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Glossary

Activities of Daily Living

(ADLs)

Activities of Daily Living are defined as a set of basic

activities necessary for normal self-care and indepen-

dent living

Human Robot Interaction

(HRI)

Human Robot Interaction is a branch of robotics sci-

ence that focuses on modelling, implementing and

evaluating the collaboration between robotic systems

and human partners

Learning by Imitation Learning by imitation is an approach that has been

used by roboticists for bootstrapping learning of robot

activities based on human observation

Action Primitives (APs) Action Primitives are pool of semantic structure that

is generated by decomposing complex activity space

into atomic actions

xiv



Abstract

A Probabilistic Model for Assistive Robotics Devices to Support

Activities of Daily Living

This thesis explores probabilistic techniques to model interactions between humans and

robotic devices. The work is motivated by the rapid increase in the ageing population

and the role that assistive robotic devices can play in maintaining independence and

quality of life as assistants and/or companions for these communities. While there are

substantial social and ethical implications in this pursuit, it is advocated that robotic

systems are bound to acquire more sophisticated assistive capabilities if they are to op-

erate in unstructured, dynamic, human-centred environments, responsive to the needs

of their human operators. Such cognitive assistive systems postulate advances along the

complete processing pipeline, from sensing, to anticipating user actions and environmen-

tal changes, and to delivering natural supportive actuation. Within the boundaries of

the human-robot interaction context, it can be expected that acute awareness of human

intentions plays a key role in delivering practical assistive actions. This work is thereby

focused on the human behaviours likely to result from merging sensed human-robot in-

teractions and the learning gained from past experiences, proposing a framework that

facilitates the path towards integrating tightly knit human-robot interaction models.

Human behaviour is complex in nature and interactions with the environment and

other objects occur in different and unpredictable ways. Moreover, observed sensory

data is often incomplete and noisy. Inferring human intention is thus a challenging

problem. This work defends the thesis that in many real-world scenarios these complex

behaviours can be naturally simplified by decomposing them into smaller activities, so

xv



ABSTRACT

that their temporal dependencies can be learned more efficiently with the aid of prob-

abilistic hierarchical models. To that end, a strategy is devised in the first part of the

thesis to efficiently represent human Activities of Daily Living, or ADLs, by decom-

posing them into a flexible semantic structure of “Action Primitives” (APs), atomic

actions which are proven able to encapsulate complex activities when combined within a

temporal probabilistic framework at multiple levels of abstraction. A Hierarchical Hid-

den Markov Model (HHMM) is proposed as a powerful tool capable of modelling and

learning these complex and uncertain human behaviours using knowledge gained from

past interactions.

The ADLs performed by humans consist of a variety of complex locomotion-related

tasks, as well as activities that involve grasping and manipulation of objects used in

everyday life. Two widely used devices that provide assistance to users with mobility

impairments while carrying out their ADLs, a power walker and a robotic wheelchair, are

instrumented and used to model patterns of navigational activities (i.e. visiting location

of interest), as well as some additional platform-specific support activities (e.g. standing

up using the support of assistive walker). Human indications while performing these

activities are captured using low-level sensing fitted on the mobility devices (e.g. strain

gauges, laser range finders). Grasping and manipulations related ADLs are modelled

using data captured from a stream of video images, where data comprises of hand-object

interactions and their motion in 3D space.

The inference accuracy of the proposed framework in predicting APs and recognising

long term user intentions is compared with traditional discriminative models (sequential

Support Vector Machines (SVM)), other generative models (layered Dynamic Bayesian

Networks (DBN)), and combinations thereof, to provide a complete picture that high-

lights the benefits of the proposed approach. Results from real data collected from a set

of trials conducted by actor users demonstrate that all techniques are able to predict APs

with good accuracies, yet successful inference of long term tasks is substantially reduced

in the case of the layered DBN and SVM models. These findings validate the thesis’

proposal that the combination of decomposing tasks at multiple levels and exploiting their

inherent temporal nature plays a critical role in predicting complex interactive tasks.

xvi



Chapter 1

Introduction

1.1 Research Problem

Robots have proven to be a powerful tool in predictable environments such as fac-

tories and manufacturing plants to improve productivity and perform dangerous or

monotonous tasks. Lately, research has been focused on the potential of using robots to

aid humans outside the strict ‘industrial’ environments such as hospitals, offices or home

settings. However, technology is still, a long way away from producing robots capable of

working alongside humans and demonstrating the same competencies as humans. This

is due to the inherently complicated nature of human behaviour, and the limitations of

sensors in capturing this complexity. It therefore remains an open challenge to model

complicated human behaviour, such that the robotic system could better understand

this behaviour and act in the role of an assistant or partner. Human-Robot Interaction

(HRI) is a branch of robotics science that focuses on modelling, implementing and eval-

uating the collaboration between robotic systems and human partners. The increasing

number of application domains in which robots can and will be deployed in the future,

and the inevitable need to interact with humans in many of these domains are the

motivating forces driving further developments in HRI.

Under the HRI umbrella, the robotic systems developed are such that the robot and

human share a common environment and work in a symbiotic relationship to achieve a
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common goal. The interaction between human and robot should be both natural and

effective so that the robot is able to detect the behaviour of the user on the basis of

his/her motion, and is able to assist the human in achieving his/her goals. Consider-

able focus has been given to those robotic systems that includes humans ‘in-the-loop’.

Such system works on the principle of a ‘perceive-sense-act’ mechanism to provide a

better natural collaboration between robots and humans compared to the commercially

available robots to-date. Researchers have been working in this area to develop a HRI

system that accepts user commands in a natural way and assists users according to

their needs which are socially acceptable thus allowing a robot to be a reliable personal

companion and assistant.

1.2 Motivation

Demographic projections show that the world’s ageing population is rapidly increasing.

There is a marked demographic shift at a global level indicating that the worldwide

proportion of people aged over 60 is expected to double between 2000 and 2050 [United

Nations, 2006] (trends pictorially depicted in Fig. 1.1 by the Congressional Budget Of-

fice [Congressional Budget Office, 2005]). A recent report by the Australian Academy

of Technological Sciences and Engineering further canvassed various options based on

the use of emerging innovative technologies to address these challenges [Tegart, 2010].

The principle of the ‘Convention on the Rights of Persons with Disabilities (CRPD)’

promoted by the United Nations states that a support service provided to a disabled

person should be such that it enables keeping them within the community, and not in a

segregated setting [Officer and Posarac, 2011]. Such support systems would give other-

wise immobile or dependent people the freedom of movement which would significantly

increase their independence and potentially improve their overall quality of life. The

challenges associated with such support services, along with other health and longevity

paradigms, are driving the need for improvements in a range of services related to aged

care. Systems such as smart blind sticks [Kang et al., 2001], robotic wheelchairs [Carlson

and Demiris, 2010; Demeester et al., 2006; Hoey et al., 2007; Mandel et al., 2005; Taha
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et al., 2008] smart robotic walkers [Alwan et al., 2005; Dubowsky et al., 2000; Hirata

et al., 2006; Morris et al., 2003; Omar et al., 2010; Wasson et al., 2008] and robotics

grasp manipulator [Saxena et al., 2008; Srinivasa et al., 2008] have been the subjects of

significant research in the quest to achieve this goal.

The work presented in this thesis, focuses on modelling the Activities of Daily Living

(ADLs) of elderly and disabled people, which is the first step towards the develop-

ment of a tightly knit HRI system using assistive devices. According to the World

Health Organisation (WHO), ADLs are defined as a set of basic activities necessary for

normal self-care and independent living [World Health Organisation, 2004]. These ac-

tivities comprises of ‘movement in bed’, ‘transfers from sitting to standing position’,‘ to

and from toilet and bed’, ‘locomotion’, ‘dressing’, ‘personal hygiene’ and ‘feeding’ [The

Repatriation Commission, Australia, 1998; Veterans Affairs Canada, 2006]. ADLs are

mainly used as assessment criteria to measure the level of disability/impairment present

in a person, which is then used by physical and/or occupational therapists to prescribe

an assistive device so as to compensate for the impairment. The prescribed assistive

devices can ultimately provide the necessary support required to perform ADLs inde-

pendently and to improve the overall quality of life. This emerging area of developing

intelligent assistive support devices is more generically referred to as ‘assistive robotics’

which advocates devices having the ability to work collaboratively with their human

users in the pursuit of the user’s objective. According to the WHO, assistive technol-

ogy is defined as ‘an umbrella term for any device or system that allows individuals to

perform activities they would otherwise be unable to do, or increase the ease and safety

with which activities can be performed’ [World Health Organisation, 2004]. The term

Figure 1.1: Changes in the Population Structure [Congressional Budget Office, 2005]
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‘assistive technology’ goes beyond the simplistic scenario of providing automatic services

at the press of a button or without taking account of the human in-the-loop; rather, it

captures the concept of robotic machines being able to assist people in achieving their

goals of performing ADLs by intelligently sharing control between them.

This concept of a shared control strategy is not new, and is evident in the design and

application of many technological tools in use today. For instance, the da Vinci© Surgi-

cal robotic system 1 allows doctors to perform surgery with the assistance of a robot, and

has been used in American operating rooms since 2000. In the car industry, adaptive

cruise control in high-end Daimler-Benz and BMW cars uses a forward-looking radar to

detect the speed and distance of the vehicle ahead, automatically adjusting in response

to the user-controlled speed in order to maintain a proper distance. Ultrasonics and

cameras which are employed as parking aids, as well as blind-spot detectors work in

collaboration with the driver to increase safety and comfort. These examples of assis-

tive technologies are all readily available today. Yet despite the enormous potential of

this field of research to address the challenges that are emerging due to rapid growth

of the ageing population, their application to the domain of the elderly and disabled is

severely limited.

1.3 Approach and Methodology

In the scope of this research work, some assumptions have been made so as to facilitate

the research question in an more efficient manner. The individual is assumed to need

assistance to perform some of the many daily activities. We also assume that despite

having partial disability, the human is still able to manoeuvre around with some external

support from a person or an assistive device like a walker, wheelchair or cane, and is

able to perform some of the many ADLs with minimal support. The individual is

assumed to behave as naturally as her or his capabilities allow when attempting to

perform an activity. As the core of this research is understanding human behaviour

from the perspective of natural interaction, we assume that there is no explicit interface

1www.intuitivesurgical.com
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Figure 1.2: Interaction between a human, a robotic agent and the environment

like speech or a switch button between the human and the robot, as this would be an

unnatural way of communicating. The user’s behaviours are perceived by the robot via

different sensor interfaces present on the robot.

The ADLs performed by the target group used in our research work are both complex

and diverse. The ADLs consist of a pool of activities which can be both short-term in

nature (e.g.support to stand up) or long-term (e.g. take me to the bedroom, assist me

in pouring water into a mug). Modelling ADLs by simplifying the natural complexity

present in ADLs makes the process of perceiving and understanding human behaviour

more simplistic for the robot. The combination of modelling and learning ADLs pro-

posed in the methodology in this thesis is aimed at providing a natural human-robot

collaborative mechanism. Figure 1.2 depicts the interactions between the human, robot,

environment and the intelligent system, which is the subject of the research described

in this thesis.

Firstly we deal with the research question of representing ADLs performed by the el-

derly in their everyday life. The ADLs performed by the elderly population are complex

in nature and consists of activities such as locomotion, dressing, feeding, personal hy-

giene [The Repatriation Commission, Australia, 1998; Veterans Affairs Canada, 2006].

These ADLs can be performed at different locations and at different time of the day.

Complexity is further increased by the individual differences in the behaviours of peo-
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ple performing the same activity. These complexities can become intractable with the

addition of more and more activities. This issue motivated us to develop a flexible se-

mantic structure called ‘Action Primitives (APs)’ that can represent the complex action

space by decomposing it into atomic actions. Representation of ADLs using a dictio-

nary of sub-actions becomes an efficient solution as it minimises the action space into

smaller clusters of APs. This concept has been utilised in a number of application such

as grasping and manipulation of objects [Krüger et al., 2010], learning activities from

human demonstration [Lee et al., 2013], planning navigational task [Liao et al., 2003]

etc. Using a dictionary of APs to define ADLs, gives the advantage of scalability and

re-usability as the entire problem space can be reduced to a number of APs which can

be reused in different sequence to define any given ADL.

The second part of this research work focuses on the problem of modelling ADLs

and the associated APs. We deploy a probabilistic framework capable of modelling the

uncertainty and complexity present in human behaviour during the course of everyday

activity.

Finally, we evaluate our proposed approach to model and infer some of the many basic

ADLs which are necessary for independent living of a person. We model locomotion

related ADLs, which involves visiting the location of interest, support activities such

as transfer from standing to sitting position or vice-versa and activities related to the

manipulation of everyday objects. To model locomotion related ADLs we collected user

data; while the user performs ADLs using the support of a power walker and a robotic

wheelchair (shown in Figure 1.3) (details of both the platforms given in Appendix A

and B). The data consist of human behaviour as perceived by different physical sensors

fitted on the mobility devices. The sensors record different behaviours such as the

readiness of the user to perform an ambulation activity or any other support activity

(e.g. standing up). For modelling ADLs related to the manipulation of everyday objects,

the data consist of hand-object interaction and its motion tracking captured through a

stream of image frames by a RGB-D kinect sensor.
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(a) Walker (b) Wheelchair

Figure 1.3: Instrumented rollator walker and wheelchair used in our experiment.

1.4 Contributions

The main contributions arising from this thesis work are summarised below:

• Propose a novel approach to bridge the gap between low level sensor measurement

and high level everyday activities. ADLs performed by the elderly involve visiting

different locations of interest in a home environment, standing up/sitting down

using the support of the assistive device, or performing grasping and manipulation

related activities. To achieve this we develop an action grammar based language

which segregates complex ADLs into a string of APs which are sequenced in

different combinations to define the ADLs.

• Outline a Hierarchical Hidden Markov Model (HHMM) as a unified probabilistic

framework, which is capable of modelling APs (primitive human behaviours) and

mapping them to the subsequent high level ADL performed by the user. The

hierarchical nature of the framework enables an efficient representation of an ADL

and its corresponding APs, which are inferred at a number of intermediate layers.

• Evaluate the proposed approach using two widely used mobility aid devices, a

power walker and a robotic wheelchair as depicted in Figure 1.3. Additionally,
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we show that using the proposed methodology makes the system capable of infer-

ring a variety of ADLs which can be static/support activities and/or navigational

activities. The proposed approach of deploying a HHMM based framework to

model ADLs at different levels of hierarchy out performs against other tempo-

ral models which does not possess hierarchical characteristics, thereby reinforcing

that the hierarchical nature of the model makes it capable of exploiting the strong

relationship between APs and ADLs.

• Extend the applicability of our approach to model ADLs related to grasping and

manipulation of everyday objects. The evaluation of the probabilistic model on

a different problem domain proves the versatility of our approach, which address

the challenge of predicting a wide range of basic ADLs from low level sensor

measurement.

1.5 Publications

The publications resulting from the work presented in this thesis are:

• “A Probabilistic Approach to Learn Activities of Daily Living of an Intelligent

Mobility Aid Device User”, Miró J.V., Patel, M., and Dissanayake, G., Robotica

(Special Issue on Rehabilitation Robotics and Human-Robot Interaction), (Sub-

mitted)

• “A Probabilistic Approach to Learn Activities of Daily Living of a Mobility Aid

Device User”, Patel, M., Miró J.V., and Dissanayake, G., IEEE International

Conference on Robotics and Automation (ICRA 2014), (to Appear)

• “Learning Object, Grasping and Manipulations Activities using Hierarchical

HMMs”, Patel, M., Miró J.V., Kragic, D., EK, C. H.,and Dissanayake, G.,

Journal of Autonomous Robots (Special Issue on Beyond Grasping: Modern Ap-

proaches for Dexterous Manipulation), (to Appear)

• “Language for Learning Complex Human-Object Interactions”, Patel, M., EK,

C. H., Kyriazis, N., Argyros, A., Miró J.V. and Kragic, D., Proc. of the IEEE
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International Conference on Robotics and Automation (ICRA 2013), pp. 4982 –

4987, 2013.

• “Probabilistic Activity Models to Support Activities of Daily Living for Wheelchair

users”, Patel, M., Miró J.V., and Dissanayake, G., Proc. of workshop on

Progress, Challenges and Future Perspectives in Navigation and Manipulation As-

sistance for Robotic Wheelchairs, IEEE International Conference on Intelligent

Robots and Systems (IROS 2012), 6 page, 2012.

• “A Hierarchical Hidden Markov Model for Inferring Activities of Daily Living

with an Assistive Robotic Walker”, Patel, M., Miró J.V., and Dissanayake, G.,

Proc. of the 4th IEEE RAS/EMBS International Conference on Biomedical and

Biomechatronics (Biorob 2012), pp. 1071 – 1076, 2012.

• “Activity Recognition from the Interactions Between an Assistive Robotic Walker

and Human Users”, Patel, M., Miró J.V., and Dissanayake, G., Proc. of The 6th

ACM/IEEE International Conference on Human-Robot Interaction (HRI 2011),

pp. 221 – 222, 2011.

• “Probabilistic Models versus Discriminate Classifiers for Human Activity Recogni-

tion with an Instrumented Mobility-Assistance Aid”, Patel, M., Khushsuaba R.,

Miró J.V. and Dissanayake, G., Proc. of The Australasian Conference on Robotics

and Automation (ACRA 2010), 8 page, 2010.

• “Dynamic Bayesian Networks for Learning Interactions between Assistive Robotic

Walker and Human Users”, Patel, M., Miró J.V., and Dissanayake, G., Proc. of

the 33rd Annual German Conference on Artificial Intelligence (KI 2010), pp. 333

– 340, 2010.

• “Stochastic Models for interactive human-robot assistive agents”, Patel, M.,

Miró J.V., and Dissanayake, G., Proc. of the Young Pioneers Workshop, 5th

ACM/IEEE International Conference on Human-Robot Interaction(HRI 2010), 2

page, 2010.

• “Robotic Assistance with Attitude: A Mobility Agent for Motor function Reha-

9



CHAPTER 1. INTRODUCTION

bilitation and Ambulation Support”, Miró J.V., Osswald V.,Patel, M., and Dis-

sanayake, G., Proc. of the 11th IEEE International Conference on Rehabilitation

Robotics (ICORR 2009), 529 – 534, 2009.

1.6 Thesis Overview

• Chapter 2

In this chapter we outline the importance of ADLs and provide a brief back-

ground on work done by researchers in the area of activity recognition in general.

We describe our proposed approach of representing ADLs using a dictionary of

APs and the advantages associated with this approach. Further we revise the

Bayesian based probabilistic framework, in particular the Dynamic Bayesian Net-

work (DBN) and its Hierarchical variants, in order to provide the reader with a

background on the graphical models used, and to introduce the notations.

• Chapter 3

In this chapter, we focus on the everyday activities performed by a typical walker

user. ADLs consists of support activities (e.g. stand up) and navigational ac-

tivities involving manoeuvring to different locations of interest in a given indoor

environment. We outline the details of various activities performed by a walker

user and collect data while users’ perform these ADLs. We further provide details

of action primitive semantics, which is developed by dividing the user environ-

ment into a structural topological map. The topological map representation of

the environment consists of junction points and edges which connect different lo-

cations of interest. These junction points act as APs which provide the necessary

navigational cues to describe the overall ADL. We conclude this chapter with a

description of the DBN and HHMM frameworks used to model ADLs and the cor-

responding APs. We evaluate and compare the inference accuracy of the HHMM

model with a layered DBN model and a HHMM/SVM hybrid model.

• Chapter 4

In this chapter, we shift our focus towards utilising intrinsic human motion to
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model ADLs. Motion related human behaviour is defined as the most atomic

activity (based on the smallest meaningful change in user motion) in which ADLs

can be decomposed. The atomic activities based on human motion which act as

APs are then mapped to different navigational and support cues to model the

overall ADLs. The primary advantage of using this approach is to avoid the

dependency on topological maps to model ADLs. We demonstrate how the use of

topological maps can be avoided by modelling ADLs using human motion models.

