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Abstract-- Edge detection is a vital preprocessing step towards
high-level image analysis. One of its many applications of edge is
that it can be used in image compression where accurate edge
detection is required. A way for improving the accuracy and
quality of edge detection of noisy contaminated image is to
preserve edge details while removing noise. In this paper Spiral
Architecture is used to sample image data. Spiral Architecture
provides powerful computational power and enables image to be
uniformly partitioned and distributed to various processors for
parallel processing. This paper shows the implementation of
recently developed bilateral filtering technique in Spiral
Architecture for edge-preserving smoothing of noise in images.

Index Terms—Image compression, Spiral Architecture, Edge
detection.

1. INTRODUCTION

mage processing is a vital cost-effective technology in many

fields today including astronomy, medicine. crime, remote

sensing, manufacturing, entertainment and multimedia. Edge
detection is a process of detecting areas of abrupt changes or
discontinuities in some visual property (light intensity, texture
or colour). It is a critical preprocessing step towards high-level
image understanding. Firstly because edges are essentially
surface boundary discontinuities they hold important structural
information about objects in an image (e.g. size, shape and
location) that subsequent processing highly depends on.
Secondly it is very difficult to recover from errors made at this
stage {1].

A. Differential Edge Detection

The differential detection method is the most commonly used
approach to edge detection and can be further divided into two
classes: first- and second-order derivative edge detection. For
the first-order class, a pixel is an edge point if the gradient
magnitude at this pixel is greater than a threshold value. For the
second-order derivative class, an edge is where the derivative
evaluates to zero.

Differential edge detection method uses approximation of
spatial gradient at each pixel location. Denote f (X, y)to be
the function that maps gray scale value at a particular pixel
agto its Cartesian co-ordinates. Let G(x, y) be the rate of

change in gray scale value at pixel a,. G(x,y) can be
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computed in terms of the derivatives along X and y directions,

G, (x.y) and G (x,y) as follows:

ta | —

G y)={ G, (x )P +[G (x. M} )

The technique for approximation of derivatives G, (x, y) and

G.(x,y) is through a mathematical operation termed

convolution. In image processing convolution involves the
image array and a smaller array called kernel or mask. As the
mask moves over the image array. calculations are performed
for the centre pixel of each local area (neighbourhood)
underlying the mask.

Differentiation is a noise enhancing operation and the higher the
order of derivative the more pronounced the effect. Therefore
differentiation often has to be preceded by smoothing for
images corrupted by noise.

B.Smoothing

Smoothing reduces the sharpness of transitions in intensity
values to achieve noise reduction or detail suppression. Two
approaches to smoothing are linear and nonlinear.

Linear filtering is implemented by convolution of the original
image function with a predefined kernel or mask. In the past
decade nonlinear filters have been developed to achieve a more
desirable level of smoothing in applications where important
visual cues provided by edges need to be preserved and less
blurry effect introduced than linear filters. Many efforts have
been devoted to edge-preserving smoothing [2]-[4].

In 1998, bilateral filtering was introduced [5]. In essence a
bilateral filter replaces a given pixel value with an average of
similar and nearby pixel intensity values. In this form of
filtering, a range filter is combined with a domain filter. Domain
filtering enforces spatial closeness by weighing pixel values
with coefficients that fall off with distance. A range filter, on the
other hand. assigns greater coefficients to those neighbouring
pixels with light intensity that is more similar to the centre pixel
value. Hence the original intensity value at a given pixel would
be better preserved thanks to range filtering. Range filtering by
itself is little use because pixel values that are far away from a
given pixel should not contribute to the new value.

The kernel coefficients of a bilateral filter are determined by the
combined closeness and similarity function.

Let f tR* >R be the original brightness function of an
image which maps the coordinates of a pixel (x, y) to a value in
light intensity. Then for any given pixel @ at (x, y) within a
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neighbourhood of size n, which has @, as its centre, its

coefficient assigned by the range filter r(a)is determined by
the similarity function s:

r(a) =s(f(a), f(ay,)) )

Similarly, its coefficient assigned by the domain filter g(a)is
determined by the closeness function c:

gla) = c(a.a,) 3
Then for the central pixel of the neighbourhood @, its new

value, denoted by h(a,),

n—1
h(a) =k™Y fla)xga)xr(a) @
i=0
k is the normalization constant and is defined as follows

n-l
k=3 gla)xr(a)
i=0

The normalizer & is necessary because the average image
intensity should not be affected by multiplying the mask with
the original image.

The challenge to precisely detect edges in real images has
inspired a variety of advanced edge detection algorithms.
Multi-scale analysis is a systematic approach to edge detection.
This approach relies on the inspection of intensity changes on
different scales.

C.  Multi-scale edge detection

Objects in the world only exist as meaningful entities over a
limited range of scale. Hence the physical description strongly
depends on the scale. When analyzing measured data such as
images, without any prior knowledge, there is no reason to
favour any particular scale. The idea is that for any image, a set
of gradually smoothed or simplified images should be
generated, in which fine scale structures are successively
suppressed.

A formal definition for continuous signals of arbitrary
dimensions N was given by Lindeberg [6]. The idea is that
multi-scale representation of a measured signal could be
obtained by embedding the signal in a one-parameter family of
derived signals. The parameter represents the level of scale. By

successively increasing the scale t, details will be gradually
smoothed out.

