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Glossary

Activities of Daily Living

(ADLs)

Activities of Daily Living are defined as a set of basic

activities necessary for normal self-care and indepen-

dent living

Human Robot Interaction

(HRI)

Human Robot Interaction is a branch of robotics sci-

ence that focuses on modelling, implementing and

evaluating the collaboration between robotic systems

and human partners

Learning by Imitation Learning by imitation is an approach that has been

used by roboticists for bootstrapping learning of robot

activities based on human observation

Action Primitives (APs) Action Primitives are pool of semantic structure that

is generated by decomposing complex activity space

into atomic actions

xiv



Abstract

A Probabilistic Model for Assistive Robotics Devices to Support

Activities of Daily Living

This thesis explores probabilistic techniques to model interactions between humans and

robotic devices. The work is motivated by the rapid increase in the ageing population

and the role that assistive robotic devices can play in maintaining independence and

quality of life as assistants and/or companions for these communities. While there are

substantial social and ethical implications in this pursuit, it is advocated that robotic

systems are bound to acquire more sophisticated assistive capabilities if they are to op-

erate in unstructured, dynamic, human-centred environments, responsive to the needs

of their human operators. Such cognitive assistive systems postulate advances along the

complete processing pipeline, from sensing, to anticipating user actions and environmen-

tal changes, and to delivering natural supportive actuation. Within the boundaries of

the human-robot interaction context, it can be expected that acute awareness of human

intentions plays a key role in delivering practical assistive actions. This work is thereby

focused on the human behaviours likely to result from merging sensed human-robot in-

teractions and the learning gained from past experiences, proposing a framework that

facilitates the path towards integrating tightly knit human-robot interaction models.

Human behaviour is complex in nature and interactions with the environment and

other objects occur in different and unpredictable ways. Moreover, observed sensory

data is often incomplete and noisy. Inferring human intention is thus a challenging

problem. This work defends the thesis that in many real-world scenarios these complex

behaviours can be naturally simplified by decomposing them into smaller activities, so

xv



ABSTRACT

that their temporal dependencies can be learned more efficiently with the aid of prob-

abilistic hierarchical models. To that end, a strategy is devised in the first part of the

thesis to efficiently represent human Activities of Daily Living, or ADLs, by decom-

posing them into a flexible semantic structure of “Action Primitives” (APs), atomic

actions which are proven able to encapsulate complex activities when combined within a

temporal probabilistic framework at multiple levels of abstraction. A Hierarchical Hid-

den Markov Model (HHMM) is proposed as a powerful tool capable of modelling and

learning these complex and uncertain human behaviours using knowledge gained from

past interactions.

The ADLs performed by humans consist of a variety of complex locomotion-related

tasks, as well as activities that involve grasping and manipulation of objects used in

everyday life. Two widely used devices that provide assistance to users with mobility

impairments while carrying out their ADLs, a power walker and a robotic wheelchair, are

instrumented and used to model patterns of navigational activities (i.e. visiting location

of interest), as well as some additional platform-specific support activities (e.g. standing

up using the support of assistive walker). Human indications while performing these

activities are captured using low-level sensing fitted on the mobility devices (e.g. strain

gauges, laser range finders). Grasping and manipulations related ADLs are modelled

using data captured from a stream of video images, where data comprises of hand-object

interactions and their motion in 3D space.

The inference accuracy of the proposed framework in predicting APs and recognising

long term user intentions is compared with traditional discriminative models (sequential

Support Vector Machines (SVM)), other generative models (layered Dynamic Bayesian

Networks (DBN)), and combinations thereof, to provide a complete picture that high-

lights the benefits of the proposed approach. Results from real data collected from a set

of trials conducted by actor users demonstrate that all techniques are able to predict APs

with good accuracies, yet successful inference of long term tasks is substantially reduced

in the case of the layered DBN and SVM models. These findings validate the thesis’

proposal that the combination of decomposing tasks at multiple levels and exploiting their

inherent temporal nature plays a critical role in predicting complex interactive tasks.
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