We use the data collected while different users perform ADLs using two mobility

devices: a power walker and robotic wheelchair. The dictionary of APs is based on

the intrinsic human behaviours that occur when the use performs different ADLs.

We detail a list of APs which can be combined in different sequence to describe

the ADL a user is trying to perform. Finally, we describe the HHMM framework

used to model APs and the associated ADLs, and conclude this chapter by listing

the results of the HHMM framework and compare them with that of a Layered

Dynamic Bayesian Network (L-DBN) and a two stage Support Vector Machine

(SVM) classifier.

• Chapter 5

In this chapter, we focus on understanding ADLs related to grasping and manip-

ulation of objects used in everyday life. We apply a similar technique to that used

in Chapter 3 and 4 whereby we explore the action grammar present underneath

these ADLs. We extend the usage of the HHMM framework to model grasping

and manipulation related ADLs by decomposing then into strings of meaningful

APs. The data features used for our experiments consist of hand and object mo-

tion in the 3D space extracted from videos recorded using RGB-D kinect sensor.

Along with hand-object tracking features, the data also consists of the features

of each finger joints (such as the yaw and tilt angles of each joint). We conclude

this chapter by evaluating the inference accuracy of the HHMM framework and

comparing its performance to that of a HHMM/SVM hybrid model.

• Chapter 6

The final chapter summarises the findings of this research and presents the conclu-
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sion that are drawn from this work. Future research directions are also outlined

such as learning human behaviour and adapting to the gradual change in their

behaviour, learning the structural dependencies of the model from data.

12



Chapter 2

Background

2.1 Introduction

Our work in this thesis draws on the rich foundation of work in robotics, machine

learning, cognitive science and artificial intelligence. With the constant improvement

in technology, robots are expected to be used in shared spaces with humans in the

future. Projects have been presented which study different applications such as a robotic

tour guide in a museum [Thrun et al., 1999], a robotic system for assisting people

with dementia during hand washing [Hoey et al., 2007], a robot approaching potential

customers in front of a shop [Kanda et al., 2009] and a robot used to provide physical

guidance and support for navigating around in a environment [Dubowsky et al., 2000].

The problem tackled in most of these projects focused on technical issues like localisation

and path planning or giving extrinsic instruction to the user.

In contrast, a major component involved in the design of a human-centered robotic

system, where a robot acts as an ‘assistant or helper’ is the ability of the robots to

intrinsically understand human behaviour. More research is needed into developing

methods that accept user commands in a natural way. With the demographic shift in

the population structure there has been considerable interest in developing and utilizing

robots in elderly care. The overall aim of such robotic systems is to give a sense of

independence which eventually leads to improvements in the overall quality of life for
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people with disability [Brose et al., 2010]. Researchers have focused on developing

assistive robots to cater for different areas where assistance might be required to perform

Activities of Daily Living (ADLs).

In this chapter, we focus on the importance of ADLs and the challenges associated

with modelling these activities. We provide details of our proposed architecture and its

applicability to modelling ADLs. This chapter also reviews the probabilistic approach

which has become more popular in tackling the problem of activity recognition. We de-

tail the Bayesian Network (BN) framework, in particular the Dynamic Bayesian Network

(DBN) and the Hierarchical Hidden Markov Model (HHMM). This is reviewed in order

to provide the reader with a background of Bayesian networks and the mathematical

notations and formulations used in this thesis.

2.2 Activities of Daily Living

The term Activities of Daily Living is defined as a set of activities necessary for normal

self-care. The activities comprises movements in bed, transfers, locomotion, dressing,

personal hygiene, and feeding [The Repatriation Commission, Australia, 1998] [World

Health Organisation, 2004]. It is mainly used as an assessment measure which helps

practitioners/occupational therapist to determine how independent patients are and

what skills they posses to accomplish activities on their own. The goal of this evaluation

is to determine how well the patient can perform each of these activities and what sort

of support/assistance (if any) would be required so as to function as independently as

possible.

Predicting user activities/behaviour and assisting them in performing those activities

is not a new concept and has been addressed in the context of many applications.

Typical examples that utilise intention recognition to enhance the application at hand

can be found in motion prediction [Luber et al., 2010], video surveillance [Nguyen et al.,

2005], behaviour recognition [Kluge et al., 2001], gaze tracking [K. and Ramakrishna,

1999] and activity prediction [Demeester et al., 2006] [Buettner et al., 2009].
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The central idea of developing an activity recognition system is to increase the level of

adaptation in intelligent systems. In smart home intelligent systems, the monitoring is

done in a passive manner. Sensors such as Radio Frequency Identification (RFID) [Buet-

tner et al., 2009], a camera based tracker [Nguyen et al., 2005] [Kawanaka et al., 2005]

installed in a given indoor environment are used to track human activities and train

models that can later be used to predict human activities such as entering a room, using

a telephone, brushing teeth etc. Buettner et. al. describe a dense sensing approach

that uses RFID sensor network technology to recognise human activities [Buettner et al.,

2009]. In the context of outdoor environments, Liao extracted the activities of a person

and used this activity knowledge to predict places the person has visited from GPS data

logs [Liao et al., 2007]. Nguyen et. al. used a probabilistic framework to model and

recognise human activities in a confined space, while tracking the user with two static

cameras [Nguyen et al., 2005].

2.3 Challenges of Recognising Activities of Daily Living

The importance and significance of recognising ADLs has been recognised for decades

by the robotics, vision and computer science communities. In order to achieve the goal

of developing a tightly knit Human-Robot interactive system that can assist users in

performing everyday activities, it is important that the system can exploit meaningful

information from user behaviour. Further, daily activities encompass a wide range of

activities including for instance visiting different locations of interest or performing

activities which involve grasping and manipulation objects.

In order to address the challenge of modelling high level ADLs from low level sensors,

we develop a dictionary of human behaviours called Action Primitives (APs) which is

used as an intermediate step to infer the high level activities. The concept of APs is

not new and was inspired by the research done on human motion and other biological

movements which postulates that movement behaviour is composed of simple, atomic

movements that can be combined and sequenced to form complex behaviour [Ijspeert

et al., 2002] [Schaal et al., 2003] [Kulic et al., 2011] [Lee et al., 2013]. APs allow
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Figure 2.1: Activity of going to work which has two options, a bus route and a car route.
Solid lines indicates decomposition of the activity into APs for taking the bus route and
the dotted lines indicates the same for taking the car route

for complex activities to be decomposed into alphabets of primitives, which in-turn

facilitates for a construction of grammar-like description to govern their order of use.

The grammar-like structure underneath ADLs provides the motivation to develop a

language of APs which represents the smallest meaningful units of action components.

Once defined these APs can then be combined in different order to describe any complex

ADLs. This approach provides a better understanding of more complicated ADLs, the

structure of which can be generated by reusing APs in different sequences.

Further, as per the literature of psychophysiology, APs are present at several different

hierarchical levels in human brain [Rizzolatti et al., 2001]. We utilise human brain like

structure to represent APs at different levels of hierarchy to model higher-level ADLs.

2.3.1 Representing ADLs using Dictionary of APs

Almost every activity (if not all) performed by humans, consists of a structure under-

neath which can be exploited to predict the overall ADL. The pool of APs generated by

decomposing and ADL is such that it represents the most atomic activities into which

a given ADL can be decomposed. The number of APs in a dictionary will differ based

on the type of ADL and the complexity of motion or movement involved in performing

this ADL.

To give a few examples, in an outdoor navigation problem, the task of going to the

office can be decomposed into string of APs shown in Figure 2.1. The string of APs can

be used to represent two independent navigational routes: one followed when using a
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car and other followed when using a bus (shown in Figure 2.1). The activity of pouring

water from a bottle can be decomposed into APs shown in Figure 2.2. To construct a

guiding navigational route to a user, the Global Positioning System (GPS) subdivides

the entire route into directional navigational cues to reach the end destination (example

depicted in Figure 2.3). Similarly, in an indoor environment, activities performed using

the support of a walking frame can broadly be decomposed into string of primitive

actions as shown in Figure 2.4.

It should be noted that the ADLs in all the given examples above occur over a time

period and hence consist of two types of information, spatial information and temporal

information [Raptis et al., 2008]. Spatial information corresponds to the information

that is obtained at a given instant of time, where as temporal information is related to

the information collected over a time period. In our work, we define APs as a cluster

of information which occurs over a time period and hence includes both spatial and

temporal information. Each cluster of APs encodes a single dimension of a commonly

occurring deformation. To explain this better, consider the example of pouring water

from a mug (Figure 2.2) which is decomposed into a string APs. In this example the

AP of Approach consists of the entire trajectory which starts from the hand at rest until

it reaches the grasping position. Similarly, in case of AP of Stand Up (Figure 2.4), the

AP consists of the entire motion which starts from the sitting position until the user is

in a fully standing position.

Apart from the representation of high level activity using a sequence of APs, the

representation is also advantageous in terms of scalability, whereby a complex activity

can be represented using a set of defined APs, and re-usability, where APs are re-used in

different sequences to construct any given activity. For example, in the representation

Figure 2.2: Activity of pouring water from a mug decomposed into a sequence of action
primitives
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Figure 2.3: An example of a navigational activity decomposed by a GPS navigational
system into directional navigational cues to guide a user to reach his/her intended desti-
nation

of the activity of going to office (Figure 2.1) the APs of ‘walk to workplace’ or ‘walk to

bus stop A’ can be reused to define other activities. In the example of visiting a location

of interest in an indoor environment, the APs of ‘stand up’ or ‘go straight south’ can be

reused to define various other activities which might involve visiting other location of

interest. The proposed architecture of the ADLs – APs representation proves to be an

efficient structure as it significantly reduces the state search space used to define ADLs.

Despite the efficient representation of ADLs using APs, other parameters such as

the inherent uncertainty present in human behaviour and noisy sensor data add more

ambiguity to the overall ADLs. This ambiguity makes it difficult if not impossible

to model ADLs in a deterministic manner. In this respect, we choose probabilistic

models, as our representative framework due to (1) their robustness of accommodating

human ambiguities as a result of their probabilistic nature, (2) their ability to capture

both spatial and temporal variability present in the APs and ADLs, in particular to

capture the change in variance along the observation to model APs and variance in

APs to model the overall ADLs, and (3) compactness on representing hierarchical and

recursive structures.
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Figure 2.4: Activity of visiting location of interest in an indoor environment using the
support of a walker

2.4 Probabilistic Models

The use of probabilistic models has been widely investigated [Carberry, 2001] [Pynadath,

1999] [Bui et al., 2002] [Heinze, 2003] [Glover et al., 2004] [Schrempf and Hanebeck, 2005]

due to the models’ capability of the handling uncertainty present it human behaviour.

Some of the most popular techniques which have been used in different recognition ap-

plications include Partially Observable Markov Decision Process (POMDP) [Hoey et al.,

2007] [Taha et al., 2008] [Iba et al., 2003], Bayesian Networks (BN) [Jensen, 1996] [Song

et al., 2010], Markov Networks [Castillo et al., 1997], Dynamic Bayesian Networks

(DBN) and its variants [Tahboub, 2006] [Schrempf and Hanebeck, 2005] [Krauthausen

and Hanebeck, 2009] and Hierarchical Hidden Markov Model (HHMM) [Liao et al.,

2007] [Nguyen et al., 2005] [Zhu et al., 2008]. The selection of modelling technique

depends on the intended outcome of the overall application. Figure 2.5 illustrates eight

Markov process models, arranged in a cube the axes of which represents significant di-

mensions along which the models differ from each other [Mahadevan et al., 2004]. We

will now discuss some of these probabilistic models which will be used in this thesis.

2.4.1 Bayesian Network

Bayesian Networks (BN) and their variants are probably the most widely employed be-

lief network for modelling sequential data. BN constitute a more general and efficient

way of expressing and computing with probability distributions. In a Bayesian network,
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Figure 2.5: A spectrum of Markov process models along several dimensions: whether
agents have a choice of action, whether states are observable or hidden and whether
actions are unit-time (single step) or time-varying(multi-step) [Mahadevan et al., 2004]

it is possible to associate an arbitrary set of variables to the state of interest, and model

the resulting joint probability distribution of the hidden state of interest. Using graph-

ical model notation, BNs are represented by directed acyclic graphs (DAG) in which

nodes represent variables and arcs/edges show the conditional dependencies among the

variables. Each node on the net has an associated probability table, containing the

conditional probabilities of the values that the node can take with respect to each of

the possible combination of its parent nodes.

Assume that x1, ..., xn are variables of a BN and πi(1 <= i <= n) is the set of parents

of xi. The joint probability distribution (JPD) of x1, ..., xn can be factorised as:

Pr(x1, ..., xn) =
n

∏

i=1

Pr(xi|πi) (2.1)
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2.4.2 Dynamic Bayesian Network

The Dynamic Bayesian Network (DBN) is a special Bayesian network, which adds a

temporal dimension to single-slice BNs. The DBN consists of a sequence of time slices,

and each time slice has a set of variables representing the state of the environment at a

specific time. The temporal dimension makes the DBN capable of modelling sequential

data. The evolution of the DBN model is represented by the links from the current time

slice to the next time slice. The topology of a typical DBN is depicted in Figure 2.6.

Figure 2.6: DBN model unrolled infinitely over an infinite time period

Representation

The structure of the DBN model comprises two types of nodes: Qt and Ot. Edges

between nodes represent their dependencies on each other. The hidden node Qt corre-

sponds to the state which is being inferred based on the observations perceived through

node Ot. Observation nodes can be modelled as a mixture of Gaussian (µ, Σ) or discrete

P (Ot|Qt) nodes based on the type of data. The topology of the connections between

successive slices and between states and evidence variables in each time slice define the

conditional dependencies between the variables. Furthermore, three clusters of infor-

mation are needed to fully defined a DBN: the prior distributions P (Qt) when t = 1,

the transition probability distribution between states P (Qt|Qt−1), and the conditional

observation probabilities P (Ot|Qt). It should be noted that if Qt represents a single

scalar state then the DBN model becomes equivalent to a HMM model. The details of

each of these probabilities are specified as below:
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Prior Probability

The prior probabilities provides the initial probabilities or the most likely state of the

hidden node. The initial probabilities are defined as:

P (Q1) = π(j) (2.2)

Transition Probability

The transition probability at time t, depends upon the previous state time step t − 1

and defines transition from state i to j.

P (Qt = j|Qt−1 = i) = A(i, j) (2.3)

In Equation 2.2, π represents the initial probability whereas in 2.3, A(i, j) represents

the transition probability for state i to j.

Observation Probability

The observation model signifies the probability of seeing a specific observation condi-

tioned on a discrete hidden state. The observation nodes can be modelled as both

Gaussian and discrete. The CPDs for Gaussian and discrete nodes is given by:

P (Ot|Qt = i) = N(µi, Σi)

P (Ot|Qt = i) = C(i)
(2.4)

2.4.3 Hierarchical Hidden Markov Models

The HHMM framework used in our work is capable of structuring stochastic processes

at multiple levels. The HHMM is an extension of the traditional HMM model, designed

to model domains with a hierarchical structure including those with dependencies at
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Figure 2.7: Example of a three level HHMM model where solid arcs represent horizontal
transitions between states, and dotted arcs represent vertical transitions, i.e., connections
between sub-HMMs. Double-ringed states represents end states (at least one per sub-
HMM), where control flow is returned to the parent (calling) state. Each node at level 3
emits a single state based on the distribution over the observation space.

multiple length/time scales [Fine et al., 1998]. In a HHMM, the states of the stochastic

automaton can emit single observations or strings of observations. Those that emit

single observations are called “production states”, and those that emit strings are termed

“abstract states” [Murphy, 2002].

The example shown in Figure 2.7 provides an intuitive description of the process. The

states at the highest level correspond to the abstract states, and are themselves governed

by sub-HHMMs, entering into states Q2. Since the states at level 2 being abstract, it

enters its child HMM via its subsequence states Q3. The horizontal transition in each

child HMM (at level 3) emits a unique state with respect to the observations perceived

by the model and is hence referred to as the “production state”. Once the sub-HMM

reaches the end state, the control is returned to the higher level, from wherever the sub-

HMM sequence was called from. This is done recursively until the time when control

is returned to the highest abstract state (level 1). The abstract state can transit to the

next possible state only after all the sub-HMM at lower levels are terminated [Murphy,

2002].

The hierarchical nature of the HHMM model allows the decomposition of the prob-

lem at different levels of abstraction, thereby facilitating exploration (long term plan-
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Figure 2.8: A 3-level HHMM model represented as Hierarchical-DBN Model. Qd
t

is the
state at time t and level d; F d

t = 1 if the sub-HMM at level d has finished (entered exit
mode), otherwise F d

t
= 0. The nodes Ot are observed nodes which can be a mixture of

both Gaussian and discrete nodes.

ning/activities) and exploitation (short term planning/action primitives) within the

same framework. Within the paradigm of learning ADLs from APs, high-level activi-

ties (referred to as ADLs) call the more refined low-level activities (referred to as APs)

according to some distribution. A low-level activity will in turn call another lower-level

activity, and this process continues until the most primitive possible activity is per-

formed. When the lower level activity terminates - in some state - the parent behaviour

may also terminate as long as the current state is in the set of destination states of the

parent node.
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Representation

A HHMM framework can be represented as a Hierarchical Dynamic Bayesian Net-

work (H-DBN) as shown in Figure 2.8. The structure consists of three types of nodes,

Qd
t , Ot, F d

t where d is the depth of the hierarchy. The detail of each node is specified as

follows:

• Qd
t represents the state of the system at time t and level d. The state of the

whole HHMM is encoded by the vector of ~Qt = Q1
t , Q2

t , ..., QD
t ; intuitively, this

encodes the contents of the stake, that specifies the complete “path” to take from

the root(top most level state Q1
t ) to the leaf(bottom most level state Qd

t ) in the

state transition diagram.

• The termination node F d
t is a binary state indicator that is “on” if the sub-HMM

at level d and time t has just finished the execution, otherwise it is “off”. Note

that if F d
t = 1, then F d‘

t = 1 for all d‘ > d, which specifies which level we are

currently on.

• As the true state of the user is hidden, observations node Ot are required which

provides user/environment information. These nodes can be modelled as a mixture

of Gaussian (µ, Σ) and/or as discrete P (Qd
t |Ot) node.

• The downward arc between the Q nodes represents the fact that a state “calls” a

sub-state. The upward arcs between F nodes enforces the fact that higher level

states in the HHMM model can only change states when the lower level ones are

terminated (indicated by the he F node).

• Once the sub-HMM at lower level d > 1 terminates then the state at the top

most level (Q1
t ) changes its state based on the initial probability at that level and

observation probability.

Given the parameters (Qd
t , Ot, F d

t ), the H-DBN defines the joint distribution over

the set of variables that represents the evolution of the stochastic process over time.

These distributions are in the form of prior distributions (initial probabilities), transition

probabilities, termination probabilities and the observation probabilities. The prior
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distribution and the transition probabilities are defined at every level (d).

Prior Probability

The prior probability provides the initial probabilities of the most likely initial state.

The initial probabilities at all levels are defined in Equation 2.5.

P (Q1
1 = j) = π1(j)

P (Qd
1 = j|Q1:d−1

1 = k) = πd
k(j)

(2.5)

where π1 represent the initial probabilities for top level and πd
k represents the same

for d = 2, ..., D, given the state at higher levels is k.

Transition Probability

Each node in the H-DBN represents a conditional probability distribution (CPD) or

table (CPT). Due to differences in the local topology and dependencies at different

levels, we consider the bottom, middle/intermediate and top layers of the hierarchy.

The state at the top level at time t depends upon the previous state at the same

level and the termination states at same level and intermediate level at time t − 1.

Probabilities of the state Qd
t at the highest level at time t is specified in Equation 2.6.

