generalising the stick-breaking representation of a Dirichlet process mixture to

allow the atoms (and sometimes also their weights) to depend on x.

A typical formulation used for regression would lead to a model for the density of Y given x of

the form of a normal mixture

Y |x ∼
∞∑
h=1

πhN(y;µh(x), σ2h)

where the weights are given by the usual stick-breaking formula, the µh independent draws from a

suitable Gaussian process, and the variances σ2h i.i.d. from an inverse gamma distribution.

Weighted mixture of DPs. Dunson et al. (2007) proposed a kernel-based approach to Bayesian

density regression though use of a model

Y |x ∼
∫∫

N(y;xTi β, σ
2)dPx(β)dπ(σ2),

a mixture of multiple regression models with predictor-dependent weights. Their weighted mixture

of Dirichlet processes prior models the x-dependent β distribution using Dirichlet bases placed at

the sample predictor values:

Px =

n∑
i=1

(
γiK(x, xi)∑n
l=1 γlK(x, xl)

)
P ?i , P ?i

i.i.d.∼ DP (α, P0), ∀x.

Kernel stick-breaking processes. Dunson and Park (2008) noted the unappealing sample-

dependence in the specification of the mixing measures Px, and proposed an alternative stick-

breaking process, in which

Px =

∞∑
h=1

VhKψh
(x,Γh)

∏
l<h

{1− VlKψl
(x,Γl)}P ?h , P ?h

i.i.d.∼ DP (α, P0)
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where Vh
i.i.d.∼ Beta(1, λ), Kψ is a kernel with bandwidth ψ, {ψh} a sequence of bandwidths sampled

from G and {Γh} a sequence of kernel locations sampled from H.

A predictive approach. Wade et al. (2012) deal with the difficulty mentioned at the beginning

of the section by emphasising a predictive approach. The Dirichlet process mixture model of Müller

et al. (1996) implicitly partitions the data by value of the x variable, and it is demonstrated that

poor predictive performance can be blamed on the positive posterior probabilities assigned to ‘bad’

partitions. Even though these probabilities are very small, there are very many such partitions;

Wade et al. (2012) specifically modify the marginal model for x to place zero prior probability on

partitions that fail to respect a criterion of ‘covariate proximity’, and show convincingly improved

performance.

3.4 Discussion

There is a useful review of many of these Bayesian nonparametric models for regression in the

chapter by David Dunson in Hjort et al. (2009).

It is clear that this is a fast-moving field, and the topic is yet to mature. While all of these models

support fully probabilistic inference about ‘beyond-mean’ regression, it can hardly be said that the

approaches are fully comprehensible to the lay person. On the positive side, these models have large

support, and consistency results are available. They are flexible, and the data-dependent character

of the structure of the fitted models means that sparseness is built in, so that they automatically

adjust when data follow a simple parametric law. Empirical performance has been studied up to a

point. All of these methods can be implemented fairly efficiently but user-friendly software is not

available, which limits both the take-up of the models and the extent to which they are understood

and can be criticised. Above all, it is hard to argue that these are intuitive prior specifications in

which the meaning and influence of hyperparameters is clear to the modeller and her client.

However, the direction of travel is to me clear, and I am confident that widely-acceptable

methods of fully probabilistic regression will soon be available.

To conclude, I very much welcome Kneib’s paper; he does us a great service with his emphasis on

the importance of thinking of regression as modelling the distribution of responses given covariates,

with the explanatory power and richness of interpretation that this can bring. I am sure that

the next few years will see both more development of methodology and a better understanding

of the advantages and disadvantages of each method; in the meantime, it is valuable to have this

authoritative review of several current approaches.
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Figure 1: Munich rental guide data: a simple model fit using DPcdensity. Top left: raw data,

net rent vs area, with 10%, 20%,. . . , 90% decile curves computed from the posterior mean of the

cumulative conditional distribution of rent given area. Other panels: fitted conditional densities

for rent, given area = 40, 65 and 95 respectively, with 90% credibility bands.
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