D. Spiral Architecture

In this research project, the image arrays are mapped into Spiral
Architecture, which is a recently developed sampling technique.
Research work by Sheridan {7] has shown that Spiral
Architecture and associated processing paradigm offers several
advantages over the two-dimensional array representation. Each
element (hexagon) in the Spiral Architecture has only six
neighbouring hexagons. This feature implies less memory space
and computation required for processing. Spiral Architecture
also enables the traditional two-dimensional visual field to be

represented as a one-dimensional array. Figure 1 displays such
architecture with a collection of 7X7 =49 hexagons. Each

cell is uniquely addressed and the spiral addresses grow from
the centre clockwise in base of seven.

Figure 1. Spiral Architecture with 49 hexagons.

Figure 2. Sample image “duck” in Spiral space

Because currently there is no supporting hardware for Spiral
Architectural sampling, a mimic system was introduced by He
[8]. The mimic system retains the organizational character of
the original Spiral Architecture. Hence it inherits the
computational power of the original structure. In the mimic
system, one hexagonal pixel is formed by four neighbouring
pixels in the traditional system and its gray scale value is the
average of those four pixels values. Figure 2 is a sample image
represented in mimic Spiral Architecture.

II. MULTI-SCALE EDGE DETECTION WITH BILATERAL FILTERING
IN SPIRAL ARCHITECTURE

A. Bilateral filtering in Spiral Space

In this research, edge detection is accomplished by applying a
new bilateral filtering technique specifically designed for Spiral
Architecture, integrating the multi-scale approach to edge
detection.

The domain filter in Gaussian form with scale value of t is
defined as follows:

2.2
xity

gx,yit)y=e ¥ (6)

The range filter kernel coefficients for these 7 mimic hexagons

will be generated from the following function:
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Application of the new bilateral smoothing filter produces, for
each pixel in the image, a weighted average such that the central

pixel @, contribute more significantly to the result than its

neighbouring pixels. Pixels with more similar intensity value or
closer to the central pixel contribute more than those with more
different value or further away. Level of smoothness depends on
the size of the neighbourhood chosen and the geometric spread
of light intensity from the central pixel value. The bigger the
size and spread, the higher level of smoothness will be achieved.

B. Edge detection in Spiral Architecture
Let L (x,y;t) and L (x,y;t) be the derivative of

L (x, y;1) with respect to the x and y direction at g, for a

given scale r. Denote gradient magnitude L, = ,’Lﬁ +L2y

at ay,a,,a,,04,,08,,05,a¢ by Ly, L, L,, Ly, L,, Ls,Lg
respectively. L, , is the average light intensity at the middle
point between asand a,. L,is the average of light intensity at
points @, and a, . Note that the distance between @, and 4,

a,and a,, a,and a,, and between @, and g, is 2. Then we
have approximation of gradient magnitude along x and y

direction

L-L L-L

) 2 2

Lxyt)y=—2— £
(%, y31) 3

1

=—(L -
&)

1.1
=—{—[L(x+2,y-1Lt
4{2[ (x+2,y—-L1)
+ L(x+2, y+1;1)]
—%[L(x—Z,y—l;t)
+L(x-2,y+10]}

and similarly
(L — L)+ (Lo — L)

L,(x,y;t)= 2

1
—‘Z(La, -L)
=i—[L(x,y—2) —L(x y+2)]

In discrete space, zero-crossings of 2™ derivatives of L do not
always lie at the sample pixel locations. This research uses He’s
proposed procedure based on first order derivative and its
orientation with respect to the x direction to determine the
presence of an edge. Let ¢t be the angle from the vector (1,0) to

the vector (L, L) (see figure 3). The following method is

used to judge the edge points.

Gradient Direction

Zaf
\[ [ 1/

a N [/ las

/ N

/LN

3 a, 4
Figure 3. Gradient direction (f with respect to the X direction.

L,(x,y.1)
L (x,y:0)

When L _and L)_ are both equal to zero, @ is set to zero; and if

Let A=tg(@).then A=

L is zero while L is not, & is 90 degrees. Otherwise:
e If (xfalls into the area between line 0 and lor line 0 and 3,
it means that L (x, y;?) is most significantly affected by

a,or a
— if(Ly 2 L, and Ly>Lg)or (Ly>L, and
Lyz L)
then @, is an edge point
e If ¢ fallsinto the area between line 1 and 2 or line 3 and 4,
it means that L (x, y;t) is most significantly affected by

a,or a,
— if(Ly 2L, and Ly>L,)or (Ly>L, and
L2L,)
then a, is an edge point.
e If ¢ falls into the area between line 2 and O or line 4 and 0,
it means that L (x, y;t) is most significantly affected by

a3or a6
— if(Ly 2
L,>L,)

then a, is an edge point.

and Ly>L)or (Ly>L, and

1. EXPERIMENTAL RESULTS

Shown here are results for the “duck” image. Figure 4 (a) is the
initial edge map of the original image with 2858 edge points.
After bilateral smoothing with kernel size of 7, the new edge
map in (b) has 850 less edge points. When the kernel size
increased to 19, the number of edge points decreases to 1484
points. As shown in the edge maps, the outlines of the object and
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some fine features such as the spots in duck’s eyes have been
retained and not lost as result of smoothing.

(a) Initial edge map

(b) After smoothing with kernel size of 7

(c) After smoothing with kernel size of 19

Figure 4. Edge detection results with multi-scale bilateral smoothing
in Spiral Architecture
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