The probabilities at the intermediate level d (where d = 2 : D − 1 & D is the maximum

depth of the hierarchy) at time t depends on (a) the state at same level at time t−1, (b)

the state of parent node Q1:d−1 and (c) the termination node at the same level d and

lower level d − 1. The termination node F d specifies whether we should use transition

probabilities or prior probabilities. The transition probabilities at the intermediate

and at the bottom most (d = D) levels are defined in Equation 2.7 and Equation 2.8

respectively.
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P (Q1
t = j|Q1

t−1 = i, F 2
t−1 = b, F 1

t−1 = f) =























δ(i, j) if b = 0

Ad(i, j) if b = 1&f = 0

πd(j) if b = 1&f = 1

(2.6)

δ(i, j) is the Kronecker delta function which specifies the self transition in the same

state given the termination state at the lower level is “off”. Ad is the transition prob-

ability from state i to j at the top level given the termination state at the lower level

is “on” and at the same level is “off”. Similarly, πd is the initial distribution at the top

level given the termination state at both the lower and same level is “on”.

P (Qd
t = j|Qd

t−1 = i, F d+1
t−1 = b, F d

t−1 = f, Q1:d−1
t = k) =























δ(i, j) if b = 0

Ad
k(i, j) if b = 1&f = 0

πd
k(j) if b = 1&f = 1

(2.7)

δ(i, j) is the transition probability from state i to j at level d when the termination

state at the lower level is “off”. Ad
k is the transition probability from state i to j at level

d given the termination state at the lower level (d − 1) is “on” and at the same level

is “off” and the parent nodes are in state k. Similarly, πd
k is the initial distribution at

level d given the termination state at both the lower (d − 1) and same level is “on” and

the higher level state is k.

P (QD
t = j|QD

t−1 = i, F D
t−1 = f, Q1:D−1

t = k) =











AD
k (i, j) if f = 0

πD
k (j) if f = 1

(2.8)

AD
k is the transition probability from state i to j at level D (the bottom most level)

given the termination state at the same level is “off” and the parent node is in state k,

πD
k in Equation 2.8 is the initial distribution at level D given that the parent node is in

state k. In Equation 2.6, 2.7 and 2.8, we assume that i, j 6= end state.
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Termination Model

The termination probabilities at top, intermediate and bottom levels will be different

due to the topological differences in the structure of the H-DBN model. The termination

probabilities at these three levels are given by Equation 2.9, 2.10 and 2.11 respectively.

P (F 1
t = 1|Qd

t = i, Q1:d−1
t = k, F 2

t = b) =











0 if b = 0

A1(i, end) if b = 1
(2.9)

P (F d
t = 1|Qd

t = i, Q1:d−1
t = k, F d+1

t = b) =











0 if b = 0

Ad
k(i, end) if b = 1

(2.10)

P (F D
t = 1|Q1:D−1

t = k, QD
t = i) = AD

k (i, end) (2.11)

A1, Ad
k and Ad

k are the termination states at top, intermediate and bottom level.

Observation Probability

The observation probability for a H-DBN model is similar to that defined in Equa-

tion 2.4, which is conditioned on seeing a specific observation on a discrete hidden

state.

Advantages of H-DBN Model over DBN Model

There are several advantages of the H-DBN model over a flat DBN model. Due to its

hierarchical nature, the H-DBN model makes multi scale interpretation of data possible

which is otherwise not possible with a flat DBN model. The hierarchical nature also

provides the advantage of modularity whereby the same sub-HMM model of the H-DBN

model can be reused for different state space. The H-DBN also exploits any constraints

that may be present in the parameters which cannot be exploited efficiently by the DBN

model due to its flatness.
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2.4.4 Learning

Various learning techniques both supervised and unsupervised can be used for learning

the DBN and H-DBN model. Expectation Maximisation (EM) [Blimes, 1998] and its

variants is one of the most popular statistical techniques used for unsupervised learning.

In this work we used EM for learning the model and a maximum likelihood estimator

for inference. The EM algorithm optimises the model parameters to better fit the

training data. It performs this by iterating between an Expectation step (E-step) and

Maximization step (M-step). In each E-Step it estimates the expectations (distributions)

over the hidden variables using the observations along with the conditional probability

density (CPD) of the model. Then in the M-step the model parameters (i.e. the CPD’s)

are updated using the expectations of the hidden variables obtained in the E-step.

Each iteration would continue to improve the estimates of the hidden variables and will

eventually converge to a local optimum. The EM algorithm for learning the parameters

in the DBN and HDBN models is given in Algorithm 1. It should be noted that the

model parameters (initial π, transition A(i, j) and observation B(i, k) probabilities) are

manually initialised based on common laws of operation and acceptable user behaviour

which then are further optimised by the EM algorithm.

2.4.5 Inference

The aim of the inference algorithm is to calculate the marginals P (Qt = i|O1:τ ) at the

next time slice t given the sequence of observations and maximise them. If τ = t, i.e.

the observation sequence is available up to the current time, then the inference is called

filtering, also known as on-line inference. On the other hand, when τ = T then the

inference of state Q at time t is done using the entire sequence of observation, more

often referred to as smoothing or off-line inference.

For inference of ADLs and APs we utilised Viterbi algorithm (max-product algorithm)

for off-line inference, which maximises the sequence of states Q from t = (0 : T ) given

the entire observation sequence Ot=0:T . For on-line inference we utilised the forward

algorithm which performs inference of state Q at time t given the observation sequence
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Algorithm 1 :The Expectation Maximisation (EM) algorithm to learn the parameters
in DBN and HDBN Models [Murphy, 2012]

Input:
1: Observation sequences O1, O2, O3, ..., OT

Output:
2: Model Parameter θ = (π, A(i, j), B(i, k))
3: Initial State Probability π
4: State Transition Probability A(i, j)
5: Observation Probability B(i, k)
6:

7: Begin
8: Initialise π(t=1), A(i, j)(t=1) , B(i, k)(t=1)

9: for x = 1 → N do ⊲ /* N is number of iteration for convergence */
10: E-Step: compute expected value using old (θold) model parameter

11: From π(x), A(i, j)(x), B(i, k)(x) and O1, O2, O3, ..., OT compute:
12: Auxiliary function:

13: F n(θ, θold) =
N

∑

i=1

E[N1
i ] log πi +

N
∑

i=1

N
∑

j=1

E[Nij ] log Aij+

N
∑

i=1

Ti
∑

t=1

K
∑

k=1

P (qt = k|Oiθ
old) log p(Ot = i|φ)

where:
14: Expected count of initial distribution π(x) is given by

E[N1
i ] =

N
∑

i=1

p(q1 = i|Oi, θold)

15: Expected count of transition distribution A(i, j)(x) is given by

E[Nij ] =
N

∑

i=1

Ti
∑

t=2

P (qt = j, qt−1 = i|Oi, θold)

16: Expected count of observation distribution B(i, k)(x) given by

E[Nj ] =
N

∑

i=1

Ti
∑

t=1

P (qt = j|Oi = k, θold)

17: M-Step: Normalise expected counts of model parameter π(x), A(i, j)(x), B(i, k)(x)

18: π(x) = normalise
OT
∑

O1

π(x)

19: A(i, j)(x) = normalise
OT
∑

O1

A(i, j)(x)

20: B(i, k)(x) = normalise
OT
∑

O1

B(i, k)(x)

21: end for
22: return Model Parameter θ = (π, A(i, j), B(i, k))
23: End Begin

30



CHAPTER 2. BACKGROUND

till time t. The algorithms for off-line inference and on-line inference are given in

Algorithm 2 and Algorithm 3 respectively.

Algorithm 2 :Viterbi Algorithm to estimate the hidden state [Murphy, 2012]

Input:
1: Observation sequences O1, O2, O3, ..., OT

2: Initial State Probability P (Q1 = i)
3: State Transition Probability P (Qt = j|Qt−1 = i)
4: Observation Probability P (Ot = o|Qt = j)
5:

Output:
6: Estimate hidden state Q1, Q2, Q3, ..., QT

7:

8: Begin ⊲ /* recursively estimate Qt till t = 1 */
9: Q1:T = argmax

Q1:T

P (Q1:T |O1:T )

10: = argmax
Q1:T

P (Q1:T , O1:T )

11: = argmax
Q1:T

(

P (Q1)P (O1|Q1)
T

∏

t=2

P (Qt|Qt−1)P (Ot|Qt)
)

12: = argmax
Qt=T

(

P (Ot=T |Qt=T )argmax
Q1:T −1

(

P (Q1)P (O1|Q1)
T −1
∏

t=2

P (Qt|Qt−1)P (Ot|Qt)∗

P (QT |QT −1)
)

)

13: = argmax
Qt=T

(

P (Ot=T |Qt=T )argmax
QT −1

(

P (Ot=T −1|Qt=T −1)P (QT |QT −1)...

argmax
Qt=1

P (Q1)P (O1|Q1)P (Q2|Q1)
)

)

14: End Begin

2.5 Summary

In the first part of this chapter we reviewed the importance of ADLs and the challenges

associated with modelling these activities. We described our approach of how to develop

a dictionary of action primitives which best describe the decomposition of complex ADLs

into atomic actions. The proposed architecture for representing ADLs using APs also

reduces the entire search space to a cluster of APs which can be combined in different

sequence to construct any complex ADL.

In the second part of this chapter, we detailed various Bayesian networks based prob-
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Algorithm 3 :On-line inference performed using only the forward part of the forward-
backward Algorithm to estimate the hidden state [Murphy, 2012]

Input:
1: Observation sequences O1, O2, O3, ..., Ot

2: Initial State Probability P (Q1)
3: State Transition Probability P (Qt = j|Qt−1 = i)
4: Observation Probability P (Ot = o|Qt = j)
5:

Output:
6: Estimate hidden state Q1, Q2, Q3, ..., Qt

7:

8: Begin ⊲ /* Ot is the observation sequence till current time t*/
9: Qt = P (Qt|O1:t)

10: = P (Ot|Qt, O1:t−1)P (Qt|O1:t)
11: = P (Ot|Qt)

(
∑

Qt−1

P (Qt|Qt−1)P (Qt−1|O1:t−1)
)

12: End Begin ⊲ /* recursively estimate Q till t = 1 ∗ /

abilistic models which are widely used in human activity recognition. Both DBN &

HHMM based probabilistic frameworks proved to be an ideal tool to model activities

which have previous time dependencies. With its ability of modelling activities at multi-

ple levels of the hierarchy, the HHMM framework provides the necessary tools to model

high level user activities from low level sensor measurement. In the next chapter, we

address the problem of modelling ADLs which are performed by a user of a mobility aid

device. The pool of activities consists of navigational (visiting locations of interest) and

support(stand-up or sit-down). We apply our approach of constructing a dictionary of

meaningful APs which are combined in different sequence to model ADLs.
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Modelling Activities of Daily

Living using Topological Maps

3.1 Introduction

In the previous chapter we introduced an efficient strategy to model Activities of Daily

Living (ADLs) by decomposing them into a sequence of action primitives (APs). In

this chapter we focus on developing a framework for modelling everyday activities per-

formed using the support of a power walker as a mobility device. The pool of activities

performed using this device can be navigational (visiting locations of interest) and/or

support (using the support of the walker to stand up or sit down) activities. Probabilis-

tic models as described in Chapter 2 are used to capture the complexity and ambiguity

present in human behaviour while he/she performs different everyday activities.

A variety of ADLs are performed by a user, seeking support of a walking mobility

device. These activities are a combination of support/static and navigational activities

which is a natural way in which, user performs most of the ADLs. For instance, for a

user to navigate to the bathroom, he/she has to perform a sequence of activities such

as standing up using the support of the walker (support activity), followed by walking

towards the bathroom (navigational activity). ADLs performed by walker users are a
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sequential combination of support and navigational activities. The sequential dependen-

cies between support and navigational activities provides important information related

to patterns in which these ADLs are performed. The sequential relationship between

different activities cannot be exploited if ADLs are modelled in an isolated manner.

The coupling of both these activities is tackled using a state of the art probabilistic

method. This technique is based on a hierarchical probabilistic model where both type

of activities are inferred using a single unified model that embeds both user’s naviga-

tional desire to navigate to a particular location of interest and support activities such

as standing up or sitting down using the support of the walker. For completeness we also

compared the inference accuracy of the hierarchical approach with a more conventional

probabilistic models such as a Dynamic Bayesian Network (DBN) and a combination

of a hierarchical probabilistic model and a discriminative classifier.

3.2 Related Work

Recognising different ADLs carried out by a mobility aid device user is not an uncommon

research area. Based on the targeted problem, several methodologies have been applied

by different research group. However, due to the demanding nature of the solution,

almost all such methodologies have shortcomings in one way or other. The following

section describes the attempts that have been made in the area of recognising ADLs in

general and ADLs for mobility device users specifically.

Conventional walking aid devices or power wheelchairs have been deployed success-

fully to support the performance of a large array of ADLs. Researchers have worked

on developing intelligent mobility aid devices designed to give a sense of safety and

security to the user during the course of performing various ADLs. Intelligent/Smart

walkers have recently begun to emerge as an alternative assistive device. The very first

walker based intelligent mobility device was developed by Lacy [Gerard and Kenneth,

1998]. Under this project they developed a personal adaptive mobility aid(PAM-AID),

which physically supports a walking user and provides obstacle avoidance to ensure safer

travel. In 2003, Morris and colleagues [Morris et al., 2003], developed a smart walker
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platform which not only provided basic assistance in terms of safety while navigating in

a cluttered environment but also provided assistance with navigation and global orien-

tation. Both of these intelligent walking frames developed by Lacy and Morris provided

the user with safe navigational support. Wasson et. al. [Wasson et al., 2004] developed a

COOL-Aide smart walker to operate in a more tightly coupled, shared control loop with

its human user. Instead of active guidance, the COOL-Aide provides a passive shared

control system that delivers active steering assistance only as needed, and no propulsion

assistance. The main purpose of this system is to derive the navigational intention of the

user based on measuring forces and moments applied to the walker’s handles and to pro-

vide steering assistance as and when required. Omar et. al. [Omar et al., 2010] proposed

an activity recognition technique based on Hidden Markov Model (HMM) and Condi-

tional Random Fields (CRFs) for an instrumented passive rollator walker. The model

recognized a number of user states: not touching the walker, stop/standing, walking for-

ward, turn left, turn right, walking backwards and transfers (sit to stand/stand to sit).

A Hierarchical Semi-Markov Model (HSMM) was proposed by Glover et. al. [Glover

et al., 2004] to learn the user’s walking activities. The walking activities inferred by the

HSMM framework were defined based on the topological region visited by the user in

a given environment. The HSMM framework operated at three different levels: at the

lowest level the metric motion is described by metric coordinates, at the mid-level the

framework uses topological regions as its element and at the highest level the person’s

walking activities are divided into logically broader walking activities.

Despite the impressive research outcome accomplished in the reviewed literature for

activity recognition of an assistive device user, the research did not address the problem

of predicting comprehensive ADLs which consists of both support and navigational

ADLs. This becomes an important criterion, as such a system would be capable of

predicting and assisting in the overall ADLs performed by the device user.

In this chapter we propose a system that adds the ability to integrate both sup-

port activities and navigational activities within a single probabilistic model. This is

achieved by decomposing ADLs into smaller sub-activities called APs. For a mobility

device user most of the ADLs consists of visiting different location of interest which
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are complemented with some support activities. Navigational ADLs are further decom-

posed into intermediate junction points. Junction points are intermediate locations in

a given environment from where two or more possible user paths exists. These inter-

mediate junction points are mapped to APs which are combined in different sequence

to represent the overall navigational activity a user is trying to perform. We deploy a

topological representation of map (as shown in Figure 3.1) to encode the environment,

as they offer a compact structure that better matches the human’s natural description

of a path (e.g.“take a left at the second junction” instead of “go straight for 100 me-

ters, then turn left”) [Rawlinson and Jarvis, 2008]. Different techniques currently exists

on how to construct topological maps, such as imprecise human drawings [Setalaphruk

et al., 2003] and generalised Voronai diagrams [Liao et al., 2003] [Aurenhammer, 1991].

The inference of ADLs, relies on both human behaviour of the user as perceived by

the low level sensors fitted on the assistive device and the location of the user in a given

environment. This differs from the work presented by Wasson et. al. [Wasson et al.,

2004], Glover et. al. [Glover et al., 2004] and Omar et. al. [Omar et al., 2010], where

the system provides either navigational assistance to reach the respective goal location

or assistance in performing static activities such as standing up using the support of

the walker, but not both. The intelligent framework proposed in this work applies the

strategy of decomposing ADLs at multiple levels. The user is always in control yet

the system is designed to actively yet unobtrusively assist the users as they go about

their normal daily activities without the need for any explicit actions such as pushing

buttons/panels or voice commands. This is an important motivation for this work,

since it is assumed that the intended user population may not always be cognitively

or physically able of pro-actively providing such unequivocal indications of their needs.

Further the inference of high level ADLs, allows the system to provide assistive support

to the user population suffering from different cognitive disability such as Alzheimer,

dementia etc. where users tend to have memory lapses and forget the ADLs they intend

to perform. In such scenarios inferring high level ADLs becomes intuitively important

as the system would be capable of providing support and assist the user in achieving

the task that they were intending to perform.
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Figure 3.1: A topological map structure of an office area representing a typical home
setting is shown on top of the metric representations. Circle nodes in this structure
represents a possible location of interest, rectangle nodes represents junction points in
the topological map and line segments represent a viable physical path between two
nodes.

3.3 Capturing Navigational and Support Activities

Capturing navigational activity is the process of acquiring knowledge about human ac-

tivities by monitoring how people go about achieving their routine ADLs. Typically,

people requiring mobility assistance in a constrained environment such as a home or a

elderly home care, have a known set of target locations that they visit to perform their

daily tasks, such as bathroom, bedroom, living room, medical facility, etc. Support activ-

ities are another set of activities which are often performed along side the navigational

activities. In terms of using walker as a support device, activities such as standing up

from sitting or navigating locally in a room are termed as static/non-navigational activ-

ities. Capturing human behaviour while performing different ADLs provides important

parameter information as it enables the intelligent system to learn these complex be-

haviour and to predict how, when and where a user is in need of assistance.

For capturing user behaviour while they perform navigational activities, the spatial

information of the environment is represented using a structural topological map. A

topological graph representation of the environment consists of vertices which represents

locations that a user would visit, junctions points which represents one or more pos-
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sible paths from a given location and edges representing a viable path connecting two

locations through various junction points. For cluttered indoor environments, the map

topology can be represented by a graphical tree of nodes and connections (segments),

where a set of nodes represents a location of interest or junction points in the map and

the connection represents a physical path that connects two locations. The topological

map used in this work is shown in Figure 3.1. The map is the structure of an office area

representing a typical home setting. The topological map was generated before hand by

dividing the map using 12 junction points and segments interconnecting these junction

points. As shown in Figure 3.1, the junction points were either the end destinations or

were designated to a point from where there were more than two possible paths to the

next junction.

3.3.1 Locations of Interest

Locations of interest can be thought of as spatial locations in the environment where a

human spends the majority of his/her time and these locations vary depending on the

user and their environment. Identifying locations of interest is not an easy task and

there is no general method to achieve this, as it is a user and environment dependent

problem. This information can be manually specified or extracted by monitoring user

patterns which is usually done with the help of an occupational therapist [Practice,

2008]. In general, remaining at a certain location for more than a predefined time

can be used to identify locations of interest. Knowing a set of possible destinations

is necessary for predictive robot navigation where the exact destination is not known

but predicted based on a sequence of observations from a human user and/or from the

environment. For the current project, we defined 6 locations of interest (Figure 3.1)

which a typical walker user will visit to perform various ADLs.

3.4 Dictionary of Action Primitives

The complex activities performed by a walker user are normally a combination of both

navigational and support activities. The navigational activities can further be cate-
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gorised into goal oriented navigation and manoeuvring locally in a room. The dictio-

nary of Action Primitives (APs) used in this work consists of different segments obtained

through the topological representation generated by connecting the vertices. For exam-

ple the navigational route of visiting the kitchen from the bedroom would consist of

going through segments ‘1 to 7, 7 to 8 & 8 to 2 ’. Different segments of an entire nav-

igational activity, which acts as APs, are defined such that it can be directly mapped

to the control system of the robot. This enables the robot to assist the user to achieve

their intended goal which involves manoeuvring through different segments.

On the other hand support activities such as standup, sitdown, recalling the walker

etc., cannot be decomposed any further due to two reasons. Firstly, due to the limitation

of the low level sensor, the number of key user poses cannot be efficiently perceived by

the sensors and secondly, the pool of APs were generated such that they can directly

be mapped to the control of the walker so as to provide necessary assistance, hence

modelling key user poses did not add any valuable information for providing the required

assistance.

3.5 Inferring ADLs using Probabilistic Models

Stochastic or probabilistic models, also known as belief networks, encompass a wide

range of generative algorithms particularly suited to applications where variables evolve

over time and there is incomplete knowledge or randomness in the processes involved.

The model consists of a sequence of time-slices where each time slice is described by a set

of random variables which represent the state of the user at the current time [Tahboub,

2006], and its dependencies on previous state(s). In general, the key advantage of

using stochastic models as opposed to, for instance, deterministic models described

by rigid mathematical laws, is their ability to capture complex dynamics that are not

completely observable or unambiguous. The added advantage of being able to represent

these relationships using graphical models [Jensen, 1996] has also made them a popular

tool, particularly with the Artificial Intelligent (AI) community.
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Figure 3.2: Layered DBN model used to infer ADLs performed by walker user

3.5.1 Layered Dynamic Bayesian Network (L-DBN) to model ADLs

As specified in Chapter 2, DBN is a variant of Bayesian Network (BN) which adds

a temporal dimension to single-slice BN. It consists of a sequence of time slices, with

each time slices having a set of variables representing the state of the environment at

a specific time. The L-DBN model used to infer ADLs is shown in Figure 3.2. The

model consists of two layers, where the ADLs and the corresponding APs are modelled

at different levels. The hidden nodes of the model are denoted by Qt which corre-

sponds to the state of the user whereas the observation nodes represent the sensing of

the physical variables and the environment. The edges between the nodes represents

the conditional dependencies between user states and observations as perceived by the

sensors. Apart from a graphical model the DBN model needs to be provided with an

initial belief in the form of prior probabilities (P (Q1
t=1), P (Q2

t=1)), transition probabil-

ities (P (Q1
t |Q1

(t−1)), P (Q2
t |Q2

t−1, Q1
t )) and observation probabilities (P (Ot|Q

2
t )). These

probabilities are further optimised from the data during the learning phase.

3.5.2 Hierarchical Hidden Markov Model (HHMM) to model ADLs

Hierarchical Hidden Markov Model (HHMM) are used to structure multi-level stochastic

processes. In this application, ADLs are hierarchically split-up at different levels of
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Figure 3.3: Time series of activities performed in sequence and their further decompo-
sition into sequence of APs

Figure 3.4: Hierarchical-DBN representation of a 2-level HHMM Framework used to
infer ADLs. The horizontal dashed lines indicate levels of hierarchy

abstraction. User ADLs are represented at the top level while the intermediate level

(Level 2 in Figure 3.4) represents the sequence of APs into which the ADLs can be

decomposed. Walker assisted ADLs can be divided into support activities which are

static in nature and are generally associated with being performed at a single location

(e.g. stand up, sit down, recall mobility device) and secondly, navigational ADLs which

involve visiting location of interest (e.g. going to kitchen). As stated in Section 3.4,

support activities cannot be decomposed further and hence such ADLs are also regarded

as independent APs in themselves. On the other hand, navigational activities can be

further decomposed into more basic navigational cues, for instance, walking toward a

junction shown in the topological map in Figure 3.1.

A typical scenario could be illustrated by considering for instance the activities in-

volved in going to the kitchen from the bedroom (shown in light blue in Figure 3.6). The
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sequence of activities can be decomposed as “Recall Walker ⇒ Stand Up ⇒ Navigate in

Room (until out onto the corridor) ⇒ To Kitchen [go to Junction 7 ⇒ go to Junction 8

(until entering kitchen)] ⇒ Navigate in Room ⇒ Sit Down ⇒ Walker Go Away” (The

decomposition of the activity into navigational and support ADLs and their respective

transitions from one ADL to another is shown in Figure 3.3)

The HHMM framework used to model ADLs can be represented as a Hierarchical

Dynamic Bayesian Network (H-DBN) as shown in Figure 3.4. The framework consists

of a 2-level hierarchy (d = 2) and consists of three types of nodes, Qd
t , Ot and F d

t

where d = 2 is the depth of the hierarchical structure. The intermediate level states

are the APs which are inferred from the physical sensor whereas the ADLs are inferred

from the state sequence of APs. The node Q1
t corresponds to ADLs that the user is

performing whereas the Q2
t corresponds to the respective APs. It should be noted that

the decision to use a 2-level hierarchical structure was based on the fact that the pool

of APs generated at the 2nd level were simple enough to be inferred directly from the

sensor information. The observation nodes are a combination of both physical sensor

installed on the walker platform and localization information. The details of observation

each observation sensors are as follows:

• 4 Gaussian nodes are the readings from the physical sensors installed on the walker

(IRt, IRw, LSG, RSG).

• 2 discrete nodes, RF and Localization. An RF switch is used by the user to direct

the walker to go away and recall it as needed. Location is derived from a localiser

in a topological manner: hence, instead of using the metric (x, y) information

provided by the localiser, 19 discretised locations are supplied as an observation

to the HHMM network. The 19 discretised locations were generated beforehand

using grid tiles of different sizes. The size of the grid was decided in such a way

that the number of representative locations used in the experiments were reduced

for computational purposes, yet there was no loss of topographical information for

the navigational ADLs. Further each of these 19 discretised location corresponded

to the location of the segment joining the respective junction points shown in

Figure 3.1. Our office environment (shown in Figure 3.1 was considered as a
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representation of a typical home environment, and the geometrical space was

divided into the relevant points of interest a user would normally visit during the

day.

Given the parameters (Qd
t , Ot, F d

t ), the H-DBN defines the joint distribution over the

set of variables that represents the evolution of the stochastic process over time. These

distributions are in the form of prior probabilities (initial probabilities of the state vari-

ables at each level), transition probabilities, termination probabilities and observation

probabilities. The prior probabilities at both levels are defined by Equation 3.1, while

the transition probabilities at Level 1 and Level 2 are given by Equation 3.2 and 3.3

respectively. The termination probability is given by Equation 3.4. The observation

nodes are modelled as both Gaussian and discrete. The CPDs for Gaussian and dis-

crete nodes is given by Equation 3.5. Within the paradigm of modelling walker assisted

ADLs, the initial location from where the user starts his/her ADL is incorporated by

the initial probabilities of the H-DBN and L-DBN model, whereas the end location are

modelled by the termination probabilities for the HHMM model. The sequence of APs

will vary based on the start and end location, hence selection of the appropriate AP and

Figure 3.5: Power Walker used as a Mobility Device
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the transition between APs is modelled via the transition probabilities between APs at

level 2 of the H-DBN and the L-DBN model.

P (Q1
1) = π1(j)

P (Q2
1) = π2

k(j)
(3.1)

P (Q1
t = j|Q1

t−1 = i, F 2
t−1 = f) =











A1(i, j) if F 2
t−1 = 0

π1(j) if F 2
t−1 = 1

(3.2)

P (Q2
t = j|Q2

t−1 = i, F 2
t−1 = f, Q1

t = k) =











A2
k(i, j) if F 2

t−1 = 0

π2
k(j) if F 2

t−1 = 1
(3.3)

P (F 2
t = 1|Q2

t = k, Q1
t = i) = A2

k(i, end) (3.4)

In Equation 3.1, 3.3, 3.2 and 3.4, A1 and π1 represent the transition and initial

probabilities respectively at level 1 where as A2
k and π2

k represents the same at Level 2

given the state at Level 1 is k.

P (Ot|Q
1
t = i) = N(µi, Σi)

P (Ot|Q
1
t = i) = C(i)

(3.5)

3.6 Power Walker for Data Collection

Data were collected using a power walker (Figure 3.5) which was used as an aid device

to perform various ADLs. The low level hardware sensor consists of two proximity

sensors, four strain gauges (2 on each handle bar), a RF switch and a Hokuyo URG-

04LX laser range finder. The frame was also instrumented with two gear-head motors

and incremental optical encoders installed at the rear wheels. Further hardware and

software details of the platform can be found in Appendix A and C respectively.
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Figure 3.6: 2-D Bird’s eye view of environment divided into typical locations of interest
in an home, superimposed with different activity routines performed by one of the walker
user

3.7 Results

To evaluate our proposed methodology of modelling ADLs by exploiting the ADLs-

APs relationship and the hierarchical characteristics of the HHMM model we tested the

model with both synthetic data and real-time data collected using the power walker de-

scribed in Appendix A. The HHMM framework was tested off-line using both datasets.

We used the BNT toolbox [Murphy, 2002] (a popular and versatile toolbox for modelling

different graphical models) to learn and infer ADLs using both layered DBN (L-DBN)

and the HHMM frameworks. Unsupervised learning in the form of Expectation Maxi-

mization was used to learn ADLs, and the Maximum Likelihood Estimator was utilised

for inference.

3.7.1 Evaluation using Synthetic Data

Large training and testing data sets were required for extensive evaluation and mean-

ingful analysis of the proposed strategy. Hence, synthetic data for each sensor fitted

on the walker was generated which involved visiting all the location of interest from

every other location (i.e. bedroom visited from every other location of interest in the

environment as shown in Figure 3.1). The sensor ranges and their expected behaviours
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(a) Infra Red Torso (IRt) sensor (b) Infra Red Waist (IRw) sensor

(c) Left Strain Gauge (LSG) sensor (d) Right Strain Gauge (RSG) sensor

Figure 3.7: The data plot shows a comparison between real sensor data and synthetic
data generated while the user performs four basic primitive actions which are combined
with other sensors to model the overall ADLs.

were studied beforehand by performing smaller scale experiments on the walker plat-

form with different able users to perceive their actions/behaviours. The synthetic data

generated for all the sensors were analogous to that produced by real sensors. The two

infra-red sensors (IRt, IRw) and the strain gauges (LSG, RSG) produced continuous

data whereas the RF switch being an on/off switch produced discrete data. Further the

localisation data produced by the Monte Carlo localiser particle filter using the laser

and wheel encoder readings were continuous in nature and hence similar data was gen-

erated (x, y, orientation) synthetically. For example, the infra-red sensor and the strain

gauges had specific behaviour as shown in Figure 3.7 for different ADLs and hence the

synthetic data generated for ADLs had similar characteristics.

Further the synthetic data generated for different ADLs and their corresponding APs

had to be continuous over a time period so as to capture the entire user behaviour similar

to the data collected from the real sensors while the user performs different ADLs. To

illustrate, the sequence of activities that a user would perform to go to the living room

from the bedroom, would be recalling the walker (RW), followed by standing up (SU)

46



CHAPTER 3. MODELLING ACTIVITIES OF DAILY LIVING USING

TOPOLOGICAL MAPS

Figure 3.8: Confusion matrix for ADLs inferred by HHMM Model at level 1 using
synthetic data

Figure 3.9: Confusion matrix for APs inferred by HHMM Model at level 2 using syn-
thetic data

using the support of the walker, then getting out of bedroom and walking towards the

living room (LIV). Once in the living room the user would sit down (SD) and tell the

walker to go away (WGA). The APs involved during the navigational ADL would then

be to traverse towards jn 7, followed by jn 8 and jn 11, before the user reaches the

living room. Figure 3.7 depicts synthetic data (in blue) of the four physical sensors (i.e.

infra-red sensors and strain gauges) used to perceive basic human behaviours.

The ADLs were inferred at Level 1 with an accuracy of 90.74% by the HHMM frame-

work, whereas the same was inferred with an accuracy of 54.03% by a L-DBN framework.

Similarly, APs were inferred at Level 2 with an accuracy of 78.85% and 59.48% by the
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Figure 3.10: Confusion matrix for ADLs inferred by Layered DBN Model at level 1
using synthetic data

Figure 3.11: Confusion matrix for APs inferred by Layered DBN Model at level 2 using
synthetic data

HHMM framework and the L-DBN framework respectively. The confusion matrix of

the ADLs and APs inferred by both HHMM and L-DBN framework is depicted in

Figure 3.8, 3.9 3.10, 3.11 respectively.

3.7.2 Evaluation with Data Collected using Power Walker

To further evaluate the framework with real-time data, we collected data from three

healthy subjects while performing different ADLs using the power walker device depicted

in Figure 3.5. The participants (one male, two female, (25-30 years of age)) did not have

any technical background. They were also briefed and were given time to practice using
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User Task Start End APs (sub-activities) Type of ADL

Going to Kitchen Bedroom (BED) Kitchen (KIT) 1 - 7 - 8 - 2 Navigational

Going to Bathroom Kitchen (KIT) Bathroom (BAT) 2 - 8 - 7 - 9 - 10 - 3 Navigational

Going to Bedroom Bathroom (BED) Bedroom (BED) 3 - 10 - 9 - 7 - 1 Navigational

Going to Living Room Bedroom (BED) Living Room
(LRO)

1 - 7 - 8 - 11 - 4 Navigational

Going to Kitchen Living Room
(LRO)

Kitchen (KIT) 4 - 11 - 8 - 2 Navigational

Going to Laundry Kitchen (KIT) Laundry Facility
(LAU)

8 - 7 - 9 - 12 - 5 Navigational

Going to Living Room Laundry Facility
(LAU)

Living Room
(LRO)

5 - 12 - 9 - 7 - 8 - 11 - 4 Navigational

Stand Up (SU) any location same as start Stand Up Support activity

Sit Down (SD) any location same as start Sit Down Support activity

Recall Walker (RW) Park location of
walker

where it last left
the user

Recall Walker Navigate locally in
a room (support)

Walker go Away (WGA) Location where
user sits down

Park location of
walker

Walker Go Away Navigate locally in
a room (support)

General Assistive Navigation
(GAN)

locally in a room locally in a room General Assistive Navi-
gation

Assist user to nav-
igate locally in a
room (support)

Table 3.1: List of ADLs performed by a typical walker user. Paths represents the
topological junction points visited to reach the goal destination

the walker so as to understand its functionality. We collected data for some of the many

ADLs listed in Table 3.1 that a typical walker user would encounter. Figure 3.6 shows

the trajectory plot of the path travelled by one of the users to visit various locations of

interest to perform different ADLs. The data were manually labelled for cross validation

and divided into two equal sets for training and testing purpose.

The ADLs were inferred at Level 1 with an accuracy in the range of 98% by the

HHMM framework, whereas the same was inferred with an accuracy of 61% by the

L-DBN framework(comparison shown in Table 3.2). The sequence of APs was inferred

with an accuracy of 81% and 67% by the HHMM framework and L-DBN framework

respectively. The confusion matrix of ADLs and corresponding APs inferred by both

HHMM and L-DBN model is depicted in Figure 3.12, 3.13, 3.14 and 3.15 respectively.

3.7.3 Validating Synthetic Data with Real Walker Data

To validate the generated synthetic data with that of real walker data, we conducted

an experiment where the HHMM framework was trained with synthetic data and tested

with real walker data. The HHMM framework inferred ADLs with an overall accuracy of

98% whereas the APs were inferred with an accuracy of 75%. The test was performed
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Figure 3.12: Confusion matrix for ADLs inferred by HHMM Model at level 1 using real
walker data

Figure 3.13: Confusion matrix for APs inferred by HHMM Model at level 2 using real
walker data

only with the HHMM framework as the previous results in Sections 3.7.1 and 3.7.2

suggested that the L-DBN framework was unable to infer both ADLs and APs with

high accuracy. The inference accuracy for testing the model with real data is higher

than the same when tested with simulated data; this is due to the fact that the number

of places visited using real data (7 locations) was less than those using synthetic data

(30 locations).

Training the model with synthetic data and testing it with real walker data resulted

in high inference accuracy, substantiating the hypothesis that the synthetic data is

representative of the real data. Further, our evaluation of the proposed hierarchical
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Figure 3.14: Confusion matrix for ADLs inferred by Layered DBN Model at level 1
using real walker data

Figure 3.15: Confusion matrix for APs inferred by Layered DBN Model at level 2 using
real walker data

framework seems to confirm the robustness of the model which infers the learned ADLs

with very high certainty. A comparison of the synthetic data against real sensor data

of four physical sensors is shown in Figure 3.7.

3.7.4 Comparison with Discriminative models

We also compared the accuracy of the HHMM and L-DBN frameworks with a hybrid

HHMM/SVM model. Support Vector Machines (SVM) are class of powerful algorithms

derived from statistical learning theory and applicable to pattern recognition prob-

lems. SVM efficiently constructs and trains the optimal separating hyper-planes in the
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Figure 3.16: HHMM/SVM Hybrid model used to infer ADLs. The SVM classifies static
user behaviour which acts as observations to the HHMM model which in turn are merged
with other observation such as LOC and RF to infer the APs

Activities of Daily Living (ADLs)

Model/Activity tobed tokit tobat toliv tolau RW WGA SU SD GAN Overall

L-DBN 40.55 40.23 76.99 34.74 35.22 91.51 99.70 90.10 87.50 95.13 60.95

HHMM 100 100 92.92 96.33 95.54 100 98.47 100.00 99.05 99.56 97.91

HHMM-SVM 100 100 100 100 100 100 99.39 99.03 98.10 99.85 99.83

Table 3.2: Inference accuracy of Generative and Discriminative Models (%)

kernel-induced feature space while enforcing the learning biases suggested by general-

isation theory. Since SVM unlike HHMM and DBN, lack the ability to model time

series researchers have combined them with HMM in various applications [Bishop and

Lasserre, 2007] [Castellani et al., 2004] [Valstar and Pantic, 2007] [Stadermann and

Rigoll, 2004], allowing the excellent discrimination performance of SVM to complement

the temporal modelling properties of HMM and provide a higher inference accuracy.

The HHMM/SVM hybrid model used in this work is shown in Figure 3.16. In the

hybrid model the sensor information is used by the SVM to classify whether the user

activity belongs to a navigational ADL or to one of the support activities. The SVM

classification is merged with other sensor information (RF and LOC) which is then
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Figure 3.17: Confusion matrix for ADLs inferred by HHMM/SVM Hybrid Model at
Level 1 using real walker data

Figure 3.18: Confusion matrix for APs inferred by HHMM/SVM Hybrid Model at Level
2 using real walker data

used by the HHMM framework to exploit the temporal relations in the same fashion

as before to infer APs and ADLs. It should be noted that the sensor data used for the

SVM classifier at each time step was the same as those used by the HHMM and L-DBN

framework.

The inference accuracy of the HHMM/SVM hybrid model to infer ADLs and the

corresponding APs was around the same values as the proposed HHMM framework

(approximately 99% and 81% respectively). The confusion matrix for HHMM/SVM

hybrid model to infer ADLs and APs is shown in Figure 3.17 and 3.18 respectively. This

further suggests that the proposed hierarchical structure is able to take full advantage
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Figure 3.19: Comparison of ADLs inferred by HHMM Model, HHMM/SVM Model,
Layered DBN Model and SVM classifier

of the temporal nature of ADLs. Yet by employing HHMM there is the significant

advantage of not having to resort to (partial) supervised learning. This is a significant

advantage for the target audience, as the physical abilities of the intended users will

deteriorate with age. Additionally the network itself benefits from the capacity to adapt

to ADLs changes without the need for expensive data tagging. A comparison of the

inference accuracy of all three models is shown in Figure 3.19 and Table 3.2.

Further, examining the results in Table 3.2 and Figure 3.19, it can be seen that all the

models inferred or classified the support activity (e.g. RW, WGA, SU, SD, GAN),

with a very high accuracy where as the navigational ADLs were inferred with higher

accuracy by the HHMM and HHMM/SVM hybrid model.

3.7.5 Inferring ADLs and APs with HHMM framework using On-line

Inference

The inference results discussed in the previous Sections was performed off-line, i.e. the

entire ADL sequence (t = 1 : T ) was used to infer the APs and the respective ADL at any

given time t (t < T ). Such inference model can be useful for applications whereby walker

users are asked to perform fixed routine ADLs, e.g. as part of their everyday routine
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Figure 3.20: Confusion matrix for ADLs inferred using on-line inference by HHMM
Model at level 1 using real walker data

Figure 3.21: Confusion matrix for APs inferred using on-line inference by HHMM Model
at level 2 using real walker data

exercises generally prescribed by the occupational therapist to maintain a healthier

lifestyle or to follow a specific mobility rehabilitation program.

For the scenario of inferring the ADLs and the corresponding APs in real time (i.e.

inferring the user ADLs based on the observation sequence till the current time) to

provide assistance to the user as and when required, we utilised the forward algorithm

described in Chapter 2. Note that the inference was performed using only the HHMM

framework as the L-DBN model was shown to infer ADLs with lower accuracy in the pre-

vious experiment. The HHMM framework inferred ADLs with 87% accuracy, whereas

the corresponding APs were inferred with 72%. The confusion matrix for ADLs and
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Figure 3.22: Comparison of ADLs inferred by HHMM Model using off-line inference
and on-line inference technique

Figure 3.23: Probability inference of performing the ADL of going to the Laundry from
Kitchen. Note that the inference is performed using the observation available till the
current time.

APs are depicted in Figure 3.20 and 3.21 respectively. Furthermore, a comparison of

the ADLs inferred by the HHMM framework using the off-line approach as compared

to on-line approach is shown in Figure 3.22. The inference accuracy reduces by about

11% using the on-line approach as the observation information used is limited to that

available till the current time. As an example, the inference probability evolution for

the activity of going to the living room from the laundry is shown in Figure 3.23.
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3.8 Summary

In this chapter we presented a solution to model ADLs encountered by a typical mobility

aid device user in everyday life. The work is an extension of the initial results published

in [Patel et al., 2012]. Our proposed approach of modelling ADLs by decomposing

them into APs was evaluated with both synthetic and real data collected from users

of an automated power walker. Using synthetic data, the ADLs were inferred with an

accuracy of 90% using the HHMM framework, while an overall accuracy of 98% was

obtained using real data collected using the power walker. This high level of accuracy

attained by using the HHMM framework was due to its capability of representing ADLs

at multiple levels.

To further support our proposition of using a hierarchical framework to model ADLs,

we compared the inference accuracy of HHMM model with other machine learning

techniques, such as a layered DBN model and a hybrid HHMM/SVM model. The results

demonstrate that typical support activities are inferred with similar accuracies by all

models. However, prediction accuracy for navigational activities which are long term in

nature is almost halved for the L-DBN as compared to HHMM models, further proof

that decomposition of ADLs at multiple levels and the inherent temporal information

present in ADLs plays a critical role in predicting these activities. On the other hand,

the HHMM/SVM hybrid model inferred ADLs with the same accuracy compared to

the HHMM model. This is because the SVM classification of APs at the intermediate

level is further utilised by the HHMM model to exploit the temporal and hierarchical

relationship between APs and ADLs. Lastly, we also compared the accuracy of inferring

ADLs using off-line and on-line inference algorithm for the HHMM framework.

The work presented in this chapter assumes that a topological representation of the

given environment is available. The junction points in the topological map act as APs

which were combined in different sequence to define the activities of visiting location

of interest. Generating a topological representation of a given environment becomes a

cumbersome process as each environment will have its own unique topological map. In

the next chapter we present a novel technique, where we model ADLs such that the use
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of a topological map can be made redundant.
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Chapter 4

Modelling Activities of Daily

Living using Human Motion

Models

4.1 Introduction

In the previous chapter we demonstrated a Hierarchical Hidden Markov Model (HHMM)

based probabilistic framework to model a broad spectrum of Activities of Daily Living

(ADLs) as performed by a mobility aid device (walker) user. However, the approach

used in the previous chapter assumes that the topological representation of a given

environment is available where locations of interest are connected using junction points

and edges. This assumption requires the additional work of generating a topological

representation of the user environment (private home, old age home or hospitals).

In this chapter, we present a motion primitive based modelling technique that captures

the local human behaviour which represents the person’s interaction with the robotic

device and the environment, while performing ADLs. The model follows a similar

technique as employed in Chapter 3, which consists of decomposing complex ADLs into

a string of Action Primitives (APs). The primary advantage of using motion primitive
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(a) Power Walker (b) Robotic Wheelchair

Figure 4.1: (a) Power Walker and (b) Robotic Wheelchair used to model ADLs

based modelling is its ability to model ADLs and the corresponding APs by using human

motion and therefore does not require any topological representation of the environment.

We evaluated the proposed framework with data collected with two different mobility

devices: a power walker and a robotic wheelchair (Figure 4.1). We also compared

the inference accuracy of the HHMM Model with that of a Layered Dynamic Bayesian

Network (L-DBN) and a 2 stage SVM classifier. The L-DBN and a 2-stage SVM classifier

were utilised to allow for a fair comparison with the HHMM Model. In all the three

frameworks, ADLs are modelled at the higher level and inferred from APs and the

APs are in-turn modelled at the intermediate level and are inferred using the physical

sensors.
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4.2 Related Work

The approach of motion primitive based activity recognition has become an important

focus in research due to its ability to capture the local characteristics of activity sig-

nals [Zhang and Sawchuk, 2012]. The motion primitive based models are inspired by

human speech signals [Ghasemzadeh et al., 2008]. In human speech, sentences are first

divided into isolated words, which are then divided into a sequence of phonemes. Fol-

lowing the same idea, in motion primitive based model, each activity is represented

as a sequence of APs which acts as the smallest unit to be modelled. Stiefmeier and

colleagues constructed motion primitives by dividing the activity trajectory into fixed-

length windows with an identical spatial duration, where each window was mapped to

a motion primitive based on its trajectory direction in the Cartesian space [Stiefmeier

et al., 2007]. Nguyen and colleagues used a HHMM framework to model and recognise

three human activities (e.g. having a meal) in a confined space, while tracking the user

with two static cameras [Nguyen et al., 2005]. The semantics embedded in the activi-

ties were tightly coupled to the locations where the relevant objects of interest - such

as fridge, cupboard etc. - were located, not the actual interactions between user and

objects. Osentoski et. al. used an Abstract Hidden Markov Model (AHMM) to models

behaviours in an indoor environment [Osentoski et al., 2004]. The proposed model de-

composed user states into intermediate states which consisted of small clusters formed

by dividing the entire action trajectory. In the context of an outdoor environment Liao

and colleagues proposed a surveillance system using GPS sensors to infer user’s daily

activities in a large and complex environment [Liao et al., 2007]. They used a HHMM

framework to infer user’s mode of transportation and the destination location, and to

predict both short and long term movements. The framework was also able to infer if

the user was deviating from normal activities as an indicator to provide guidance cues.

In the context of mobility aid device users, researchers have developed different frame-

works capable of modelling ADLs based on basic human behaviour. Alwan et. al. de-

scribe a method that assesses basic walker-assisted gait characteristics, including heel

strikes, toe-off events, stride time, double support and right and left single support
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phases [Alwan et al., 2005]. These statistics were based on the measurements of weight

transfer between the user and the walker as perceived by the sensor (in the form of

two load cells fitted on the handles of the walker). A simple threshold approach was

utilised to detect peaks and valleys in the load measurements, which are assumed to be

indicative of certain events in the gait cycle. This work mainly focusses on low level

gait statistics. Hirata et al. [Hirata et al., 2006] provided a framework which would es-

timate user states. They recognise three user states: walking, stopping and emergency

(including falling). These states are inferred based on the distance between the user

and the walker and the velocity of the walker.

Similar work has been done using a power wheelchair as a mobility device.

Wheelchairs have been prescribed to people who do not have upper body strength

and are unable to maintain gait balance while walking. Fehr et. al. reported that

40% of wheelchair users find steering nearly impossible [Fehr et al., 2000]. This is due

to the fact that constant vigilance is required on the part of the user to sense their

environment, recognise hazards, and be able to transfer their desired motion into con-

tinuous joystick commands for the wheelchair [Brose et al., 2010]. Researchers [Pruski

et al., 2002] [Demeester et al., 2008] [Carlson and Demiris, 2010] [Atrash and Pineau,

2009] have developed a number of strategies whereby the user’s intention to perform

an activity is perceived through a different sensor system which is further utilised by

the intelligent model to reduce the overall load on the user to operate the wheelchair.

Prunski and colleagues proposed a control strategy for users of an intelligent wheelchair

that provides control assistance that best suits the user behaviour. The control system

provides the necessary assistance to control the motion of the wheelchair and align it to

the activity the user wants to perform. Carlson and Demiris proposed a collaborative

control system that would provide assistance as and when required thereby reducing

the concentration required by the user as well as their overall workload. Examples of

such scenarios would be passing through a narrow doorway, manoeuvring in cluttered

environment, or in situations when the user is engaged in some secondary activity like

talking to someone. The proposed collaborative control model was able to provide adap-

tive assistance and additional safety from a dynamic obstacle avoidance module [Carlson
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and Demiris, 2010]. Similarly, Vanhooydonck et. al. [Demeester et al., 2008] proposed

a shared control strategy where the intelligent algorithm provides low level assistance

from high level user intentions as inferred by the intelligent algorithm.

In this chapter, we propose to model complex ADLs of two mobility aid devices, a

power walker and a robotic wheelchair using basic human motion as perceived by the

physical sensors fitted on the mobility devices. This was done by exploiting both the

temporal relationship between ADLs and APs, and the spatial relationship between APs

and observation using a probabilistic framework. The dictionary of APs was developed

based on basic human motion. For example, in the case of modelling navigational ADLs,

the human motion related APs will consists of the person’s navigational intention of

going in a specific direction, turning left or right. The probabilistic framework in the

form of HHMM is utilised to learn and assist with an array of the ADLs that a typical

user of locomotive supportive devices would normally engage in. The type of interactive

ADLs considered include for instance ‘standing up’, ‘going to the kitchen’, ‘recalling the

platform’, etc. The complex ADLs are further decomposed into a string of meaningful

APs which are based on human motion. For instance the task of ‘going to the kitchen’

can be decomposed into directional APs of going straight in a specific direction followed

by turning right or left depending on the route to be followed in a given environment.

4.3 Mobility Device to Support Activities of Daily Living

We focus on modelling ADLs performed by users of two common mobility devices: a

power walker and a robotic wheelchair (Figure 4.1). Both these devices are prescribed

to people having poor upper body strength, poor gait stability as well as other factors.

The scope of ADLs performed by users of both these devices primarily extends to

manoeuvring at different locations of interest (e.g. kitchen, bedroom, bathroom, etc.)

and performing other support activities such as standing up using the support of the

mobility device (for power walker user). The ADLs are modelled using human behaviour

as perceived through different physical sensors installed on the mobility device.
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(a) Manually Defined Graphical Model (b) Graphical model evolved using Structure Learning

Figure 4.2: (a) Graphical Model defined manually to infer local human be-
haviour/activities (b) Graphical Model evolved using bayesian structure learning approach
to infer local human behaviour/activities

4.3.1 Power Walker as a Mobility Device

The power walker (Figure 4.1(a)) used to model ADLs is the same as that used for

experiments in Chapter 3. Further hardware and software details regarding the platform

can be found in Appendix A and C respectively.

Sensor Dependencies to Model basic Human Behaviour

The physical sensors, two infra-red (IRs) proximity sensors and the strain gauges (SGs)

installed on the walker are mainly used to monitor the basic human behaviours such

as sitting down, standing up, and navigation, which are then fused with other sensor

information to model complex ADLs. Through visual inspection of the data, we ob-

served that the infra-red sensor data did not provide any extra information to model

local human behaviours. To further validate our belief we used Structure Learning

(SL) to exploit the dependencies between physical sensors and the state of human be-

haviour. We utilised a Bayesian Network (BN) structure learning tool kit called Win-

Mine [Chickering, 2002] developed by Microsoft Research to learn the structure and

parameter dependencies of the model. WinMine uses a greedy directed acyclic graph

based algorithm starting with the model containing no edges which are then greedily
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added, deleted and reversed based on the parameters, until a local maximum is reached.

The evolved structure is then evaluated by calculating the log posterior probability for

each of the hidden/output nodes. The structure that evolved after performing structure

learning using WinMine toolkit is shown in Figure 4.2(b). To further validate sensor de-

pendencies to infer user behaviour, we compared the inference accuracy of the graphical

model evolved using structure learning (Figure 4.2(b)) to the accuracy of the manually

defined graphical model (Figure 4.2(a)). Both models inferred the user behaviour with

the same accuracy of 99%. Hence in this chapter we model ADLs using the sensor

information from the Left and Right Strain Gauges (LSG, RSG) only. The information

available from these two physical sensors was sufficient to perceive human behaviour,

which is further combined with other observations to model the ADLs performed by a

typical walker user.

4.3.2 Robotic Wheelchair as a Mobility Device

The wheelchair used for experimentation (Figure 4.1(b)) is a commercially available

power wheelchair (Invacare rollar M1 [Invacare, reviewd on 3rd January 2013]) modi-

fied with necessary hardware such as wheel encoders, a Hokuyo URG-04LX laser range

finder, RF switch and a digital-to-analog (DAC) interface unit. Further details of hard-

ware and software integration of the wheelchair can be found in Appendix B and C

respectively.

It should be noted that the assistance provided by a wheelchair used in this work is

mainly navigational in nature. The user’s behaviour when performing a specific ADL is

perceived through the joystick of the wheelchair, where the user provides navigational

cues of where/which direction the user intends to go. The navigational cues provided by

the user are fused with other information such as localisation and RF switch to model

APs, which are then combined in different sequence to model the overall ADL the user

is trying to perform.
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Action Primitive Abbrev. Description

Recall
Walker/Wheelchair

RW Recalling walker/wheelchair to use it

Walker/Wheelchair Go
Away

WGA Instruction the walker/wheelchair to go way so
that it is not an hindrance

Stand Up SU Stand up using the support of the walker (only
for walker)

Sit Down SD Sit down using the support of the walker (only
for walker)

Go Straight Northwards GSN Going straight with orientation towards north

Go Straight Westwards GSW Going straight with orientation towards west

Go Straight Eastwards GSE Going straight with orientation towards east

Go Straight Southwards GSS Going straight with orientation towards south

Turn Left TL Turning left

Turn Right TR Turning right

Table 4.1: Action Primitives to perform various ADLs

4.3.3 Modelling ADLs of Mobility Device User

The ADLs modelled for users of different support devices are in the context of a typical

home environment where a walker or wheelchair user would generally have a well-known

set of locations that they visit during their daily activities, e.g. kitchen, bedroom, bath-

room, laundry, etc. or activities performed at a single location, e.g. standing up from

sitting position (confined to walker platform). ADLs can broadly be categorised into

two group: firstly, support activities which are static in nature and are generally associ-

ated with being performed at a single location (e.g. stand up, sit down, recall mobility

device) and secondly, navigational ADLs which involve visiting location of interest (e.g.

going to kitchen). Support activities being in their most primitive state already can-

not be decomposed further, hence such ADLs are also regarded as independent APs in

themselves. On the other hand, navigational activities can be further decomposed into

more basic navigational components (e.g. turn left). A typical scenario could be illus-

trated by considering for instance the activities involved in going to the kitchen from the

bedroom (shown in light blue in Figure 4.6). The sequence of activities can be decom-

posed as “Recall Walker/Wheelchair ⇒ Stand Up (walker)/transfer to wheelchair ⇒

Navigate in Room (until out onto the corridor) ⇒ To Kitchen [Go Straight Southwards

⇒ Turn Right ⇒ Go Straight Westwards (until entering kitchen)] ⇒ Navigate in Room

⇒ Sit Down (walker)/ transfer from wheelchair ⇒ Walker/Wheelchair Go Away” (The
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Figure 4.3: Time series of activities performed in sequence and their further decompo-
sition into sequence of APs

decomposition of the activity into navigational and support ADLs and their respective

transitions from one ADL to another is shown in Figure 4.3)

4.4 Probabilistic Models to Predict ADLs using Human

Motion Models

We employed a HHMM framework to model ADLs using APs which are based on the

basic human motion. The HHMM model exploits the decomposition of ADLs into a

string of APs which consists of pool of intrinsic human behaviour. A comparison of the

inference accuracy of the HHMM model was also done with a Layered Dynamic Bayesian

Network (L-DBN) and a 2-stage SVM classifier. All the three models i.e. HHMM, L-

DBN and the layered SVM classifier, infers APs at the intermediate level using the

sensor observation whereas the ADLs are inferred at the higher level by combining the

APs in different sequences.

4.4.1 Layered Dynamic Bayesian Network (L-DBN)

A 2 layer DBN framework which models ADLs and the corresponding APs for both

the mobility devices is shown in Figure 4.4. The ADLs and APs correspond to the

hidden state of the L-DBN structure, whereas the sensor readings corresponds to the

observed nodes. The APs are inferred (at Level 2) using observation whereas the ADLs

are inferred (at Level 1) using both the inferred APs at level 2 and observation from

the sensors. The hidden nodes are discrete whereas the observed nodes consists of both

discrete and continuous nodes. The two slice L-DBN model is unrolled infinitely. The

only connection between each time slice is via the hidden states at Level 1 and Level 2.
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(a) Layered DBN Model used to infer ADL for Walker user

(b) Layered DBN Model used to infer ADL for Wheelchair user

Figure 4.4: Layered DBN Model used to infer ADL for walker user (Figure (a)) and
wheelchair user (Figure (b))

Probabilities in the form of prior probabilities (P (Q1
1) & P (Q2

1)), transition probabil-

ities (P (Q1
t |Q1

(t−1)) & P (Q2
t |Q2

(t−1), Q1
t )) and observation probabilities (P (Ot|Q

1
t , Q2

t ))

are provided at both the levels, which are further optimised by learning the model

parameters from the data.

4.4.2 Hierarchical Hidden Markov Model (HHMM)

The HHMM framework used in this experiment for both the mobility platforms is

depicted in Figure 4.5. The user activities are hierarchically split-up at different levels

of abstraction. Similar to the L-DBN model, the ADLs are inferred at the top level

(Level 1) whereas the APs are predicted at the intermediate level (Level 2). Along with
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(a) HHMM Model used to infer ADL for Walker user

(b) HHMM Model used to infer ADL for Wheelchair user

Figure 4.5: HHMM Model used to infer ADL for walker user (Figure (a)) and wheelchair
user (Figure (b))

the graphical model the prior, transition, observation and termination probabilities

are defined for the HHMM model which is further optimised using the Expectation-

Maximisation (EM) learning algorithm. The prior probabilities at both the levels are

defined using Equation 4.1, the transition probabilities at Level 1 and 2 are defined using

by Equation 4.2 and Equation 4.3 respectively, while the termination probabilities are

defined using Equation 4.4.

P (Q1
1) = π1(j)

P (Q2
1) = π2

k(j)
(4.1)
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P (Q1
t = j|Q1

t−1 = i, F 2
t−1 = f) =











A1(i, j) if F 2
t−1 = 0

π1(j) if F 2
t−1 = 1

(4.2)

P (Q2
t = j|Q2

t−1 = i, F 2
t−1 = f, Q1

t = k) =











A2
k(i, j) if F 2

t−1 = 0

π2
k(j) if F 2

t−1 = 1
(4.3)

P (F 2
t = 1|Q1

t = k, Q2
t = i) = A2

k(i, end) (4.4)

In Equation 4.1, 4.2, A1 and π1 represent the transition and initial probabilities

respectively at Level 1 where as in Equation 4.3 and 4.4 A2
k and π2

k represents the same

at Level 2 given the state at Level 1 is k. The observation probabilities are defined as

a mixture of Gaussian and/or discrete nodes. The probabilities of observation nodes

which have dependencies at both the levels ((Q1&Q2) are defined by Equation 4.5 while

Equation 4.6 defines probabilities of the node which have dependencies only on the

intermediate node (Q2).

P (Ot|Q
1
t = i, Q1

t = j) = N(µi,j , Σi,j)

P (Ot|Q
1
t = i, Q2

t = j) = C(i, j)
(4.5)

P (Ot|Q
2
t = j) = N(µj , Σj)

P (Ot|Q
2
t = j) = C(j)

(4.6)

In both the L-DBN and HHMM models the transition probabilities for interstate

connectivity are defined based on common laws of operation as in what is perceived as

accepted behaviour from the intended user pool (e.g. the user is unlikely to sit down

immediately after standing up or it is impossible for the user to end up in state of go

away after the user has been in state of going to the kitchen). These probabilities are

conditioned further based on the training data used during the learning process.

The sensors used at the observation level consists of both physical sensors and the

localisation information, details of which are as follows:
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User Task Abbrev. Description

Recall
Walker/Wheelchair

RW Recalling walker/wheelchair to use it

Walker/Wheelchair Go
Away

WGA Instruction the walker/wheelchair to go way so
that it is not an hindrance

Stand Up SU Stand up using the support of the walker (only
for walker)

Sit Down SD Sit down using the support of the walker (only
for walker)

to Bedroom BED Navigating to the bedroom

to Kitchen KIT Navigating to the kitchen

to Bathroom BAT Navigating to the bathroom

to Living room LIV Navigating to the living room

to Laundry LAU Navigating to the laundry

to Medical MED Navigating to the medical

Navigating in a room GAN Navigating locally in a room

Table 4.2: Users Activity of Daily Living (ADLs)

• 3 Gaussian nodes, two of which are the readings from the physical sensors in-

stalled on the walker (strain gauges (LSG, RSG)) and wheelchair (i.e. joystick

(JYx, JYy)) and the orientation (θ) information available through the localisation

software).

• 2 discrete nodes, RF and Localisation. A RF switch is used by the user to indicate

the walker/wheelchair to go away and recall as needed. Location (metric (x, y))

is derived from a localiser and is discretised into 19 locations which are supplied

as an observation to both L-DBN & HHMM framework.

4.5 Data Collection

Given the nature of the work, and the sensitivity of undertaking trials with elderly/frail

subjects, healthy volunteers (25-31 years of age) were asked to participate in a set of

experiments, and the data were collected for our initial validation purposes. The vol-

unteers were briefed on the working of both the platforms and were also given time to

practice using the platform so as to understand its functionality. During the experi-

ments, the powered walker was configured to simply provide steering assistance based

on data sensed from the handle strain gauges whereas the wheelchair was configured to
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User Task Start End APs (sub-activities) Type of ADL

Going to Kitchen Bedroom (BED) Kitchen (KIT) GSS - TR - GSW Navigational

Going to Bathroom Kitchen (KIT) Bathroom (BAT) GSE - TL - GSN Navigational

Going to Bedroom Bathroom (BAT) Bedroom (BED) GSS - TR - GSW - TL
- GSN

Navigational

Going to Laundry Facility Bedroom (BED) Laundry Facility
(LAU)

GSS - TL - GSE - TL -
GSN - TR - GSE - TL -
GSN

Navigational

Going to Medical Room Bedroom (BED) Medical Room
(MED)

GSS - TL - GSE Navigational

Going to Laundry Facility Medical Room
(MED)

Laundry Facility
(LAU)

GS - TL - GSN - TR -
GSE - TL - GSN

Navigational

Going to Medical Room Bathroom (BAT) Medical Room
(MED)

GSS - TL - GSE Navigational

Stand Up (SU) any location same as start Stand Up Support activity
(for walker user)

Sit Down (SD) any location same as start Sit Down Support activity
(for walker user)

Recall Walker/Wheelchair
(RW)

Park location of
walker/wheelchair

where it last left
the user

Recall
walker/wheelchair

Navigate locally in
a room (support)

Walker/Wheelchair go Away
(WGA)

Location where
user sits down

Park location of
walker/wheelchair

walker/wheelchair Go
Away

Navigate locally in
a room (support)

General Assistive Navigation
(GAN)

locally in a room locally in a room General Assistive Navi-
gation

Assist user to nav-
igate locally in a
room (support)

Table 4.3: List of ADLs performed by users of both the mobility devices. APs represents
the navigational cues provided through the user’s motion

Mobility Device Model/Activity RW WGA SU SD BED KIT BAT LAU MED GAN Overall

Walker
HHMM 100.00 90.63 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.57

L-DBN 100.00 62.40 100.00 100.00 57.36 42.11 45.14 57.67 61.07 100.00 65.99

SVM 100.00 99.22 100.00 100.00 55.96 0.00 88.81 92.97 61.07 98.10 79.93

Wheelchair
HHMM 99.72 83.82 N.A. N.A. 100 98.84 100.00 100.00 100.00 99.50 98.54

L-DBN 89.07 93.07 N.A. N.A. 23.01 42.53 89.19 56.00 26.03 79.19 64.30

SVM 99.72 90.20 N.A. N.A. 54.42 45.09 71.88 82.58 5.12 99.33 75.06

Table 4.4: ADLs Inferred by Generative and Discriminative Models (in Percentage)

provide the same based on the data sensed from the joystick of the wheelchair.

In order to assist people in performing their everyday activities, it is important to

understand the patterns a user might follow to accomplish a given activity. In the

scope of this project, we pre-defined some of the many everyday activities a typical

walker/wheelchair user would normally encounter, although under clinical tests these

patterns may be better defined with the help of an occupational therapist [Practice,

2008], or extracted from actual raw data from the subjects when using any of the

mobility devices in the home environments. Once defined, data were collected from the

sensors while the user performed activities as listed in Table 4.2. The number of APs

in which all these ADLs can be clustered is listed in Table 4.1. A complete list of ADLs

performed by users of both platforms is shown in Table 4.3.
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Figure 4.6: 2D Bird’s eye view of environment divided into typical locations of interest
in an home, superimposed with navigational routines performed by one of the walker user.
Wheelchair data was also collected on the same navigational routines that a user would
perform

Mobility Device Model/APs RW WGA SU SD TL TR GSS GSW GSN GSE Overall

Walker
HHMM 100.00 90.63 100.00 100.00 83.91 51.38 94.76 93.16 91.06 86.03 88.88

L-DBN 100.00 62.40 100.00 100.00 52.81 41.01 94.77 94.30 92.53 86.21 86.61

SVM 100.00 99.22 100.00 100.00 90.80 84.53 99.32 100.00 99.04 98.90 98.09

Wheelchair
HHMM 99.72 83.82 NA NA 96.01 97.50 98.24 81.37 97.56 89.48 93.73

L-DBN 89.07 93.07 NA NA 94.24 99.50 88.69 92.42 94.02 91.42 92.83

SVM 99.72 90.20 NA NA 97.10 98.25 98.82 99.24 97.83 98.71 97.91

Table 4.5: Inference accuracy of Action Primitives by Generative and Discriminative
Models (in Percentage)

4.6 Results

The L-DBN and HHMM models were tested off-line using real time data collected

from three users while performing various activities as described in Section 4.5 with

both mobility platforms. User data was logged using Player/Stage open source toolbox

[Gerkey et al., 2003]. Data were collected for different navigational routines and support

activities as specified in Figure 4.6 to visit 5 location of interest.

We used the BNT toolbox [Murphy, 2002] to learn and infer user ADLs using both

the probabilistic models. EM, an unsupervised mode of learning was used to learn user

activities and Maximum Likelihood Estimator was used for inference. The data were

manually labelled for cross validation and were divided in two equal sets for the purpose

of training and testing. Using the HHMM framework, the inference accuracy for the

ADLs for the walker and wheelchair was 99.57% and 98.54% respectively while it was
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(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.7: Confusion Matrix of ADLs and APs inferred by the HHMM Model for
Walker user

(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.8: Confusion Matrix of ADLs and APs inferred by the L-DBN Model for
Walker user

65.99% and 64.30% for the L-DBN framework.

In the HHMM framework, the APs were inferred at the intermediate level (Level

2) with an accuracy of 88.88% and 93.73% for the walker and wheelchair platforms

respectively. The same were inferred with an accuracy of 86.61% and 92.83% for the

walker and wheelchair platform respectively at Level 1 using the L-DBN framework.

The confusion matrix of ADLs and APs for both the framework and both the platforms

is depicted in Figures 4.7, 4.8, 4.9 and 4.10.

The APs were inferred with very similar accuracy for both the HHMM and L-DBN

frameworks, however the ADLs inferred by the L-DBN framework were significantly

reduced as compared to the HHMM framework. This further validates the suggestion
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(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.9: Confusion Matrix of ADLs and APs inferred by HHMM Model for wheelchair
user

(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.10: Confusion Matrix of ADLs and APs inferred by L-DBN Model for
wheelchair user

that the proposed hierarchical structure is able to take full advantage of the spatio-

temporal nature of ADLs.

4.6.1 Comparison with Discriminative Model

We also compared the results of HHMM framework with a Support Vector Machine

(SVM) based discriminative classifier. SVM have become one of the most popular

classification methods in the Machine Learning field in recent years finding its appli-

cability in various real world problems such as activity recognition, text classification,

bio-informatics and many more. An SVM uses a discriminant hyper-plane to demarcate

between different classes such that the hyper-plane maximises the margins, i.e. the dis-
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tance from the nearest training point [Vapnik, 1998]. In this chapter we used a two level

SVM classifier (Figure 4.11). The SVM classifier at Level 2 (SV M2) classifies the APs

using the raw sensor data which is then fused with discretised localisation information

used by the SVM on Level 1 (SV M1) to predict the overall ADL. Since SVM learn-

ing is supervised, classification accuracy of APs was high, in the order of 98% for the

walker and 97% for the wheelchair, as the atomic classes are more easily differentiable.

However the temporal constraints in the overall ADL classification cannot be so easily

encapsulated by maximum margin approaches such as SVM, and accuracies of around

79.93% and 75.06% were attained for the walker and wheelchair platform respectively.

The ADLs and APs inferred by HHMM, L-DBN and 2-stage SVM classifier is listed

in Table 4.4 and 4.5 and shown in Figure 4.12 and 4.13 for the walker and wheelchair

platform respectively.

4.6.2 Inferring ADLs and APs using On-line Inference

As detailed in Chapter 3, the primary aim of inferring user ADLs and the associated

APs is to develop a model that can provide assistance to the user as and when required.

To this end, the ADLs and the associated APs need to be inferred in real time, hence on-

line inference was performed using the forward algorithm described in Chapter 2. The

on-line inference was done only for the HHMM framework, given the lower inference

(a) 2 level SVM Model for Walker user (b) 2 level Model used for Wheelchair user

Figure 4.11: 2 Level SVM Model used to infer ADLs of walker user (Figure (a)) and
wheelchair user (Figure (b))
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(a) Comparison of ADLs for walker user (b) Comparison of ADLs for wheelchair user

Figure 4.12: Comparison of ADLs inferred by HHMM, L-DBN and SVM Classifier for
walker and wheelchair user

(a) Comparison of APs for walker user (b) Comparison of APs for wheelchair user

Figure 4.13: Comparison of APs inferred by HHMM, L-DBN and SVM Classifier for
walker and wheelchair user

accuracy achieved by the L-DBN model already using off-line inference.

ADLs were inferred with an overall accuracy of 91% for both the platforms, whereas

inference accuracy for APs was 86% and 93% for the walker and wheelchair platforms

respectively. The confusion matrix of ADLs and APs inferred using the on-line forward

algorithm for the walker and wheelchair platform are shown in Figures 4.14 and 4.15.

Furthermore, a comparison of the inference accuracies achieved using the off-line and

on-line inference engines are shown in Figures 4.16(a) and 4.16(b). On-line inference

accuracy is reduced by around 10% when compared to the off-line method, which is

not surprising given the reliance of the current user state only on observations till the

current time, and the past state. The probabilistic inference confidence of the user

performing the activity of going to the laundry room from the bedroom is shown in

Figure 4.17.
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(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.14: Confusion Matrix of ADLs and APs inferred by HHMM model using on-line
inference for walker user

(a) Confusion Matrix of ADLs (b) Confusion Matrix of APs

Figure 4.15: Confusion Matrix of ADLs and APs inferred by HHMM model using on-line
inference for wheelchair user

4.7 Summary

In this chapter we presented a mechanism to model ADLs based on intrinsic human

motion as captured by the physical sensor present on the walker and wheelchair plat-

forms. The pool of APs used to model ADLs consisted of human motion patterns while

the individual performed different ADLs using ambulatory robots. This was a further

improvement to the approach used in the previous chapter, as the information related

to junction point based topological map was not required to model ADLs. The HHMM

framework proves to be a powerful tool to model ADLs, as it inferred APs with accura-

cies in the range of 88% and 92% respectively for the walker and wheelchair platform,

and rather significantly ADLs were predicted with an accuracy of 99% and 98% for the
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(a) Comparison of ADLs for walker user (b) Comparison of ADLs for wheelchair user

Figure 4.16: Comparison of ADLs and APs inferred by HHMM framework using off-line
and on-line inference for walker and wheelchair user

Figure 4.17: Probability evolution of inferring ADL of going to the Laundry from
Bedroom. Note that the inference is performed using the observation available till the
current time.

same platforms.

The inference accuracies of the HHMM model were also compared with those of a

L-DBN model and a 2-stage SVM classifier. The L-DBN model and staged SVM model

were used so as to resemble the modelling characteristics of the HHMM model, where

APs are inferred at the lower level and are then combined in different sequence to infer

the ADLs. The APs are inferred with around the same accuracies, yet inference of the

ADLs reduced substantially for the L-DBN and SVM models, which again proves that

modelling ADLs at multiple levels plays a critical role in predicting ADLs, while an

L-DBN or a 2-stage SVM are not capable of exploiting these relationship. Lastly, we
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also compared the results of two different ways of inferring user ADLs, i.e. inferring the

ADLs performed by the user from the entire observation sequence (off-line inference)

and inferring ADLs at a given point in time based on available observations till that

time (on-line inference).

So far, we have employed various tactics to model ADLs performed by the user with

the support of ambulatory robots such as a power walker and a robotic wheelchair. We

exploited different sensor information that can be used to extract meaningful informa-

tion to model these ADLs. In the next chapter we extend the usage of our proposition

of modelling ADLs which are related to grasping and manipulation of everyday objects.
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Chapter 5

Modelling Grasping and

Manipulation Activities

5.1 Introduction

In Chapter 3 and 4, we presented different techniques which can be used to model Activ-

ities of Daily Living (ADLs) performed by users of ambulatory robots such as a power

walker and a robotic wheelchair. The Hierarchical Hidden Markov Model (HHMM)

framework demonstrated to be a powerful tool to model complex ADLs from low level

sensor information. As per the report published by World Health Organisation [World

Health Organisation, 2004], apart from locomotion related ADLs, activities such as eat-

ing, bathing and toileting are also defined under the umbrella of basic ADLs. These

ADLs involve grasping and manipulation of different objects such as a mug, bottle,

brush, soap, etc. In this chapter we focus on modelling ADLs performed by users which

are related to grasping and manipulation of everyday objects.

We extend the usage of the HHMM based temporal model, and demonstrate how it

can be used for representing and learning object grasping and manipulation activities.

The model builds upon a dictionary of APs which are combined to compose and describe

complex ADLs. The hierarchical nature of the framework allows typical activities to
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Figure 5.1: Activity of Pouring water from mug subdivided into action primitives. Each
image depicts the output of hand-object tracking algorithm.

be decomposed into different APs which are learned by the model at different levels

of hierarchy. The example shown in Figure 5.1 decomposes a pouring activity into

sequence of APs. The APs provide the necessary tool to describe a complex activity

as a sequential combination similar to a natural language description. The proposed

framework is capable of learning this at different levels i.e. the APs are learned and

inferred by observing the hand-object interactions and their motion in the Cartesian

space, whereas ADLs are inferred by learning the sequence of APs. We also compare

the inference accuracy of the HHMM model with that of a HHMM/SVM hybrid model.

5.2 Related Work

A challenge in modelling grasping and manipulation activities is the extraction and

representation of these activities from the raw sensory data. Given the inherent level

of uncertainty and noise in this data, it is difficult to model these activities in a deter-

ministic manner. Different probabilistic techniques have been applied by researchers to

model grasping and manipulation activities [Khansari-Zadeh and Billard, 2010], [Dindo

and Schillaci, 2010], [Pastor et al., 2009], [Nemec and Ude, 2012], [Krüger et al., 2010].
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Learning by imitation is an approach that has been used by roboticists for bootstrap-

ping learning of robot activities based on human observation. Preliminary work done by

Ijspreet and colleagues used a Control Policy (CPs) based approach to represent complex

dynamical systems based on human movements [Ijspeert et al., 2002]. These CPs, which

represent various human like movement plans, are derived based on ease of representa-

tion, compactness, robustness against changes in the dynamic environment, re-usability

and overall simplicity in learning different human movement trajectories. This Dy-

namic Motion Primitive (DMP) based framework was later illustrated in a number of

applications related to humanoid robotics which involved planning, movement recogni-

tion, perception-action coupling, imitation and general reinforcement learning [Schaal

et al., 2004]. Khansari-Zadeh and Billard [Khansari-Zadeh and Billard, 2010] used a

learning method called Stable Estimator of Dynamical Systems (SEDS) to learn the

parameters of a time invariant dynamical system to ensure that all motions closely fol-

low the demonstrations while ultimately reaching and stopping at the target. Dindo

and Schillaci [Dindo and Schillaci, 2010] used an imitation learning based approach to

recognise the skills being observed and reproduce them using a generative model. They

utilised a Growing Hierarchical Dynamic Bayesian Network (GHDBN) based generative

model capable of learning various skills at different levels of hierarchy and also able to

adapt (learn new skills) as new observation sequences are available. The model learned

and reproduced three actions i.e. Dislocate, Approach and Hit. Pastor et. al. [Pas-

tor et al., 2009] used a Dynamic Movement Primitive (DMP) framework in which the

recorded movements were represented using non-linear differential equations. The move-

ment library consisted of actions such as grasping, placing and releasing. Nemec and

Ude [Nemec and Ude, 2012] in their recent work also used a DMP based system to

represent primitive movements. The DMP library used in their experiment consisted

of activities like reaching, pouring, wiping, shaking, cutting, power grasps etc. A Para-

metric Hidden Markov Model (PHMM) was proposed by Krüger et.. al. to represent

various action primitives [Krüger et al., 2010]. The framework was trained in an unsu-

pervised manner and synthesized movement trajectories as a function of their desired

effect on the object. The set of actions learned were approach, grasp, push forward,

push side, move side, rotate and remove. Song et. al. used structure learning to exploit
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Figure 5.2: HHMM Model used to infer action primitives and long term user activities
using hand and object features (described in Table 5.1)

the dependencies between hand and object to generate the structure of a Bayesian Net-

works (BN) [Song et al., 2011b], [Song et al., 2011a]. The evolved structure was used to

predict the activity performed by the user based on the type of action, and the object

being manipulated. However, these activities were predicted based on grasp instances,

and the prediction process did not exploit features from the entire trajectory that was

followed by the arm when performing the given activity.

The approach used in this thesis is novel for two reasons: firstly, the entire activity

sequence is clustered into a pool of different APs and secondly, the unified probabilis-

tic framework exploits spatial relationships to learn both APs and the time dependent

relationship between them, so as to be able to accurately predict complex manipula-

tion activities at the highest level of abstraction. In real-time applications, clustering

activities into different APs becomes an important criterion as the time taken by any

user to perform a given activity will vary (even for the same user), suggesting a high

variability in users remaining within a given (action primitive) state. In order to accom-

modate this variability, the use of hierarchical models with specific conditions to model

the end of sub-processes is an important proposition. However, considering a unique

user state at each time instance is computationally intractable as the state space would

grow unbounded.
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5.3 Modelling ADLs using Probabilistic Models

A HHMM based probabilistic framework similar to that described in Chapter 3 and 4

was used to model grasping related ADLs. As illustrated in Figure 5.2, the top level of

the framework inferred ADLs, the intermediate level inferred APs while the lowest level

corresponds to the features of object-hand interaction in the Cartesian space.

5.3.1 Hierarchical Hidden Markov Model

The 2-level HHMM framework used to model grasping and manipulation related ac-

tivities can be represented using a Hierarchical Dynamic Bayesian Network (H-DBN)

framework as shown in Figure 5.2. The ADLs were decomposed into APs (listed in

Table 5.2), which were based on visual inspection of the data. The H-DBN framework

consists of three types of nodes: Qd
t , F d

t , Ot. The ADLs are represented by Q1
t whereas

the APs are represented by Q2
t . Given the parameters (Qd

t , Ot, F d
t ), the H-DBN de-

fines the joint distribution over the set of variables that represents the evolution of the

stochastic process over time. These distributions are in the form of prior distributions

(initial probabilities of the state variables at each level), the transition probabilities

and the observation probabilities. The prior probabilities, transition probabilities and

termination probabilities are defined similar to that in Chapter 3 and 4 and the defi-

nitions are repeated here for convenience. The prior probabilities at both the Level 1

and 2 is given by Equation 5.1 where as the transition probabilities at level 1 and 2 are

given by Equation 5.2 and 5.3 respectively. The termination probabilities are given by

Equation 5.4. The observation nodes are modelled as both Gaussian and discrete. The

CPDs for Gaussian and discrete nodes is given by Equation 5.5.

P (Q1
1) = π1(j)

P (Q2
1) = π2

k(j)
(5.1)

P (Q1
t = j|Q1

t−1 = i, F 2
t−1 = f) =











A1(i, j) if F 2
t−1 = 0

π1(j) if F 2
t−1 = 1

(5.2)
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P (Q2
t = j|Q2

t−1 = i, F 2
t−1 = f, Q1

t = k) =











A2
k(i, j) if F 2

t−1 = 0

π2
k(j) if F 2

t−1 = 1
(5.3)

P (F 2
t = 1|Q1

t = k, Q2
t = i) = A2

k(i, end) (5.4)

In Equation 5.1, 5.2, A1 and π1 represent the transition and initial probabilities

respectively at Level 1 whereas in Equation 5.2 and 5.4, A2
k and π2

k represents the same

at Level 2 given the state at Level 1 is k.

P (Ot|Q
1
t = i) = N(µi, Σi)

P (Ot|Q
1
t = i) = C(i)

(5.5)

In everyday life, a single object can be used to perform many activities; for example,

a mug can be used for drinking, pouring, or can be handed over to another person. For

each ADLs, the user approaches to grasp the object, carries out the desired activity,

and then retreats the hand after releasing the object. The actions of approaching

and retreating the hand occur whenever the object is used, and cannot be described

as part of the activity sequence, as it is only the specific activity itself that uniquely

characterises an ADL. Hence such APs, e.g. approaching to grasp an object (APPRH),

and retreating after the object is released (RETRT), are not defined as components

of any ADLs listed in Table 5.3, but are treated as independent ADLs in themselves.

Such ADLs, are inferred at both levels in the HHMM framework. To better illustrate

this concept, consider the example in Figure 5.1.

The specific activity of pouring cannot be inferred until the time the mug has been

grasped. Hence when the user first approaches to grasp the mug, the ADL and the AP

remain the same and are defined at both levels. Once the object is grasped, the ADL

can be inferred based on the type of grasp and the object. Hence, the HHMM model

will infer the ADL of Approach at both the levels whereas Pour is inferred at the higher

level (1) and the corresponding subsequence of APs Grasp from Middle ⇒ Tilt ⇒ Untilt

⇒ Put Back ⇒ Release is inferred at the lower level (2). Similarly after releasing the
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Figure 5.3: Time taken by each action primitive (APs) to perform the activity of shifting
objects. Note that the time taken for shifting the same object and the time spent within
each AP varies between same and different objects

object the ADL Retreat is inferred at both levels.

The hand and object features used at the observation level, are extracted using a

hand-object tracking algorithm (details are given in Section 5.4), which represents the

interaction between the hand and object and its movement in Cartesian space.

Feature Dim. Description

hndMot 3 Hand motion in cartesian space
hndOri 4 Hand orientation (quaternion)

fgrJnt0_P 1 Pitch of knuckle joint for index, ring & middle finger
fgrJnt0_Y 1 Yaw of knuckle joint for index, ring & middle finger
fgrJnt1_P 1 Pitch of first finger joint for index, ring & middle finger
fgrJnt2_P 1 Pitch of second finger joint for index, ring & middle finger

objMot 3 Object motion in cartesian space
objOri 4 Object orientation (quaternion)
Obcl 6 Object class

Table 5.1: Hand and object features used by the HHMM framework
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Action Primitive (APs) Abbrev. Description

Approach APPRH Approach to grasp objects in a given space
Approach with twisted hand APTWH Approach to grasp objects with inverted hand
Retreat RETRT Retreat hand into original position
Putback PUTBK Place back the grasped object
Grasp from top GRTOP Grasp object from top
Grasp from handle GRHDL Grasp object from handle (if any)
Grasp from middle GRMID Grasp object from middle
Grasp from tool use end GRTUE Grasp object from tool use end
Lift object LIFT Lift grasped object
Tilt object TILT Tilt grasped object
Un-tilt object UNTLT Un-tilt grasped object
Lower object (tool) LWRTL Lower object for usage
Raise object (tool) RAITL Raise object for usage
Move object towards You MVTOU Move object towards you
Release RELSE Release the grasped object
Grasp from bottom GRBOT Grasp object from bottom
Invert object INVRT Invert the grasped object by 180 degrees
Press and release trigger PERLTGR Press and release trigger of spray bottle
Shake salt sprinkler SHAKE Shake salt sprinkler to sprinkle salt

Table 5.2: Action Primitives to perform various activities

5.4 Data Collection

In order to validate our proposed approach, we collected data using an RGB-D kinect

sensor while human subjects demonstrated grasping and manipulation activities. The

parameters that describe the configuration of the users’ hand and the configuration

of the object while performing the activities had to be extracted from the 3D video

stream data. The extracted features which involved the interaction between the hand

and object had to be such that they could be mapped to the motion of a robotic arm

for activity synthesis/imitation. In order to extract such information we combined

the methods presented in [Oikonomidis et al., 2011a] and [Oikonomidis et al., 2011b]

towards a system that can track both the hand and object while they are interacting

in Cartesian space. The hand tracked using the technique described in [Oikonomidis

et al., 2011b], which optimizes the objective function that quantifies the discrepancy

between a hypothesis over the scene state and the actual observations. The tracking

algorithm also accommodated tracking of the object and its motion in Cartesian space.

At each new frame a new tracking optimization was performed that was initialized in
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ADLs Abbrev. Description

Approach APPRH Approach to grasp objects in a given space
Approach with twisted hand APTWH Approach to grasp objects with inverted hand
Retreat RETRT Retreat hand into original position
Pour POUR Activity of pouring from a mug or bottle
Handover HNDOVR Activity of handing over an object to another person
Tool Use (Hammer) TLUSE Hammering a nail
Spray SPRAY Spraying from a spray bottle
Dish Wash DSHWSH Loading an object like a mug in a dishwasher
Drink DRINK Drink from a mug or bottle
Shift SHIFT Shift object for a one location to another
Sprinkle Salt SPRINKLE Sprinkle salt using a salt sprinkler

Table 5.3: Users’ Activities of Daily Living (ADLs)

the vicinity of the solution for the previous frame. The reference 3D coordinate system

was conveniently defined to reside on the demonstration table (seen in Figure 5.1),

which became a chess-board calibration pattern. All objects used in the manipulative

activities were painted blue, as per Figure 5.4, so as to rely upon a single, uniform

appearance model for tracking, thus facilitating the overall set-up.

To initialise the hand and object position we employed a similar technique to the one

specified in [Oikonomidis et al., 2011a], [Oikonomidis et al., 2011b] and [Papazov and

Burschka, 2011]. To successfully track the hand, the tracking algorithm expected the

hand to be at a given initial position in the space. To initialise the pose of the object,

we integrated the tracking algorithm with the RGB-D based registration method used

by Papazov [Papazov and Burschka, 2011].

The features extracted from the experimental results to validate the proposed work

are listed in Table 5.1. They consist of the 3D motion (translation and rotation) of

the hand and the object being manipulated. The features in the data also include a

selection of the rotational joint movements of three of the fingers, index, middle and

ring. The derived trajectory provided information about the motion of the hand and

object, whereas the rotational motion (yaw, pan, tilt) added information about their

corresponding orientation in space. Furthermore, the movement of the finger joints

provided details about the grasping of the objects. All these data features were utilised

to predict the APs at the lower level.

It is worth noting that the primary goal in this work is the representation of human
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Figure 5.4: Objects used to perform manipulation activities

grasping and manipulation so that these behaviours can effectively be learned from a

human teacher and ultimately transferred to a robot arm. Kinematic models and degree

of freedom (DOFs) between a human arm and a robotic manipulator differ, thus the

paths followed by both in exercising a manipulation activity will diverge. However,

for a capable anthropomorphic arm the interactions between a robotic arm and the

objects in their surroundings (e.g. grasping the object with a particular pose in order

to accomplish the desired activity) will be of similar nature - subject of course to their

differing kinematic arrangements. As such, the APs learned by the robot (GRTOP,

TILT etc.) and the sequences needed to accomplish a given task are directly transferable

to any grasping manipulator of sufficient dexterity.

5.5 Results

To test the proposed methodology, we used a selection of objects used in everyday life.

We intentionally selected objects that can be used in the context of more than one

activity, e.g. a mug and a bottle which can be used both for drinking and pouring. We

selected the six objects depicted in Figure 5.4 to perform the ADLs listed in Table 5.3.

Data were collected for a single user, who repeated the same activity 4 times to capture

variations which might occur in performing the same activity. The user was asked to
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Figure 5.5: Comparison of ADLs inferred by HHMM and HHMM/SVM Hybrid Models

perform each activity such that it resembles natural execution. The video and depth

data were collected at a rate of 30 frames per second. The motion of hand and object

was extracted off-line using the hand-object tracking algorithm described in Section 5.4.

The output of the tracking algorithm provided data for orientation and motion of hand

and object motion in the cartesian space. The tracker also extracted the features for

each finger joint. All the activities were decomposed into a total of 19 interpretable APs

based on visual inspection, and are collected in Table 5.2. It is important to emphasize

that each AP represents a cluster, which is a continuous, time-varying trajectories of

the feature set, and not a single instance.

Due to the time variation in performing different activities, the time spent in executing

each AP will vary. This would be the case even if it is the same activity that is repeated

over and over again. To illustrate this, Figure 5.3 shows an example of the time taken to

perform the activity of SHIFT which involved shifting different objects from one location

to another. It can be seen that the time taken for each AP in a given activity varied

even if the activity was repeated on the same object. For example, when comparing the

activity of shifting a bottle, BOTTLE 1 took significantly less time than the other three
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Figure 5.6: Comparison of APs inferred by HHMM and HHMM/SVM Hybrid Models

times (BOTTLE 2, BOTTLE 3, BOTTLE 4 ). This variation in the time required to

complete the same activity on different occasions was reflected in/by the time taken to

undertake each AP.

The HHMM model (Figure 5.2) was trained and tested using the captured hand and

object motion data, as described in Section 5.4. The data set was manually labelled

for both APs and ADLs for cross validating the inference accuracy. We divided the

data set into two equal halves for training and testing purposes. We used the BNT

toolbox [Murphy, 2002] to learn and infer APs and ADLs using the proposed HHMM

model. Expectation Maximisation (EM) was used to learn APs and ADLs, and the Max-

imum Likelihood Estimator was used for inference. The features used by the HHMM

framework, including their dimensions are listed in Table 5.1.

The APs were inferred with an overall accuracy of 72% at the intermediate level

(Level 2) of the HHMM model whereas the ADLs were inferred with 86% accuracy

(at the higher level). The inference accuracy of predicting each AP and the ADLs are

graphically depicted in Fig 5.6 and 5.5 respectively.

Most of the APs were inferred with greater than 72% accuracy. APs such as putback
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Figure 5.7: Confusion Matrix for ADLs inferred by HHMM Model at Level 1

(PUTBK), tilt (TILT), un-tilt (UNTLT), grasp object from middle (GRMID) and

lift (LIFT) were inferred with less than 70% accuracy. PUTBK is often confused with

LIFT (as can be seen in Figure 5.8) as both APs follow almost the same trajectory in

Cartesian space. A very high level of confusion is also evident between action states

TILT and UNTLT. This is not surprising as in the continuous space both these ac-

tions are performed one after another, and hence the framework is unable to clearly

discriminate between them. Lastly, a high level of confusion exists between the state

of grasping the object from middle and bottom due to the unavailability of relevant

information such as distance offset between the center of object and grasping points.

At a higher level, with the exception of the activities POUR and DRINK, all

other activities were inferred with fairly high accuracy (refer to the confusion matrix

in Figure 5.7). Confusion occurred between these two activities as there is minimal

difference in the sequence of APs followed to perform both drinking and pouring.

5.5.1 Comparison with HHMM/SVM Hybrid Model

We also compared the accuracy of the HHMM model with that of a hybrid HHMM/SVM

model. As described in Chapter 3, HMM/SVM hybrid model has been successfully used
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Figure 5.8: Confusion Matrix for APs inferred by HHMM Model at Level 2

in a number of application such as automatic speech recognition [Stadermann and Rigoll,

2004], tele-operation [Castellani et al., 2004] and modelling of facial action temporal

dynamics [Valstar and Pantic, 2007]. Stadermann used a SVM/HMM hybrid model for

speech recognition which combines the strong classification capabilities of the SVM with

the time varying modelling capability of the HMM framework [Stadermann and Rigoll,

2004]. Valster and Pantic also exploited the capabilities of SVM/HMM hybrid model for

facial action recognition. In this application the SVM classifies the distinction between

temporal (facial expression) phases at a single point in time which are then combined

over a time period by the HMM model to predict the temporal dynamics [Valstar and

Pantic, 2007]. A similar technique was used by Castellani and colleagues for analysing

and segmenting various teleoperation activities [Castellani et al., 2004]. In all these

approaches, the capability of the SVM to handle non-linear data through kernel induced

feature maps is exploited, which in turn can be used by the HMM to model the temporal

relationship between data points.

We used an SVM classifier to predict the APs at a single time instance which were then

combined in a temporal space within the HHMM model to predict high level activities.

The HHMM/SVM hybrid model used for comparison is shown in Figure 5.9. To make

the comparison fair, we used a HHMM framework instead of a flat HMM model so that
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Figure 5.9: HHMM/SVM Hybrid Model used to infer action primitives and long term
user activity using different hand and object features. The SVM classifier at the lower
level classifies action primitives using hand and object features which are then used by
the HHMM framework to predict the long term activities.

the self transition and inter state transition characteristics at Level 1 and 2 remained

the same for both models. The high level activities were inferred at Level 1 with an

overall inference accuracy of 95% (Figure 5.5). The APs were inferred with an overall

accuracy of 97% at Level 2 (Figure 5.6), which corresponds to a direct mapping of the

APs classified by the SVM model. Further, the features used for the SVM classifier at

each time step were the same as those used by the HHMM model.

Most of the APs were inferred with approximately the same accuracies for both

HHMM and HHMM/SVM hybrid models except for PUTBK, GRMID, LIFT,

TILT, ULTILT (confusion matrix for inferring both ADLs and APs is shown in Fig-

ure 5.10 and Figure 5.11) . The HHMM model is less able to discriminate between these

classes as described in Section 5.5. However, the SVM is able to predict these APs with

high accuracy, which is not surprising as SVM possess strong capability to discriminate

between these classes with minimal difference in observation. The HHMM/SVM hybrid

model outperformed the HHMM model in inferring ADLs given the strong classification

of APs by the SVM classifier as compared to the HHMM model.
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Figure 5.10: Confusion Matrix for ADLs inferred by HHMM/SVM Model at Level 1

5.6 Discussion

The HHMM/SVM hybrid model appears an overall stronger inference engine. However,

this is somewhat misleading when put into the correct context, and the author advocate

for the benefits that a HHMM model exhibits over a HHMM/SVM hybrid model when

the appropriate criteria to model real-life, complex manipulation tasks are taken into

consideration, as described below.

5.6.1 Missing Data

One of the challenges in dealing with real-time applications (such as ours) is dealing with

missing data. Data can be missing or inexact due to various factors such as erroneous

or faulty measurements by the instruments or sensors, and missing attributes from one

or more sensor. The discriminative nature of the SVM classifier, makes it less capable

of handling missing data. In contrast, the HHMM, being a generative model, is more

capable of learning in the presence of missing values, and often performs better when

training set sizes are small [Raina et al., 2004]. This is mainly due to the EM learning

methodology which optimizes the model over the whole dimensionality, and thus models

all the relationships between variables in a more equal manner [Le and Bengio, 2002].

96



CHAPTER 5. MODELLING GRASPING AND MANIPULATION ACTIVITIES

Figure 5.11: Confusion Matrix for APs inferred by HHMM/SVM Model at level 2

In order to emulate a case of missing data and smaller training data set, we conducted

an experiment by randomly removing data samples from the training data. We divided

the entire data set into two equal halves for training and testing (as we did for the

HHMM experiments, specified in Section 5.5). The training data set was down-sized

further by randomly sampling data at a frequency of 1/2 Hz, 1 Hz, 3 Hz, 5 Hz &

7 Hz. By generating random data sets using this method, the information related

to a given activity or AP which was lost due to down sampling can be regarded as

representing missing or lost data. Note that the random sampling of data was done

such that there would be at least one sample which represents an AP in any given

activity sequence, so the down sample rates are approximate. This was done so as

to maintain the representation of sequence of APs in any given activity. Further, to

quantitatively analyse the impact of a smaller data set and of missing data on the

performance of the HHMM and HHMM/SVM hybrid model, we generated 10 random

training data sets for each case (i.e. 10 different data sets for 1/2 Hz, 1 Hz etc.). Each

of the trained models was then tested with a single testing data set which was sampled

at 7 Hz. Note that samples used for testing are separate, and do not overlap with any

of the training data sets.

Figure 5.12 plots the mean and variance of the inference accuracy of the two models.
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Figure 5.12: Comparison of inference accuracy of HHMM and HHMM/SVM Hybrid
Model when training the model with varying amount of missing data

It can be seen how the performance of both models decreases substantially when the

amount of missing data is around 97% of the full training data (at a sample rate of 1/2

Hz). The inference accuracy of the HHMM/SVM hybrid model gradually increases as

more training data becomes available. Conversely, the inference accuracy of the HHMM

model remains almost constant despite the model being trained with varying amounts

of training data. Hence the HHMM model seems better suited to generalise in the

presence of missing data, as compared to the HHMM/SVM hybrid model.

5.6.2 Testing with unseen Activity Sequence

To further strengthen our advocacy of the HHMM model over HHMM/SVM hybrid

models, we performed an experiment where we trained both models with 3 of the 4

sequences for each of the activities, and tested it with the unseen 4th sequence. This is

different than the previous testing set used in Section 5.5.1 where data from all the 4

sequences sampled at 15 Hz used for training. For this experiment we used data down

sampled at 7 Hz, as the experiment in Section 5.6.1 showed no measurable improvement

at the higher rate. As can be seen in Figure 5.13, the HHMM model infers the long

term activities with an accuracy of 74%, whereas the HHMM/SVM hybrid model’s
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Figure 5.13: Activities and APs inferred by the HHMM and HHMM/SVM hybrid model
when tested with unseen data

inference accuracy floats around 51%. Similarly APs were inferred with an accuracy of

63% by the HHMM model and 60% by HHMM/SVM hybrid model. The HHMM model

outperforms the HHMM/SVM hybrid model in inferring both long term activities and

APs, which further validates the better generalisation characteristics of the HHMM

model.

5.6.3 Unsupervised Learning

Beyond the significant advantage of using HHMM models given their inherent general-

ization capabilities from smaller data sets, their unsupervised learning nature can not be

under estimated. It significantly overcomes the rather difficult and costly process of ob-

taining labelled data for training. Moreover, unsupervised learning also opens the door

for incorporating on-line learning algorithms whereby novelty in the patterns of perform-

ing an activity can be accomplished within the HHMM framework, e.g. using on-line-

EM [Cappe and Moulines, 2009], a work currently under way. The modular nature of the

HHMM model is therefore better equipped for real-time addition/deletion/modification

in the state space [Dindo and Schillaci, 2010], a proposition which is less attractive when

using generative models such as SVM where full re-training might be required.
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5.7 Summary

In this chapter we presented a novel approach to infer users’ manipulative activities

using a HHMM based probabilistic model. The HHMM framework allows to flexibly

divide an activity into a hierarchy, where complex ADLs are regarded as sequential

combinations of more primitive building actions, or APs. The framework was tested on

a set of manipulative sequences collected for different objects used in everyday life. The

hierarchical framework proved to be a powerful tool to divide activities both vertically

for natural language description of different activities from APs, and horizontally where

continuous observations are clustered into different APs.

We also compared the inference accuracies of the HHMM model with a HHMM/SVM

hybrid model, which performs learning in a semi-supervised manner and was in general

able to infer more accurately at both APs and higher activity level. The model takes

full advantage of the temporal characteristics of the HHMM model and the strong

discriminating capability of the SVM classifier to infer APs and the related ADLs.

However, it was shown to be less able to generalise in the absence of rich datasets, a

well-known trade-off between generative and discriminative models. It is important to

note that the inference was performed using off-line inference algorithm as compared

to both on-line and off-line inference performed in the previous application (described

in Chapter 3 and 4) where the ADLs were modelled for users of different assistive

devices. The current application of modelling grasping and manipulation activities is

more targeted towards robots learning ADLs from their human counterpart and once

learned, perform those activities independently.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we introduced a novel approach to model and learn a wide variety of Activ-

ities of Daily Living (ADLs) as perceived by low level sensors. We deployed a strategy

where complex ADLs are modelled by decomposing them into simpler atomic actions

called Action Primitive (APs). The proposed approach has been motivated by evidence

in biology and neuroscience which postulates that human motion behaviour is composed

of simple, atomic movements that can be sequenced to form complex behaviour.

Further, we utilised a unified probabilistic framework capable of modelling both ADLs

and the associated APs using low level sensor measurement. The ADLs that were

modelled consists of locomotion, support, as well as grasping and manipulation activities

that can be performed using the assistance of different robotic devices.

The proposed methodology of using a dictionary of APs proves to be an attractive

approach for representing a broad spectrum of activities performed by humans. The

primary advantage of representing ADLs using a string of APs relates to scalability

whereby complex activities can be represented using a set of defined APs, and re-

usability, where APs can be re-used in different sequences to construct any ADL. The

Hierarchical Hidden Markov Model (HHMM) based probabilistic framework utilised
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to model ADLs and the corresponding APs proves to be an efficient tool capable of

modelling both the uncertainty involved in human behaviour while performing different

activities, and the noisy sensor data. The HHMM framework allows the ADLs to be

flexibly divided into hierarchical representations, where ADLs are regarded as sequential

combinations of more primitive APs.

As demonstrated in Chapter 3, we utilised a HHMM framework to model a wide

variety of ADLs performed by power walker users. The pool of activities consist of

navigational (visiting location of interest) and support activities (assistance to stand

up). These behaviours were perceived through low level sensors fitted on the walker

platform. As the navigational ADLs are long term in nature, they were modelled using

a topological representation of an indoor environment, where location of interest were

connected using junction points and segments. The junction points acted as intermedi-

ate navigational cues to model the overall ADLs. A pre-requisite for modelling ADLs

using this approach was to generate a topological representation of the environment.

In Chapter 4 we utilised human motion primitives to model ADLs, a further improve-

ment over the previous approach. The use of a topological map was made redundant

by modelling ADLs using intrinsic human motions. We modelled ADLs performed by

users of two widely used mobility devices : a power walker and a robotic wheelchair.

The dictionary of APs were developed by decomposing ADLs into atomic actions which

were based on intrinsic human motion. The HHMM framework utilised in both method-

ologies (Chapter 3 and Chapter 4), modelled ADLs at the higher level by exploiting the

temporal dependencies amongst APs, while the APs at the intermediate levels were

modelled using human behaviour and the environment as perceived by the sensors. The

inference for modelling ADLs in Chapter 3 and Chapter 4 was done using both inference

techniques i.e. off-line inference algorithm in the form of maximum likelihood estimator

and on-line inference using forward algorithm. The high inference accuracy obtained

using both these techniques further strengthens our proposition of modelling ADLs us-

ing hierarchical probabilistic framework. The on-line inference algorithm which infers

the ADLs and APs in real time offers the the ability for the control system to provide

the necessary support to the user as and when required based on their behaviour.

102



CHAPTER 6. CONCLUSION

In Chapter 5 we extended the applicability of the HHMM framework to model activ-

ities related to grasping and manipulation of everyday objects. We successfully utilised

the ADL - AP representation to model these activities. The data which captured activi-

ties performed by humans consisted of features of hand-object data tracked in Cartesian

space using a RGB-D kinect sensor. The ADLs were modelled using a HHMM frame-

work by decomposing them into APs.

To draw a complete picture and thereby highlight the benefits of the proposed ap-

proach, we compared the inference accuracy of the HHMM framework with more tradi-

tional discriminative models (Support Vector Machines), other generative models (lay-

ered Dynamic Bayesian Networks) and combinations of both discriminative and gener-

ative models. On comparing the results, all the models predicted the APs with good

accuracies. However, successful inference of complex ADLs was substantially reduced in

the case of layered DBN and SVM models, validating the thesis proposal that the com-

bination of decomposing ADLs at multiple levels and exploiting their inherent temporal

nature plays a critical role in predicting complex interactive activities.

6.2 Future Research Direction

While the methodologies introduced in this thesis produces good results for what is

known to be a difficult problem, this section will introduce potential improvements and

propose applications that can be targeted in future work. Section 6.2.1 discusses the real-

time implementation and testing of the framework on robots. Section 6.2.2 discusses

possible modelling improvements that could be added to the HHMM framework to

model ADLs.

6.2.1 Testing the Framework to Control Robots

Efficient control of the robots based on the desire/intention of the user becomes an

important criterion for a tightly knit human-robot interactive system. The HHMM

framework used in this work has been tested off-line with real-time data collected while
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user performed different ADLs using the support of the walker and/or wheelchair. In

order to control the robots (particularly the walker) as per the user’s intention, a pool

of APs was generated such that it could directly be mapped to the control system of

the robot. We tested our proposition by mapping some of the user intentions inferred

by the Dynamic Bayesian Network [Patel et al., 2010] to the control policy of the

walker. The proposed control policy can be extended to the APs inferred by the HHMM

framework to control the robot as per the user’s interaction. Similarly, the APs defined

for a robotic manipulator to learn grasping and manipulation activities from a human

teacher are such that they can be transferred to the control policy of the robotic arm.

Despite the difference between the kinematic model and DOFs of the human arm and

the robotic manipulator, the interactions between the robotic arm and the objects in

their surrounding (e.g. grasping the object with a particular pose in order to accomplish

the desired activity) will be of a similar nature to their human teacher.

6.2.2 Enhancing the Probabilistic Framework

Adaptive Learning

The HHMM framework introduced for modelling ADLs has not been exploited to its

full potential in this thesis. For instance the number of ADLs and APs inferred by the

HHMM framework is fixed, which limits the ability of the model to adapt to change

and/or addition of new ADLs/APs. The technique described in [Dindo and Schillaci,

2010], can be utilised so as to make the framework more adaptive to accommodate the

change in user activities.

On-line Learning

Learning is another area where the capability of the model can be exploited further.

In this thesis we deployed an off-line EM technique which learns and optimises the

parameters of the model from the data. The online-EM learning technique proposed

in [Cappe and Moulines, 2009] can be applied to learn the parameters of the model in
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real-time. The learning starts with the rough model of the ADLs/APs and is further

optimised as more data related to user behaviour becomes available.

Structure Evolution/Learning

In this thesis, the structure of the model which defines the dependencies between the

parameters (i.e. observations and user states) is manually defined. With the increase in

complexity of user states and data (e.g. the data used in Chapter 5), defining the

structure manually does not exploit the true relationship between different param-

eters. Structure learning techniques for Bayesian Network [Eaton, 2007], [Francois,

2004], [Chickering, 2002] can be utilised, which explores feature dependencies to model

user behaviours.

Structure learning approach can also be extended to learn the temporal dependen-

cies in case of Dynamic Bayesian Network [Lähdesmäki and Shmulevich, 2008] and

Hidden Markov Model (HMM) [Kulic and Nakamura, 2010] which exploits both static

dependencies between states and sensors and temporal state dependencies over time.

Similarly, to explore hierarchical dependencies present in data, non-parametric bayesian

methods described in [Wang et al., 2007] can be utilised, which autonomously discovers

the optimal number of levels in the hierarchy as well as the states and parameter at

each level.

6.2.3 Automatic Generation of Action Primitive (APs) structure

The primary aim of this thesis was to model ADLs using a dictionary of APs. The APs

were generated based on visual inspection and intuition of how ADLs were performed.

The subsequent step from this thesis that can further be explored would be to auto-

matically generate the pool of APs based on the ADLs. Techniques described in [Lee

et al., 2013] can be utilised to generate APs which are frequently encountered in ADLs.
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6.3 Conclusion

This thesis contributed to improving, extending and generalising HRI particularly in the

field of assistive robotics. It illustrated how the approach of modelling activities by de-

composing then into a string of atomic actions can be utilised to model a variety of high

level activities from low level sensor measurements. Different human assistance domains

were targeted successfully, and a general interaction framework based on Hierarchical

HMM was proposed. Robotic systems will have to acquire more sophisticated assistive

capabilities if they are to operate in unstructured, dynamic, human-centred environ-

ments, responsive to the needs of interacting with humans. In that context, awareness

of human intentions play a key role in being able to apply any practical assistive action

where a user interacts with a robot to carry out their regular daily activities, be that

navigational, grasping and manipulation, communicative, or others. The methodologies

and strategies introduced in this thesis can be extended to other application domains

in order to achieve a natural, sophisticated interaction synergy between humans and

robots.
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Power Walker

The power walker shown in Figure A.1 was used as an aid device to perform vari-

ous ADLs. It is a modified commercial rollator walking frame with four wheels. The

base frame had been instrumented with ’24V olts’ (DC) reversible gear-head motors,

rotary mechanical couplings and incremental optical encoders to the two rear wheels

(Figure A.2(b)) (front wheels are passive). The motors were PWM driven using a na-

tional semiconductor LMD18200 3A, 55V H-Bridge motor driver. They were specifically

deployed to provide active ambulatory support to the user.

The user’s behaviour was perceived by the walker through a set of low level sensors in-

stalled on the walker. Four strain gauges (SGs)(two on each handle bar) (Figure A.2(a))

were used to measure the pressure a user would be exerting while handling the walker.

The differential forces between the vertical axes in each handle-bar are indicative of the

users’ readiness to start a task (sitting down, standing up or ambulation steering). The

strain gauges were micro measurements 120(ohms) and a full Wheatstone bridge elec-

tronics circuit was used to measure the pressure exerted by the user on each individual

handle of the walker.

Apart from strain gauges there were two proximity sensors (Sharp GP2Y0A02YK)

(fitted in front of the walking frame as can be seen in Figure A.1(b)) which were used

to sense behaviours such as the proximity of the user from the walker, user present
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(a) Front view of rollator Power Walker (b) Rear view of rollator Power Walker

Figure A.1: Front and rear view of the power walker

in front of the walker, user in sitting or standing position etc. The sensing range of

the proximity sensors after calibration was between [20, 150] cm. The hardware also

included a radio switch, which indicates to the walker to come back from its parking

position to where it last left the user, or vice-versa. This feature is more advantageous

in certain locations such as the living room, or bedroom where the user spends more

time unaided. The platform was also equipped with a Hokuyo URG-04LX laser range

finder at the front, which was utilised for localising the walker in a given environment

and to actively safeguard from static and dynamic obstacles present in an environment.

(a) Strain Gauge (b) wheel encoder and motors

Figure A.2: (a) Strain gauge installed on the handles of the walker and (b) Wheel
encoders and DC motors installed on the power walker
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Figure A.3: Electronics system integration on the power walker platform

In addition to the sensing hardware the walker was also instrumented with a low-level

micro-controller which communicates with all the sensors and controls the speed of the

walker. The platform was also equipped with a high-level computer for data processing

and storage. The low-level micro-controller acted as a communication bridge between

the sensors and the high level computer for data processing. A detailed system diagram

depicting the communication between the various sensors, micro-controller and high
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Users User 1 User 2 User 3

Gait Parameters Normal Speed Limit Normal Speed Limit Normal Speed Limit
Walking Walking Walking Walking Walking Walking

Stance Phase (sec) 0.46 0.96 0.58 1.17 1.30 1.63
(39.95%) (80.26%) (41.20%) (81.59%) (70.29%) (82.28%)

Swing Phase (sec) 0.78 0.24 0.74 0.28 0.33 0.35
(60.05%) (19.73%) (58.79%) (18.40%) (29.71%) (17.71%)

Avg. Speed (m/sec) 0.52 0.16 0.55 0.19 0.38 0.25

Table A.1: Temporal-Distance Gait Parameters for each user

level computer is shown in Figure A.3.

A.1 Gait Characteristics

As the author did not have access to aged or frail population to perform the experiments

needed to fully validate this work, data were collected using healthy volunteers. As per

the results presented by Zong et.al. [Zong et al., 2010], the basic gait patterns such as

Gait cycle, Stance phase, Swing phase and Walking speed of healthy users are different

to that of frail individuals. Hence in order to obtain representative data having gait

characteristics similar to those of elderly or frail individuals, we collected data from 3

healthy users’ (1 male, 2 female) by controlling the maximum speed of the power walker.

To further validate our approach, we collected data whereby the user was asked to

walk twice on a straight, flat surface path for 10m using the power walker. In the first

part, users were asked to walk at their normal everyday walking pace. In the second

part, users were asked to walk the same distance and path with the speed of the walker

controlled such that the maximum speed at which user could walk was set at 0.3m/sec.

The gait characteristics achieved using this speed were similar to that of a typical frail

and elderly user of a mobility assistance platform as reported in the literature [Zong

et al., 2010]. The only sensor data used for this experiment were obtained from the

IR sensor installed beneath the walker, which records the gait dynamics of the user, a

setup similar to that used by Zong et. al. [Zong et al., 2010].
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Results

By setting an appropriate maximum walker speed, user’s gait characteristics (Table A.1)

were found to be in agreement with those reported in the literature [Zong et al., 2010].

The temporal-distance gait parameters reflect the persons’ dynamics during walking.

Gait parameters as reported in [Zong et al., 2010] were extracted to analyse the gait

patterns of the user for the data collected as described above. The user spent more

time in the stance phase as compared to the swing phase, and the walking speed was

also reduced when compared to their normal walking gait parameters. The results of

this experiment substantiate the fact that by controlling the maximum speed of the

walker, the data logged for the ADLs inference experiments from healthy subjects can

be assumed to closely correlate with the gait characteristics of an old/frail person.

Furthermore, the variation in the user’s gait dynamics when controlling the speed of

the walker, as compared with their normal walking pattern, was also found to be in

close correlation to that reported in [Zong et al., 2010].
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Appendix B

Robotic Wheelchair

The wheelchair used for experimentation, depicted in Figure B.1, is a commercially

available power wheelchair (Invacare rollar M1 [Invacare, reviewd on 3rd January 2013])

modified with the necessary hardware. It was instrumented with a computer (attached

behind the backrest), wheel encoders, and a Hokuyo URG-04LX laser range finder used

for localisation. It also had two differentially driven wheels at the rear, and two pas-

sive casters at the front. It measures 1.2 x 0.7m, certainly a large robot when driving

around in a typical office environment with narrow passages, long corridors, and clut-

tered static obstacles. The wheelchair can travel at a maximum speed of up to 15km/h.

The Hokuyo URG- 04LX laser range finder is located on a special stand at the front of

the wheelchair. The wheelchair is further instrumented with a general Input/Output

(I/O) board (capable of integrating both digital and analog signals) and a specialised

circuitry called the Wheelchair Interface Unit (WIU). With the instrumented electron-

ics the wheelchair is capable of operating in two modes: manual and autonomous. In

manual mode the wheelchair can be controlled using the joystick whereas in autonomous

mode the wheelchair is controlled by the computer. The WIU is specifically designed

so as to control the wheelchair in autonomous mode as it converts the signal received

from the computer to standard command signals that control the normal functioning

of the wheelchair as if a user was controlling it, such as activating the motors, increas-

ing/decreasing the gears, or sounding the horn. Similar to the walker hardware, the
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wheelchair was also instrumented with a radio switch, which indicates to the wheelchair

to come back from its parking position to where it last left the user, or vice-versa. De-

tails of hardware and communication between different sensors and he motor controller

are shown in Figure B.2.

(a) Front view of Robotic Wheelchair (b) Rear view of Robotic Wheelchair

Figure B.1: Front and rear view of the robotic wheelchair

The support provided by a wheelchair used in this work is mainly navigational in

nature. The user behaviour to perform a specific ADL is perceived through the joystick

of the wheelchair, where the user provides the navigational cues of where/which direction

the he/she intends to go.
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Figure B.2: Electronics system integration on the robotic wheelchair platform
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Software Framework

Software drivers used to communicate with the low level sensors and to send commands

to control the actuators of both the mobility devices were written using the framework of

Player/Stage [Gerkey et al., 2003] and later on migrated to Robotics Operating System

(ROS) [Quigley et al., 2009]. The framework ensured integration and re-usability of

the sensors present on both the robotic platforms with various software drivers such

as Adaptive Monte-Carlo Localisation (AMCL), different path-planning and obstacle

avoidance algorithms readily available within these frameworks.

Player/Stage provides a network interface to a variety of robot and sensor hardware.

Player’s client/server model allows robot control programs to be written in any pro-

gramming language and to run on any computer with a network connection to the

robot. Player supports multiple concurrent client connections to devices, creating new

possibilities for distributed and collaborative sensing and control. The player proxy

driver capable of publishing sensor information which can further be fused with other

sensors was developed in house reported in [Osswald, 2008], which were compatible with

Player version 2.2. Similarly, the player proxy driver for physical sensor of wheelchair

was compatible with Player version 3.0. With further development of ROS and its wider

acceptability and support within the robotics community we migrated the drivers for

both the platforms from Player/Stage to ROS. ROS uses a distributed peer-to-peer node

architecture which allows each functional block to operate as a completely independent
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node. The drivers for both the platforms were developed by graduate students at the

University of Technology Sydney, reported in [Kelaher et al., 2012].

For all our experiments we collected data using the Player/Stage client-server architec-

ture, which allowed us to save all the sensor information such as localisation coordinates

(x, y, theta), physical sensors on the platforms along with time stamps. Figure C.1 de-

picts the sensor and the type of information published by each sensor which is further

fused with other sensor data to derive different information such as location of the robot

(walker/wheelchair), path planning and obstacle avoidance.

(a) Data published by each sensor on power walker

(b) Data published by each sensor on robotics wheelchair

Figure C.1: Sensor and type of data published by each player proxy nodes which is
further utilised/fused with other sensor information
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